Optimal WCET-Aware Code Selection for Scratchpad
Memory

Hui Wu, Jingling Xue, Sri Parameswaran
School of Computer Science and Engineering
The University of New South Wales
{huiw,jingling,sridevan}@cse.unsw.edu.au

ABSTRACT

We propose the first polynomial-time code selection algo-
rithm for minimising the worst-case execution time of a non-
nested loop executed on a fully pipelined processor that uses
scratchpad memory to replace the instruction cache. The
time complexity of our algorithm is O(m(ne + n?logn)),
where n and e are the number of basic blocks and the num-
ber of edges in the control flow graph of the loop, and m is
the size of the scratchpad memory. Furthermore, we propose
the first dynamic code selection heuristic for minimising the
worst-case execution time of a task by using our algorithm
for a non-nested loop. Our simulation results show that
our heuristic significantly outperforms a previously known
heuristic.

Categories and Subject Descriptors

D.3.4 [Processors]: [Compilers, Memory Management, Op-
timisation]; D4.7 [Organisation and Design|: Real-time
systems and embedded systems

General Terms

Algorithms, Design, Performance

Keywords

Scratchpad Management, Worst-case Execution Time, Min-
imum Node Cut

1. INTRODUCTION

During past decades, the speed disparity between proces-
sor and off-chip memory has been increasing. To bridge the
growing speed disparity, modern processors use caches to
speed up accesses to off-chip memory. Nevertheless, caches
cause two major problems. Firstly, they consumes a signif-
icant amount of processor power. Secondly, they introduce
additional complexity for computing the worst-case execu-
tion time (WCET) of a task. In embedded systems SPM

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

EMSOFT 10, October 24-29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-904-6/10/10 ...$10.00.

(scratchpad memory) can be used to overcome these two
problems. SPM is on-chip static random access memory
(SRAM). It does not contain a tag store and associated cir-
cuitry as in caches. Therefore, SPM consumes much less
energy than caches. Moreover, SPM makes it much eas-
ier to compute the worst-case execution time of a task as
all the accesses to SPM are known at compiler time. For
these two reasons, SPM has been used in many embedded
processors and most DSPs. Examples are NVIDIA’s PhysX
PPU (physics processing unit)[2] and the Cell multiprocessor
jointly developed by Sony, IBM, and Toshiba[11].

In order to use SPM, a compiler must explicitly insert
instructions to transfer selected data and code between off-
chip memory and SPM. The data and code which are trans-
fered from offchip memory to SPM are called scratchpad
residents. There are two major issues in SPM management.
The first issue is which subset of data and code should be se-
lected as scratchpad residents. The second issue is where the
selected data and code should be stored in SPM. To solve
these two issues, researchers have done extensive research
and proposed many SPM management approaches. All the
existing approaches can be classified into two categories:
static allocation[18, 7, 4, 8, 10, 9] and dynamic allocation[15,
5, 12, 14, 13, 19, 6, 20]. In static allocation approaches
once a scratchpad resident is loaded into SPM, its space in
SPM cannot be allocated to other scratchpad residents dur-
ing the execution of its task. As a result, static allocation
approaches lead to low SPM utilisation. Dynamic allocation
approaches consider the SPM allocation problem as a gen-
eralised register allocation problem and transfer scratchpad
residents from off-chip memory to SPM dynamically. When
allocating scratchpad residents to SPM dynamic allocation
approaches consider their live ranges. If the live ranges of
two SPM residents do not overlap, these two SPM residents
can be allocated to the same area of the SPM. Therefore,
dynamic allocation approaches result in more efficient SPM
utilisation.

Most of the existing approaches for scratchpad manage-
ment aim to minimise either the average execution time or
the average energy consumption of a task. These approaches
are not suitable for real-time embedded systems. The pri-
mary objective of real-time embedded systems design is to
meet all the timing constraints. The worst-case execution
times of all the tasks of a real-time embedded system are the
key factors that affect the satisfiability of timing constraints.
Therefore, the objective of SPM management for real-time
systems should be minimising the worst-case execution time
of each task. Nevertheless, only a few approaches have been

proposed to achieve this objective. For the first time Suhen-
dra et al.[18] studied the problem of selecting data as SPM
residents so that the worst-case execution time of a task is
minimised. They proposed several approaches for selecting
data as SPM residents. However, their approaches use the
static allocation technique and therefore may result in low
SPM utilisation. Deverge and Puaut proposed a heuristic
for selecting data as scratchpad residents that aims to min-
imise the worst-case execution time of a task. Unlike the
approaches in[18], their algorithm uses a dynamic allocation
approach. Puaut and Pais[15] proposed an approach to se-
lecting basic blocks of code such that worst-case execution
time of a task is reduced. However, their approach may per-
form very poorly in the worst-case.

In this paper, we consider a target processor that uses
SPM to replace an instruction cache. We study the problem
of selecting code of a task as scratchpad residents such that
the worst-case execution time of the task is minimised. We
propose the first polynomial-time code selection algorithm
that minimises the worst-case execution time of a non-nested
loop that runs on a fully pipelined processor. Our algorithm
introduces a novel optimal basic block splitting technique
and converts the problem of minimising the worst-case exe-
cution time of a non-nested loop into the problem of finding
minimum node cuts of a set of graphs. Furthermore, we
propose a dynamic allocation heuristic for minimising the
worst-case execution time of a task by using our optimal al-
gorithm for a non-nested loop.

This paper is organised as follows. Section 2 describes
the system model and introduces several key definitions. In
Section 3, firstly, we propose a polynomial-time code selec-
tion algorithm for a non-nested loop with equal basic block
sizes, analyse its time complexity and prove its optimality;
secondly, we propose a polynomial-time code selection algo-
rithm for non-nested loops with arbitrary basic block sizes.
Section 4 proposes a code selection heuristic for loop nests.
Section 5 discusses the related work and presents our simu-
lation results.

2. SYSTEM MODEL AND DEFINITIONS

We consider the real-time embedded systems where a pro-
cessor uses SPM to replace the instruction cache to speed
up instruction fetches. The target processor uses a fully
pipelined architecture where all instructions are pipelined.
The execution of each instruction takes one processor cycle
if the instruction is already in the SPM. Otherwise, it takes
p cycles due to the off-chip memory latency. One example of
such processors is MIPS 2000 processor. The target proces-
sor provides a special instruction fetch to load a sequence of
contiguous instructions from off-chip memory into the SPM.
Throughout this paper, the ratio « of the off-chip memory
speed and the processor speed is 1/p.

A basic block is a sequence of code that has only one en-
try and only one exit. Obviously, if a basic block is not
within a loop, it is not beneficial to load it from the off-chip
memory into the SPM unless the target processor provides
a DMA (Direct Memory Access) mechanism to prefetch ba-
sic blocks. In this paper, we only consider the basic blocks
within a loop as the candidates of SPM residents. Basic
blocks may be split into two smaller blocks in order to min-
imise the worst-case execution time of a task.

CFG (Control Flow Graph) is a classical data structure
for representing a program. In a CFG, each node is a basic

block and each edge represents the control flow from one
block to another. Typically, the CFG of a loop contains
a preheader node, a header node, and two types of edges:
forward edges and back edges. The preheader node is the
source of loop entry edge. The header node is a node that
dominates all other nodes in the CFG. A back edge is an
edge whose target is the entry node.

We assume that given a loop each path of its CFG is
feasible and the worst-execution time of the loop is equal
to the execution time of its longest path multiplied by the
maximum number of iterations of the loop. Since SPM is
much faster than off-chip memory, the execution time of a
basic block is dominated by the time of fetching the basic
block from the off-chip memory. Under these assumptions,
the problem of minimising the worst-case execution time of
a non-nested loop reduces to the problem of minimising the
worst-case execution time of a single iteration of the non-
nested loop.

To model a single iteration of a non-nested loop, we do not
consider the back edges of the CFG of the loop. Therefore,
a single iteration of a loop can be represented by a weighted
DAG (Directed Acyclic Graph) G = (V, E,W), where V is
the set of all non-preheader nodes of the CFG of the loop, F
is the set of all forward edges of the CFG, and W is the set
of weights of all nodes. The weight of each node v;, denoted
by wi, is the size of the corresponding basic block. For ease
of description, we assume that the execution time of a basic
block v; is w; if v; is not a SPM resident; otherwise it is qw;.

In a weighted DAG G, if there is a path from v; to v;. v;
is a predecessor of vj and v; is a successor of v;. If (v;,v;) is
an edge of G, v; is an immediate predecessor, or a parent of
v; and v; is an immediate successor, or a child of v;. A node
is a source node if it has no parents. A node is a sink node
if it has no children. The path length of a path is the sum
of the weights of all constituent nodes. A path is an induced
path of a node v; if the path includes v;. The length of the
longest path of a weighted DAG G is denoted by lmax(G).
A weighted DAG G’ is a subgraph of G if the vertex set,
edge set and node weight set of G’ are subsets of those of G.
Given a set S, its size is denoted by |S]|.

DEFINITION 2.1. Given a weighted DAG G = (V, E, W),
a node cut of G is a subset V' C V such that each path from
a source node to a sink node must contain a node in V'.
A node cut is a minimum node cut if it has the minimum
number of nodes among all node cuts.

DEFINITION 2.2. Given a weighted DAG G = (V, E,W),
a subset S of V and a real number o, the DAG G(S,a) =
(V',E',W') is defined as follows: V' =V, E' = E and
W' = {wji: ifv; € S, wi = axw;; otherwise, w; = w;, where
w; is the weight of v; in G}.

Intuitively, G(S, @) is the resulting graph of G after all the
basic blocks represented by S are selected as scratchpad res-
idents.

DEFINITION 2.3. Given a weighted DAG G = (V,E,W)
and a subset S of V, the weighted DAG G(S) = (V', E',W')
is defined as follows: V' =V — S, E' = {(v;,v;) : (vi,v;) €
E or there is a path from v; tov; in G such that all the nodes,
excluding v; and vj, of the path are in S} and W' = {wj:
v; € V' and wj is equal to the weight w; of v; in G}.

The weighted DAG G(S) is used to denote the state of a
loop after all its basic blocks represented by S are selected

as scratchpad residents. So G(S) does not contain all the
nodes in S and the connectivity of each pair of nodes in
G(S) remains the same as in G.

DEFINITION 2.4. Given a weighted DAG G = (V,E,W)
and a real number x, the x-spanning graph of G is a subgraph
G(z) of G such that for each source node v; and each sink
node v; in G(x) the length of each path from v; to v; in G(x)
is greater than x.

3. CODE SELECTION FOR NON-NESTED
LOOPS

For a non-nested loop, we load the selected basic blocks of
the loop in the preheader block. During the execution of the
loop, all the basic blocks in the SPM can be fetched much
faster than the basic blocks stored in the off-chip memory.
The objective of the basic block selection is to minimise the
worst case execution time of the loop while satisfying the
SPM capacity constraint.

Let G = (V, E,W) be a weighted DAG for a non-nested
loop, where V' = {v1,v2, - ,vn} is a set of basic block,
E = {(vi,v;) : v; is directly control-dependent on v;}, and
W = {w;: w; is the size of the basic block v; }. Assume that
the scratchpad size is m. Our objective is to find a subset
S C V such that the following constraints are satisfied:

1. ZviESwi S m.

2. lmax(G(S, @) = min{lmax(G(S",a)) : ' C V and
Dves Wi <ml.

The first constraint implies that the total size of all scratch-
pad residents is at most m, the size of the scratchpad. The
second constraint states that the subset S C V minimises
the longest path of the non-nested loop.

3.1 Equal Weights

We first consider a special case of the basic block selection
problem for a non-nested loop where all weights are equal.
This problem can be solved optimally in polynomial time.
Assume that all weights are equal to k.

Our algorithm has four inputs: a weighted DAG G that
represents a loop, the number of iterations of the loop, a set
A of nodes (basic blocks) that have been already selected as
the SPM residents, and the scratchpad size m. For a non-
nested loop, A is an empty set. A is not empty if the loop
contains another loop. We will discuss nested loops in next
section. Note that the weight of a selected node can be an
arbitrary integer. Our algorithm returns an optimal set of
basic blocks selected as the SPM residents and the size of
the free space of the SPM that is not occupied by the opti-
mal set of basic blocks.

Our algorithm uses a greedy strategy. At each stage, it
finds the minimum set of basic blocks such that the length of
the longest path of the DAG is reduced by k(1—«) after load-
ing all the basic blocks in the minimum set into the SPM.
The minimum set of basic blocks is found by computing
the minimum node cut of the (Imax(G) — k(1 — a))-spanning
graph of the DAG G of the loop. All the basic blocks of a
minimum node cut are loaded in the SPM only if the number
of nodes of the minimum node cut is less than the number of
iterations of the loop. If all the basic blocks of a minimum
set cannot be loaded into the SPM, our algorithm ranks all
the basic blocks in the minimum set according to their im-
pacts on the longest path and selects the basic block with
the highest impacts on the longest path of G based on the
SPM capacity constraint. Our algorithm is shown in pseudo
code as follows.

Algorithm OptimalCodeSelectionl(G, A,m,T)

input: A set A of basic blocks that have been selected as the
SPM residents, a weighted DAG G where the weight of each
node that is not in A is equal to k, the number of iterations r
of the loop, and the scratchpad size m.

output: A subset S of nodes of G as SPM residents for minim-
ising the longest path length and the size of the free space of
the SPM.

begin
size = Zv,EA wi;
if size =m
return (0, 0); /* No free SPM space */
S =A;
compute the longest path length lmax(G) of G;
while size < m do
construct G(lmax(G) — k(1 — a));
let G be G(lmax(G) — k(1 — a));
construct G'(S);
find a minimum node cut C of G'(S);
if |C| >=r /* Do not load C into the SPM */
break; /* Exit from the loop */
if size+|Cl*xk <m
S=5SuC;
size = size + |C| x k;
for each v; € C do
change the weight w; of v; to k * «;
/* the longest path of G is reduced by k(1 — a) */
lmax(G) - lmax(G) - k?(]. — Oé);
else
for each node v; € C do
compute the maximum length of all the paths
that include v;;
sort all nodes in C' in non-increasing order of their
maximum lengths;
let B be the set of the first |(m — size)/k| nodes
in the sorted set C;
S =SUB;
for each node in B do
change the weight w; of v; to k * «;
inserts the fetch instructions in the preheader
of the loop to load all the basic blocks in S;
return (S, m — size);
end

Example 1 Consider a non-nested loop that is represented
by the DAG shown in Figure 1, where o = 0.2, k = 100. As-
sume that the scratchpad size m is 400. The longest path
length of the DAG is 600. In the first iteration, our algo-
rithm constructs the G(520)-spanning graph in which the
path length of each path is greater than 520 as shown in
Figure 2. One minimum cut of the G(520)-spanning graph
is {vs}. So vs is selected as a SPM resident and its weight
is changed to 100 = 20. In the second iteration, our algo-
rithms constructs the G(440)-spanning graph in which the
path length of each path is greater than 440 as shown in
Figure 3. Our algorithm removes the selected node vg from
the G(440)-spanning graph and finds the minimum node cut
{v1} as shown in Figure 4. In the last iteration, our algo-
rithms constructs the G(360)-spanning graph in which the
path length of each path is greater than 360 as shown in
Figure 5. Our algorithm removes the selected nodes vi and
vg from the G(360)-spanning graph and finds the minimum
node cut {vg, v14} as shown in Figure 6. After our algorithm
terminates, it selects the optimal set {v1, vs, V9, v14} of nodes
(basic blocks) as SPM residents. The resulting longest path
length is 360.

Figure 1: DAG G in Example 1

\

\
15 16

Figure 2: G(520)-spanning graph

3.2 Optimality Proof and Complexity Analy-
Sis

THEOREM 3.1. Given a weighted DAG where all weights
are equal, the algorithm OptimalCodeSelectionl! is guaran-
teed to find a subset of nodes as the SPM residents such that
the longest path length of the DAG is minimised and the to-
tal weight of all the nodes of the subset does not exceed the
size of the SPM.

PRrOOF. Given a weighted DAG G and a scratchpad size
m, let Sop: be the optimal set of nodes that minimises the
longest path length of G. Assume that Sop: reduces the
longest path length of G by k(r —1)(1 —a)+s (0 < s <
k(1 — a)), where 7 is a natural number. S,,: can be parti-
tioned into r subsets Si, Sa, - -+, Sy such that the following
conditions hold.

1. Foreach S; (i =1,2,--- ,r—1) the longest path length
of the DAG G is reduced by k(1 — «) if the weight of
each node in S; is changed to k(1 — a).

2. The longest path length of the DAG G is reduced by s
if the weight of each node in S, is changed to k(1 —«).

Without loss of generality, assume that |S1| < [S2] < -+ <
|Sr—1]. To facilitate our proof, we use the following nota-
tions:

Gi1: G.

\ v
15 16

Figure 4: G(440)-spanning graph with vs removed

Gi(i =2,---,7): G(Ujen,i-1)5j, @), that is, the DAG G
with the weight of each node in S;U---US;_1 being changed
to ka.

Imax; (1 =1,2,--- r): the longest path length of G;.

Gi(i = 1,2,---,7): The lnax,;-spanning graph G;(Imax;)
of Gz

a. o
1 1-

G/(i=2,---,7) Gi(Y'), where S’ = {v; : v; € Gj} —
Ujeln,i—1]55-

Next we show that S; (i = 1,2,---,7) must be a mini-

mum node cut of the graph G7. When i = 1, S; reduces
the maximum path length of G1 by k(1 — a). Therefore, S1
must be a node cut of GY. Since S,p: is an optimal solu-
tion, S1 must be a minimum node cut of GY. Similarly, S;
(i=2,---,7 — 1) must be a minimum node cut of G¥.

Now consider S,. If S, = (@, our proof is complete. As-
sume that S, # (). In this case, S, reduces the longest path
length by s (0 < s < k(1 — a)). Therefore, S, is not a node
cut of the graph G./. Since S is the optimal set, S, must a
subset of a minimum node cut of G/ and all the nodes in S,
must be those nodes in the minimum node cut with larger
longest induced path lengths than the remaining nodes in
the minimum node cut. [

THEOREM 3.2. The time complexity of the algorithm Op-
timalCodeSelectionl is O(n(ne + n®logn)), where n and e
are the number of nodes and the number of edges, respec-
tively, of the DAG of the loop.

V15 v16

Figure 5: GG(360)-spanning graph

vy V3 Va
Vg V7
v Vi1
9
Vig
Vi2
v v
15 16

Figure 6: (G(360)-spanning graph with v; and vs re-
moved

ProOF. The time complexity of the algorithm Optimal-
CodeSelectionl is dominated by the while loop. The while
loop consists of the following major parts:

1. Constructing G(lmax — k(1 —)). We can use breadth-
first search or depth-first search to find the the (Imax —
k(1—a))-spanning graph G (Imax—k(1—a)). Therefore,
this part takes O(e) time.

2. Constructing G'(S). This part takes O(e) time.

3. Finding a minimum node cut C' of G’(S). The mini-
mum node cut problem can be converted into the mini-
mum edge cut problem[16]. The conversion takes O(e)
time. Given a weighted DAG, the minimum edge cut
can be found in O(ne+n?logn) time[17], where n and
e are the number of nodes and the number of edges,
respectively, of the DAG.

4. The if part takes O(n) time.

5. The else part is executed only once during the execu-
tion of the loop. For each v; € C it takes O(e) time
to compute the maximum length of all the paths that
includes v;. Therefore, this part takes O(ne) time.

The number of iterations of the while loop is at most n.
Therefore, the time complexity the algorithm OptimalCode-
Selectionl is O(n(ne 4+ n?logn)). O

3.3 Arbitrary Weights

Next we show how to select code of a non-nested loop
with arbitrary block sizes such that the worst-case execution
time of the loop is minimised. Our key idea is to split all
basic blocks into smaller basic blocks with equal sizes. We
first propose a brute-force algorithm for the arbitrary weight
problem.

Let n1, na, - - -, np be p different weights of all basic blocks
of a loop and ¢ be the greatest common divisor of all the
different weights. Let the DAG of the loop is G = (V, E, W),
where V = {v1,v2,- -+ ,vn}. The brute-force algorithm work
as follows:

1. Create a new DAG G’ = (V' E', W'} as follows:

(a) For each node v; € G create w;/c new nodes Vi
(j=1,2,--+ ,w;/c) in G.

(b) For each pair of nodes v;; and v;,;, (j =1,2,---,
wi/c—1) in G', create an edge (vi;,vi,) in G’

(c) For each edge (vi,v;) in G, create an edge (vi, ,,,
’Ujl) in G'.

2. Find the minimum set S of nodes in G’ such that the
longest path of G’ is minimised.

3. Foreach i (i =1,2,---,n) let ¢c; = [{vi; : vi; € S}|.

4. For each node v; (1 =1,2,---,n) in G, do the follow-
ing:

(a) If ¢; is equal to w;/c, select the whole basic block
v; as a SPM resident.

(b) If 0 < ¢; < w;/c holds, split the corresponding
basic block of v; into two basic blocks vi and v?
such that the size of v} is ¢; — d and the size of
v? is w; — ¢; + d, where d is the length of a jump

instruction that needs to be inserted at the end

of v}. Select v; as a SPM resident.

The jump instruction jumps to the start of the basic block
v2. Notice that our algorithm splits a basic block into two
basic blocks only, i.e., for each basic block, at most one jump
instruction is inserted in the original program. Therefore,
the code size increase caused by the basic block splitting is
negligible.
Example 2 Assume that the SPM size is 160 and the
speed ratio a of the SPM and the off-chip memory is 0.2.
Consider a loop with a DAG G as shown in Figure 7 where
each number in brackets is the node weight. Firstly, our
algorithm converts the problem into a problem with equal
weights as shown in Figure 8, where all weights are equal to
20. Secondly, our algorithm uses the optimal algorithm for
the problem with equal weights to find the following set of
nodes for the SPM residents: S = {v1,,v1,, V15, Vs, ,Us,, Usy,
v7,, U7, }. Lastly, our algorithm splits basic block v7 into two
basic blocks: the SPM resident basic block v} with size of
40 — d and the off-chip memory resident basic block v2 with
size of 404d, where d is the length of the jump instruction.
The optimal set of the basic blocks selected by our algorithm
is {v1, vs,vs}. The path length of the resulting longest path
of GG is 113 assuming that d is 1. Notice that if we do not
split basic blocks, the path length of the resulting longest
path of an optimal solution is 128.

According to THEOREM 3.2, the time complexity of the

o] - V7[80]

Figure 7: The DAG G in Example 2

Figure 8: The equivalent DAG in Example 2

brute-force algorithm is O(nC(nCe’ 4 (nC)? log nC)), where
C' is the maximum block size, and €’ is the number of edges
in G'. If the maximum block size C is very big, the time
complexity of the brute-force algorithm is quite high. Next
we show how to reduce the time complexity of the brute-
force algorithm significantly.

The key idea of our faster algorithm is that the original
DAG implicitly keeps the structure of the equivalent DAG
with equal weights constructed by the brute-force algorithm.
Let G = (V, E, W) be the DAG with arbitrary node weights
and G’ = (V' E',W’) be the DAG with equal weights cre-
ated by the brute-force algorithm. Assume that each node v;
in G is split into m; nodes vy, , - - -, vi,, in G'. v; is called the
originator node of v;; (j =1,---,my). vi; (j=1,---,m;)
is called an offspring node of v;, and v;; is called a sibling
node of v;, (j,k=1,---,m;) .

Let S be a subset of V and S’ a subset of V'. If each
node in S’ is an offspring node of a node in S and each node
in S is an originator node of a node in S’, S’ is called an
offspring set of S and S is called the originator set of S’.
We can prove the following property:

PROPERTY 3.1. Given a subset S’ of V', S is a minimum
node cut of G’ iff the originator set S of S’ is minimum node

cut of G.

This property suggests one of the two key ideas of our faster
algorithm for a non-nested loop with arbitrary weights, that
is, we can use the original DAG G to find the minimum cut
of a subgraph (Imax — k(1 — «))-spanning graph of G’. Thus,
we can find a minimum node cut of a subgraph of G’ much
faster than the brute-force algorithm. To do so, we introduce
a variable u; for each node v; of G. u; is used to keep track
of the size of the part of v; that has been selected as the
SPM resident. The second key idea of our faster algorithm
is to reduce the number of executions of the algorithm for
finding the minimum node cut of a subgraph of G’. Let lmax
and Imax, be the lengths of the longest path and the second
longest path of the current DAG G, respectively. Clearly, for
any numbers 1 and z2 in [lmax, , lmax] the z1-spanning graph
and the zs-spanning graph of G’ are identical. Therefore,
we just need to find lmax — lmax, minimum node cuts of
the lmax — k(1 — a)-spanning graph of G’. Assume that
C = (Viy, Vi, -+ , i) is a minimum node cut of the lmax —
k(l — a)-spanning graph of G. Let s be mln{w2 — Uiy Wi
is the weight of Vi and U, is the size of the part of Ul that
has been selected as the SPM resident }. Clearly C 1mphes
s minimum node cuts in G’.

Based on these two key ideas, our after algorithm for a
non-nested loop with arbitrary weights is shown as follows:

Algorithm OptimalCodeSelection2(G, A, m,r)

input: A weighted DAG G with arbitrary weights and a set of
basic blocks that have been selected as the SPM residents, the
number of iterations r of the loop, and the scratchpad size m.
output: A subset S of nodes of G as SPM residents for minim-
ising the longest path length and the size of the free space of
the SPM.

begin

size =3, ¢ Wij

if size =m
return (0, 0);

S =A;

for each v; €V do
u; = 0;

compute the longest path length lmax and the second longest

path length lmax, of G;

if lmax - lmax2 < 1
d=1;

else

/* No free SPM space */

d= lmax - lmaxz;
while size < m do
construct G(lmax — k(1 — a));
let G be G(lmax(G) — k(1 — a));
construct G'(S);
find a minimum node cut C of G'(S);
if |C| >=r /* Do not load C' into the SPM */
break; /* Exit from the loop */
s = min{w; —u; : v; € C};
if s <d
r = min{|m — size|/|C|, s};
for each v; € C do
u; = u; +71;
if U; = Wy
change the weight w; of v; to k * «;
size = size + |C| * k x r;
C=C—{v};
lmax :lmaxfk*T*(lfa);
if size < m and |C| # 0
for each node v; € C do
compute the maximum length of all the paths
that include v;;
sort all nodes in C' in non-increasing order of their
maximum lengths;

let B be the set of the first | (m — size)/|C|| nodes
in the sorted set C;
for each node v; € B do
u; = u; + 1;
for each node v; € V do
if u; = w;
S=5U{v};
else
if u; >0
split the corresponding basic block of v; into two
basic blocks vil and vf such that the size of
vil is ¢; — g and the size of 2)1-2 isw; — ¢ + g,
where g is the length of the jump instruction that
needs to be inserted at the end of fuil;
inserts the fetch instructions in the preheader of the loop to
load all the basic blocks in S;
return (S, m — size);
end

Since this algorithm is equivalent to the brute-force algo-
rithm and the brute-force is guaranteed to minimise the
worst-case execution time of a non-nested loop with arbi-
trary weights, the following theorem holds.

THEOREM 3.3. Given a weighted DAG G with arbitrary
weights, the algorithm OptimalCodeSelection2 is guaranteed
to find an optimal set of nodes as the SPM residents such
that the longest path length of the DAG is minimised and the
total weight of all nodes of the optimal set does not exceed
the size of the SPM.

Given a weighted DAG G, the time complexity of each iter-
ation of the while loop is O(ne 4+ n?logn) as we explained
before. The number of iterations of the while loop is at
most m/r, where r is the greatest common divisor of all the
block sizes. Therefore, the following theorem holds.

THEOREM 3.4. The time complexity of the algorithm Op-
timalCodeSelection2 is O(m(ne + n*logn)), where n and
e are the number of nodes and the number of edges, respec-
tively, of the DAG, and m is the size of the scratchpad mem-
ory.

4. CODE SELECTION FOR LOOP NEST

In this section, we propose a dynamic code selection heuris-
tic for minimising the worst-case execution time of a loop
nest by using our algorithm for a non-nested loop. First we
introduce loop nest tree.

DEFINITION 4.1. Given a loop nest, its loop nest tree T =
(V,E,W) of L1, is a weighted tree where V.= {L; : L; is
a loop in the loop nest}y, E = {(Li, L;): L; is immediately
nested within loop L; }, W = {w;: the size of loop L; is w;}.

The size of a loop is the sum of sizes of all the basic blocks
of the loop, excluding the preheader.

For a non-innermost loop L;, its DAG G(L;) is defined as
follows. G(L;) = (V(L:), E(L;), W(L;)), where each node
v; € V denotes either a basic block immediately nested in
L; or a loop immediately nested in L;, E(L;) is the set of
all forward edges of the CFG of L;, and W is the set of
weights of all nodes. For a node that represents a basic
block, its weight is the size of the corresponding basic block.
For a node that represents a loop, its weight is the worst-
case execution time of the loop which is determined only
after our heuristic is applied to the loop. Consider a loop
nest in C' shown as follows:

while (axa+bxb>c) /¥ Ly */
if (x>y)
for (i =0; i <=200;i++) /¥ Ly */
{...;}
else
for (i =0; i <=200; %+ +) /* L3 */
{3}
for (i =0; i <=100; i+ +) /¥ Ly */
if (a>0)
for (i =0; i <=300;i++) /¥ Ls */
i)
else
for (i =0; i <=300;i++) /* Lg */
i)

}

There are 6 loops L;(i = 1,2---,6) in this loop nest. The
loop nest tree is shown in Figure 9. The DAG of L; is shown
in Figure 10 where a circle denotes a basic block node, a
rectangle denotes a loop node.

To facilitate descriptions, we use following notations:

Figure 9: A loop nest tree

Vi
v, V3
Vg4 Ve
Ve
V7

Figure 10: The DAG G(L,)

B(L;): all the basic blocks, excluding the preheader block,
Of Li.

Imax (L;): the length of the longest path of the DAG of L;
after our algorithm selects basic blocks as the SPM residents
for L;.

n;: the number of iterations of L; in the worst-case.

child(L;): the set of all children of L; in the loop nest tree
Of Li.

Our heuristic works in the reverse topological sort order
of the loop nest tree, that is, from inner most loops to the
outmost loop. When our heuristic visits a loop, it uses our
optimal algorithm for a non-nested loop to find the optimal
set of basic blocks of the loop. Then it reduces the loop into
two basic blocks: the preheader block and the loop block.
The preheader block contains the instructions that load all
the selected basic blocks of the loop into the SPM. The loop
block is an artificial block whose size is equal to the worst-
case execution time of the loop. The worst-case execution
time of the loop is equal to the number of iterations of the

loop multiplied by the maximum path length of the DAG
of the loop computed by our optimal algorithm for a single
loop. Note that our heuristic never selects a loop block as a
SPM resident. Our heuristic is recursively shown in pseudo
code as follows.

Algorithm HeuristicforLoopNest(L)

input: A loop L

output: A set S of basic blocks of L selected as the SPM
residents

begin
if child(L) = 0
(S, s) = OptimalCodeSelection2(G(L), 0, m);
return (S, s);
S =0;
for each loop L; € child(L) do
(Si, ;) = Heuristicfor LoopNest(L;);
set the weight of the node denoting L; in G(L)
to lmax(Li) * Mg
S = S U{v; : v; is the node denoting L; in G(L)};
B=BUS;;
s =min{s; : L; € child(L)};
if s >0
(S, s) = OptimalCodeSelection2(G(L), S, k);
inserts the fetch instructions in the preheader
of the loop L to load all the basic blocks in S;
return (S, s);
end

Consider the loop nest shown in Figure 9. Assume that the
size of the SPM is 4 KB, the sizes of the loops L2 and L3
are 4 KB, and the size of L4 is 1.6 KB. By our heuristic, the
SPM will be shared by L2, Ls and L4 as shown in Figure 11.

Figure 11: A dynamic SPM allocation scheme

5. COMPARISONWITH RELATED WORK

The problem of allocating code of a task to SPM has been
studied by a number of researchers. Two optimisation ob-
jectives have been used. One is to minimise the average
energy consumption or execution time of a task. The other
is to minimise the worst-case execution time of a task.

Egger, Lee and Shin studied the problem of dynamic SPM
management for the code of a task aiming to minimise the
average execution time of the task[6]. The target systems
have an MMU and use a scratchpad memory and a small
minicache to replace the on-chip instruction cache. They
proposed a dynamic memory allocation technique for a hori-
zontally partitioned memory subsystem. The proposed tech-
nique uses the profiling information to classify the code into
a pageable and a cacheable code region. The cacheable code
region is placed at a fixed location in the offchip memory
and cached by the minicache. The pageable code region is
copied on demand to the SPM before execution. Both the
pageable code region and the SPM are logically divided into
pages. Using the MMU’s page fault exception mechanism,
a runtime scratchpad memory manager tracks page accesses

and copies frequently executed code pages to the SPM be-
fore they are executed.

Angiolini et al. proposed an optimal scratchpad mapping
approach for code segments[4]. The mapping approach ap-
plies the dynamic programming algorithm to the execution
traces of the target application. The mapping approach is
able to find the optimal set of basic blocks to be moved into
a dedicated SPM, either minimising the energy consumption
or execution time of the target application.

Janapsatya et al. proposed a heuristic which aims to min-
imise the average total energy consumption of a program[10].
Their heuristic uses the profiling information of a program
and converts the code selection problem into a graph parti-
tioning problem. They also proposed a better heuristic for
selecting code with the same optimisation objective[9]. The
heuristic introduces a novel metric called concomitance to
find basic blocks which are executed frequently and in close
proximity in time.

The primary design goal of real-time embedded systems
is to ensure that all timing constraints are satisfied. Given
a target hardware platform, the satisfiability of timing con-
straints is determined by the worst-case execution times of
all tasks. All the above-mentioned code selection approaches
aim to minimise the average execution time or total energy
consumption of a program. They rely on the profiling infor-
mation of the program and try to select the most frequently
executed basic blocks as scratchpad residents. the worst-
case execution time of a task is determined by its longest
execution paths. typically the longest execution paths of
a program are not the most frequently executed paths. In
other words, selecting most frequently executed basic blocks
of a program as scratchpad residents may not reduce its
worst-case execution time. Therefore, all the afore-discussed
code selection approaches are not suitable for real-time em-
bedded systems.

The only previous work on the code selection for real-time
systems was done by Puaut and Pais[15]. They proposed a
heuristic for the problem of selecting basic blocks of a loop
such that the worst-case execution time of the loop is min-
imised. The main idea of their heuristic is to repeatedly
select as a SPM resident a basic block with the highest fre-
quency on the longest path of the loop until the SPM has
no more free space for a basic block.

Their heuristic does not consider sharing the SPM among
all the inner loops, resulting a lower SPM utilisation. In the
worst-case, their heuristic may perform very poorly. Con-
sider Figure 12. Assume that the frequencies of all basic
blocks are equal, the sizes of all basic block are equal to
k and the size of SPM is (2n + 1)k. Their heuristic may
select {v2,vs,vs,v6, "+ ,V3n—2,V3n—1}, leaving the longest
path length unchanged. An optimal set of nodes is v1 and
any 2n nodes in [2n/3] node cuts of size 3.

To make a quantitative comparison between our heuristic
for a loop nest and the heuristic proposed by Puaut and Pais,
we simulated both heuristics by using the SimpleScalar simu-
lator[3]. We modified the instruction cache part to carter for
code SPM and disabled data cache of the SimpleScalar. The
target processor uses the PISA instruction set with single-
issue in-order pipeline. The off-chip memory latency is 10
cycles.

We selected four benchmarks: susan, statemate, compress
and jfdctint from the benchmark suites maintained by the
Milardalen WCET research group[1]. We modified the main

Figure 12: A worst-case scenario

function of statemate to include a loop that calls the func-
tions interface and FH_DU 20 times. The simulation was
performed on Intel(R) Xeon(R) Dual Core CPU 5160 with
a clock frequency of 3 GHz and 4 MB cache. We used dif-
ferent SPM sizes for different benchmarks based on the size
of the largest loop of a benchmark. For the benchmarks
susan,statemate and compress 3 different SPM sizes are 1
KB, 2 KB and 4 KB. For the benchmark jfdctint 3 differ-
ent SPM sizes are 256 bytes, 512 bytes and 1 KB. For the
selected benchmarks the running times of our algorithm are
negligible. The simulation results are shown in Figures 13-
16, where an OPT bar and a PP bar indicate the estimated
numbers of processor cycles of a benchmark in the worst
case given a particular SPM size by using our heuristic and
the heuristic proposed by Puaut and Pais, respectively.

600,000,000
500,000,000
400,000,000

300,000,00 "OPT
=PF

200,000,000

100,000,000

Figure 13: susan

Based on our simulation results we have the following ob-
servations:

1. For these four benchmarks the largest performance im-
provement of our heuristic over Puaut and Pais’s is
20%. 1In general, the improvement becomes smaller
when the SMP size approaches the size of the largest
outmost loop of the benchmark. When the SPM size
is no less than the size of the largest outmost loop of
the benchmark, both heuristics have the same perfor-
mance.

800,000

700,000

600,000
500,000
400,000 =OPT
mPF

300,000
200,000
100,000

0

1KB 2KB 4KB

Figure 14: statemate

2. Our novel minimum node cut-based strategy works
better if the control flow graph of a loop is wide. Such
an example is statemate.

3. Our basic block splitting strategy performs better when
there are big basic blocks in a loop with respect to the
SPM size. such an example is jfdctint where the size
of the largest basic block exceeds 512 bytes.

4. Our heuristic performs better for loop nests where mul-
tiple inner loops of the same level are nested in an outer
loop.

350,000
300,000

250,000

200,000
=OPT
150,000 =PF
100,000
50,000
0
1KB 2KB 4KB

Figure 15: compress

6. CONCLUSION

In this paper, we studied the problem of minimising the
worst-case execution time of a loop nest executed on a pro-
cessor that uses SPM to replace the instruction cache. We
proposed the first polynomial-time algorithm for selecting
the code of a non-nested loop such that the worst-case ex-
ecution time is minimised on a fully pipelined processor.
For non-pipelined processors or non-fully-pipelined proces-
sors our optimal algorithm is suboptimal. Our optimal al-
gorithm uses a novel approach to splitting basic blocks and
converts the optimal code selection problem into the prob-
lem of finding the minimum node cuts of a set of weighted
DAGs. Furthermore, we proposed a dynamic code selection
heuristic for minimising the worst-case execution time of a

12,000
10,000

8,000

6,000 =OPT
EPF

4,000
2,000

[
256 Bytes 512 Bytes 1KB

Figure 16: jfdctint

loop nest by using our algorithm for a non-nested loop. We
have performed simulations of our dynamic code selection
heuristic and the heuristic proposed by Puaut and Pais [15]
on four selected benchmarks. Simulation results show that
our dynamic code selection heuristic performs significantly
better.

In real-time embedded systems multiple tasks may run
concurrently on one processor. As a result, the SPM is
shared by all the tasks. An open research problem is how to
efficiently share the SPM among all the tasks.

7. REFERENCES

[1] Milardalen wcet research group. http:
//www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[2] Nvidia physx for developers.
http://developer.nvidia.com/object/physx.html.

[3] Simplescalar lic. http://www.simplescalar.com/.

[4] ANcioLINI, F., MENICHELLI, F., FERRERO, A.,
BENINI, L., AND OLIVIERI, M. A post-compiler
approach to scratchpad mapping of code. In
Proceedings of the 2004 international conference on
Compilers, architecture, and synthesis for embedded
systems (2004), pp. 259-267.

[5] DEVERGE, J.-F., AND PUAUT, I. Wcet-directed
dynamic scratchpad memory allocation of data. In
Proceedings of the 19th Euromicro Conference on
Real-Time Systems (2007), pp. 179-190.

[6] EGGER, B., LEE, J., AND SHIN, H. Dynamic
scratchpad memory management for code in portable
systems with an mmu. ACM Transactions on
Embedded Computing Systems (TECS) 7, 2 (2008).

[7] FRANCEscO, P., MARCHAL, P., ATIENzA, D.,
BENINI, L., CATTHOOR, F., AND MENDIAS, J. M. An
integrated hardware/software approach for run-time
scratchpad management. In Proceedings of The 41st
Design Automation Conference (2004), pp. 238-243.

[8] FRANCEscoO, P., MARCHAL, P., ATIENzA, D.,
BENINI, L., CATTHOOR, F., AND MENDIAS, J. M. An
integrated hardware/software approach for run-time
scratchpad management. In Proceedings of the 41st
annual conference on Design automation (2004),
pp. 238-243.

[9] JANAPSATYA, A., IGNJATOVIC, A., AND
PARAMESWARAN, S. A novel instruction scratchpad
memory optimization method based on concomitance
metric. In Proceedings of the 2006 Conference on Asia
South Pacific Design Automation (2006), pp. 612-617.

[10] JANAPSATYA, A., PARAMESWARAN, S., AND
IenjaTovic, A. Hardware/software managed
scratchpad memory for embedded system. In
Proceedings of the 2004 IEEE/ACM International
conference on Computer-aided design (2004),
pp. 370-377.

[11] KAHLE, J. A., DAy, M. N., HOFSTEE, H. P., JOHNS,
C. R., MAEURER, T. R., AND SHIPPY, D. J.
Introduction to the cell multiprocessor. IBM Journal
of Research and Development 49, 4/5 (2005), 589-604.

[12] KANDEMIR, M. T., RAMANUJAM, J., IRWIN, M. J.,
VIJAYKRISHNAN, N., KADAYIF, 1., AND PARIKH, A.
Dynamic management of scratch-pad memory space.
In Proceedings of the 38th Design Automation
Conference (2001), pp. 690-695.

[13] L1, L., Gao, L., AND XUE, J. Memory coloring: A
compiler approach for scratchpad memory
management. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation
Techniques (2005), pp. 329-338.

[14] L1, L., NGUYEN, Q. H., AND XUE, J. Scratchpad
allocation for data aggregates in superperfect graphs.
In Proceedings of the 2007 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools,
pp- 207-26.

[15] Puaur, I., AND PaI1s, C. Scratchpad memories vs
locked caches in hard real-time systems: a
quantitative comparison. In Proceedings of DATE
2007, pp. 1484-1489.

[16] SKIENA, S. S. The algorithm design manual. Springer,
1998.

[17] STOER, M., AND WAGNER, F. A simple min-cut
algorithm. Journal of the ACM 44, 4 (July 1997),
585-591.

[18] SUHENDRA, V., MITRA, T., AND ROYCHOUDHURY, A.
Weet centric data allocation to scratchpad memory. In
Proceedings of the 26th IEEE Real-Time Systems
Symposium (2005), pp. 223-232.

[19] UDAYAKUMARAN, S., AND BARUA, R.
Compiler-decided dynamic memory allocation for
scratch-pad based embedded systems. In Proceedings
of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems
(2003), pp. 276—286.

[20] VERMA, M., AND MARWEDEL, P. Overlay techniques
for scratchpad memories in low power embedded
processors. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 4, 8 (August 2006),
802-815.

