
A Type and Effect System for
Determinism in Multithreaded Programs

Yi Lu1, John Potter1, Chenyi Zhang2, and Jingling Xue1

1 University of New South Wales
{ylu,potter,jingling}@cse.unsw.edu.au

2 University of Queensland
chenyi@uq.edu.au

Abstract. There has been much recent interest in supporting determin-
istic parallelism in imperative programs. Structured parallel program-
ming models have used type systems or static analysis to enforce deter-
minism by constraining potential interference of lexically scoped tasks.
But similar support for multithreaded programming, where threads may
be ubiquitously spawned with arbitrary lifetimes, especially to achieve a
modular and manageable combination of determinism and nondetermin-
ism in multithreaded programs, remains an open problem.
This paper proposes a simple and intuitive approach for tracking thread
interference and capturing both determinism and nondeterminism as
computational effects. This allows us to present a type and effect sys-
tem for statically reasoning about determinism in multithreaded pro-
grams. Our general framework may be used in multithreaded languages
for supporting determinism, or in structured parallel models for sup-
porting threads. Even more sophisticated concurrency models, such as
actors, are often implemented on top of an underlying threading model,
thus the underlying ideas presented here should be of value in reasoning
about the correctness of such implementations.

1 Introduction

Concurrent programming is increasingly pervasive in mainstream software devel-
opment as we attempt to exploit the full power of modern multicore processors.
For developers working in heavily used languages such as C, C++, C# and Java,
threads provide the dominant model for concurrent programming. Threads are
a straightforward adaptation of the sequential model of computation to concur-
rent programs; programming languages require little or no syntactic changes to
support them and modern computers and operating systems have evolved to
efficiently support them. However, they discard the most essential and appeal-
ing properties of sequential computation: understandability, predictability, and
determinism [13]. Threads may interact and share data in a myriad of ways;
unanticipated thread interleavings and side effects can lead to subtle bugs and
wrong results [24]. It is widely acknowledged that multithreaded programming
is difficult and error-prone [21].

2

Deterministic code is easier to debug and verify than nondeterministic code
for both testing and formal methods [13, 25]. Moreover, many computational al-
gorithms are required to be deterministic—a given input is always expected to
produce the same output—even when used in nondeterministic contexts. For
example, most scientific computing, encryption/decryption, sorting, program
analysis, and processor simulation algorithms exhibit deterministic behavior [1].
There has been much recent interest in supporting deterministic algorithms in
multithreaded imperative programs. Programming models and type systems that
support deterministic parallelism are emerging and have been proved to be useful
in practice. Structured deterministic parallel models [1, 26, 2] enforce determin-
ism statically at compile time by disallowing interference between concurrent
computations (conflicting in their read and write sets); they typically rely on
lexically scoped task parallelism (e.g., the fork/join style [12]) to localise and
constrain potential interference of parallel tasks. While effective for applications
where parallelism is often regular, structured parallelism may restrict program-
ming styles thereby precluding many useful concurrency patterns which require
irregular parallelism—the world of client applications is not nearly as well struc-
tured and regular [24]. Moreover, it may be difficult to support these models in
mainstream programming languages where threads are used, because structured
tasks can suffer interference from independent threads which may be ubiqui-
tously spawned with arbitrary lifetimes. Reasoning statically about threads is a
challenging problem, because we have to capture potential interference amongst
all concurrent threads [13].

This paper proposes a simple and intuitive approach for type checking de-
terminism in multithreaded imperative programs. By tracking and controlling
what side effects may occur in parallel and how they may interfere with one
another, our type system can check that deterministic behaviour is preserved
in otherwise nondeterministic contexts. Programmers can freely assert that sec-
tions of code are deterministic, and have those assertions guaranteed by the type
checker. Thus deterministic algorithms will assuredly produce deterministic re-
sults even in a nondeterministic context, making multithreaded programs more
predictable and understandable. Our framework is general and may be used in
existing multithreaded programming languages for supporting determinism, or
in previous structured deterministic parallel models for supporting threads (e.g.
Deterministic Parallel Java’s region-based effect systems [1, 2] can be extended
with our approach to support multithreaded programming).

We formalise our approach in a novel type and effect system, called Deter-
ministic Effects, as an extension to Nielson et al.’s effect systems [18, 19]. Our
small step operational semantics describes the concurrent behaviour of programs;
crucially, the operational semantics preserves the relative nesting of thread cre-
ations. We prove that programmer-specified determinism for type correct multi-
threaded programs is indeed guaranteed. Deterministic effects can help improve
the design and understanding of multithreaded software, such as in specifying
or documenting concurrent behaviour for safety and optimisation. We envisage
their use in interface specifications, facilitating modular development of large-

3

scale concurrent programs. We also envisage static analyses for discovering de-
terminism of expressions in existing multithreaded programs.

2 Deterministic Effects at a Glance

In this section, we introduce the basic ideas of deterministic effects with sim-
ple examples by showing how to track computational effects (specifically, side
effects, though other effects may be possible, see Section 4.3) that may occur
concurrently, how to capture determinism in nondeterministic code, and how to
enforce programmer-specified deterministic expressions.

Deterministic effects capture the conflict between any two effects which may
occur concurrently, by tracking the effects of forked threads in a form that mimics
the tree structure of thread creation and then comparing these effects with the
effects of any subsequent expressions to detect potential interference in a flow-
sensitive manner. In general, earlier forks have more opportunity for interference
than later forks. In Section 2.1, we introduce the syntax and demonstrate the use
of deterministic effects to forbid all possible thread interference in a program.
Programs that are well-typed have purely deterministic behaviours.

However, there are algorithms that may not have deterministic input-output
behaviour. Real world applications are more likely composed of a mixture of de-
terministic and nondeterministic computations [2, 25]. Achieving a manageable
combination of determinism and nondeterminism is an important open prob-
lem in multithreaded programming. In Section 2.2, by reasoning about thread
interference, we show how to infer determinism or nondeterminism of each ex-
pression in a possibly nondeterministic program. We extend our syntax with a
programmer-specified deterministic construct, which is essentially the same as
those used in [22, 5], except that they check determinism dynamically at run-
time while we enforce it statically at compile time (see discussion in Section 4.2).
With this more liberal model, we show that we can allow arbitrary mixing of
deterministic and nondeterministic computations in a safe way—guaranteeing
desired determinism without unnecessarily restricting nondeterministic code.

2.1 Effects, Noninterference and Determinism

Our effect system extends Nielson et al.’s framework [18] for capturing interfer-
ence between threads. We use a simple lambda calculus, similar to that used in
[19, 9, 21, 17], to provide the essential features of concurrent threads sharing ac-
cess to memory including memory references and fork expressions. We describe
the form of effects, and provide some simple examples to illustrate how to reason
about thread interference. Memory reads and writes give rise to conventional
sequential side effects based on regions determined by labels associated with
memory allocation expressions. Threads are spawned by fork expressions, and
their effects are represented separately from sequential side effects. By tracking
the effects of threads spawned by a computation separately from its sequential
continuation, we are able to use a flow-sensitive analysis to identify when the

4

threads may interfere with the continuation. Despite its apparent simplicity, this
approach appears to be novel.

The basic syntax is given by:

v ::= c | fn x => e
e ::= v | x | e e | refπ e | !e | e := e | fork e

The expression syntax e includes values v (a family of integer constants c and
functions), a family of variables x, function application and the usual imperative
operations on reference cells (allocation, dereference and assignment). The allo-
cation expression refπ e creates a new reference in memory and initialises it to
the value of e, and the label (or abstract location) π uniquely identifies the cre-
ation point/allocation site. Common language constructs such as let, sequence
or recursion are not directly defined, because they are easily encoded. The let
expression let x = e1 in e2 becomes (fn x => e2) e1, and the sequence expres-
sion e1; e2 is let x = e1 in e2 where x does not occur free in e2. In examples,
we will use explicit let and sequence expressions as shorthands. Like [18], which
we extend, conditionals are omitted, as their treatment is standard. Recursive
functions can be encoded by references as shown in [9, 17] and in Section 4.1.
Threads are introduced by fork e, which spawns a new thread for the evalua-
tion of e; the value of e is never used (this expression simply returns a zero when
evaluated [9, 3]), so a thread is only used for side effects.

The syntax for types and effects is given by:

τ ::= int | τ ϕ−→ τ | refρ τ
ϕ ::= {ε} | {fork ϕ} | ϕ ∪ ϕ | ∅

ε ::= !ρ | ρ :=
ρ ::= {π} | ρ ∪ ρ | ∅

The syntax for types includes a primitive integer type, as well as function and
reference type. The function type is annotated with effect information, ϕ, which
captures concurrent effects that may occur during the execution of the function
body. The reference type refρ τ records the type τ of values that can be stored
in the reference cell, and a region ρ where the cell may be created. The region
syntax is used to denote finite sets of creation points or labels, which is a standard
technique to distinguish cells created at different program points. The union
operator ∪ is assumed to be commutative, associative and idempotent, with ∅
as its identity; {π1} ∪ . . . ∪ {πn} may be written as {π1, . . . πn}. A side effect ε
identifies a read !ρ or a write ρ := to a region ρ.

A fork effect, fork ϕ, captures the effect of a forked thread. This allows
us to syntactically distinguish the effect of the current expression from other
fork effects arising from earlier forks, when determining thread interference. For
example, the effect {!{π1}, fork {{π2} :=}} describes a read effect !{π1} on the
current thread, and a write effect {π2} := on a thread spawned by the current
thread, as identified by the keyword fork . The order of side effects and fork effects
in an effect set (ϕ) is not important, but we track expression compositions flow-
sensitively to identify potential interference between components (see examples
below). In addition to π, we sometimes use $, “var pi”, to denote labels for
program points in our examples.

5

We illustrate our ideas with a simple value setter example:

let val = refπ 0 in let set = (fn x => val := x) in
fork (set 2); !val // error

The types and effects for some of the expressions here, are

val : refπ int & ∅
set : int

{{π}:=}−−−−−→ int & ∅

set 2 : int & {{π} :=}
fork (set 2) : int & {fork {{π} :=}}
!val : int & {!{π}}

The type of the variable val is determined by the allocation expression used to
initialise it; the label π records the program point where the reference cell is
allocated. Evaluating read-only variables has no memory effect, ∅. The function
type of the variable set records its write effect on val for use in function appli-
cation. This is manifested in the effect of the expression set 2. The effect of the
dereference !val is the simple read effect {!{π}}.

In most type and effect systems, fork (set 2) has the same effect as set 2,
namely {{π} :=}. Hence they may not tell if this code is safe. For example, if
we swap the order of the dereference and fork above, as in

!val; fork (set 2) // ok

there is no interference. This illustrates what we mean by our system being flow
sensitive: in general, moving forks earlier in a sequential thread is more likely to
make a program illegal.

Since our system distinguishes an effect on one thread from that on an-
other, the effect of fork (set 2) is {fork {{π} :=}}—the fork effect captures the
write effect on location {π} and the fork indicates that it occurs on a differ-
ent thread. For the original version of the example, the fork occurs before the
dereference. Our flow-sensitive type and effect system recognises that the write
effect {fork {{π} :=}} for the fork may occur concurrently with the read effect
{!{π}} on the current thread, and considers this illegal. The second version of the
example with reverse order of effects is legal in our system; we recognise that
the read effect has completed before the conflicting fork. In our type system,
this flow sensitivity is captured by checking sequential composition of effects for
noninterference in Table 2 in Section 3.

Now consider an example with a thread forked inside a function:

let x = refπ 0 in let y = ref$ 0 in
let f = (fn z => fork (x := 1); y := 1) in
x := 2; f 0; y := 2 // ok

This example shows no interference in our effect system, but may not pass, for
example, type and effect systems for enforcing locking disciplines [9, 3, 21] which
would conservatively dictate all memory accesses must be protected by a lock.
Consider the effects recorded for the last three expressions. x := 2 is a sequential
expression with effect {{π} :=}. It can never interfere with any later expressions.

6

f 0 may look like a sequential expression, but the body of f will fork a thread
to access the shared variable x. Clearly f 0 writes to $ and creates a thread
that writes to π; in our system its concurrent effect is {{$}:=, fork {{π} :=}}.
The effect of the third expression y := 2 is {{$} :=}. The last two expressions
do not interfere, because we only need to consider the concurrent part of the
effect of the earlier expression, which is {fork {{π} :=}}, and the overall effect
of the later expression, which is {{$} :=}. (The sequential part of the second
expression with effect {{$} :=} completes before the third expression starts.)
The write effects {fork {{π} :=}} and {{$} :=} do not interfere with each other
since they access different reference cells.

Unsurprisingly, threads that concurrently read the same memory location do
not interfere, as shown in the following example:

let x = refπ 1 in let y = ref$ 2 in
let lim = (fn z => 100−!z) in

fork (lim x); fork (lim y); fork (lim x) // ok

The function lim reverses a count from 100; its type and effect is:

ref{π,$} int
{!{π,$}}
−−−−−−→ int & ∅

These threads do not interfere with each other because concurrent reads on the
same memory region are considered safe. This example also shows the use of
regions (rather than single labels) in reference types so that function arguments
of reference type may be associated with multiple labels, in the absence of label
polymorphism (see Section 4.1).

2.2 Deterministic Effects with Nondeterministism

We have seen how to enforce determinism by forbidding all thread interference.
Programs which are well-typed, using our type rules, restrict concurrent compu-
tations to be purely deterministic. Now we introduce a more liberal model which
allows arbitrary interleaving of threaded expressions, no matter what their po-
tential interference may be. This provides a nondeterministic model of behaviour,
typical of how threading works in current languages. However we allow (and en-
force) explicit embedding of deterministic expressions. By tracking thread inter-
ference within expressions, we can capture the determinism or nondeterminism
of expressions as effects.

If a stand-alone expression exhibits no interference in its evaluation, then its
behaviour is deterministic. We say in that case the expression is weakly deter-
ministic. However, if that deterministic expression is evaluated in a concurrent
context in which other threads may interfere with it, the behaviour is no longer
guaranteed to be deterministic. In other words, determinism of expression evalu-
ation is not preserved by concurrent composition. This is partly in the nature of
shared memory concurrency, but is unfortunate—if we have a deterministic algo-
rithm we want to preserve its determinism even when it is embedded in a larger,
possibly nondeterministic computation. Our solution is to allow a programmer

7

to express this desire by declaring an expression to be deterministic using det
(see extended syntax below). In that case, our system will firstly check that the
expression is weakly deterministic. In addition, our system will enforce its deter-
minism by insisting that any concurrent context where that expression appears
cannot interfere with it. We say such expressions are strongly deterministic.

In this section we show how we can relax our earlier model, to allow both
nondeterministic forms of expression, and also enforce strong determinism for
expressions so declared with the following extended syntax:

e ::= ... | det e

Based on thread interference, the levels of determinism on expressions are dis-
tinguished by our effects system (from the weakest to the strongest): nonde-
terministic, weakly deterministic and strongly deterministic. A nondeterministic
expression is allowed to contain interference, except that such interference does
not affect any of its subexpressions which are asserted to be strongly determin-
istic. An expression is weakly deterministic if it does not contain interference,
but may suffer interference from other threads; in other words, it is determinis-
tic by itself, but may not be if used in a nondeterministic context. A strongly
deterministic expression is weakly deterministic and must not be interfered with.

We start with a few examples before introducing our deterministic effect
system in the next section.

let x = refπ 0 in let y = ref$ 1 in
fork(x := 1); fork(x := !y); det y := 2 // ok

The above program is nondeterministic, as it allows the value of y to interfere
with the value of x. This is legal in our type and effect system, since the value
of y, which is asserted as strongly deterministic, is not affected by its context.
The following program is illegal.

let x = refπ 0 in let y = ref$ 1 in
fork(x := 1); fork(x := !y); det y :=!x // error

We can also allow threads to be forked within det expressions. In both of the
following examples, the fork expression may run concurrently with the last (non-
deterministic) expression. In both examples, the value of x is guaranteed to be
2, and that of y may be 0 or 2. In the second example, because the computation
for y is declared to be det this must be illegal. In that case the nondeterministic
write to x interferes with the read of x inside the det expression. Note that in
the first example, the read of x does not interfere with the write; this illustrates
the asymmetry of the noninterference relation.

let x = refπ 0 in let y = ref$ 1 in
det fork(x := 2); y :=!x // ok

let x = refπ 0 in let y = ref$ 1 in
det fork(y :=!x); x := 2 // error

Any purely deterministic program is a special case of this more flexible system,
in which the top-level program expression is declared to be det.

8

[CONSTANT] Γ ` c : int & ∅.⊥ [VARIABLE]
Γ (x) = τ

Γ ` x : τ & ∅.⊥

[FUNCTION]
Γ, x 7→ τ2 ` e : τ1 & ∆ x /∈ dom(Γ)

Γ ` fn x => e : τ2
∆−→ τ1 & ∅.⊥

[APPLICATION]
Γ ` e1 : τ2

∆3−−→ τ1 & ∆1 Γ ` e2 : τ2 & ∆2 ∆1 ; ∆2 ; ∆3 = ∆

Γ ` e1 e2 : τ1 & ∆

[REFERENCE]
Γ ` e : τ & ∆

Γ ` refπ e : ref {π} τ & ∆

[DEREFERENCE]
Γ ` e : ref ρ τ & ∆1 ∆1 ; {!ρ}.⊥ = ∆

Γ `!e : τ & ∆

[UPDATE]
Γ ` e1 : ref ρ τ & ∆1 Γ ` e2 : τ & ∆2 ∆1 ; ∆2 ; {ρ :=}.⊥ = ∆

Γ ` e1 := e2 : τ & ∆

[FORK]
Γ ` e : τ & ϕ.θ

Γ ` fork e : int & {fork ϕ}.θ [DET]
Γ ` e : τ & ϕ.⊥

Γ ` det e : τ & {det ϕ}.⊥

[SUBSUMPTION]
Γ ` e : τ ′ & ∆′ τ ′ <: τ ∆′ v ∆

Γ ` e : τ & ∆

Table 1. Static Semantics

3 A Deterministic Effect System

In this section, we formalise our approach in a type and effect system by using
the syntax introduced in the previous section. Since we now have the additional
det e expression, we need to extend the syntax for types and effects:

ϕ ::= ... | {det ϕ}
τ ::= ... | τ ∆−→ τ

∆ ::= ϕ.θ
θ ::= ⊥ | >

The new form of effect for expressions is the deterministic effect ∆. We now
refer to ϕ as base effect. The additional part of an effect, θ, refers to the inferred
level of determinism for expressions—⊥ denotes a weakly deterministic effect
and > denotes a nondeterministic effect with ordering, ⊥ ≤ >, so that weakly
deterministic effects are more specific. An expression is strongly deterministic
if it is syntactically annotated with the keyword det—it must have a qualified
effect det ϕ which serves as a contract for the type system to ensure that any
concurrent context where this expression appears cannot interfere with it.

3.1 Static Semantics

Effect systems [16] generally can be viewed as a type system where typing judge-
ments have a more elaborate form, associating both a type and an effect with
expressions. For the syntax defined in Section 2, Table 1 presents our type system
for deterministic effects, using judgements of the form

Γ ` e : τ & ∆

9

[COMPOSITION]
ϕ1 ↪−→θ ϕ2 θ1 ≤ θ θ2 ≤ θ
ϕ1.θ1 ; ϕ2.θ2 = (ϕ1 ∪ ϕ2).θ

[C-EMP] ∅ ↪−→θ ϕ

[C-EFF] {ε} ↪−→θ ϕ

[C-UNI]
ϕ1 ↪−→θ ϕ ϕ2 ↪−→θ ϕ

ϕ1 ∪ ϕ2 ↪−→θ ϕ

[C-DUN]
{det ϕ1} ↪−→θ ϕ {det ϕ2} ↪−→θ ϕ

{det ϕ1 ∪ ϕ2} ↪−→θ ϕ

[C-DET-S]
ϕ1 ↪−→⊥ ϕ2

{det ϕ1} ↪−→⊥ ϕ2

[C-FOK-S]
ϕ1 9⊥ ϕ2 ϕ2 9⊥ ϕ1

{fork ϕ1} ↪−→⊥ ϕ2

[C-FOK-W]
ϕ1 9> ϕ2 ϕ2 9> ϕ1

{fork ϕ1} ↪−→> ϕ2

[C-DET-W]
ϕ1 9> ϕ2 ϕ2 9⊥ ϕ1

{det {fork ϕ1}} ↪−→> ϕ2

Table 2. Composition and Sequencing Rules

[N-R/R] {!ρ}9⊥ ϕ

[N-W/R]
ρ1 ∩ ρ2 = ∅

{ρ1 :=}9⊥ {!ρ2}

[N-W/W]
ρ1 ∩ ρ2 = ∅

{ρ1 :=}9⊥ {ρ2 :=}
[N-EFF] {ε1}9> {ε2}

[N-DEL]
ϕ1 9θ ϕ2

{det ϕ1}9θ ϕ2

[N-DER]
ϕ1 9⊥ ϕ2

ϕ1 9θ {det ϕ2}

[N-FOL]
ϕ1 9θ ϕ2

{fork ϕ1}9θ ϕ2

[N-FOR]
ϕ1 9θ ϕ2

ϕ1 9θ {fork ϕ2}

[N-UNL]
ϕ1 9θ ϕ ϕ2 9θ ϕ

ϕ1 ∪ ϕ2 9θ ϕ

[N-UNR]
ϕ9θ ϕ1 ϕ9θ ϕ2

ϕ9θ ϕ1 ∪ ϕ2

[N-EMP] ∅9θ ϕ

Table 3. Noninterference Rules

where τ is the type associated with the expression e relative to a type environ-
ment Γ which provides the type for each free variable as in a standard type sys-
tem. The environment Γ is empty for top-level expressions which may therefore
have no free variables; environment extension is written as Γ, x 7→ τ . The deter-
ministic effect ∆ describes the base effects that may take place during evaluation
as well as its level of determinism (weakly deterministic or nondeterministic).

The rules in Table 1 infer typing judgements for each syntactic form of ex-
pression, together with the standard [SUBSUMPTION] rule using the definitions
for subtyping and subeffects in Table 4. In Table 1, the inferred base effect ϕ
is either empty, composed of effects of subexpressions, or generates new base
effects. The rules [CONSTANT], [FUNCTION] and [VARIABLE] all have empty effect.
The primitive side effects ({ε}.⊥) generated in [DEREFERENCE] and [UPDATE], as
well as empty effects, are weakly deterministic.

In [FUNCTION], function abstraction records the (potential) deterministic ef-
fect of its body as an effect annotation in its type; it extends the environment
for typing the body with a type for its variable (our types need not be unique).

10

[T-RFL] τ <: τ

[T-REF]
ρ1 ⊆ ρ2

ref ρ1 τ <: ref ρ2 τ

[T-FUN]
τ ′1 <: τ1 τ2 <: τ ′2 ∆ v ∆′

τ1
∆−→ τ2 <: τ ′1

∆′
−−→ τ ′2

[E-SUB]
ϕ1 v ϕ2 θ1 ≤ θ2

ϕ1.θ1 v ϕ2.θ2

[E-DET]
ϕ1 v ϕ2

ϕ1.⊥ v {det ϕ2}.θ
[F-EMP] ∅ v ϕ

[F-R/R]
ρ1 ⊆ ρ2

{! ρ1} v {! ρ2}

[F-R/W]
ρ1 ⊆ ρ2

{! ρ1} v {ρ2 :=}

[F-W/W]
ρ1 ⊆ ρ2

{ρ1 :=} v {ρ2 :=}
[F-FOK] ϕ v {fork ϕ}

[F-FOR]
ϕ1 v ϕ2

{fork ϕ1} v {fork ϕ2}

[F-DET]
ϕ1 v ϕ2

{det ϕ1} v {det ϕ2}

[F-UNI]
ϕ1 v ϕ′

1 ϕ2 v ϕ′
2

ϕ1 ∪ ϕ2 v ϕ′
1 ∪ ϕ′

2

Table 4. Subtype and Subeffect Rules

The rules [APPLICATION], [REFERENCE], [DEREFERENCE], [UPDATE] and [FORK] in-
herit and sequentially compose deterministic effects from their subexpressions.
For example, the overall deterministic effect of [APPLICATION] is the sequential
composition of the deterministic effects of its function e1 and argument e2 eval-
uations, followed by the deterministic effect of the function body itself extracted
from the function type. The composition of ∆1; ∆2; ∆3 = ∆ is a shorthand for
the composition of ∆1; ∆2 = ∆′ and ∆′; ∆3 = ∆. Sequential composition of ef-
fects is defined in [COMPOSITION] of Table 2 and requires sequential composability
of the component effects. This is where the test for noninterference of concur-
rent effects arises in our system. In [REFERENCE], the labelled creation point π is
recorded in the type of the introduced reference, so that later dereferences and
assignments can track its use.

Only four rules are involved in base effect generation: [DEREFERENCE], [UP-

DATE], [FORK] and [DET]. The reference accessing expressions, dereference and
update, compose the effect of the evaluation of their subexpressions, with the
side effects generated by memory access (indicated by the read !ρ or write ρ :=
in the rules). The effect of fork e is the effect of e qualified with the effect key-
word fork . As discussed already, this distinguishes effects of concurrent threads
from effects of the current thread; no other form of expression generates a fork
effect. The rule [DET] asserts that an expression det e is strongly deterministic,
provided that e is weakly deterministic and its inferred base effect det ϕ ensures
the expression cannot be interfered with by concurrent threads.

The type rules rely on effect composition, which in turn, as we shall see below,
relies on a test of sequential composability which is asymmetric in its first and
second effects. Consequently our type system is flow sensitive. In simple memory
effect systems, the effect of e1; e2 and of e2; e1 are the same—simply the union
of the two effects. For us, it is possible that e1; e2 is legal, whereas e2; e1 is not,
as illustrated by the two versions of the first example in Section 2.1.

11

Sequential composition of deterministic effects, defined in Table 2, and the
associated notion of noninterference, in Table 3, lie at the heart of the type
system. We define the ordering ⊥ ≤ >, meaning that a deterministic expression
can be considered as a nondeterministic expression. To reduce the number of
rules, the symbol for sequential composition is parameterised with determinism:
∆1 ↪−→θ ∆2 where θ could be either ⊥ or >. Now we define both deterministic
and nondeterministic compositions in the [COMPOSITION] rule. If the composition
is deterministic (i.e. the resulting effect is the union of effects ϕ1∪ϕ2 and ⊥), then
both expressions must be at least weakly deterministic and the ↪−→⊥ symbol is
used to denote strong sequential composability. Otherwise, the ↪−→> symbol is
used to denote weak sequential composability which allows interference between
ϕ1 and ϕ2 and generates a nondeterministic combined effect (ϕ1 ∪ ϕ2).>.

The key role of [COMPOSITION] is to check that deterministic effects (thus
expressions) are indeed sequentially composable. The rest of rules in Table 2
define strong and weak sequential composability as a binary relation over base
effects ϕ. [C-EMP], [C-EFF], [C-UNI] and [C-DUN] are generic rules for both strong
and weak sequential composability. By rule [C-EFF] we assert that side effects {ε}
associated solely with the current thread, are sequentially composable with any
subsequent effect. This captures the idea that terminated computations cannot
interfere with later ones. [C-UNI] allows the combination of effects on the left pro-
vided that each of them is sequentially composable with the effect on the right.
The second union rule [C-DUN] preserves the det qualification over composition.
Strong sequencing rules forbid thread interference between two effects; therefore
it is safe to remove the det qualification in the strong sequencing rule [C-DET-S]. In
another strong sequencing rule [C-FOK-S], composing a fork effect {fork ϕ1} with
another ϕ2 requires the effect ϕ1 not to interfere (9⊥) with the overall effect
of ϕ2 and vice versa, because the thread may be running concurrently with the
second expression. On the other hand, the weak sequencing rule [C-FOK-W] allows
interference between threads by using 9> (weak noninterference). [C-DET-W] is
special, as it allows a deterministic concurrent effect {det {fork ϕ1}} to be com-
posable with its following effect ϕ2 only if ϕ2 does not interfere with ϕ1; the last
pair of examples in Section 2 illustrate the use of this rule.

Table 3 defines strong and weak noninterference of concurrent effects; non-
interference is asymmetric. We consider strong noninterference ϕ1 9⊥ ϕ2 to
mean that the effect ϕ1 does not affect ϕ2. So reading shared memory does not
affect any writes to that memory, whereas a write can affect a read. [N-R/R] states
that a read effect interferes with nothing; [N-W/R] and [N-W/W] state that a write
effect does not interfere with other concurrent side-effect (read or write) only
if they access distinct regions. Weak noninterference rules, on the other hand,
are treated in a way that resembles weak sequencing; they are designed to allow
arbitrary interference amongst expressions, except for deterministic expressions.
[N-EFF] asserts that side effects do not weakly interfere with one another, imply-
ing they may occur in parallel. The remaining rules are generic for either strong
or weak noninterference. The difference between [N-DEL] and [N-DER] is impor-
tant. [N-DEL] asserts that a qualified det effect does not interfere with another

12

[R-APP]〈ς, (fn x => e) v〉 ∅−−→ 〈ς, [v/x]e〉

[R-REF]
ι /∈ dom(ς) ς ′ = ς, ιπ 7→ v

〈ς, refπ v〉
∅−−→ 〈ς ′, ι〉

[R-DRF] 〈ς, !ι〉 {!{ι}}−−−−→ 〈ς, ς(ι)〉

[R-UPD] 〈ς, ι := v〉 {{ι}:=}−−−−−→ 〈ς[ι 7→ v], v〉

[R-FOK] 〈ς, fork e〉 ∅−−→ 〈ς, ê 0〉

[R-SEQ] 〈ς, v̂ e〉 ∅−−→ 〈ς, e〉

[R-CON] 〈ς, E[ê v]〉 ∅−−→ 〈ς, ê E[v]〉

[R-DET]
〈ς, e〉 ϕ−−→ 〈ς, e′〉

〈ς, det e〉 {det ϕ}−−−−−→ 〈ς, det e′〉
[R-DER] 〈ς, det v〉 ∅−−→ 〈ς, v〉

[R-CTX]
〈ς, e〉 ϕ−−→ 〈ς ′, e′〉

〈ς, E[e]〉 ϕ−−→ 〈ς ′, E[e′]〉

Table 5. Operational Semantics

effect, providing the underlying effect does not. However, [N-DER] asserts that
an effect does not (either strongly or weakly) interfere with a det effect only if
it does not strongly interfere with it; this is essentially how strong determinism
is enforced by using the det qualification. [N-FOL] and [N-FOR] state that a fork
effect does not interfere with another effect provided their components do not
and vice versa. [N-UNL] and [N-UNR] state that a union of effects does not interfere
with another effect if its component do not and vice versa; [N-EMP] simply states
that the empty effect interferes with no effect.

We complete this section with subtyping and subeffecting rules in Table 4.
Subtyping is reflexive. As usual, function types are contravariant in arguments
and covariant in results. Both function types and reference types allow broad-
ening of effects or regions in moving to a supertype. [E-SUB] defines subeffecting
for deterministic effects ∆. A deterministic expression can be considered as a
nondeterministic expression. The [E-DET] rule is a special case, which states ϕ1

cannot be a subeffect of {det ϕ2} unless it is deterministic (as suggested by ⊥).
The [F-] rules define subeffecting for base effects ϕ; those defining subeffecting
for side effects are standard. [F-FOK] states that a fork effect is a supereffect of
its component; it loses any information about effects being on the same thread.
[F-FOR] states that a fork effect is monotonic on subeffecting, as does [F-DET] for
det. For our purposes, the key property for subeffecting is that an effect inherits
any noninterference enjoyed by a supereffect.

3.2 Dynamic Semantics and Properties

We define the dynamic behaviour of the core calculus, and demonstrate that the
actual effects arising from the evaluation of a well-typed expression are consistent
with its statically inferred effects. The syntax is extended to include features
required for the dynamic semantics, as follows:

e ::= ... | ê e v ::= ... | ιπ ρ ::= ... | {ι}

Unlike the more standard “list of threads” technique that does not preserve
the relative nesting of thread creations [9], our extended syntax for runtime

13

[STORE]
dom(Σ) = dom(ς) ∀ι ∈ dom(ς) · Γ ;Σ ` ς(ι) : Σ(ι) & ∆

Γ ;Σ ` ς

[PARALLEL]
Γ ;Σ ` e1 : τ1 & ϕ1.θ1 Γ ;Σ ` e2 : τ2 & ∆2 {fork ϕ1}.θ1 ;∆2 = ∆

Γ ;Σ ` ê1 e2 : τ2 & ∆

[REG-IN] ιπ ∈ {π} [LOCATION]
Σ(ι) = τ

Γ ;Σ ` ι : ref {ι} τ & ∅.⊥

[REG-OUT]
π 6= $

ιπ /∈ {$} [EQ-IDE]
for all ι appears in e · ς(ι) = ς ′(ι)

〈ς, e〉 ∼= 〈ς ′, e〉

[EQ-LOC]

〈ς, ς(ι)〉 ∼= 〈ς ′, ς ′(ι′)〉
[ι′′/ι]〈ς, e〉 ∼= [ι′′/ι′]〈ς ′, e′〉 ι′′ does not appear in ς, ς ′, e or e′

〈ς, e〉 ∼= 〈ς ′, e′〉

[EQ-PAR]

∀i ∈ 1..n · 〈ς, ei〉 ∼= 〈ς ′, eσ(i)〉 where σ is a permutation of 1..n
〈ς, e〉 ∼= 〈ς ′, e′〉

〈ς, ê1 .. ên e〉 ∼= 〈ς ′, êσ(1) .. êσ(n) e′〉

Table 6. Auxiliary Definitions

expressions introduces a novel parallel construct ê e to allow us to represent an
expression together with its threading context, that is, the threads it has forked.
This expression is right-associative, the sequential continuation e, after forking
n threads e1 . . . en, is simply written as ê1 (ê2 . . . (ên e)) or just ê1 ê2 . . . ên e.
This expression records the tree structure of forked threads. For example ê1 e2
may evaluate to ̂̂e3 e4 e2 if e1 forks a thread e3 and continues with e4; again it

may further evaluate to ̂̂e3 e4 ê5 e6 if e2 forks a thread e5 and continues with e6.
Values now include runtime store locations ι; these are annotated with the

label π corresponding to the refπ expression from where the location was al-
located. For succinctness we omit the labels wherever they are not explicitly
required. Runtime regions are sets of locations. Runtime effects correspond to
accessing the store using locations; a runtime effect is a set of side effects on loca-
tions. The conventional form of evaluation contexts is used to define the order of
evaluation of subexpressions in compound terms. Except for parallel expressions
ê e, the evaluation context is deterministic in its selection of subexpression.

E ::= [] | E e | (fn x => e) E | refπ E | !E | E := e | ι := E | Ê e | ê E

The small step operational semantics in Table 5 uses this form of transition:

〈ς, e〉 ϕ−−→ 〈ς ′, e′〉

where ς is the global store, e is the expression to be evaluated. A store ς maps
locations to the values stored in them, and is initially empty at the beginning
of evaluation. The store may be extended by [R-REF]; store extension is written
as ς, ι 7→ v. The effect of the evaluation ϕ identifies the effect of the small step
transition, which is either empty, ∅, or a singleton side effect, {ε}.

14

All possible single step transitions between configurations are given, where
the initial state for a top-level expression e has an empty store. Like conventional
operational semantics for concurrent programs [9, 1], each single step transition
is atomic and thread interleaving is modelled by choice of step. The only non-
determinism (modulo choice of new locations and structure on sequential terms;
such equivalence is formally defined by the [EQ-] rules in Table 6) offered by
these evaluation contexts arises from the two choices corresponding to the par-
allel construct ê e, as either the concurrent part or the sequential part may
undergo transitions, which is implicit in the rule [R-CTX], thus capturing thread
interleaving.

The rules [R-APP] through [R-UPD] build up base cases on evaluation in a sin-
gle thread. The [R-REF] transition captures the introduction of a new location
into the store, with label annotations corresponding to the ref construct. The
only transitions which directly have an effect are those for reads and writes of
the store, namely [R-DRF] and [R-UPD]. New threads are introduced via [R-FOK]; it
causes no direct effect but introduces a new thread (ê) whose effect corresponds
to the fork effect tracked in the static type system. The value that results from
the fork step is arbitrarily chosen to be 0. If a concurrent thread ê reduces to a
value v̂, there are no further reductions available for it. Such threads are effec-
tively garbage and are easily eliminated with [R-SEQ]. Similarly, [R-DER] simply
removes the keyword det from an expression when it finishes its evaluation. [R-

DET] preserves det on expressions so that subsequent evaluation must also be
deterministic; this is necessary in proving our determinism result, though it does
not affect the evaluation. In [R-CON] a forked thread ê is relocated outside of its
parent expression; this allows the return value to be used by the parent expres-
sion (e.g. a fork in an assignment needs to return a value for the assignment to
progress). It preserves the nesting of thread creations in our syntax.

To help formalise and prove the safety properties, we use standard store typ-
ing for reference types [20] by extending the type judgements with an additional
store typing Σ, which maps locations to their types; store typing extension is
written as Σ, ι 7→ τ . All expression typing judgements will have the form:

Γ ;Σ ` e : τ & ϕ

The only rule that needs to use Σ is [LOCATION]. We do not rewrite other expres-
sion typing rules in Table 1, because they do not need to do anything interesting
with the store typing—just pass it from premise to conclusion.

Table 6 provides auxiliary definitions used by the operational semantics and
the theorems. The type rule for our intermediate form for concurrent expressions
ê1 e2, is given by [PARALLEL]. This records the fact that concurrent threads
have fork effects, and that their combined effect is given by the union of their
effects. The standard definition [STORE] asserts that a store is well-typed if the
value stored in every location has the type predicted by the store typing. In
[STORE], we also capture the property that locations created at different program
points must be different. We connect labels used in static semantics with the
locations in dynamic semantics in [REG-IN] and [REG-OUT]. The [EQ-] rules define

15

an equivalence on state: [EQ-IDE] is the induction base which allows us to restrict
attention to just that part of the store which affects the value of the expression;
[EQ-LOC] does location substitution which allows us to treat two locations holding
the same value as being identical; [EQ-PAR] does shuffling which allows reordering
of forked threads. For example, ι is regarded the same as ι′ if they contain the
same value, and ê1 ê2 e3 is regarded the same as ê2 ê1 e3, because the order of
forked threads is not important.

We extend the transitions to multi-step, which have the form

〈ς, e〉 ϕ
==⇒ 〈ς ′, e′〉

where ϕ is the union of effects of finitely many steps. We prove that for a termi-
nating program, well-typedness implies determinism in its final value. The main
result is a strong determinism theorem which states:

1. the evaluation of any deterministic sub-term (det e) cannot be affected by
reductions in the external context.

2. without interleaving with its context, the result of the evaluation of det e is
unique, independently of how the threads inside e interleave.

Theorem 1 (Strong determinism)
Given all reachable states 〈ς, E[det e]〉 such that Γ ;Σ ` E[det e] : τ & ∆ and

Γ ;Σ ` ς, if 〈ς, det e〉 ϕ1
==⇒ 〈ς1, v〉 and 〈ς, E[det e]〉 ϕ2

==⇒ 〈ς2, E′[det e]〉, then

1. there exists 〈ς2, E′[det e]〉 ϕ3
==⇒ 〈ς3, E′[v′]〉 and 〈ς1, v〉 ∼= 〈ς3, v′〉.

2. for all 〈ς, det e〉 ϕ4
==⇒ 〈ς4, v′′〉, we have 〈ς1, v〉 ∼= 〈ς4, v′′〉.

4 Discussion

4.1 Extensions

This paper has presented a core calculus and effect system, based on the approach
of Nielson et al., to allow a focus on the novel features of our approach and formal
results. In this section, we review a number of existing techniques for improving
precision and expressiveness of effect systems, and how they can be extended to
our deterministic effects.

Thread-locality Thread-local references cannot be aliased by other threads,
thus effectively reducing interference between threads. Type systems can be used
to restrict thread-local references. For example, the lexically scoped reference
construct newπ x := e1 in e2 in [18, 19] creates a new reference variable x for
use in e2 and initialises it to the value of e1. With such a construct we can confine
the reference within its scope e2 (incidentally, [18, 19] do not explicitly impose
such restrictions). Consider the following example adopted from [9]:

let f = (fn x => newπ y := 0 in y := x) in
let rec = ref$ (fn x => x) in

rec := fn x => (fork f 0; !rec 0); !rec 0

16

This example captures the essence of a server, which creates a thread to handle
each incoming request. The core of this example is a recursive function that
creates a new thread to allocate a reference cell y and use y in handling an
incoming request (we simply use an assignment to represent the handling, and
incoming requests are not modelled), and finally calls itself recursively to handle
the next incoming request. We confine the references created at π within its
lexical scope so that request handling threads have their own memory space
isolated from one another. The effect of !rec 0 is {fork {{π} :=}, !{$}}. Since
references created at π are always thread-local, the visible effect of !rec 0 is
{!{$}}. There is no interference present in this example.

More expressive type systems such as uniqueness [10, 7] or ownership [6, 3,
14] may be extended with our effect system to confine thread-local references
in a more flexible way. Besides type systems, escape analysis [23] and thread
sharing analysis [17] identify thread-local locations based on program analysis,
and are often used in data race detection and other static analysis tools.

Structured Parallelism Previous type systems for deterministic paral-
lelism [1, 2] support structured parallel programs, which may be considered as a
special case where lifetimes of threads are restricted to lexical scopes. It is easy
to support such a fork/join construct, forkjoin e1 e2, in our deterministic effect
system, by a typing rule which simply checks if two tasks may interfere:

[FORKJOIN]

Γ ` e1 : τ1 & ϕ1.θ1 Γ ` e2 : τ2 & ϕ2.θ2
ϕ1 9⊥ ϕ2 ϕ2 9⊥ ϕ1 θ1 ≤ θ3 θ2 ≤ θ3

Γ ` forkjoin e1 e2 : τ2 & (ϕ1 ∪ ϕ2).θ3

For example, here is a Fibonacci function encoded in our calculus using the
forkjoin expression (with conditionals and basic arithmetic):

let fib = ref (fn n => n) in
fib := fn n => (if (n < 2) n

if (n >= 2) (newπ x := 0 in new$ y := 0 in
forkjoin (x := fib (n− 1)) (y := fib (n− 2)); x+ y)

); !fib 10

Because task lifetime is constrained to the forkjoin construct, it does not in-
troduce fork effects, unlike fork. The rule simply requires that the two parallel
expressions do not interfere with one another (in this example, it is easy to see
their effects are disjoint). Unlike [1, 2], we can mix structured parallelism with
threads; for example, the forkjoin expression may fork threads too. This gener-
ality does not compromise safety, because thread effects will be captured in the
resulting effect of the forkjoin expression.

Polymorphism Hindley/Milner polymorphism, as found in Standard ML
and other functional languages, is a classical technique for increasing the preci-
sion of types and effects. It allows us to distinguish the effects of two applications
of the same function. Let us consider the following example:

let count1 = refπ 0 in let count2 = ref$ 0 in
let inc = (fn x => x := !x+ 1) in

fork (inc count1); fork (inc count2)

17

According to the type rules presented in Section 3, the type of the function
variable x of inc is ref {π,$} int , so that the effect of inc is {!{π,$}, {π,$} :=
}. This example cannot type check because the threads have the same effect
{fork {!{π,$}, {π,$} :=}}, which includes a write side-effect, so the threads
are judged to interfere with one another. Of course we know that these threads
access different reference cells and hence do not actually interfere at runtime.

The treatment of polymorphism for our type and effect is standard and has
been given in [18, 19], which allows us to achieve the extra precision required
to type check this example. Using polymorphism in the previous example, the
type of the variable x is ∀ζ.ref ζ int (where ζ is a region variable) and the ef-
fect of inc becomes ∀ζ.{!ζ, ζ :=}. After instantiation of the region variable, the
effects of the two threads can be distinguished as {fork {!{π}, {π} :=}} and
{fork {!{$}, {$} :=}} respectively, which clearly do not interfere. Polymor-
phism also makes type checking modular, which is useful for checking incomplete
programs. For example, without polymorphism, the type of inc may depend on
how it is used in the last two expressions. With polymorphism, the type of inc
is independent of its use so the function may be defined in a different module.

Effect Abstraction Nielson et al.’s effect systems use simple abstraction
to model shared locations—effectively the label of the program point at which
the reference is created. Although our effect system extends their framework,
the general approach presented in this paper is largely independent of the spe-
cific abstraction chosen. However in practice, stronger effect abstractions and
specifications are needed for precision and modularity.

The precision of effect reasoning relies on aliasing reasoning, which is one of
the main sources of imprecision in type and effect systems (in fact, any static
analysis). Because any sound type system must make conservative choices about
aliasing (for example, when two references may be aliases, we must conserva-
tively consider them as aliases), some good programs may not type check or
may signal false warnings. It is particularly difficult to distinguish references
created from the same program point. Ownership [6, 3, 15] and region-based [16,
1] effect systems parameterise object types with owners or regions to enrich the
type structure. For instance, elements in a data structure may be distinguished
if they have different types (parameterised with different owners/regions). DPJ
[1] also suggests a special treatment for arrays, which relies on distinguishing
element types by their array indices. Moreover, these effect systems support ex-
plicit effect specifications, which enhance program reasoning, enable separate
compilation and facilitate modular software development. Our approach in this
paper naturally supports modularity, as the effect of an expression can be in-
ferred from only itself (i.e. independent to the context/environment, see more
discussion in Section 4.2). Ownership or region-based effects may be extended in
our framework to replace the simple label-based effects; we only need to adapt
some noninterference rules for supporting these new forms of effects.

18

4.2 Related Work

Much work has addressed the challenges of shared-memory concurrent program-
ming. In this section we restrict attention to directly related work, including
determinism and effects systems. Traditionally, determinism can be guaranteed
for some restricted styles of parallel programming, such as data parallel or pure
functional. Recent times have seen increased support for deterministic paral-
lelism in imperative programs. Examples include the use of dynamic analysis
[22, 5], type systems [25, 1, 2], static analysis [26] or separation logic [8].

Dynamic analysis allows programmers to assert desired deterministic sections
and enforce determinism by runtime checks. Dynamic approaches are generally
more flexible (e.g. [5] supports semantic determinism to tolerate some controlled
nondeterminism inside a deterministic section) and precise (e.g. less or no false
positives), but they often impose considerable runtime overhead and have limited
test coverage. Type systems, on the other hand, enforce determinism statically
at compile time; they typically capture errors earlier with no runtime cost, but
may report more false warnings. Type systems require annotations, which may
increase programming effort but are useful for program specification and docu-
mentation especially for modular development of large software.

Our type system is modelled on those of Nielson et al. [18, 19]. In their systems
they have provided separate effects for spawned expressions (like fork for us);
their systems also track sequencing in effects. The key difference for our effects
are that we explicitly prohibit unwanted concurrent behaviours; we only allow an
effect sequence∆1;∆2 to be formed when the effects are sequentially composable.
Our use of deterministic effects appears to be novel. Unlike related work on
determinism for other concurrency models [1, 2], as befits a threading model,
our approach focuses on the effect of the current thread separately from the
effect of the threads that it has forked. These approaches treat the components
of a parallel expression symmetrically, and are flow-insensitive.

Type and effect systems for tracking noninterference in programs are useful
for facilitating program reasoning and verification in sequential programs [6],
for analysing behavior of concurrent processes in process algebras [11], and for
enforcing determinism in structured parallel programs [1]. Fractional capabili-
ties [4, 25] provide similar support by treating a read capability as a fraction of
the write capability and distributing capabilities on memory locations at syn-
chronisation points to ensure that each thread must have sufficient capability
to read/write these locations. They can support determinism and synchronisa-
tion but inherently lack modularity, because in order to type a function, for
instance, the capability of the calling context (thread) must be known. On the
other hand, deterministic effects may be described independently of the context
in which they are used (flow-sensitivity is captured locally by sequential com-
posability), thus making modular reasoning about incomplete programs (e.g. a
function or a class) feasible. Furthermore, our approach can support a variety of
computational effects (not just reads/writes) and check for different interference
properties. For example, it may reason about deadlocks by capturing (ordered)
lock sets as effects and the inconsistency in lock ordering as interference.

19

4.3 Future Work

With this work, we provide a sound and general framework which can be used
as a basis for studying more kinds of computational effects and interference
in multithreaded programs. Two interesting directions would be: higher level
mechanisms for expressing effects, and incorporating synchronisation.

Understanding and writing multithreaded code is difficult, partly because of
the lack of specification for concurrent behaviours. Programmers typically work
with large libraries of code whose concurrent behaviours (e.g. threading, synchro-
nisation, locks, etc.) are not precisely specified. Our framework may be extended
with existing object-oriented effect systems (e.g. ownership or regions) to allow
programmers to express their high-level design intentions via effect contracts on
methods. Moreover, the ability to statically determine if two parallel computa-
tions may interfere is critical in the design of concurrent software, for instance,
the degree of concurrency can be increased by reducing thread interference and
removing redundant synchronisation.

In this paper, we have not been concerned with synchronisation/locking
which adds little to the novelty of our model (deterministic and nondeterministic
effects) and does not affect the results (strong and weak determinism). Instead
we have aimed to present a foundation of a simple and general formalism for
reasoning about multithreaded programming upon which we can build more
elaborate models, including for synchronisation. For example, by capturing lock
sets [9, 21] as effects, our framework can be used to reason about data races [27]
and deadlocks, which may be characterised as two kinds of thread interference.
Type-based techniques for imposing locking disciplines can detect data races [9,
3] or deadlocks [3] by requiring a shared location to be consistently guarded by a
common lock, or locks to be acquired in a fixed order; typically they, pessimisti-
cally, assume maximal concurrency. With our thread-sensitive approach, it is
possible to improve the precision of reasoning about concurrency vulnerabilities.

5 Conclusion

Threads are the dominant model in use today for general concurrent program-
ming, but they are wildly nondeterministic and notoriously difficult to under-
stand and predict, even for expert programmers. This paper proposes a novel
approach for analysing thread interference and determinism in multithreaded
programs, and presents a simple type and effect system to demonstrate our ap-
proach which can guarantee the preservation of desired deterministic behaviour.
Deterministic effects may be used by tools or as interface specifications to assist
with modular development of multithreaded software. We believe that determin-
istic effects are simple and easy enough to understand for average programmers,
thus assisting them with difficult parts of multithreaded programming.

Acknowledgements

This research is supported by an Australian Research Council Grant DP0987236.

20

References

1. R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli,
J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A type and effect system for
Deterministic Parallel Java. In OOPSLA, 2009.

2. R. L. Bocchino, Jr., S. Heumann, N. Honarmand, S. V. Adve, V. S. Adve, A. Welc,
and T. Shpeisman. Safe nondeterminism in a deterministic-by-default parallel
language. In POPL, 2011.

3. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In OOPSLA, 2002.

4. J. Boyland. Checking interference with fractional permissions. In SAS, 2003.
5. J. Burnim and K. Sen. Asserting and checking determinism for multithreaded

programs. In FSE, 2009.
6. D. Clarke and S. Drossopoulou. Ownership, encapsulation and disjointness of type

and effect. In OOPSLA, 2002.
7. D. Clarke and T. Wrigstad. External uniqueness is unique enough. In ECOOP,

2003.
8. M. Dodds, S. Jagannathan, and M. J. Parkinson. Modular reasoning for determin-

istic parallelism. In POPL, 2011.
9. C. Flanagan and M. Abadi. Types for safe locking. In ESOP, 1999.

10. J. Hogg. Islands: aliasing protection in object-oriented languages. In OOPSLA,
1991.

11. N. Kobayashi. Type systems for concurrent programs. In 10th Anniversary Collo-
quium of UNU/IIST, 2002.

12. D. Lea. A Java fork/join framework. In Java Grande, 2000.
13. E. A. Lee. The problem with threads. IEEE Computer, 39(5), 2006.
14. Y. Lu and J. Potter. On ownership and accessibility. In ECOOP, 2006.
15. Y. Lu and J. Potter. Protecting representation with effect encapsulation. In POPL,

2006.
16. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL, 1988.
17. I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis. Contextual effects for version-

consistent dynamic software updating and safe concurrent programming. In POPL,
2008.

18. F. Nielson and H. R. Nielson. Type and effect systems. In Correct System Design,
1999.

19. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag, 1999.

20. B. Pierce. Types and Programming Languages. The MIT Press, 2002.
21. P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: context-sensitive correlation

analysis for race detection. In PLDI, 2006.
22. C. Sadowski, S. N. Freund, and C. Flanagan. Singletrack: A dynamic determinism

checker for multithreaded programs. In ESOP, 2009.
23. A. Salcianu and M. C. Rinard. Pointer and escape analysis for multithreaded

programs. In PPOPP, 2001.
24. H. Sutter and J. Larus. Software and the concurrency revolution. Queue, 3(7),

2005.
25. T. Terauchi and A. Aiken. A capability calculus for concurrency and determinism.

TOPLAS, 30(5), 2008.
26. M. T. Vechev, E. Yahav, R. Raman, and V. Sarkar. Automatic verification of

determinism for structured parallel programs. In SAS, 2010.
27. X. Xie and J. Xue. Acculock: Accurate and efficient detection of data races. In

CGO, 2011.

