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Abstract. Energy reduction is one of the major problems in the design ofa wire-
less sensor network (WSN). Multiple base stations can be used to dramatically
reduce the energy consumption of sensor nodes. We consider the following prob-
lem of deployingk base stations in a wireless sensor network: Given a wireless
sensor network where the location of each sensor node is known, partition the
whole sensor network intok disjoint clusters and place one base station for each
cluster such that the maximum total energy consumption of any cluster is min-
imised. We propose the first heuristic for this problem. The time complexity of
our heuristic isO(kn3), wheren is the number of sensor nodes of the sensor
network. In the special case wherek is equal to1, we propose a quadratic-time
algorithm for optimally deploying the base station. Our simulation results show
that our heuristic is efficient.

1 Introduction

A wireless sensor networks (WSN) consists of a set of sensorsnodes that communicate
with each other via radio signals. All the sensor nodes workscooperatively to monitor
physical or environmental conditions, such as temperature, sound, pressure and motion.
The applications of WSNs range from area monitoring, environmental monitoring, to
agriculture and structural monitoring. In some applications, such as border surveillance,
bushfire detection and traffic control, several thousands ofsensor nodes might be de-
ployed over the monitored region. The diameter of the monitored region can be several
kilometres.

In wireless sensor networks, sensor nodes are battery powered. Most of the energy
of a sensor node is consumed by communications. One key factor for the energy con-
sumption of a sensor node is the communication distance. A sensor node consumes sig-
nificantly more energy when the communication distance is increased [1]. As a result,
multi hop communication between each sensor and the base station is more desirable in
a large scale wireless sensor networks than the single hop communication. In multi hop
communication, a sensor node may spend most of its energy on relaying data packets.
Hence, it is important to shorten the hop distance between each source sensor node and
the base station. The hop distances can be greatly reduced bydeploying multiple base
stations. All the sensor nodes are partitioned into multiple disjoint clusters with one
base station for each cluster. Each sensor node sends its data only to its designated base
station. Moreover, the location of the base station of each cluster is very important. If



the base station is deployed far from the data sources, many sensor nodes are required
to relay data packets and the energy consumption of those sensor nodes will be signif-
icantly increased. Therefore, it is an important design issue to find the best location of
a base station. Nevertheless, the problem of optimally deploying multiple base stations
can be reduced to the k-center problem which is NP-complete [12]. Therefore, a poly-
nomial time algorithm is unlikely to exist.

In this paper, we study the problem of deployingk base stations such that the total
energy consumption of a WSN is uniformly distributed among all the clusters. Under
our energy consumption model, the total energy consumptionof each cluster is a mono-
tonically increasing function of the total shortest hop distance of all the sensor nodes
of the cluster. The longer the total shortest hop distance, the more the energy consump-
tion of a cluster. In the special case where there is only one base station, we propose
a quadratic-time algorithm to optimally place a base station such that the total energy
consumption of all the sensor nodes is minimised. Based on the optimal algorithm for
the single base station problem, we propose a novel heuristic that aims to partition all
the sensor nodes intok disjoint clusters such that the maximum total energy consump-
tion of any cluster is minimised. We have simulated our heuristic on195 instances of
different distributions. Our simulation results show thatour heuristic is very effective.

2 Definitions and Network Model

A wireless sensor network consists of a set ofn identical sensor nodes each of which is
located in a2D plane. The location of each sensor node is known. All the sensor nodes
have the same maximum communication distanceR. We assume that there are no com-
munication barriers between any two adjacent sensor nodes1. Therefore, a sensor node
vi can directly communicate with a sensor nodevj if the Euclidean distance betweenvi

andvj is not greater thanR. There arek base stations to be deployed in a target WSN.
As a result, all the sensor nodes need to be partitioned intok clusters with one base
station for each cluster. A sensor node in each cluster sendsits data to its base station
only. If the Euclidean distance between a sensor node and itsbase station is greater than
R, the data of the sensor node must be transmitted via other sensor nodes to the base
station.

Definition 1. The connectivity graph of a wireless sensor network is a undirected graph
G =< V, E >, whereV = {vi : i = 1..n andvi is a sensor node}, andE = {(vi, vj) :
if the Euclidean distance betweenvi andvj is not greater thanR}.

Without loss of generality, we assume that the connectivitygraphG of the target
wireless sensor network is connected.

Definition 2. Given two sensor nodesvi andvj , the shortest hop distance fromvi to vj

is the length of the shortest path fromvi to vj in the connectivity graph.

The shortest hop distance of a sensor nodevi to the base station gives the lower
bound on the number of hops of a packet transmitted fromvi to the base station.

1 Our approach can be modified to handle the communication barriers.



Definition 3. Given a cluster of sensor nodes and a base station, the total shortest hop
distance of the cluster is the sum of all the shortest hop distances from each sensor node
to the base station.

Let P be a set ofn distinct points called sites, in a2D plane. The Voronoi diagram
[11] of P is the subdivision of the plane inton cells, one for each site. A pointq lies
in the cell of a sitepi ∈ P iff the Euclidean distance betweenq andpi is less than the
Euclidean distance betweenq andpj (pj ∈ P andi 6= j). The edges of the Voronoi
diagram are all the points in the plane that are equidistant to the two nearest sites.

Definition 4. A sensor nodevi is a neighbour of a sensor nodevj if the Voronoi cells
of vi andvj share a Voronoi edge.

Definition 5. LetV be a set ofn sensor nodes in a2D plane andCi(i = 1, 2, · · · , k)
bek disjoint clusters ofV . A clusterCi is a neighbour of a clusterCj if there are two
sensor nodesvs ∈ Ci andvt ∈ Cj such thatvs is a neighbour ofvt.

Definition 6. Given a clusterCi of sensor nodes and a sensor nodevj 6∈ Ci, the Eu-
clidean distance fromvj to Ci, denotedd(vj , Ci), is min{d(vk, vj) : vk ∈ Ci and
d(vk, vj) is the Euclidean distance betweenvk andvj}.

Definition 7. Given a wireless sensor network and a pointp on a 2D plane, the unit
sensor density ofp is the number of sensor nodes that are one hop away fromp. The
maximum unit sensor density of the wireless sensor network is the largest unit sensor
density of all the points on the2D plane.

Throughout this paper, we assume that the maximum unit sensor density is a con-
stant. In wireless sensor networks, the maximum communication distance is typically
short in order to reduce the energy consumption of data transmissions. Hence this as-
sumption is reasonable.

3 An Optimal Algorithm for Single Base Station Deployment
Problem

Deploying a single base station in a cluster is a building block of our heuristic for opti-
mally deployingk base stations. This problem is described as follows. Given acluster
of sensor nodes and a base station, find the optimal location of the base station such
that the total shortest hop distance of the cluster is minimised. Next, we will propose an
efficient algorithm for this problem.

The key idea of our algorithm is to find the candidate locations of the base station
such that one candidate location must be the optimal location of the base station. To
find all possible candidate locations, we consider each pairof sensor nodesvi andvj .
If the Euclidean distance betweenvi andvj is greater than2R, whereR is the max-
imum communication distance of all the sensor nodes, we willignore the pairvi and
vj . Otherwise, we find the candidate circles ofvi andvj . A candidate circle ofvi and
vj is a circle that satisfies the following two constraints: 1) The radius of the circle is



R. 2) vi andvj are on its circumference. The centre of a candidate circle isa candi-
date location of the base station. Notice that for each pair of sensor nodes at most two
candidate circles exist. If the Euclidean distance of a pairof sensor nodes is equal to
2R, only one candidate circle of this pair exists. After findingall the candidate loca-
tions, our algorithm will search for the best candidate location of the base station. The
best candidate location is the one that minimises the total shortest hop distance of all
the sensor nodes to the base station placed at this candidatelocation. The algorithm is
shown as follows.

Algorithm OptimalD(V )
Input : A setV = {v1, v2, · · · , vm} of m sensor nodes in a2D plane and a base station.
Output : The optimal location of the base station such that the totalshortest hop distance of all
the sensor nodes to the base station at the optimal location is minimised, and the resulting total
shortest hop distance.
begin
C = ∅;
for each pair of sensor nodes(vi, vj)(vi, vj ∈ V ) do

if the Euclidean distance betweenvi andvj ≤ 2R then
Find the candidate circlesC1 andC2 of vi andvj ;
Let c1 andc2 be the centres ofC1 andC2;
C = C ∪ {c1} ∪ {c2};

for each candidate locationci ∈ C do
Place the base station atci;
Construct the connectivity graphG(V ∪ {ci}) of all the sensor nodes and the base station;
Compute the total shortest hop distance TSHD(ci) of all the sensor nodes inV
to the base station located atci;

Let cj be the candidate location with the minimum total shortest hop distance;
return (cj ,TSHD(cj));

end

Theorem 1. Given a cluster ofm sensor nodes, the time complexity of the algorithm
OptimalD(V ) is O(m2).

Proof. For a cluster withm sensor nodes there arem(m − 1)/2 pairs of sensor nodes.
Therefore, it takesO(m2) time to find all the candidate locations. At most two candidate
locations exist for each pair of sensor nodes. Under our assumption on the maximum
unit sensor density, for each sensor nodevi the number of neighbouring sensor nodes
which are two hops away fromvi is at mostp2, wherep, the maximum unit sensor
density, is a constant. Therefore, the total number of candidate locations isO(m). The
connectivity graphG(V ∪ {ci}) of the all the sensor nodes and the base station at the
candidate locationci can be constructed as follows. Firstly, construct the connectivity
graphG(V ) of all the sensor nodes, which takesO(m2) time. Secondly, add a new
node for the base station at the candidate locationci and the new edges between the
base station and all the sensor nodes that can directly communicate with the base station
to G(V ). After constructing the connectivity graphG(V ∪ {ci}), we can use breadth-
first search to compute the total shortest hop distance of allthe sensor nodes to the
base station inO(e) time, wheree is the number of edges inG(V ∪ {ci}). Given the
maximum unit sensor densityp, e ≤ pm holds. Sincep is a constant, it takesO(m)



time to compute the total shortest hop distance. As a result,the time complexity of our
algorithm isO(m2).

Theorem 2. The algorithm OptimalD(V ) is guaranteed to find the optimal location of
the base station.

Proof. Assume that the optimal location iscopt. Let S = {v1, v2, · · · , vr} be the set of
sensor nodes that are one hop away from the base station at theoptimal locationcopt.
Draw a circleCopt with the radiusR and the centrecopt. According to the definition of
the maximum communication distanceR, all the sensor nodes inS must be either in
Copt or on the circumference ofCopt. Next, we show that there is a candidate location
ck generated by our algorithm such that the set of sensor nodes that are one hop away
from ck is equal toS. Consider the following three possible cases.

1. There are two sensor nodesvi, vj ∈ S such thatvi andvj are on the circumference
of Copt. In this case,copt is one of our candidate locations.

2. Only one sensor nodevi ∈ S is on the circumference ofCopt. Turn the circleCopt

clockwise aroundvi until another sensorvj ∈ S is on the circumference ofCopt.
Now all the sensor nodes inS are still inCopt and this case reduces to Case 1.

3. No sensor node is on the circumference ofCopt. Arbitrarily select a sensor node
vt, and moveCopt along the straight linecoptvt until one sensor node inS is on
the circumference ofCopt. Now all the sensors inS are still in Copt or on the
circumference ofCopt. Hence, this case reduces to Case 2.

Based on the above discussions, we can conclude that such a candidate locationck

exists. For each sensor nodevi, any path fromvi to ck or copt must include a sensor
node inS. Therefore, the shortest hop distance fromvi to ck is equal to that fromvi to
copt. As a result,ck is also an optimal location of the base station.

4 Incremental Algorithms for Single Base Station Deployment
Problems

Our heuristic fork base station deployment problem needs to repeatedly find theopti-
mal location of a base station for a growing or shrinking cluster. A growing cluster is a
cluster of sensor nodes such that a new sensor node is added toit at a time. A shrinking
cluster is a cluster of sensor nodes such that a sensor node isremoved from it at a time.
There are two single base station deployment problems: the single base station deploy-
ment problem for a growing cluster and the single base station deployment problem for
a shrinking cluster.

The single base station deployment problem for a growing cluster is described as
follows: Given a clusterCi of sensor nodes, a new sensor nodevk, and a base station,
find the optimal location of the base station such that the total shortest hop distance from
all sensor nodes inCi ∪ {vk} to the base station is minimised. A bruteforce approach
to this problem is to use the algorithm proposed in the previous section, which takes
O(m2) time, wherem is the number of sensor nodes of the cluster. Next, we proposea
faster incremental algorithm which takesO(m) time.

LetB(Ci) be the set of all candidate locations of the base station forCi, SHD(vi, vj)



the shortest hop distance betweenvi andvj , andN(cj) the set of all neighbouring sen-
sor nodes which are one hop away from a candidate locationcj . The incremental algo-
rithm for the single base station deployment problem for a growing cluster is shown as
follows.

Algorithm IncrementalGrowing(Ci, vk)
Input : A clusterCi, the setB(Ci) of all candidate locations of the base station forCi,
the total shortest hop distance TSHD(cj) of each candidate locationcj of Ci, the neighbour set
N(cj) of each candidate locationcj , and a new nodevk.
Output : The optimal location of the base station forCi ∪ {vk}, the setB(Ci) of all candidate
locations of the base station forCi ∪ {vk}, the total shortest hop distance TSHD(cj) of each
candidate locationcj of Ci ∪ {vk}, and the neighbour setN(cj) of each candidate locationcj

of Ci ∪ {vk}.
begin

for each neighbouring candidate locationcj of vk do
N(cj) = N(cj) ∪ {vk};

Find the shortest hop distance SHD(vk, vj) from vk to each sensor nodevj ∈ Ci;
Construct the setA of all the new candidate locations generated byvk and its neighbouring
sensor nodes;
for each new candidate locationcj ∈ A do

FindN(cj);
Find the total shortest hop distance TSHD(cj) from all sensor nodes inCi ∪ {vk} to cj ;

for each candidate locationcj ∈ B(Ci) do
// Compute the total shortest hop distance of each candidatelocation.

SHD(cj , vk) = 1 + min{SHD(vs, vk) : vs ∈ N(cj)};
TSHD(cj) =TSHD(cj)+SHD(cj , vk);

B(Ci) = B(Ci) ∪ A;
Find the optimal locationco of the base station with the smallest total shortest hop distance;
return (co,TSHD(co));

end

Theorem 3. The time complexity of IncrementalGrowing(Ci, vk) is O(m), wherem is
the number of sensor nodes inCi.

Proof. The time complexity of each part of IncrementalGrowing(Ci, vk) is shown as
follows:

– Adding vk to the neighbour setN(cj) of each neighbouring candidate locationcj

of vk. It takesO(m) time to find all the neighbouring candidate locations ofvk. The
number of the neighbouring candidate locations ofvk is at mostp, the maximum
unit sensor density. So this part takesO(mp) = O(m) time.

– Finding the shortest hop distance fromvk to each sensor node inCi. We can use
breadth-first search which takesO(e) = O(mp) = O(m) time, wheree is the
number of edges of the connectivity graph ofCi.

– Constructing the setA. Each candidate location inA must be generated byvk

and a sensor node that is at most two hops away fromvk. The total number of
sensor nodes that are one hop or two hops away fromvk is at mostp2. Each pair
of sensor nodes generate at most two candidate locations. Therefore, the number
of new candidate locations is at most2p2. As a result, the total number of new
candidate locations isO(p2) = O(1).



– FindingN(cj) for each new candidate locationcj . For each new candidate location
cj the number of sensor nodes that are one hop away fromcj is at mostp. Therefore,
it takesO(p) = O(1) to findN(cj) for each new candidate locationcj.

– Computing the total shortest hop distance of each new candidate. It takesO(m)
time to compute the total shortest hop distance of each new candidate by using
breadth-first search. As a result. this part takesO(pm) = O(m) time.

– Computing the total shortest hop distance of each old candidate location ofCi. The
shortest hop distance fromvk to each old candidate is equal to one plus the shortest
hop distance fromvk to any neighbouring sensor nodes that are one hop away from
this candidate. Since there are at mostp such neighbouring sensor nodes andO(m)
old candidate locations, this part takesO(mp) = O(m) time.

Based on the above discussion, we can conclude that the time complexity of our incre-
mental algorithm IncrementalGrowing(Ci, vk) is O(m).

The single base station deployment problem for a shrinking cluster is described as
follows: Given a clusterCi of sensor nodes, a sensor nodevk ∈ Ci, and a base sta-
tion, find the optimal location of the base station for the clusterCi − {vk} such that
the total shortest hop distance from all sensor nodes inCi − {vk} to the base station is
minimised. A fast incremental algorithm is shown as follows.

Algorithm IncrementalShrinking(Ci, vk)
Input : A clusterCi, the setB(Ci) of all candidate locations of the base station forCi, the total
shortest hop distance TSHD(cj) of each candidate locationcj , N(cj), and a nodevk ∈ Ci.
Output : The optimal location of the base station forCi − {vk}, the setB(Ci) of all candidate
locations of the base station forCi − {vk}, the total shortest hop distance TSHD(cj) and the
neighbour setN(cj) of each candidate locationcj of Ci − {vk}.
begin

Find the shortest hop distance SHD(vk, vj) from vk to each sensor nodevj ∈ Ci;
Compute the setA of all the candidate locations which are solely generated byvk and its
neighbouring sensor nodes;
B(Ci) = B(Ci) − A;
for each neighbouring candidatecj that is one hop away fromvk do

N(cj) = N(cj) − {vk};
Ci = Ci − {vk};
for each candidate locationcj ∈ B(Ci) do ;

// Compute the total shortest hop distance of each candidatelocation.
SHD(cj , vk) = 1 + min{SHD(vs, vk) : vs ∈ N(cj)};
TSHD(cj) =TSHD(cj)−SHD(cj , vk);

find the optimal locationco of the base station with the minimum shortest hop distance;
return (co,TSHD(co));

end

Theorem 4. The time complexity of IncrementalShrinking(Ci, vk) is O(m), wherem
is the number of sensor nodes inCi.

The time complexity analysis for IncrementalShrinking(Ci, vk) is similar to that for
IncrementalGrowing(Ci, vk). It is omitted due to the space limitation.



5 A Heuristic for the Optimal k Base Station Deployment Problem

Givenk base stations and a set of sensor nodes in the2D plane, the energy balancing
awarek base station deployment problem is to partition the whole sensor network into
k disjoint clusters and deploy a base station for each clusterin an optimal way such
that the maximum total shortest hop distance of any cluster is minimised. Similar to the
k-center problem [12], this problem is NP-complete. Next, we will propose an efficient
heuristic for this problem.

Conceptually, our heuristic works in two phases. In the firstphase, it createsk ini-
tial disjoint clusters by using a greedy approach. In the second phase, it keeps moving
a sensor node from a cluster with a larger total shortest hop distance to a neighbouring
cluster with the smaller total shortest hop distance until afixed point is reached.

Next, we describe how each phase works in details. In the firstphase, the algo-
rithm CreatingClusters(V, k) createsk initial disjoint clusters. It starts with creating the
Voronoi diagram of all the sensor nodes. The Voronoi diagramis used to determine the
nearest sensor node of a cluster. Initially, there aren clusters with one sensor node in
each cluster, and the total shortest hop distance of each cluster is0. Next, it repeat-
edly finds a cluster with the smallest total shortest hop distance and merges it with the
best neighbouring cluster until onlyk clusters are left. The best neighbouring cluster is
the neighbouring cluster that minimises the total shortesthop distance of the resulting
cluster merged from these two clusters. The pseudo code of the algorithm is shown as
follows.

Algorithm CreatingClusters(V, k)
Input : A setV = {v1, v2, · · · , vn} of sensor nodes andk base stations.
Output : The k disjoint clusters and the optimal location of the basestation of each cluster.
begin

Create the Voronoi diagram for all sensor nodes inV ;
for eachvi ∈ V do

Ci = {vi}; TSHD(Ci) = 0;
NumberOfCluster= n;
while NumberOfCluster> k do

Select a clusterCi with the minimum TSHD(Ci).
Fnd all the neighbouring clusters of the clusterCi;
for each neighbouring clusterCj of Ci do

tempCij = Ci ∪ Cj ;
(cij , TSHD(tempCij) =OptimalD(tempCij);

Find the neighbouring clusterCj that has the minimum TSHD(tempCij);
MergeCi andCj into a new clusterCij ;
TSHD(Cij) =TSHD(tempCij);
NumberOfCluster= NumberOfCluster−1;

end

We use an example to illustrate how the algorithm CreatingClusters(V, k) works.
Consider a wireless sensor network with11 sensor nodes and3 base stations as shown
in Figure 1. Figure 1(a) shows the Voronoi diagram our algorithm creates. All the neigh-
bouring nodes ofI areE, D, H , andK, and all the neighbouring nodes ofH are
C, D, G, I, J andK. At the beginning, there are6 clusters with each sensor being
one cluster. Next, the algorithm merges a smallest cluster with its best neighbouring
cluster at a time. Figure 1(b) shows the intermediate clusters created by the algorithm
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Fig. 1: An example for illustrating the algorithm CreatingClusters(V, k).

CreatingClusters(V, k), where each cluster except the clusterI is merged from two clus-
ters. For example, the cluster{C, F} is merged from the cluster{C} and the cluster
{F}. Figure 1(c) shows the final clusters{A, B, C, F}, {D, E, I} and{G, J, H, K}
created by our algorithm.

In the second phase, the algorithm ClusterBalancing(C, L) aims to modify the ini-
tial clusters so that the maximum total shortest hop distance of any cluster is min-
imised, whereC is the set ofk initial clusters andL is the set of the optimal loca-
tions of thek base stations. It starts with the initialk clusters created by the algorithm
CreatingClusters(V, k). In each iteration, a modifiable clusterCi with the highest TSHD
among all the clusters inC is selected. A clusterCi is modifiable if there exist a neigh-
bouring clusterCs with TSHD(Cs) <TSHD(Ci) and a sensor nodevk ∈ Ci such that
TSHD(Cs ∪{vk}) <TSHD(Ci) and TSHD(Ci −{vk}) <TSHD(Ci) hold, i.e., moving
vk from Cj to Cs will reduce the maximum total shortest hop distance of both clusters.
If such a modifiable cluster does not exist, all the clusters are balanced and the algo-
rithm terminates. If such a modifiable clusterCi exists, the algorithm will select the
neighbouring clusterCj with the smallest TSHD among all the neighbouring clusters
of Ci and find the setQ of sensor nodes inCi which are the neighbouring sensor nodes
of Cj . Then it keeps moving a sensor node inQ with the smallest Euclidean distance
to Cj from Ci to Cj until no sensor node inQ can be moved fromCi to Cj . A sensor
nodevk ∈ Q is moved fromCi to Cj only if vk satisfies the following constraints:

1. TSHD(Ci − {vk})<TSHD(Ci).
2. TSHD(Cj ∪ {vk})<TSHD(Ci).

The first constraint ensures that aftervk is moved fromCi to Cj , the total shortest hop
distance ofCi is reduced. If a sensor nodevs ∈ Q is on the shortest paths of other sensor
nodes inCi to the base station, movingvs from Ci to Cj may increase the total shortest
hop distance ofCi. The second constraint guarantees that after movingvk from Ci to
Cj , the total shortest hop distance ofCj will be less than the previous total shortest hop
distance ofCi. The algorithm is shown in pseudo code as follows.

Algorithm ClusterBalancing(C, L)
Input : A setC = {C1, C2, · · · , Ck} of k disjoint clusters and a setL = {c1, c2, · · · , ck} of
the optimal locations ofk base stations, whereci(i = 1, 2, · · · , k) is the optimal location of the
base station of the clusterCi.
Output : A new set ofk disjoint clusters with smaller maximum total shortest hop distance and



the optimal location of the base station of each cluster.
begin

// A is the set of clusters from which no sensor node can be moved atthis moment.
// B is the set of clusters from which a sensor node might be moved at this moment.
A = {}; B = C; // Note thatC = A ∪ B holds all the time.
for each clusterCi ∈ C do

modifiable(Ci) = true;
while B 6= ∅ do

Select a clusterCi with the maximum TSHD(Ci) andmodifiable(Ci) = true from B;
S = {Cs : Cs ∈ CandCs is a neighbouring cluster ofCi}.
FindCj ∈ S with the minimum TSHD(Cj);
Q = {vs : vs ∈ Ci andvs is a neighbouring sensor node ofCj};
NodeMoved(Ci) = 0;
while Q 6= ∅ do

Select a sensor nodevs ∈ Q with the smallest Euclidean distance toCj ;
if TSHD(Ci − {vs})<TSHD(Ci) && TSHD(Cj ∪ {vs})<TSHD(Ci) then

Cj = Cj ∪ {vs}; Ci = Ci − {vs};
Find the new optimal locations of the base stations ofCi andCj ;
Recalculate TSHD(Ci) and TSHD(Cj);
NodeMoved(Ci) = 1;

Q = Q − {vs};
if NodeMoved(Ci) > 0 then

for each neighbouring clusterCj of Ci do
if modifiable(Cj) == false then

modifiable(Cj) = true; A = A − {Cj}; B = B ∪ {Cj};
else

modifiable(Ci) = false; A = A ∪ {Ci}; B = B − {Ci};
end

Now we use an example to illustrate how the algorithm ClusterBalancing(C, L) works.
In Figure 2, there are three clustersA, B andC. The clusterA has the largest total
shortest hop distance which is35. A has two neighbouring clusters: clustersB andC.
The total shortest hop distance ofB is less than that ofC. Therefore, the neighbouring
sensor nodes fromA will be moved toB. In Figure 2(a), the neighbouring sensor nodes
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Fig. 2: An example for illustrating the algorithm ClusterBalancing(C, L).



in the clusterA areA1, A2, andA3. A3 is closest to the clusterB. TSHD(A−{A3}) is
31 which is smaller than TSHD(A). So it satisfies the first constraint. TSHD(B∪A3) =
(23 + 3) = 26, is smaller than TSHD(A). So,A3 satisfies the second constraint. As a
result,A3 is moved to the clusterB. Subsequently, the sensor nodeA2 satisfies both
constraints and it is also moved to the clusterB as shown in Figure 2(b). However, the
sensor nodeA1 does not satisfy the first condition. So it is not moved to the clusterB.

Next we analyse the time complexities of the two algorithms used by our heuristic.

Theorem 5. The time complexity of CreatingClusters(V, k) is O(n2 log n), wheren is
the number of sensor nodes of the wireless sensor network.

Proof. Given n sensor nodes, its Voronoi diagram can be constructed inO(n log n)
time [11]. The number of neighbouring cluster of each cluster is at mostp, wherep
is the maximum unit sensor density. Under our assumption,p is a constant. Therefore,
it takesO(1) time to find all the neighbouring clusters of each cluster. Each merge
takesO(s2) time if the number of sensor nodes of the resulting cluster iss. The whole
merge process of clusters can be represented by a merge tree,where each node denotes
merging two clusters into one cluster. At each level of the merge tree, the total work is
O(n2). Since the merge tree is a balanced tree, its height is at mostlog n. Therefore, the
total work of the whole merge process isO(n2 log n). As a result, the time complexity
of the algorithm CreatingClusters(V, k) is O(n2 log n).

Theorem 6. The time complexity of ClusterBalancing(C, L) is O(kn3), wheren is the
number of sensor nodes of the wireless sensor network.

Proof. It takes at mostk − 1 sensor motions to reduce the number of sensor nodes of
the cluster with the maximum total shortest hop distance by one. Therefore, the total
number of sensor node motions is bounded byO(kn). For each sensor motion, it takes
O(n2) time to find the sensor nodevs of Ci that has the shortest Euclidean distance
to Cj by using exhaustive search, andO(n) time to movevs from Ci to its neighbour-
ing clusterCj by using our incremental algorithms IncrementalGrowing(Ci, vk) and
IncrementalShrinking(Ci, vk). Therefore, the time complexity of ClusterBalancing(C,
L) is O(kn3).

6 Related Work

Deploying multiple base stations in a large scale senor network can significantly de-
crease the energy consumption of the sensor nodes by shortening the distance between
the source sensor nodes and the base station. The problems offinding the best locations
of multiple base stations have been studied in a number of papers under different optimi-
sation objectives. Most papers formulate the problems as aninteger linear programming
(ILP) problem [6, 2, 3]. [6] proposes a heuristic for deploying multiple mobile base sta-
tions to maximise the lifetime of the sensor network. The total lifetime of the network is
divided into equal period of time known as rounds and all mobile base stations change
their locations at the beginning of every round. An ILP formulation is proposed to find
the locations of base stations such that the maximum energy spent by each node in a
round is minimised. [2] proposes a heuristic for maximisingthe life time of a WSN. The



heuristic consists of a LP formulation for positioning multiple base stations in a sensor
network and an ILP formulation for routing traffic flow from all of the sensors to these
multiple sink nodes. Since the ILP problem is NP-complete, the ILP-based approaches
are not applicable to large scale WSNs.

[3] proposes two-tier WSNs where the entire network is divided into clusters and
each cluster has its own cluster head which is responsible for transferring data to the
base station after collecting data from the sensor nodes. Aniterative algorithm SPINDS
is proposed to iteratively move the cluster head to a better location in order to increase
the life time of the WSN. [7] studies the problems of hybrid sensor networks with
resource-rich (micro-servers) and resource-deprived sensor nodes. An iterative tabu-
search based algorithm is proposed to find the best locationsof the micro-servers.

[10] propose an algorithm and a heuristic for placingk base stations in an optimal
way such that the average Euclidean distance between the sensor nodes and their base
stations is minimised. The algorithm assumes that each basestation knows the loca-
tions of all sensor nodes and the heuristic assumes that eachbase station only knows
the locations of its neighbouring sensor nodes and other base stations. In WSNs, it is
possible for a sensor node with a shorter Euclidean distanceto its base station to have
a longer hop distance to its base station. Even worse, it is possible that no sensor node
can communicate with the base station at the location that minimises the average Eu-
clidean distance of all the sensor nodes to the base station.Consider a WSN with a ring
topology, i.e., all the senor nodes are located on a ring. If the radius of the ring is greater
than the maximum communication distance of the sensor nodes, no sensor nodes can
communicate with the base station at the center of the ring. As a result, it is not feasible
to minimise the average Euclidean distance between the sensor nodes and their base
stations in order to minimise the lifetime or the total energy consumption of a WSN.

[9] studies the problem of placingk base stations in an optimal way such that the to-
tal latency of all the sensor nodes to their gateways is minimised. The authors proposed
two heuristics for the problem using genetic algorithms. The problem with minimising
the total latency of all the sensor nodes to their gateways isthat it may result in unbal-
anced energy consumption of all the clusters.

In a WSN with multiple base stations, base stations should bedeployed such that
the total energy consumption of the whole WSN is distributeduniformly among all the
clusters in order to increase the life time of the WSN. To our knowledge, no previous re-
search on deploying multiple base stations with such an optimisation objective has been
reported. Our work presented in this paper is the first one on uniformly distributing the
total energy consumption among all the clusters.

7 Simulation Results

In this section, we evaluate the performance of our heuristic via simulations. We have
generated195 different network instances. The WSN represented by each instances is
connected. All these instances are classified into three categories: grid, uniform distri-
bution and random distribution. We have used three different numbers of base stations,
i.e., 2, 4 and6. For uniform and random distributions, we have varied the number of
sensor nodes from100 to 600 with an increment of20 sensor nodes. For either distri-



bution, we have generated25 instances with3 different numbers of base stations. For
grid, we have generated45 instances.

(a) Initial clusters (b) Final clusters (c) Initial clusters

(d) Final clusters

Fig. 3: Simulation results for200 and400 sensor nodes with 4 base stations in uniform distribu-
tion.

In order to simulate our heuristic, we have used a computer with Intel Core 2 Duo
processor. The processor has a clock frequency of3 GHz and4 GB RAM. In order to
measure the performance of our heuristic, we have introduced a metric namedunbal-
ance factor. Given a WSNN with k clusters, the unbalance factor ofN is defined as
(TSHDmax−TSHDmin) / TSHDmax, where TSHDmax = max{TSHD(Ci) : Ci ∈
N} and TSHDmin = min{TSHD(Ci) : Ci ∈ N}. The unbalance factor shows how
unbalanced thek clusters of a WSN are. The smaller the unbalance factor, the more
balanced thek clusters. If the unbalance factor is0, thek clusters are fully balanced.
We have also recorded the running time of our heuristic for each instance we have gen-
erated.

In order to give readers some intuition on the performance ofour heuristic, we have
randomly selected4 instances among all195 instances we have generated. The simula-
tions results of these4 instances are shown in Figure 3 and 4, where the sensor nodes
in the same cluster are shown in the same letter and colour, and a square denotes a base
station. Figure 3(a) shows the initial clusters of200 sensor nodes with4 base stations,
generated by our algorithm CreatingClusters(V, k). Figure 3(b) shows the final clusters
generated by our algorithm ClusterBalancing(C, L), where all the clusters are almost



(a) Initial clusters (b) Final clusters (c) Initial clusters

(d) Final clusters

Fig. 4: Simulation results for300 and256 sensor nodes with6 and4 base stations in random and
grid distributions.

balanced. Figure 3(c) and (d) show the initial clusters and the final clusters, respec-
tively, of 400 uniformly distributed sensor nodes with4 base stations. Figure 4(a) and
(b) shows the simulation results for300 sensor nodes with6 base stations where sensor
nodes are deployed in random distribution. Figure 4(c) and (d) show the initial clusters
and the final clusters of256 sensor nodes and4 base stations deployed in grid, where
both clusters are fully balanced.

The complete simulation results are shown in Figure 5 and 6. Figure 5 shows the
unbalance factors of the clusters constructed by our heuristic for all the instances we
have generated. Overall, all the clusters constructed by our heuristic are well balanced.
We can observe the following patterns:

1. The unbalance factor increases with the number of base stations. The unbalance
factor is at most1% when the number of base stations is2. The reason is that when
the number of base stations increases, the relative difference between the cluster
with the longest shortest hop distance and the cluster with the smallest shortest hop
distance will increase.

2. Given a fixed number of base stations, the unbalance factordecreases with the
number of sensor nodes. This is because the maximum total shortest hop distance
of any cluster increases with the number of sensor nodes.

Figure 6 shows the running times in second of our heuristic for different instances. It
shows that running time increases approximately cubicallywith the number of sensor



(a) (b)

(c)

Fig. 5: Unbalance Factor for sensor nodes in uniform, randomand grid distributions.

nodes in all the three distributions, which is consistent with the time complexity of our
heuristic. For the instance that has600 sensor nodes in random distribution and6 base
stations, our heuristic took around 38 seconds, which is thelongest running time.

8 Conclusion

In this paper, we proposed the first heuristic for optimally deployingk base stations in
a WSN such that the maximum total shortest hop distance of anycluster is minimised.
The time complexity of our heuristic isO(kn3), wheren is the number of sensor nodes
of the WSN. In the spacial case where there is only one base station, we proposed an
optimal algorithm for this problem. We have performed simulations of our heuristic on
195 instances. The simulation results show that our heuristic is very effective.

Although our heuristic performs very well, its approximation ratio is unknown. We
conjecture that it is at most2. In the future work, we will find the approximation ratio
of our heuristic. Another open problem is to optimally deploy multiple base stations in
a WSN where sensor nodes have variable communication ranges.
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