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Abstract. Energy reduction is one of the major problems in the designvafe-

less sensor network (WSN). Multiple base stations can bé tesdramatically
reduce the energy consumption of sensor nodes. We conkaaliowing prob-

lem of deployingk base stations in a wireless sensor network: Given a wireless
sensor network where the location of each sensor node isrknpartition the
whole sensor network intk disjoint clusters and place one base station for each
cluster such that the maximum total energy consumption pfciuster is min-
imised. We propose the first heuristic for this problem. Tiheetcomplexity of
our heuristic isO(kn?), wheren is the number of sensor nodes of the sensor
network. In the special case whetds equal tol, we propose a quadratic-time
algorithm for optimally deploying the base station. Our siation results show
that our heuristic is efficient.

1 Introduction

A wireless sensor networks (WSN) consists of a set of semsxiss that communicate
with each other via radio signals. All the sensor nodes wodaperatively to monitor
physical or environmental conditions, such as temperasownd, pressure and motion.
The applications of WSNs range from area monitoring, emrirental monitoring, to
agriculture and structural monitoring. In some applicasicsuch as border surveillance,
bushfire detection and traffic control, several thousandseofor nodes might be de-
ployed over the monitored region. The diameter of the moaiteegion can be several
kilometres.

In wireless sensor networks, sensor nodes are battery pdwdiost of the energy
of a sensor node is consumed by communications. One key factthe energy con-
sumption of a sensor node is the communication distancengos@ode consumes sig-
nificantly more energy when the communication distancedseiased [1]. As a result,
multi hop communication between each sensor and the baemstamore desirable in
a large scale wireless sensor networks than the single homoaication. In multi hop
communication, a sensor node may spend most of its energglaying data packets.
Hence, it is important to shorten the hop distance betweem szurce sensor node and
the base station. The hop distances can be greatly reducgepliyying multiple base
stations. All the sensor nodes are partitioned into mutitikjoint clusters with one
base station for each cluster. Each sensor node sendsdtsrdgto its designated base
station. Moreover, the location of the base station of edaster is very important. If



the base station is deployed far from the data sources, neargpsnodes are required
to relay data packets and the energy consumption of thoseseades will be signif-
icantly increased. Therefore, it is an important designads find the best location of
a base station. Nevertheless, the problem of optimallyayémd multiple base stations
can be reduced to the k-center problem which is NP-compléXe Therefore, a poly-
nomial time algorithm is unlikely to exist.

In this paper, we study the problem of deployinfase stations such that the total
energy consumption of a WSN is uniformly distributed amotghee clusters. Under
our energy consumption model, the total energy consumpfieach cluster is a mono-
tonically increasing function of the total shortest hoptatice of all the sensor nodes
of the cluster. The longer the total shortest hop distateentore the energy consump-
tion of a cluster. In the special case where there is only @se Istation, we propose
a quadratic-time algorithm to optimally place a base stasioch that the total energy
consumption of all the sensor nodes is minimised. Based e@pptimal algorithm for
the single base station problem, we propose a novel heutfigtt aims to partition all
the sensor nodes infodisjoint clusters such that the maximum total energy conpsum
tion of any cluster is minimised. We have simulated our reigrion195 instances of
different distributions. Our simulation results show tbat heuristic is very effective.

2 Definitions and Network Model

A wireless sensor network consists of a set @dlentical sensor nodes each of which is
located in @D plane. The location of each sensor node is known. All theaemsdes
have the same maximum communication distaRc@/e assume that there are no com-
munication barriers between any two adjacent sensor nodéerefore, a sensor node
v; can directly communicate with a sensor negéf the Euclidean distance between
andv; is not greater tha®. There arés base stations to be deployed in a target WSN.
As a result, all the sensor nodes need to be partitionedkirglisters with one base
station for each cluster. A sensor node in each cluster sendata to its base station
only. If the Euclidean distance between a sensor node ahdstsstation is greater than
R, the data of the sensor node must be transmitted via otheosandes to the base
station.

Definition 1. The connectivity graph of a wireless sensor network is arestid graph
G =< V,E >,whereV = {v; : i = 1l..n andv; is a sensor nodg andE = {(v;, v;) :
if the Euclidean distance betweenandwv; is not greater tharR}.

Without loss of generality, we assume that the connectiyigphG of the target
wireless sensor network is connected.

Definition 2. Given two sensor nodes andv;, the shortest hop distance fromto v;
is the length of the shortest path framto v; in the connectivity graph.

The shortest hop distance of a sensor nod the base station gives the lower
bound on the number of hops of a packet transmitted fspta the base station.

L Our approach can be modified to handle the communicatiofebsrr



Definition 3. Given a cluster of sensor nodes and a base station, the totatesst hop
distance of the cluster is the sum of all the shortest hoadésts from each sensor node
to the base station.

Let P be a set of: distinct points called sites, inD plane. The Voronoi diagram
[11] of P is the subdivision of the plane into cells, one for each site. A poigtlies
in the cell of a sitep; € P iff the Euclidean distance betwegrandp; is less than the
Euclidean distance betweerandp; (p; € P andi # j). The edges of the Voronoi
diagram are all the points in the plane that are equidistatite two nearest sites.

Definition 4. A sensor node; is a neighbour of a sensor nodg if the Voronoi cells
of v; andwv; share a Voronoi edge.

Definition 5. LetV be a set o sensor nodes in 8D plane andC; (i = 1,2,--- , k)
be k disjoint clusters ofl”. A clusterC; is a neighbour of a cluste’; if there are two
sensor nodes, € C; andv; € C; such that, is a neighbour ob,.

Definition 6. Given a clustelC; of sensor nodes and a sensor nageZ C;, the Eu-
clidean distance fromy; to C;, denotedd(v;, C;), is min{d(vg, v;) : vy € C; and
d(vg,v;) is the Euclidean distance betwegnandv, }.

Definition 7. Given a wireless sensor network and a pgirdn a2D plane, the unit
sensor density gf is the number of sensor nodes that are one hop away frofhe
maximum unit sensor density of the wireless sensor netwdheilargest unit sensor
density of all the points on thzD plane.

Throughout this paper, we assume that the maximum unit seiessity is a con-
stant. In wireless sensor networks, the maximum commuuoitdistance is typically
short in order to reduce the energy consumption of datarressons. Hence this as-
sumption is reasonable.

3 An Optimal Algorithm for Single Base Station Deployment
Problem

Deploying a single base station in a cluster is a buildingklof our heuristic for opti-
mally deployingk base stations. This problem is described as follows. Givelnster
of sensor nodes and a base station, find the optimal locafitmedase station such
that the total shortest hop distance of the cluster is migghi Next, we will propose an
efficient algorithm for this problem.

The key idea of our algorithm is to find the candidate locatiohthe base station
such that one candidate location must be the optimal latatidhe base station. To
find all possible candidate locations, we consider eachgiaiensor nodes; andv,.

If the Euclidean distance betweepandwv; is greater thar2 R, whereR is the max-
imum communication distance of all the sensor nodes, weigvilbre the pain; and
v;. Otherwise, we find the candidate circlesipfandv;. A candidate circle ob; and
v; is a circle that satisfies the following two constraints: heTadius of the circle is



R. 2) v; andv; are on its circumference. The centre of a candidate circiedandi-
date location of the base station. Notice that for each daeonsor nodes at most two
candidate circles exist. If the Euclidean distance of a pagensor nodes is equal to
2R, only one candidate circle of this pair exists. After findimgthe candidate loca-
tions, our algorithm will search for the best candidate timeaof the base station. The
best candidate location is the one that minimises the tbtaitest hop distance of all
the sensor nodes to the base station placed at this canttidaten. The algorithm is
shown as follows.

Algorithm OptimalD(V')
Input : A setV = {v1,v2,- - ,vm} Of m Ssensor nodes inZD plane and a base station.
Output : The optimal location of the base station such that the &#taitest hop distance of all
the sensor nodes to the base station at the optimal locatimimimised, and the resulting total
shortest hop distance.
begin
C=0
for each pair of sensor nodés;, v;)(vs,v; € V) do
if the Euclidean distance betweenandv; < 2R then
Find the candidate circlgs, andC> of v; andv;;
Letcy andcs be the centres afy andCs;
C=CU {Cl} @] {CQ},’
for each candidate locatian € C do
Place the base stationa&t
Construct the connectivity graghi(V U {c; }) of all the sensor nodes and the base station;
Compute the total shortest hop distance T$HPof all the sensor nodes I
to the base station locatedat
Letc; be the candidate location with the minimum total shortegt distance;
return (c;, TSHD(¢;));
end

Theorem 1. Given a cluster ofn sensor nodes, the time complexity of the algorithm
Optimald(V') is O(m?).

Proof. For a cluster withn sensor nodes there are(m — 1)/2 pairs of sensor nodes.
Therefore, it take® (m?) time to find all the candidate locations. At most two candidat
locations exist for each pair of sensor nodes. Under oumagson on the maximum
unit sensor density, for each sensor nedéhe number of neighbouring sensor nodes
which are two hops away from; is at mostp?, wherep, the maximum unit sensor
density, is a constant. Therefore, the total number of chtdilocations i©(m). The
connectivity graphG(V U {¢;}) of the all the sensor nodes and the base station at the
candidate locatiom; can be constructed as follows. Firstly, construct the cotiwigy
graphG(V) of all the sensor nodes, which tak€gm?) time. Secondly, add a new
node for the base station at the candidate locatjoand the new edges between the
base station and all the sensor nodes that can directly comata with the base station
to G(V'). After constructing the connectivity gragh(V U {¢;}), we can use breadth-
first search to compute the total shortest hop distance dhalkensor nodes to the
base station iD(e) time, wheree is the number of edges iI&(V U {¢;}). Given the
maximum unit sensor densiy, e < pm holds. Sincep is a constant, it take®(m)



time to compute the total shortest hop distance. As a raheltime complexity of our
algorithm isO(m?).

Theorem 2. The algorithm OptimalDV/) is guaranteed to find the optimal location of
the base station.

Proof. Assume that the optimal locationds,;. Let.S = {vi, v2,- - - , v, } be the set of
sensor nodes that are one hop away from the base station @tiheal locationc,;.
Draw a circleC,,; with the radiusk and the centre,,;. According to the definition of
the maximum communication distanég all the sensor nodes ifi must be either in
Copt Or on the circumference @,,;. Next, we show that there is a candidate location
¢ generated by our algorithm such that the set of sensor nbdearte one hop away
from ¢, is equal toS. Consider the following three possible cases.

1. There are two sensor nodgsv; € S such thaw; andv; are on the circumference
of Copt. In this caseg,,, is one of our candidate locations.

2. Only one sensor nodg € S is on the circumference @,,;. Turn the circleC,,;
clockwise around; until another sensar; € S is on the circumference ;.
Now all the sensor nodes ifare still inC,,,: and this case reduces to Case 1.

3. No sensor node is on the circumference’f,. Arbitrarily select a sensor node
vy, and moveC,,,; along the straight line,,;v; until one sensor node if is on
the circumference of’,,;. Now all the sensors ity are still in C,,; or on the
circumference ot’,,.. Hence, this case reduces to Case 2.

Based on the above discussions, we can conclude that suahdalate locatiorc,,
exists. For each sensor nodg any path fromw; to ¢ or c,,: must include a sensor
node inS. Therefore, the shortest hop distance fronto ¢, is equal to that fromy; to
copt- AS aresultcy, is also an optimal location of the base station.

4 Incremental Algorithms for Single Base Station Deploymen
Problems

Our heuristic fork base station deployment problem needs to repeatedly finojptie
mal location of a base station for a growing or shrinking @usA growing cluster is a
cluster of sensor nodes such that a new sensor node is adidletadime. A shrinking
cluster is a cluster of sensor nodes such that a sensor noefadsed from it at a time.
There are two single base station deployment problemsirlyjéesdhase station deploy-
ment problem for a growing cluster and the single base statéployment problem for
a shrinking cluster.

The single base station deployment problem for a growingtetus described as
follows: Given a clustet’; of sensor nodes, a new sensor nogeand a base station,
find the optimal location of the base station such that thed sttortest hop distance from
all sensor nodes it; U {v} to the base station is minimised. A bruteforce approach
to this problem is to use the algorithm proposed in the previgection, which takes
O(m?) time, wherem is the number of sensor nodes of the cluster. Next, we pro@ose
faster incremental algorithm which takégm) time.

Let B(C;) be the set of all candidate locations of the base statio@ fdBHD(v;, v;)



the shortest hop distance betwegmndv;, andN (c;) the set of all neighbouring sen-
sor nodes which are one hop away from a candidate locafiofhe incremental algo-
rithm for the single base station deployment problem forawimg cluster is shown as
follows.

Algorithm IncrementalGrowingC;, v )
Input : A clusterC;, the setB(C;) of all candidate locations of the base station@r
the total shortest hop distance TS(D) of each candidate locatian of C;, the neighbour set
N(c;) of each candidate locatian, and a new node, .
Output : The optimal location of the base station fér U {vy }, the setB(C;) of all candidate
locations of the base station f6f, U {v;. }, the total shortest hop distance TSHP) of each
candidate location; of C; U {v }, and the neighbour séf(c;) of each candidate locatian
of C; U {Uk}
begin
for each neighbouring candidate locatignof v, do
N(e;) = N(ej) U{ue}s
Find the shortest hop distance SHED, v;) from vy, to each sensor nodg € C;;
Construct the sed of all the new candidate locations generated pyand its neighbouring
sensor nodes;
for each new candidate locatien € A do
FindN(Cj ) 5
Find the total shortest hop distance TSHD from all sensor nodes i@; U {vi} toc;;
for each candidate locatian € B(C;) do
// Compute the total shortest hop distance of each candiolzagé&on.
SHD(¢j,vi) = 1+ min{SHD(vs, vx) : vs € N(cj)};
TSHD(Cj) = TSHD(CJ')-FSHD(CJ' , Vk ) ,
B(C;) = B(Cy) U A;
Find the optimal locatiom, of the base station with the smallest total shortest houotst;
return (co, TSHD(c,));
end

Theorem 3. The time complexity of IncrementalGrow({idg, vy, ) is O(m), wherem is
the number of sensor nodesah.

Proof. The time complexity of each part of IncrementalGrowiig v;,) is shown as
follows:

— Adding vy, to the neighbour se¥ (c;) of each neighbouring candidate location
of vy It takesO(m) time to find all the neighbouring candidate locationsgfThe
number of the neighbouring candidate location®pfs at mostp, the maximum
unit sensor density. So this part tak@énp) = O(m) time.

— Finding the shortest hop distance framto each sensor node ;. We can use
breadth-first search which takéXe) = O(mp) = O(m) time, wheree is the
number of edges of the connectivity graph(gf

— Constructing the sefl. Each candidate location iA must be generated by
and a sensor node that is at most two hops away fsgnThe total number of
sensor nodes that are one hop or two hops away frpis at mostp?. Each pair
of sensor nodes generate at most two candidate locatioesefbine, the number
of new candidate locations is at mdgi®. As a result, the total number of new
candidate locations i©(p?) = O(1).



— Finding N (¢;) for each new candidate location For each new candidate location
¢; the number of sensor nodes that are one hop awaydjdsrat mosp. Therefore,
it takesO(p) = O(1) to find N (¢;) for each new candidate locatien

— Computing the total shortest hop distance of each new catdlitt takesO(m)
time to compute the total shortest hop distance of each nedidate by using
breadth-first search. As a result. this part také¢sm) = O(m) time.

— Computing the total shortest hop distance of each old catelidcation of”;. The

shortest hop distance from to each old candidate is equal to one plus the shortest
hop distance from;, to any neighbouring sensor nodes that are one hop away from

this candidate. Since there are at mostich neighbouring sensor nodes &)
old candidate locations, this part takegmp) = O(m) time.

Based on the above discussion, we can conclude that the cimplexity of our incre-
mental algorithm IncrementalGrowi(g;, vx) is O(m).

The single base station deployment problem for a shrinkinster is described as
follows: Given a clustel’; of sensor nodes, a sensor nagec C;, and a base sta-
tion, find the optimal location of the base station for thes®uC; — {v;} such that
the total shortest hop distance from all sensor nodés in {v;, } to the base station is
minimised. A fast incremental algorithm is shown as follows

Algorithm  IncrementalShrinking’';, vi )
Input : A clusterC;, the setB(C;) of all candidate locations of the base station@®gr the total
shortest hop distance TSH&)) of each candidate locatian, N(c;), and a nodey, € C;.
Output : The optimal location of the base station fér — {v }, the setB(C;) of all candidate
locations of the base station f6f — {vy}, the total shortest hop distance TSHP) and the
neighbour seN (c;) of each candidate locatiaty of C; — {v}.
begin
Find the shortest hop distance SHED, v;) from vy, to each sensor nodg € C;;
Compute the sed of all the candidate locations which are solely generated.bgnd its
neighbouring sensor nodes;
for each neighbouring candidatgthat is one hop away from, do
N(c;) = N(¢j) — {u};
Ci=Cs — {Uk},'
for each candidate locatian) € B(C;) do;
// Compute the total shortest hop distance of each candiolza&on.
SHD(¢j,vi) = 1+ min{SHD(vs, vk) : vs € N(c;)};
TSHD(c;) =TSHD(c;)—SHD(c;, vg);
find the optimal locatiomr, of the base station with the minimum shortest hop distance;
return (co, TSHD(c,));
end

Theorem 4. The time complexity of IncrementalShrinki6g, v) is O(m), wherem
is the number of sensor nodesah.

The time complexity analysis for IncrementalShrinkiag vy, ) is similar to that for
IncrementalGrowin¢C;, v). It is omitted due to the space limitation.



5 A Heuristic for the Optimal k Base Station Deployment Problem

Givenk base stations and a set of sensor nodes iz th@lane, the energy balancing
awarek base station deployment problem is to partition the whaohsgenetwork into
k disjoint clusters and deploy a base station for each clustan optimal way such
that the maximum total shortest hop distance of any clusterinimised. Similar to the
k-center problem [12], this problem is NP-complete. Nex, will propose an efficient
heuristic for this problem.

Conceptually, our heuristic works in two phases. In the fitsdse, it createk ini-
tial disjoint clusters by using a greedy approach. In th@sdghase, it keeps moving
a sensor node from a cluster with a larger total shortest etartte to a neighbouring
cluster with the smaller total shortest hop distance urftited point is reached.

Next, we describe how each phase works in details. In thedtrase, the algo-
rithm CreatingClustel¥/, k) create: initial disjoint clusters. It starts with creating the
Voronoi diagram of all the sensor nodes. The Voronoi diagsaused to determine the
nearest sensor node of a cluster. Initially, thereracdusters with one sensor node in
each cluster, and the total shortest hop distance of easkeclis0. Next, it repeat-
edly finds a cluster with the smallest total shortest hopdist and merges it with the
best neighbouring cluster until onkyclusters are left. The best neighbouring cluster is
the neighbouring cluster that minimises the total shotiegtdistance of the resulting
cluster merged from these two clusters. The pseudo codeeaflgforithm is shown as
follows.

Algorithm  CreatingClustef¥/, k)

Input : A setV = {v1,v2,- - ,v,} Of Sensor nodes aridbase stations.
Output : The k disjoint clusters and the optimal location of the bstagion of each cluster.
begin

Create the Voronoi diagram for all sensor node¥ in
for eachv; € V do
C; = {'Ui},' TSHD(CZ) =0,
NumberOfClustet n;
while NumberOfCluster- k do
Select a cluste€'; with the minimum TSHRC;).
Fnd all the neighbouring clusters of the clustgr
for each neighbouring clustér; of C; do
tempcij =C,uC;;
(cij, TSHD(tempC;) =OptimalDXtempCi;);
Find the neighbouring clustér; that has the minimum TSHB{mpC;);
MergeC; andC} into a new cluste€’;;;
TSHD(Ci;) =TSHD(tempCi;);
NumberOfCluster NumberOfCluster1;
end

We use an example to illustrate how the algorithm Creating@fsy/, k) works.
Consider a wireless sensor network withsensor nodes arglbase stations as shown
in Figure 1. Figure 1(a) shows the Voronoi diagram our athamicreates. All the neigh-
bouring nodes off are E, D, H, and K, and all the neighbouring nodes &f are
C, D, G, I, J and K. At the beginning, there aré clusters with each sensor being
one cluster. Next, the algorithm merges a smallest clusittr ite¢ best neighbouring
cluster at a time. Figure 1(b) shows the intermediate dlsisteated by the algorithm
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Fig. 1: An example for illustrating the algorithm Creatirlg&tersy, k).

CreatingClusters3(, k), where each cluster except the clugtés merged from two clus-
ters. For example, the clusté€, F'} is merged from the clustefC} and the cluster
{F}. Figure 1(c) shows the final clustefsl, B,C, F'}, {D, E,I} and{G, J,H, K}
created by our algorithm.

In the second phase, the algorithm ClusterBalancifhd@j aims to modify the ini-
tial clusters so that the maximum total shortest hop digtasfcany cluster is min-
imised, whereC' is the set ofk initial clusters andL is the set of the optimal loca-
tions of thek base stations. It starts with the initialclusters created by the algorithm
CreatingClusterd(, k). In each iteration, a modifiable clust€y with the highest TSHD
among all the clusters it is selected. A clustef’; is modifiable if there exist a neigh-
bouring clustelCs with TSHD(C,) <TSHD(C;) and a sensor nodg. € C; such that
TSHD(C;s U{vr}) <TSHD(C;) and TSHD(C; — {v}) <TSHD(C;) hold, i.e., moving
vy, from C; to C will reduce the maximum total shortest hop distance of baikters.

If such a modifiable cluster does not exist, all the clusteesbalanced and the algo-
rithm terminates. If such a modifiable clust@y exists, the algorithm will select the
neighbouring cluste€’; with the smallest TSHD among all the neighbouring clusters
of C; and find the sef) of sensor nodes i@; which are the neighbouring sensor nodes
of C;. Then it keeps moving a sensor nodejrwith the smallest Euclidean distance
to C; from C; to C; until no sensor node iy can be moved frond’; to C;. A sensor
nodev;, € @ is moved fromC; to C; only if v, satisfies the following constraints:

1. TSHDC; — {vx})<TSHD(C,).

The first constraint ensures that afteris moved fromC; to C;, the total shortest hop
distance of”; is reduced. If a sensor nodg € @ is on the shortest paths of other sensor
nodes inC; to the base station, moving from C; to C; may increase the total shortest
hop distance of’;. The second constraint guarantees that after mowjinigom C; to

C};, the total shortest hop distance@f will be less than the previous total shortest hop
distance of”;. The algorithm is shown in pseudo code as follows.

Algorithm  ClusterBalancingC, L)

Input : AsetC = {C1,Cs,-- ,Ci} of k disjoint clusters and a sét= {c1,c2,- -+ ,cx} Of
the optimal locations df base stations, wherg(i = 1,2, - - - | k) is the optimal location of the
base station of the clusteér;.

Output : A new set ofk: disjoint clusters with smaller maximum total shortest héggahce and



the optimal location of the base station of each cluster.
begin
// A is the set of clusters from which no sensor node can be movédsahoment.
// B is the set of clusters from which a sensor node might be mow#isanoment.
A ={}, B=C;//Note thatC = AU B holds all the time.
for each cluste€’'; € C do
modi fiable(C;) = true;
while B # 0 do
Select a cluste€'; with the maximum TSHIC;) andmodi fiable(C;) = true from B;
S ={C, : Cs € CandC; is a neighbouring cluster @?;}.
FindC; € S with the minimum TSHD(';);
Q = {vs : vs € C; andvs is a neighbouring sensor node@f};
NodeMoved(;) = 0;
while Q # 0 do
Select a sensor node € Q with the smallest Euclidean distance(g;
if TSHD(C; — {vs})<TSHD(C;) && TSHD(C; U {v,})<TSHD(C};) then
Cj = Cj U {’Us},' Ci=0C; — {'Us};
Find the new optimal locations of the base station€'p&ndC;
Recalculate TSH;) and TSHOCY);
NodeMoved(;) = 1;
Q=Q—{v};
if NodeMovedC;) > 0 then
for each neighbouring clustér; of C; do
if modi fiable(C;) == falsethen
modifiable(Cj) = true; A= A—{C;}; B= BU{C;};
else
modifiable(C;) = false; A= AU{C;}; B= B —{C;};
end

Now we use an example to illustrate how the algorithm ClBa&ncing(C, L) works.

In Figure 2, there are three clusteds B andC. The clusterA has the largest total
shortest hop distance which3ds. A has two neighbouring clusters: clusté&sandC.
The total shortest hop distance Bfis less than that of. Therefore, the neighbouring
sensor nodes from will be moved toB. In Figure 2(a), the neighbouring sensor nodes

@) (b) (©

Fig. 2: An example for illustrating the algorithm Clustet&acing(C, L).



in the clusterd are A, A2, andAs. As is closest to the clustds. TSHD(A — { As}) is

31 which is smaller than TSHD{). So it satisfies the first constraint. TSHB( A3) =

(23 + 3) = 26, is smaller than TSHDY). So, A3 satisfies the second constraint. As a

result, As is moved to the clusteB. Subsequently, the sensor nade satisfies both

constraints and it is also moved to the clugBeas shown in Figure 2(b). However, the

sensor nodel; does not satisfy the first condition. So it is not moved to thister B.
Next we analyse the time complexities of the two algorithecduby our heuristic.

Theorem 5. The time complexity of CreatingClustévs k) is O(n? logn), wheren is
the number of sensor nodes of the wireless sensor network.

Proof. Given n sensor nodes, its Voronoi diagram can be constructed(inlog n)
time [11]. The number of neighbouring cluster of each cluget mostp, wherep

is the maximum unit sensor density. Under our assumptiama constant. Therefore,
it takesO(1) time to find all the neighbouring clusters of each clustectEmerge
takesO(s?) time if the number of sensor nodes of the resulting cluster e whole
merge process of clusters can be represented by a merge/tee, each node denotes
merging two clusters into one cluster. At each level of thegedree, the total work is
O(n?). Since the merge tree is a balanced tree, its height is atlnzost Therefore, the
total work of the whole merge processi¥n? logn). As a result, the time complexity
of the algorithm CreatingClustdfis, k) is O(n? logn).

Theorem 6. The time complexity of ClusterBalanciitg L) is O(kn?), wheren is the
number of sensor nodes of the wireless sensor network.

Proof. It takes at mosk — 1 sensor motions to reduce the number of sensor nodes of
the cluster with the maximum total shortest hop distancers. @herefore, the total
number of sensor node motions is boundedXt§¥n ). For each sensor motion, it takes
O(n?) time to find the sensor node of C; that has the shortest Euclidean distance
to C; by using exhaustive search, afidr) time to movev, from C; to its neighbour-

ing clusterC; by using our incremental algorithms IncrementalGrowigvy) and
IncrementalShrinkin@”;, vi, ). Therefore, the time complexity of ClusterBalandiagy

L) is O(kn?).

6 Related Work

Deploying multiple base stations in a large scale senor orétwan significantly de-
crease the energy consumption of the sensor nodes by singrtbe distance between
the source sensor nodes and the base station. The problénding the best locations
of multiple base stations have been studied in a number @rpamder different optimi-
sation objectives. Most papers formulate the problems aseger linear programming
(ILP) problem [6, 2, 3]. [6] proposes a heuristic for deplayimultiple mobile base sta-
tions to maximise the lifetime of the sensor network. Thaltlifietime of the network is
divided into equal period of time known as rounds and all rieobase stations change
their locations at the beginning of every round. An ILP fofation is proposed to find
the locations of base stations such that the maximum engeyt by each node in a
round is minimised. [2] proposes a heuristic for maximidimglife time of a WSN. The



heuristic consists of a LP formulation for positioning niplk base stations in a sensor
network and an ILP formulation for routing traffic flow from aff the sensors to these
multiple sink nodes. Since the ILP problem is NP-complédte It P-based approaches
are not applicable to large scale WSNSs.

[3] proposes two-tier WSNs where the entire network is dididnhto clusters and
each cluster has its own cluster head which is responsiblednsferring data to the
base station after collecting data from the sensor nodegefative algorithm SPINDS
is proposed to iteratively move the cluster head to a beitation in order to increase
the life time of the WSN. [7] studies the problems of hybrichser networks with
resource-rich (micro-servers) and resource-deprivedmsemodes. An iterative tabu-
search based algorithm is proposed to find the best locatitthe micro-servers.

[10] propose an algorithm and a heuristic for placingase stations in an optimal
way such that the average Euclidean distance between teersgodes and their base
stations is minimised. The algorithm assumes that each diaien knows the loca-
tions of all sensor nodes and the heuristic assumes thatbeesehstation only knows
the locations of its neighbouring sensor nodes and other stasions. In WSNs, it is
possible for a sensor node with a shorter Euclidean distnite base station to have
a longer hop distance to its base station. Even worse, itdsiple that no sensor node
can communicate with the base station at the location thainmges the average Eu-
clidean distance of all the sensor nodes to the base st&mrsider a WSN with a ring
topology, i.e., all the senor nodes are located on a ringelfadius of the ring is greater
than the maximum communication distance of the sensor nogesensor nodes can
communicate with the base station at the center of the ris@ Fesult, it is not feasible
to minimise the average Euclidean distance between th@iseanses and their base
stations in order to minimise the lifetime or the total eryargnsumption of a WSN.

[9] studies the problem of placirfgbase stations in an optimal way such that the to-
tal latency of all the sensor nodes to their gateways is nig@ch The authors proposed
two heuristics for the problem using genetic algorithmse Pphoblem with minimising
the total latency of all the sensor nodes to their gatewatfsisit may result in unbal-
anced energy consumption of all the clusters.

In a WSN with multiple base stations, base stations shoulddpdoyed such that
the total energy consumption of the whole WSN is distributeilormly among all the
clusters in order to increase the life time of the WSN. To awowledge, no previous re-
search on deploying multiple base stations with such amgdition objective has been
reported. Our work presented in this paper is the first onendfiomly distributing the
total energy consumption among all the clusters.

7 Simulation Results

In this section, we evaluate the performance of our heansti simulations. We have
generated 95 different network instances. The WSN represented by easthrines is
connected. All these instances are classified into thresgyosdes: grid, uniform distri-
bution and random distribution. We have used three diffemambers of base stations,
i.e., 2, 4 and6. For uniform and random distributions, we have varied theiner of
sensor nodes from00 to 600 with an increment o0 sensor nodes. For either distri-



bution, we have generat@d instances witt8 different numbers of base stations. For
grid, we have generateid instances.

(d) Final clusters

Fig. 3: Simulation results fa200 and400 sensor nodes with 4 base stations in uniform distribu-
tion.

In order to simulate our heuristic, we have used a computir itel Core 2 Duo
processor. The processor has a clock frequen&y®@Hz and4 GB RAM. In order to
measure the performance of our heuristic, we have intratlaaaetric namedinbal-
ance factor Given a WSNN with & clusters, the unbalance factor &fis defined as
(TSHD, 02— TSHD,,.5,,) / TSHD,0., Where TSHD, ., = max{TSHD(C;) : C; €
N} and TSHD,;, = min{TSHD(C;) : C; € N}. The unbalance factor shows how
unbalanced thé clusters of a WSN are. The smaller the unbalance factor, thre m
balanced thé: clusters. If the unbalance factor(sthe k clusters are fully balanced.
We have also recorded the running time of our heuristic foheastance we have gen-
erated.

In order to give readers some intuition on the performanaaioheuristic, we have
randomly selected instances among alb5 instances we have generated. The simula-
tions results of thes¢ instances are shown in Figure 3 and 4, where the sensor nodes
in the same cluster are shown in the same letter and colodig aquare denotes a base
station. Figure 3(a) shows the initial clusters20f) sensor nodes with base stations,
generated by our algorithm CreatingClust&ig(). Figure 3(b) shows the final clusters
generated by our algorithm ClusterBalancifigl), where all the clusters are almost
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Fig. 4: Simulation results fo300 and256 sensor nodes with and4 base stations in random and
grid distributions.

balanced. Figure 3(c) and (d) show the initial clusters dafinal clusters, respec-
tively, of 400 uniformly distributed sensor nodes withbase stations. Figure 4(a) and
(b) shows the simulation results f800 sensor nodes with base stations where sensor
nodes are deployed in random distribution. Figure 4(c) ahadlfow the initial clusters
and the final clusters df56 sensor nodes antlbase stations deployed in grid, where
both clusters are fully balanced.

The complete simulation results are shown in Figure 5 anddiiré 5 shows the
unbalance factors of the clusters constructed by our heuf@s all the instances we
have generated. Overall, all the clusters constructed bjewristic are well balanced.
We can observe the following patterns:

1. The unbalance factor increases with the number of batiersaThe unbalance
factor is at most % when the number of base stationgiS he reason is that when
the number of base stations increases, the relative differbetween the cluster
with the longest shortest hop distance and the cluster télsinallest shortest hop
distance will increase.

2. Given a fixed number of base stations, the unbalance faeineases with the
number of sensor nodes. This is because the maximum totdeshbop distance
of any cluster increases with the number of sensor nodes.

Figure 6 shows the running times in second of our heuristidfiferent instances. It
shows that running time increases approximately cubicaillly the number of sensor
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Fig. 5: Unbalance Factor for sensor nodes in uniform, randodhgrid distributions.

nodes in all the three distributions, which is consisterhule time complexity of our
heuristic. For the instance that h&¥) sensor nodes in random distribution ahbase
stations, our heuristic took around 38 seconds, which itotgest running time.

8 Conclusion

In this paper, we proposed the first heuristic for optimabypldyingk base stations in
a WSN such that the maximum total shortest hop distance o€laisyer is minimised.
The time complexity of our heuristic ©(kn?), wheren is the number of sensor nodes
of the WSN. In the spacial case where there is only one baserstave proposed an
optimal algorithm for this problem. We have performed siatigins of our heuristic on
195 instances. The simulation results show that our heurstiery effective.

Although our heuristic performs very well, its approxinmatiratio is unknown. We
conjecture that it is at mo&t In the future work, we will find the approximation ratio
of our heuristic. Another open problem is to optimally dgphoultiple base stations in
a WSN where sensor nodes have variable communication ranges
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