
Model-Driven Tile Size Selection for DOACROSS

Loops on GPUs ⋆

Peng Di and Jingling Xue

Programming Languages and Compilers Group, School of Computer Science and
Engineering, University of New South Wales, Sydney, Australia

Abstract. DOALL loops are tiled to exploit DOALL parallelism and
data locality on GPUs. In contrast, due to loop-carried dependences,
DOACROSS loops must be skewed first in order to make tiling legal and
exploit wavefront parallelism across the tiles and within a tile. Thus, tile
size selection, which is performance-critical, becomes more complex for
DOACROSS loops than DOALL loops on GPUs. This paper presents a
model-driven approach to automating this process. Validation using 1D,
2D and 3D SOR solvers shows that our framework can find the tile sizes
for these representative DOACROSS loops to achieve performances close
to the best observed for a range of problem sizes tested.

1 Introduction

GPGPUs have become one of the most powerful and popular platforms to ex-
ploit fine-grain parallelism in high performance computing. Recent research on
developing programming and compiler techniques for GPUs focuses on (among
others) general programming principles [5, 9, 14], cost modeling and analysis [1,
15, 3], automatic code generation [2, 11], and performance tuning and optimiza-
tion [4, 6, 12, 19]. However, these research efforts are almost exclusively limited
to DOALL loops. In practice, DOACROSS loops play an important role in many
scientific and engineering applications, including PDE solvers [13], efficient pre-
conditioners [7] and robust smoothers [8]. Presently, Pluto [2] seems to be the
only framework that can map sequential DOACROSS loops to CUDA code au-
tomatically for NVIDIA GPUs. This is done by applying loop skewing and tiling
with user-supplied tile sizes (for a user-declared grid of thread blocks of threads).

DOALL loops are tiled to exploit DOALL parallelism and data locality on
GPUs. Unlike DOALL loops, DOACROSS loops must be skewed first to en-
sure that the subsequent tiling transformation preserves the loop-carried depen-
dences. Furthermore, performing skewing and tiling allows wavefront parallelism
to be exploited both across the tiles and within a tile. Tile size selection, which is
performance-critical on GPUs, are more complex for DOACROSS than DOALL
loops due to parallelism-inhibiting loop-carried dependences and more complex
interactions among the GPU architectural constraints. Thus, it is not practical

⋆ This research is supported by an Australian Research Council Grant DP110104628.

to rely on the user to pick the right tile sizes to optimize code through improv-
ing processor utilization and reducing synchronization overhead. Existing tile
size techniques proposed for caches in CPU architectures do not apply [10, 20].

This paper makes the following contributions:

– We present (for the first time) a model for estimating the execution times of
tiled DOACROSS loops running on GPUs (Section 3);

– We introduce a model-driven framework to automate tile size selection for
tiled DOACROSS loops running on GPUs (Section 4);

– We evaluate the accuracy of our model using representative 1D, 2D and 3D
SOR solvers and show that the tile sizes selected lead to the performances
close to the best observed for a range of problem sizes tested (Section 5).

2 Parallelization of DOACROSS loops on GPUs

We describe a scheme for mapping sequential DOACROSS loops to CUDA code
on GPUs. Our illustrating example is a 1D SOR-like solver. This scheme is the
same as that supported by Pluto [2] except tiles are mapped to thread blocks in
a different way in order to achieve better load balance.

for(i1=1;i1<=I1;i1++)

for(i2=1;i2<=I2;i2++)

A[i2]=(A[i2-1]+A[i2]+A[i2+1])/3;

Fig. 1. Sequential loop nest for the 1D SOR solver.

Loop Transformations In Pluto, parallelizing an n-dimensional DOACROSS
loop nest L consists of mapping it into a 2n-dimensional loop nest as follows:

ρ : Zn 7→ Z
2n, ρ(i) =

(

t

e

)

=
(

t1, . . . , tn, e1, . . . , en
)T

=

(

W⌊T S(i)⌋
WS(i)

)

(1)

T =

m1 0 . . . 0
0 m2 . . . 0
...

...
. . .

...
0 0 . . . mn

−1

n×n

, W =

1 1 1 . . . 1 1
0 1 0 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . 0 1

n×n

(2)

The mapping process for the 1D SOR solver in Figure 1 is illustrated in Figure 2.
The mapping ρ [18] is realized by composing a loop skewing S, a loop tiling T
and another loop skewing W . First, the iteration space of L is skewed by a
unimodular transformation S ∈ Z

n×n. Second, the skewed iteration space is
tiled into n-dimensional rectangles of size m1 × · · · ×mn by T . S is chosen to
guarantee the legality of tiling so that all loop-carried dependences in L are
preserved [18]. At this point, a 2n-dimensional loop nest is created such that the
first n loops (called tile loops) enumerate the tiles and the inner n loops (called
element loops) enumerate the iterations within a tile. Finally, another skewing

i1

i2(a) Orignal iteration spae
i
′

1

i
′

2(b) Skewed iteration spae with S =

[

1 0
1 1

], (i′1
i
′

2

)

= S

(

i1
i2

)

t1

t2 W k W k+1W k+2
() Tiling and inter-tile wavefront

W 1 W 2 W 3W 4W 5e1

e2(d) Intra-tile wavefront
Fig. 2. Exploiting wavefront parallelism for 1D SOR on GPUs.

transformation W is applied to the iteration spaces of both sets of loop nests to
expose wavefront parallelism across the tiles and within a tile. In either loop nest,
the first loop is sequential and the remaining n− 1 loops are DOALL. We will
speak of inter-tile wavefronts and intra-tile wavefronts (as shown in Figure 2).

Mapping to GPUs A NVIDIA GPU consists of a number of streaming mul-
tiprocessors (SMs), each of which contains a number of processor cores called
streaming processors (SPs). All SPs in one SM share a local memory and a set
of registers. GPU programming is enabled through CUDA. A kernel is executed
by a grid of threads organized as thread blocks (known as a thread organization).
A thread block is scheduled to execute on any one of the SMs (as a whole).
The threads in a block are partitioned into 32-thread warps, which are units of
execution (on the SPs of the SM to which the block is mapped). The threads
in one block can synchronize through syncthreads and communicate through
shared memory. The inter-block synchronization is not directly supported.

Figure 3 gives the CUDA code for the 1D SOR solver parallelized as shown
in Figure 2. Tiles are mapped to thread blocks and individual loop iterations
in a tile are mapped to the threads in a block. All inter-tile wavefronts are
executed sequentially to satisfy inter-tile (or inter-block) dependences. Hence,
the syncblocks macro as introduced in Pluto at 4 . In Pluto, the tiles in an
(n− 1)-dimensional inter-tile wavefront are distributed over a 2D grid of thread

// inter-tile loop nest

for(t1=Lt1;t1<=Ut1;t1++){

for(t2=Lt2(t1)+blockIdx.x;t2<=Ut2(t2);t2+=gridDim.x){

// intra-tile loop nest

Code for shared memory coalesced loads

__syncthreads(); // barrier for the loads

for(e1=Le1(t1,t2);e1<=Ue1(t1,t2);e1++){

for(e2=Le2(t1,t2,e1)+threadIdx.x;e2<=Ue2(t1,t2,e1);e2+=blockDim.x){

i2=h(t1,t2,e1,e2);

A[i2]=(A[i2-1]+A[i2]+A[i2+1])/3;

}

__syncthreads(); // barrier for each intra-tile wavefront

}

Code for shared memory coalesced stores

__syncthreads(); // barrier for the stores

}

__syncblocks(); // barrier for each inter-tile wavefront

}

Fig. 3. CUDA code for 1D SOR on GPUs.

1

2

3

4

DOALL

blocks of size gridDim.x× gridDim.y cyclically along two of the n−1 dimensions
of the wavefront. This can cause load imbalance for large tiles since a wavefront
has irregular boundaries. In this paper, the tile coordinates in such a wavefront
are ”linearized” much like how the subscripts of a multi-dimensional array are.
Then the tiles are mapped to a 1D grid of thread blocks of size gridDim.x

cyclically to achieve better load balance (with gridDim.y=1 always). As a result,
all thread blocks in an inter-tile wavefront can be potentially executed in parallel
but the tiles within a block are always executed sequentially.

The loop iterations in a tile are distributed as in Pluto to a 3D thread block
of size blockDim.x× blockDim.y× blockDim.z cyclically. To improve memory
coalescing, all data read by a tile are first loaded from device memory to shared
memory at 1 and all those written in a tile are stored back to device memory
at 3 . Like inter-tile wavefronts, all intra-tile wavefronts are executed sequen-
tially. Hence, the syncthreads instruction at 2 . The iterations in an intra-tile
wavefront that are assigned to different threads can execute in parallel.

3 Execution Time Modeling

We parameterise an execution time model for a tiled DOACROSS loop nest in
order to automate tile size selection. Initially, we assume that all tiles are full.
We consider first intra-tile execution (Section 3.1) and then inter-tile execution
(Section 3.2). In Section 3.3, we estimate the parameters used. In Section 3.4,
we discuss briefly how to mitigate the effects of border tiles on performance.

3.1 Intra-Tile Execution

This section focuses on estimating the execution time, TT ILE , for a single (full)
tile, denoted T ILE . As shown in (1) and Figures 2 and 3, the loop iterations
in a tile are indexed by (e1, . . . , en), where e1 enumerates all intra-wavefronts
within the tile. As illustrated in Figure 2, TT ILE , which can be broken down
into the time on loading the input data at 1 , the time on executing the tile,
and the time on storing the results back 3 , is approximated by:

TT ILE =

Ue1
∑

e1=Le1

Te1 + Tmem + 2σthd (3)

The first term
∑Ue1

e1=Le1
Te1 is the computation cost of T ILE estimated as a sum

of the execution times Te1 of all its intra-tile wavefronts with e1 ranging over
these wavefronts starting from the smallest given by the lower bound Le1 of loop
e1 to the largest given by the upper bound Ue1 of loop e1 along dimension e1.
The second term Tmem denotes the memory latency consumed by the memory
accesses at the code before 1 and the code before 3 . The last term 2σthd denotes
the overhead of the two syncthreads at 1 and 3 , where σthd is dependent on
the number of threads used, i.e., blockDim.x × blockDim.y × blockDim.z.

The execution time Te1 of the intra-tile wavefront indexed by e1 is given by:

Te1 = α×Ge1 + β ×He1 + σthd (4)

GPUs execute instructions with warps as units of execution and hide memory
latency through interleaving of thread blocks. In the scheme shown in Figure 3,
the warps are never idle when executing a wavefront as all memory accesses
happen before and after the execution of T ILE . Thus, the first term represents
the workload for computing the wavefront indexed by e1, which is estimated to be
proportional to Ge1, the number of 32-thread warps executed at the wavefront.
In addition, the first term implicitly considers the effects of bank conflicts on the
execution time of T ILE . However, the same Ge1 may result when the number
of loop iterations, He1, in the wavefront indexed by e1 varies (due to division by
32). To accommodate its impact on performance, Te1 is fine-tuned by including
the second term β ×He1, which attempts to differentiate the effects of varying
He1 values on performance. Note that Ge1 and He1 may vary from wavefront to
wavefront as shown in Figure 2(d). Given an intra-tile wavefront, both can be
precisely calculated. The last term σthd is the overhead of syncthreads at 2 .

By substituting T i
e1 in (4) into (3), we obtain:

TT ILE =

Ue1
∑

e1=Le1

(α×Ge1 + β ×He1 + σthd) + Tmem + 2σthd (5)

which is illustrated graphically in Figure 4. As highlighted, Ge1 varies across the
wavefronts with less work being done at the beginning and end of the computa-
tion process for T ILE when its wavefronts are executed.

loadsyncthreads1st 2nd 3rd storesyncthreads

load load of Tmem

1 σthd

e1 = Le1

e1 = Le1 + 1

α×GLe1+1 + β ×HLe1+1
TLe1+1

2 σthd

e1 = Le1 + 2 . . .e1 = Ue1 − 1

e1 = Ue1

store
store of Tmem3 σthd

TT ILE

e1

T ime

Fig. 4. Execution of the Ne1 wavefronts of T ILE along dimension e1 according to (5).

The memory access latency Tmem can be estimated by:

Tmem = γ ×Nmem (6)

where Nmem denotes the number of loads and stores made in T ILE . Note that
Nmem is not related to memory coalescing since that would make its estimation
dependent on the actual data layout at run time. This simple approximation
seems to be adequate as Tmem is not a dominant term in (3) for the following
reasons combined. First, DOACROSS loops are usually not bandwidth-bound.
Second, optimal tile sizes found are large in order to exploit two levels of wave-
front parallelism. Finally, the memory accesses performed by warps can overlap.
We will return to this issue briefly at the end of Section 5.

By substituting Tmem given in (6) into (5), simplifying and letting

LT ILE = m1 × · · · ×mn =

Ue1
∑

e1=Le1

He1 (7)

we obtain the following estimated execution time of T ILE :

TT ILE = α×

Ue1
∑

e1=Le1

Ge1 + (Ue1−Le1+3)× σthd + β × LT ILE + γ ×Nmem (8)

with Ue1−Le1+1 syncthreads instructions executed at 2 inside the wavefront,
one at 1 and one at 3 , as shown in Figure 3.

3.2 Inter-Tile Execution

A DOACROSS loop nest is parallelized into a CUDA kernel. The execution time,
Ttotal, for the kernel, i.e., for its inter-tile wavefronts is estimated by:

Ttotal =

Ut1
∑

t1=Lt1

Tt1 + σker (9)

The first term is the computation cost of all tiles in the kernel estimated as a
sum of the execution times Tt1 of all its inter-tile wavefronts with t1 starting
from the lower bound Lt1 of loop t1 to the upper bound Ut1 of loop t1 along
dimension t1. The second term σker is the kernel startup cost.

Thus, Ut1−Lt1+1 is the number of tiles contained in the inter-tile wavefront
indexed by t1. If all P SMs execute simultaneously up to B thread blocks each,
then the number of tiles, denoted It1, contained in a thread block is:

It1 = ⌈
Ut1 − Lt1 + 1

B × P
⌉ = ⌈

Ut1 − Lt1 + 1

gridDim.x
⌉ (10)

where B is decided by the GPU architectural constraints and kernel code ac-
cording to the CUDA programming guide as demonstrated in Table 1.

The execution time Tt1 is determined by the slowest among the P SMs with
the other SMs idle waiting at the syncblocks macro at 4 . As a result, we have:

Tt1 =

It1
∑

i=1

T i
t1 + σblk (11)

T i
t1 =

{

B × TT ILE 1 ≤ i ≤ It1 − 1

⌈ (Ut1−Lt1+1)%(B×P)
P

⌉ × TT ILE i = It1
(12)

where T i
t1 is the execution time of the i-th tiles in all B thread blocks by the

slowest SM and σblk is the overhead of syncblocks at 4 (to be measured below).

3.3 Parameter Estimation

We determine the six parameters used in Ttotal given in (9) for a tiled loop
nest L: σker , σthd, σblk, α, β and γ. We do so for a given thread organization
(determined by gridDim and blockDim) so that its tile size selection can be
automated (Section 4). For NVIDIA GPUs, there are at most 16Bmax different
thread organizations because (1) there are Bmax different 1D grid layouts with
gridDim.x= B×P , where B ≤ Bmax ≤ BSM = 8 as shown in Table 1, and (2)
the number of threads per block, i.e., blockDim.x × blockDim.y× blockDim.z

is one of the 16 possibilities contained in {32, 64, . . . , 512}.

Description Name

Warp Size (H) W = 32
Max Number of Active Warps per SM (H) WSM = 32

Max Number of Active Threads per SM (H) TSM = 1024
Max Number of Active Blocks per SM (H) BSM = 8

Shared Memory per SM (H) SSM = 16KB

Number of 32-bit Registers per SM (H) RSM = 16K
Threads per Thread Block (S) K

Register Usage per Thread Block (S) RTB

Shared Memory Usage per Thread Block (S) STB

Warps per Thread Block (B) WTB = ⌈ K
W

⌉

Thread Blocks Limited by Warps (B) BW = min(BSM , ⌊
WSM
WTB

⌋)

Thread Blocks Limited by Registers (B) BR = ⌊
RSM
RTB

⌋

Thread Blocks Limited by Shared Memory (B) BS = ⌊
SSM
STB

⌋

Thread Blocks (B) B = min(BW , BR, BS)

Table 1. Determining B for an NVIDIA Tesla C1060 GPU. An item in Column 1 that depends on
hardware, kernel code or both is indicated with an H, S or B appropriately.

Architectural Parameters: σker, σthd and σblk These overheads are small
(relative to the execution time of a loop nest L) and are measured for a GPU
architecture as follows. First of all, σker is the startup overhead of the kernel
for L, which can be obtained through running an empty version of the ker-
nel (with the computations in L removed) for a given thread organization. In
fact, as σker ≪ Ttotal, treating it as a small constant for all thread organiza-
tions does not affect in practical terms how the relative performances of L are
ranked for all combinations of thread organizations and tile sizes used. As for
syncthreads executed at 1 , 2 and 3 , it is lightweight on NVIDIA GPUs. Its
overhead σthd depends on the number of threads per block, i.e., blockDim.x ×
blockDim.y× blockDim.z and is measured as in [16]. There are only 16 cases to
consider as blockDim.x × blockDim.y × blockDim.z is a multiple of 32 rang-
ing from 32 to 512. Finally, the syncblocks macro is invoked at the end of each
inter-tile wavefront at 4 . Its overhead σblk, which is higher than σthd, depends
mainly on the number of thread blocks contained in an inter-tile wavefront,
i.e., gridDim.x = B × P . The effects of different blockDim.x × blockDim.y ×
blockDim.z values on σblk are negligible. As B ≤ Bmax ≤ BSM = 8, syncblocks
is measured as in [17] for a few, i.e., up to Bmax different gridDim.x values.

Program-Dependent Parameters: α, β and γ Once the values of σker ,
σthd and σblk are determined, the given loop nest L is simplified to possess one
inter-tile wavefront with exactly B×P thread blocks consisting of only full tiles.
This ensures that all P SMs have exactly the same workload so that these three
program-dependent parameters can be accurately measured.

The three parameters are found for each of up to 16Bmax different thread
organizations as mentioned earlier (where Bmax ≤ 8). In each case, the simplified
loop nest L is executed for a total of n times, each with a different tile size. Let
Ti be the execution time corresponding to the tile size Si used. Given a tile size
Si, all parameters in Ttotal except α, β and γ are now known. We can find the
values of α, β and γ by performing a linear curve fitting using the least-square
method for Ttotal with respect to the n execution times, T1, . . . , Tn, obtained.

1 Compute the register usage per thread, RT , using any tile size and thread organization.
2 for each tile size m = (m1, . . . ,mn) that satisfies the tile size constraint
3 Let STB (shared memory usage per block) be set as the shared memory usage per tile
4 for each t = (blockDim.x, blockDim.y, blockDim.z) that satisfies the blockDim constraint
5 Let RTB = RT × blockDim.x× blockDim.y× blockDim.z

6 Let B = min(BW , BR, BS), where BW , BR and BS are computed in Table 1.
7 Evaluate Ttotal given in (9) for the current tile size m and the current thread organization

specified by gridDim = B × P and blockDim = t

8 if Ttotal < Tbest // Tbest is initialized to ∞
9 Tbest = Ttotal

10 Record m as the best tile size so far (and set gridDim.x = B × P and blockdDim = t)

Fig. 5. An algorithm for automating tile size selection.

3.4 Border Tiles

A border tile may execute faster than a full tile. If the i-th inter-tile wave-
front that induces T i

t1 in (11) contains non-full border tiles, then T i
t1 may over-

approximate the actual execution time of the wavefront. We can improve this
inaccuracy with an estimate of 0.5 × TT ILE as the execution time of a border
tile T ILE by assuming that the average size of border tiles is half of a full tile.

4 Model-Driven Tile Size Selection

Given the estimated execution time of Ttotal in (9) for a tiled loop nest L as
input, we employ an “educated” search to find automatically and efficiently an
optimal tile size m = (m1, . . . ,mn) for L and an associated thread organization,
determined by gridDim and blockDim, used for realizing the optimal tiling. In
this paper, a tile layout is determined by a tile size and a thread organization.

4.1 The Algorithm

We use two kinds of constraints to prune the search space:

Tile Size Constraint The tile size, i.e., LT ILE = m1 × · · · × mn is bounded
from below by a data reuse rate D = LT ILE

Nmem
(where Nmem is introduced in

(6)) and from above by the size of shared memory. For DOACROSS loops,
large tile sizes lead to higher data reuse rates. Thus, D must be larger than
an empirical minimum threshold to ensure better intra-tile data locality.

blockDim Constraint In NVIDIA GPUs, blockDim.x × blockDim.y ×
blockDim.z represents the number of threads per block. According to [16],
the SP performance usually suffers with too many or too few threads. Fur-
thermore, blockDim.x × blockDim.y × blockDim.z must be no smaller
than the number of iterations contained in the largest intra-tile wavefront to
ensure that every thread has some work to do. Thus, some small and large
values of blockDim.x × blockDim.y × blockDim.z can be ignored.

Our algorithm for automating tile size selection for L is outlined in Figure 5.
Recall that as shown in Figure 3, all tiles in a thread block are executed sequen-
tially. Thus, for every type of resource listed in Table 1, the amount consumed
by a block is calculated on a per-tile basis. The basic idea is to perform an
“educated” search when going through all tile layouts to find the one with the
smallest execution time Ttotal. In line 1, the register usage per thread, denoted
RT , is measured independently of tile layouts used. This is because in each case
the same code as shown in Figure 3 is compiled for each thread by NVIDIA’s
nvcc compiler. Finding RT this ways speeds up the process for calculating RTB

in line 5. Similarly, in line 3, STB does not depend on blockDim. Once RTB and
STB are known, BW , BR and BS are computed in line 6 as per Table 1.

4.2 The Framework

We have implemented our tile size selection technique using a combination of
the Clan polyhedral representation extractor, Pluto’s polyhedral parallel tiling
infrastructure and CLooG code generator, as shown in Figure 6.Soureode ClanDependenetest PlutoA�netransfor-mation Tile sizeseletion Tilingtransfor-mation CLooGGenerateode Post-proessing+Tileshedule TargetCUDAode

Fig. 6. A model-driven tile size selection framework.

Our tile size selection module is invoked in the third step in the sequence.

5 Experiments

We use three representative DOACROSS kernels, 1D (3-point), 2D (5-point) and
3D (7-point) SOR solvers, to demonstrate the accuracy and efficiency of our tile
size selection framework on an NVIDIA Tesla C1060 GPU (c.f. Table 1). Four
problem sizes are discussed for each kernel, representing 12 different optimization
problems for which best tile layouts (tile size/blockDim combinations) are solved.

Accuracy It is impractical to measure the accuracy of our tile size selection
framework for a kernel by comparing the actual execution time of the best tile
layout found with the execution times of all tile layouts.

We have decided to evaluate this work empirically as is often done in auto-
mated performance tuning. For each of the 12 optimization problems discussed
here, we have randomly sampled 1000 different tile layouts. The largest relative
error (between the estimated execution time Ttotal and actual execution time) is
observed to be within 6.05%. To see this graphically, the relative errors of 100
sampled tile layouts for each optimization problem are plotted in Figures 7 – 9.
Let us look at the actual performance gap between the tile layout found by us
and the best-performing one in each case. Let us consider a generic optimization
problem O. Let Tm

total and Rm
total be the estimated and actual execution times

Fig. 7. 1D SOR: relative errors for 100 tile layouts in each of the four problem sizes.

Fig. 8. 2D SOR: relative errors for 100 tile layouts in each of the four problem sizes.

Fig. 9. 3D SOR: relative errors for 100 tile layouts in each of the four problem sizes.

of any tile layout m for O with the relative error being em. In particular, let
T opt
total and Ropt

total be the estimated and actual execution times of the the best
tile layout opt predicted for O with the relative error being eopt. The (worst)
performance gap between opt and the best-performing one, m, is bounded by
(1+em
1+eopt

− 1)× 100%, when Ropt −Rm = T opt
total/(1 + eopt)− Tm

total/(1 + em), i.e.,

em is the largest, where Ropt > Rm. Based on our sampled tile layouts, the
performance gaps are found to be 5.29%, 0.51%, 2.10% and 4.92% for the four
problem sizes of 1D SOR (displayed from left to right in Figure 7), 4.33%, 1.31%,
5.14% and 2.01% for the four problem sizes of 2D SOR (Figure 8), and 0.66%,
2.28%, 6.05% and 1.30% for the four problem sizes of 3D SOR (Figure 9).

Search Time Our algorithm is efficient in finding the best tile layout for a
loop nest (on an Intel Xeon 2.0 GHz CPU). When tiling an n-dimensional loop
nest that represents an (n− 1)-D SOR solver with a tile size m = (m1, . . . ,mn),
m1 represents the time dimension and m2, . . . ,mn represent the n − 1 spatial
dimensions for the underlying mesh. Due to loop skewing, the worksets of dif-
ferent time slices of a tile are also skewed [10]. Thus, the data reuse rates of a
tile for the 1D, 2D and 3D SOR solvers are expressed as a function of m and are
bounded from above by m2,

m2m3

m2+m3

and m2m3m4

m2m3+m2m4+m3m4

, respectively, when
m1 → ∞. For the 1D SOR solver, the data reuse rate induces a tile size con-
straint: LT ILE

Nmem
≥ 300, where the threshold 300 is empirically set (Section 4.1).

The search time is 238 secs over a search space of 3 × 106 tile layouts. For the

2D SOR solver, the tile size constraint is LT ILE

Nmem
≥ 6. The search time is 369 secs

over a search space of 3.2 × 106 tile layouts. For 3D SOR, the data reuse rate
imposes LT ILE

Nmem
≥ 1. The search time is 503 secs over a search space of 4.7× 106

tile layouts.

References

1. Baghsorkhi, S.S., Delahaye, M., Patel, S.J., Gropp, W.D., Hwu, W.m.W.: An adap-
tive performance modeling tool for GPU architectures. In: PPoPP’10. pp. 105–114.
ACM Press, New York, New York, USA (2010)

2. Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic C-to-CUDA Code
Generation for Affine Programs. In: CC’10. pp. 244–263 (2010)

3. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: PPoPP’10. pp. 115–126 (2010)

4. Cui, H., Wang, L., Xue, J., Feng, X., Yang, Y.: Automatic library generation for
blas3 on gpus. In: IPDPS’11 (2011)

5. Cui, H., Xue, J., Wang, L., Yang, Y., Feng, X., Fan, D.: Extendable pattern-
oriented optimization directives. In: CGO’11. pp. 107 –118 (2011)

6. Di, P., Wan, Q., Zhang, X., Wu, H., Xue, J.: Toward harnessing doacross parallelism
for multi-gpgpus. In: ICPP’10 (2010)

7. Fischer, S.: A parallel SSOR preconditioner for lattice QCD. Computer Physics
Communications 98(1-2), 20–34 (Oct 1996)

8. Hackbusch, W.: Iterative solution of Large Sparse Systems of Equations. Applied
Mathematical Sciences, Springer Verlag (1993)

9. Hong, S., Kim, H.: An analytical model for a GPU architecture with memory-level
and thread-level parallelism awareness. In: ISCA’09. p. 152 (Jun 2009)

10. Huang, Q., Xue, J., Vera, X.: Code tiling for improving the cache performance of
PDE solvers. In: ICPP’03. pp. 615–625 (2003)

11. Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. In: PPoPP’09. pp. 101–110 (2009)

12. Liu, Y., Zhang, E.Z., Shen, X.: A Cross-Input Adaptive Framework for GPU Pro-
grams Optimization. In: IPDPS’09. pp. 16–19 (2009)

13. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equa-
tions. Springer (1994)

14. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.m.W.:
Optimization principles and application performance evaluation of a multithreaded
GPU using CUDA. In: PPoPP’08. pp. 73–82 (2008)

15. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:
SC’08. pp. 1–11 (2008)

16. Wong, H., Papadopoulou, M., Sadooghi-Alvandi, M., Moshovos, A.: Demystifying
GPU microarchitecture through microbenchmarking. In: ISPASS’10. pp. 235–246
(2010)

17. Xiao, S., Feng, W.C.: Inter-block GPU communication via fast barrier synchro-
nization. In: IPDPS’10. pp. 1–12 (2010)

18. Xue, J.: Loop Tiling for Parallelism. Kluwer Academic Publishers (2000)
19. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU compiler for memory opti-

mization and parallelism management. In: PLDI’10. p. 86 (May 2010)
20. Yuki, T., Renganarayanan, L., Rajopadhye, S., Anderson, C., Eichenberger, A.E.,

O’Brien, K.: Automatic creation of tile size selection models. In: CGO’10. p. 190
(2010)

