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Abstract—This paper describes the first implementation of
Andersen’s inclusion-based pointer analysis for C programs on a
heterogeneous CPU-GPU system, where both its CPU and GPU
cores are used. As an important graph algorithm, Andersen’s
analysis is difficult to parallelise because it makes extensive
modifications to the structure of the underlying graph, in a way
that is highly input-dependent and statically hard to analyse.
Existing parallel solutions run on either the CPU or GPU
but not both, rendering the underlying computational resources
underutilised and the ratios of CPU-only over GPU-only speedups
for certain programs (i.e., graphs) unpredictable.

We observe that a naive parallel solution of Andersen’s
analysis on a CPU-GPU system suffers from poor performance
due to workload imbalance. We introduce a solution that is
centered around a new dynamic workload distribution scheme.
The novelty lies in prioritising the distribution of different types
of workloads, i.e., graph-rewriting rules in Andersen’s analysis
to CPU or GPU according to the degrees of the processing
unit’s suitability for processing them. This scheme is effective
when combined with synchronisation-free execution of tasks (i.e.,
graph-rewriting rules) and difference propagation of points-to
information between the CPU and GPU. For a set of seven C
benchmarks evaluated, our CPU-GPU solution outperforms (on
average) (1) the CPU-only solution by 50.6%, (2) the GPU-only
solution by 78.5%, and (3) an oracle solution that behaves as the
faster of (1) and (2) on every benchmark by 34.6%.

I. INTRODUCTION

Pointer analysis, a technique that statically determines the
possible runtime values of a pointer, is crucial for debugging,
security analysis, verification and compiler optimisation. The
challenge of pointer analysis is to make judicious tradeoffs
between precision and efficiency across several dimensions
[12], [13], [23], [24], [25], [27], [28], [31], [32], [33], including
flow-sensitivity (by considering control flow) and context-
sensitivity (by distinguishing calling contexts). Due to its
scalability, Andersen’s analysis, an inclusion-based flow- and
context-insensitive pointer analysis, has been adopted by pro-
duction compilers such as Open64, LLVM and GCC. Over the
years, this analysis has undergone many improvements [6], [8],
[18], [20], [26], [29], [30].

Andersen’s analysis represents a graph algorithm that is
difficult to parallelise on both CPUs and GPUs. The analysis
makes extensive modifications to the structure of the underly-
ing graph in such a way that the modifications are highly input-
dependent and statically hard to predict. As a result, existing
techniques for parallelising graph algorithms such as breadth-
first search (BFS) and single-source shortest paths on CPUs
[1], [10] and on GPUs [2], [7], [10] cannot be directly used.

Recently, there have been limited attempts to parallelise
Andersen’s analysis [15], [16], [22]. These parallel solutions,
which run on either a CPU [16], [22] or a GPU [15], suffer
from two drawbacks. First, heterogeneous CPU-GPU systems
have grown in popularity within the commercial platform
and application developer communities. If a CPU-only (GPU-
only) solution runs on a CPU-GPU system, the GPU (CPU)
will be mostly idle, causing its computational resources to be
underutilised. Second, CPUs and GPUs are fairly close in per-
formance (with the latter being faster by 2.5X on average) [11].
CPUs behave better for some applications while GPUs prevail
for others, indicating that the relative suitability of CPUs or
GPUs for applications varies depending on their workload
characteristics. In the case of Andersen’s analysis, different
types of graph rewriting rules are repeatedly applied. CPUs are
more suitable for some rules while GPUs can handle others
better. By using exclusively either a CPU or a GPU [15], the
ratios of CPU-only over GPU-only speedups for Andersen’s
analysis fluctuate wildly across different programs, i.e., input
graphs being analysed. The heterogeneous computing power
of a CPU-GPU is therefore not fully exploited.

As mentioned earlier, Andersen’s analysis is hard to paral-
lelise even just for a CPU [16], [22] or a GPU [15]. We must
address two new challenges when parallelising it on a het-
erogeneous CPU-GPU system. First, the workload distribution
between the CPU and GPU must be balanced with negligible
runtime overhead. This is nontrivial since different programs
give rise to different graphs to be analysed and the structure
of a graph changes unpredictably during the analysis. Second,
the CPU-GPU communication must be minimised in terms of
the amount of data exchanged and the degree of overlap with
computation on CPU and GPU. This is also nontrivial because
the graphs being analysed are not only dynamically changing
but also sparse, making it hard to extract the “right” amount
of information to communicate between the CPU and GPU.

In this paper, we describe the first implementation of
Andersen’s analysis on a heterogeneous CPU-GPU system.
We take advantage of a previous formulation of this analysis
in terms of graph-rewriting rules [15] to ensure that all rule
applications on CPU and GPU are synchronisation-free. To
minimise workload imbalance, we prioritise the distribution
of different types of graph-rewriting rules (i.e., workloads)
to CPU or GPU according to the degrees of the processing
unit’s suitability for processing them. To minimise CPU-GPU
communication, we adopt difference propagation to transfer
new points-to information between CPU and GPU and overlap
this process with some computations on CPU and GPU.



While this paper focuses on Andersen’s analysis, the
proposed techniques for minimising workload imbalance and
communication on a CPU-GPU system are expected to be
useful for parallelising other graph algorithms that make
modifications to the structure of the underlying graph.

In summary, the contributions of this paper are:

• the first parallel solution of Andersen’s analysis for C
programs on a CPU-GPU system;

• a dynamic workload distribution scheme that dis-
patches a particular type of workload to the processor,
CPU or GPU, that is better suited for the workload;

• a difference propagation scheme for transferring new
points-to information discovered between CPU and
GPU to reduce communication cost; and

• an evaluation using seven C benchmarks, showing that
our CPU-GPU solution outperforms (on average) (1)
the CPU-only solution by 50.6%, (2) the GPU-only
solution by 78.5%, and (3) an oracle that behaves
as the faster of (1) and (2) on every benchmark by
34.6%, where (1) and (2) are improved state-of-the-
art implementations introduced in [15], [16].

The rest of this paper is organised as follows. Section II
introduces Andersen’s analysis and highlights some architec-
tural differences between CPU and GPU. Section III describes
our CPU-GPU solution of Andersen’s analysis. Section IV
discusses several optimisations for improving its performance.
Section V evaluates and analyses our solution. Section VI
discusses the related work. Section VII concludes.

II. BACKGROUND

We introduce Andersen’s pointer analysis formulated ear-
lier in terms of graph-rewriting rules [15]. We then highlight
some architectural differences between CPU and GPU.

A. Andersen’s Inclusion-Based Pointer Analysis

Andersen’s analysis for a program is formulated as a set-
constraint problem over a directed graph, G = (V,E), called a
constraint graph. After being initialised, G will be iteratively
modified until a fixed-point is reached.

1) Initialisation: Given a C program, its constraint graph is
created with its node set V being the variables in the program
and its edge set E being populated with the edges representing
five different types of statements in the program, as shown in
Table I. There is one edge per statement in the program. For
example, x P−→ y represents a points-to, i.e., P edge directing
out of node x into node y. Note that our notations for some
edge labels are different from those used in [15].

2) Constraint Resolution: Once the constraint graph for
a program is initialised, new points-to and copy edges are
introduced by applying the four types of graph-rewriting rules
given in Table II until the constraint graph reaches a fixed-
point. If there is a copy edge from x to y and a points-to edge
from y to z, then applying COPY(x) to x causes a new points-
to edge from x to z to be added (if it does not exist yet). Rules
LOAD(x) and STORE(x) are applied to discover new copy edges

Name Statement Edge

Points-to x = &y x
P−→ y

Copy x = y x
C−→ y

Load x = ∗y x
L−→ y

Store ∗x = y x
S−→ y

Offset x = y + o x
F, o−−−→ y

Table I: Mapping statements to constraint edges (initialisation).

directing out of x. Finally, OFFSET(x) is applied to introduce
new points-to edges directing out of x field-sensitively.

Note that these rules are formulated this way so that they
can be easily applied in parallel to avoid synchronisation on
both CPU and GPU, as will be explained in Section III.

Rule Semantics

COPY(x) x
C−→ y ∧ y

P−→ z ⇒ x
P−→ z

LOAD(x) x
L−→ y ∧ y

P−→ z ⇒ x
C−→ z

STORE(x) x
P−1

−−−→ y ∧ y
S−→ z ⇒ x

C−→ z

OFFSET(x) x
F, o−−−→ y ∧ y

P−→ z ⇒ x
P−→ z + o

Table II: Graph-rewriting rules (constraint resolution).

3) Sequential Algorithm: Andersen’s analysis is formulated
in terms of graph-rewriting rules as shown in Algorithm 1.
Given a program, CREATEGRAPH is called to initialise its
constraint graph G = (V,E) as per Section II-A1 and APPLY
is called to perform constraint resolution on all the nodes until
a fixed-point is reached as per Section II-A2.

In APPLY, Et(x) denotes the set of edges of type t
associated with the node x being processed. For each variable
x in W (initialised with V ), APPLY loops over its edge set of
type t1, i.e., Et1(x). For each y in this set, APPLY loops over
its edge set of type t2, i.e., Et2(y). For each z in this set, two
cases are distinguished. If t1 = F , z + o is added to Et3(x),
i.e., x’s edge set of type t3. Otherwise, z is added.

To represent the four types of rules given in Table II
uniformly, we have modified STORE(x) conceptually. Instead
of a points-to edge y P−→ x, its inverse, known as a pointed-by

edge, denoted by x P
−1

−−−→ y, is used. As will be explained later,
only points-to edges are stored to save space.

4) Example: For the program given in Figure 1(a), Fig-
ure 1(b) depicts the constraint graph initialised by CREATE-
GRAPH. This graph is then modified iteratively by APPLY.
The modified graphs in the first two iterations are shown in
Figures 1(c) and 1(d). In the first iteration, COPY is applied
to y, resulting in y

P−→ a to be added. Then applying LOAD

to b causes b C−→ a to be added. At this stage, STORE is not
applicable. Finally, OFFSET is applied to z, with z

P−→ a + 2
being discovered. In the second iteration, STORE can be applied
to a + 2, giving rise to a + 2

C−→ b. A fixed-point is then
reached. The points-to information for each variable can be
directly read-off from the final constraint graph obtained.
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(a) Program (b) Initialisation (c) Constraint resolution (iteration 1) (d) Constraint resolution (iteration 2)

Figure 1: An example illustrating Andersen’s analysis. For each points-to edge, its pointed-by edge is not shown. The new copy
and points-to edges added during constraint resolution are depicted in dashed arrows. The fixed-point is reached in iteration 2.

Algorithm 1 Andersen’s analysis.
Procedure ANDERSEN()
begin

1 G = (V,E)← CREATEGRAPH();
2 repeat
3 APPLY(C, P , P , V );
4 APPLY(L, P , C, V );
5 APPLY(P−1, S, C, V );
6 APPLY(F , P , P , V );

until fixed-point;

Procedure APPLY(t1, t2, t3, W )
begin

7 foreach x ∈W do
8 foreach y ∈ Et1(x) do
9 foreach z ∈ Et2(y) do

10 if t1 = F then
11 Let the offset edge (x, y) be x

F, o−−→ y;
12 Et3(x)← Et3(x) ∪ {z + o};
13 else Et3(x)← Et3(x) ∪ {z};

B. Architectural Differences between CPU and GPU

We recall the key differences [11] with respect to the CPU-
GPU system used in this paper. The host is equipped with two
eight-core Intel Xeon CPUs and the accelerator is an NVIDIA
GPU, TESLA K20c, based on the Kepler architecture. The
GPU consists of 13 streaming multiprocessors (SMs), each
containing 192 cores, giving rise to thousands of GPU cores
(two orders of magnitude more than the host). In addition,
the GPU has a peak memory bandwidth of 208GB/s, about
10 times of that for the host. This suggests that the GPU
is well suited for regular, balanced workloads with abundant
data parallelism when its massive number of cores and high
memory bandwidth are fully utilised. However, the GPU,
which clocks at 0.71 GHz, is less powerful than a CPU, which
clocks at 2.0 GHz. In addition, the GPU has memory access
latency of 400 – 800 cycles, making it less competitive than
CPU if its cores and memory bandwidth are underutilised,
which is hard to avoid for irregular, imbalanced workloads.

In the case of imbalanced workloads, the GPU’s com-
putational resources may be underutilised in two scenarios.
First, each SM schedules threads in groups of 32 parallel
threads, called warps. Threads in the same warp are able to
execute in parallel the same instruction, but in serial if different
instructions are encountered. In this situation, known as warp
divergence, the GPU cores are not fully utilised. Second, warps

are executed concurrently on each SM. When one warp is
paused or stalled, other warps are executed in order to keep the
cores busy and hide memory latency. If the workloads mapped
to different warps are imbalanced, many warps (up to 350
across all SMs) may end up waiting for a few warps to finish.
Due to the lack of enough active warps to hide memory access
latency, we have a so-called inter-warp imbalance problem.
For CPU, however, usually only dozens of threads can be
launched at the same time. The inter-thread imbalance is not
as severe, especially when the CPU’s memory access latency,
which is lower than the GPU, can be hidden by large caches.

When parallelising Andersen’s analysis on a CPU-GPU
system, we will exploit the respective architectural advantages
of CPU and GPU to accelerate its performance.

III. A CPU-GPU SOLUTION OF ANDERSEN’S ANALYSIS

A naive solution would be to dynamically assign portions
of the constraint graph of a program to the CPU and GPU
and let them apply all graph-rewriting rules applicable to
their own portions. As evaluated later, this simplistic solution
suffers from poor performance, due to workload imbalance and
communication overhead incurred, because the modifications
to the underlying graph can be unpredictable.

The basic idea behind our solution is sketched in Algo-
rithm 2. Initially, CREATEGRAPH used in Algorithm 1 is called
to initialise the constraint graph identically on both the CPU
and GPU. Then Andersen’s analysis is performed iteratively on
both the CPU and GPU until a fixed-point is reached. The final
points-to information will be available on both the CPU and
GPU. The key novelty lies in prioritising, i.e., sorting different
types of graph-rewriting rules in a shared worklist W , so that
each side of a CPU-GPU system can always obtain the work
from W that it is the most suitable to process.

At each iteration, both the CPU and GPU calls
FETCHANDAPPLY(W) to fetch the work from W and then
apply appropriate rules to the work obtained untilW is empty.
Then both sides exchange only the new points-to and copy
edges, E∆GPU

and E∆CPU
, discovered, based on difference

propagation. After the constraint graph at each side has been
updated, the next iteration begins, if needed.

Section III-A describes our graph data representation. Sec-
tion III-B focuses on CPU-GPU communication. Section III-C
explains how to perform parallel rule applications on CPU and
GPU, assisted by our dynamic workload distribution scheme.

A. Graph Data Representation

Constraint graphs are sparse and their structures change
dynamically during Andersen’s analysis. Therefore, selecting
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Algorithm 2 A CPU-GPU solution of Andersen’s analysis.
begin

1 G = (V,E)← CREATEGRAPH();
2 repeat
3 Reset W;

4 FETCHANDAPPLY(W); FETCHANDAPPLY(W);
Transfer E∆GPU to CPU;
E∆ ← E∆GPU ∪ E∆CPU ;
E ← E ∪ E∆;

5 Transfer E∆CPU to GPU;
6 E∆ ← E∆CPU ∪ E∆GPU ;
7 E ← E ∪ E∆;

until fixed-point;

CPU side GPU side

an appropriate data structure to store such graphs can have a
profound impact on the amount of computations performed on
both the CPU and GPU and the amount of data exchanged.

To represent edge sets compactly and support operations on
them efficiently, sparse bit vectors and BDDs (Binary Decision
Diagrams) are popular. BDDs are complex and ill-suited for
GPU [15]. Sparse bit vectors are 2X faster than BDDs on CPU
[6]. To minimise CPU-GPU communication, we have opted to
use sparse bit vectors uniformly on both CPU and GPU.

Consider a constraint graph G = (V,E). The variables
(or nodes) in V are mapped to consecutive integers, starting
from 0. For each variable x ∈ V , its outgoing edges are
distinguished according to the five basic types in Table I. There
are four separate sparse bit vectors storing its P , C, L and S
edges, respectively. We do not store the P−1 edges explicitly
to save space; we discuss how to handle the STORE rule in
Section III-C. As for the F edges, a simple normalisation
ensures that each node has at most one offset edge, which
is then stored conventionally. For example, if x = y + 2 and
x = z + 4, then t1 = y + 2;x = t1 and t2 = z + 4;x = t2.

As an example, suppose node x has two outgoing points-
to edges, EP(x) = {y, z}, where y and z are identified by
integers 958 and 1920, respectively. The sparse representation
for these two points-to edges are illustrated in Figure 2.

A sparse bit vector is a linked list that represents a set of
integers. Each element consists of three fields: bits (several
words) represents whether the corresponding integer belongs
to the set, base (1 word) indicates the range of integers that
is represented in this element, and next (1 word) points to
the next element. For warp efficiency on GPU, 32 words for
an element is suggested [15], where the bits spans 30 words
(960 bits). As a result, the 32 threads in a warp perform set
operations, e.g., union, on the 32 words concurrently.

Let us see how EP(x) = {y, z} is represented in Figure 2.
The first element’s base is 0 and the 958-th bit in bits is set to
1. So it contains the integer 958, i.e., y. The second element’s
base is 2 and the 0-th bit in bits is 1. As a result, it contains
z, identified by integer 960× 2 + 0 = 1920.

00 . . . 00

base
01 . . . 00

bits next
00 . . . 10

base
00 . . . 01

bits
NULL

next

Figure 2: Sparse bit vector representing {958, 1920}.

B. Managing Communication between CPU and GPU

In heterogeneous CPU-GPU computing, the communica-
tion between the two sides can be a major cost. As constraint
graphs are sparse and changing during the analysis, it is
challenging but important to reduce the communication cost.

In the sequential setting, difference propagation [3], [19],
[26] is used to reduce the work of propagating points-to
edges in a constraint graph. As shown in Table II, Andersen’s
analysis may modify a constraint graph by adding new points-
to and copy edges, i.e., new P and C edges. We make use of
difference propagation (for the first time) to ensure that at the
end of each iteration, the CPU and GPU only need to exchange
the new P and C edges introduced in that iteration.

Rule Semantics

COPY(x) x
C−→ y ∧ y

∆P−−→ z ⇒ x
δP−−→ z

LOAD(x) x
L−→ y ∧ y

∆P−−→ z ⇒ x
δC−−→ z

STORE(x) x
∆P−1

−−−−→ y ∧ y
S−→ z ⇒ x

δC−−→ z

OFFSET(x) x
F, o−−−→ y ∧ y

∆P−−→ z ⇒ x
δP−−→ z + o

∆COPY(x) x
∆C−−→ y ∧ y

P−→ z ⇒ x
δP−−→ z

Table III: Graph-rewriting rules via difference propagation.

Table III gives the graph-rewriting rules modified from
Table II to support difference propagation. To facilitate con-
current applications of graph-rewriting rules, double buffering
is used. In each rule, ∆P (∆C) in the premise signifies a new
points-to (copy) edge produced in the previous iteration and
δP (δC) in the conclusion signifies a new points-to (copy)
edge produced in the current iteration. As before, P , C, L, S
or F , identifies an edge of that type available at the end of the
previous iteration. The ∆COPY rule is new. Once again, the
∆P−1 edges, the reversed ∆P edges, are not actually stored.

In Algorithm 2, E∆CPU (E∆GPU ) denotes the set of ∆P
and ∆C edges produced in the current iteration on CPU (GPU).

Below we introduce a reference CPU-GPU solution of
Andersen’s analysis, which has been useful in guiding the de-
velopment and evaluation of our CPU-GPU solution. Consider
the CPU-only and GPU-only implementations of Andersen’s
analysis detailed in Section V-A. At this stage, it suffices to
know that both proceed essentially by applying the double-
buffering-based rules given in Table III based on exactly the
same algorithm. Let wi be the workload at the i-th iteration.
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Let tiCPU and tiGPU be the analysis times elapsed at the i-
th iteration on CPU and GPU, respectively. By assuming
constant work rates for CPU and GPU and zero communication
and synchronisation overhead, a reference CPU-GPU solution
spends the following analysis time at the i-th iteration:

tiREF =
wi

wi

tiCPU
+ wi

tiGPU

=
tiCPU × tiGPU

tiCPU + tiGPU

(1)

The benefit at the i-th iteration from CPU-GPU computing is:

benefit(i) = min(tiCPU, t
i
GPU)− tiREF (2)

Let us analyse the potential performance gains achieved
by performing CPU-GPU communication via difference prop-
agation. Consider a CPU-GPU implementation that always
produces the same amount of new points-to and copy edges at
both sides at each iteration. Let di∆P∆C (diPC) be the set of new
(all) points-to and copy edges produced at the i-th iteration,
which is half of the same points-to information produced by
the CPU- or GPU-only implementation at the i-th iteration. If
Host-to-Device and Device-to-Host transfers are concurrent,
then the costs, costi∆P∆C and costiPC , for exchanging di∆P∆C
and diPC between the CPU and GPU at the i-th iteration are:

cost∆P∆C(i) =
di

∆P∆C
B + S

costPC(i) =
di
PC
B + S

(3)

where B and S are the host-to-device bandwidth and the
startup cost, respectively, on the CPU-GPU system considered.

0 10 20 30 40 50 60 70 80
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40
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80

100
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m

e 
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cost∆P∆C
costPC

Figure 3: A cost-benefit analysis for the svn benchmark.

Figure 3 plots the functions benefit, cost∆P∆C and
costPC for svn, a program in our benchmark suite. In (3),
B = 6GB/s and S = 10µs for the CPU-GPU system used
in this paper. The startup cost, taken from [14], is negligible
relative to the data transfer times that are between two to
three orders of magnitude longer. During the iterations from
20 to 65, the cost of transferring P and C edges can be about
1/3 of the benefit while the cost of transferring ∆P and ∆C
edges is moderate. From iteration 65 onwards, the cost of
transferring P and C edges is overwhelming. Fortunately, the
cost of transferring ∆P and ∆C edges is still no larger than
the benefit (even it is small). Therefore, transferring ∆P and
∆C between the CPU and GPU is important to mitigate the
negative impact of communication cost on performance.

C. Partitioning Computation for CPU and GPU

The objective here is to maximise parallel rule applications
on both CPU and GPU at negligible synchronisation overhead.
We first describe how to orchestrate the concurrent execution
of graph-rewriting rules on CPU and GPU. We then describe
how to distribute rule applications dynamically to CPU and
GPU to ensure that workload balance is maintained.

1) Parallel Rule Applications: In our sparse representation
of a constraint graph, different types of outgoing edges of
a node are stored in different sparse bit vectors. Due to
double buffering used in the rules given in Table III, different
applications of the same rule can be executed concurrently
without synchronisation. In addition, applications of different
rules can also be concurrent as long as these rules do not write
into the same sparse bit vector storing δP or δC.

At the GPU side, every rule application at a node x is
executed by a warp as in [15] in a warp-centric manner [9].
Lines 12 – 13 in Algorithm 1 are implemented as:

T ← Add o (if any) to each t2-neighbour of y
Union T with t3-neighbours of x

The first is a highly data-parallel operation due to the use of
sparse bit vectors. When computing the union of two 32-word
elements with the same base, 32 threads in a warp will work
concurrently, one word per thread, with intra-warp divergence
occurring at the first word (for testing the base) and last word.

At the host side, every rule application is executed se-
quentially inside a CPU thread. Instead of performing union
operations on words, long words are used for efficiency.

The STORE rule requires the ∆P−1 edges, i.e., new
pointed-by edges to be stored, which can be space-consuming.
We avoid this by adopting the same two-phase strategy used
in [15]. In the first phase, a worklist is created that contains all
pairs of (x, y) such that y has outgoing store edges and y P−→ x.
In the second phase, all pairs with the same first component
are assigned to the same GPU warp or CPU thread. As a result,
all applications of the STORE rule can be executed in parallel
without synchronisation.

2) Dynamic Workload Distribution: To accelerate Ander-
sen’s analysis on a CPU-GPU system, it is critically important
to minimise workload imbalance between the CPU and GPU.
As shown in Algorithm 2, we use a work sharing scheme
so that both the CPU and GPU fetch the work to do from a
mutex-protected shared worklist, W , at each iteration.

A simple-minded scheme, referred to as NAIVE, for im-
plementing FETCHANDAPPLY(W) in Algorithm 2 is given in
Algorithm 3. The worklist W consists of all the N nodes in
the constraint graph, as illustrated in Figure 4. The CPU and
GPU repeatedly fetch a set M of nodes from the beginning
of W and then apply all the rules to the nodes in M.

As evaluated later, NAIVE suffers from poor performance
due to workload imbalance, because it does not consider the
suitability of CPU and GPU for processing different types
of rules. As discussed in Section II-B, the GPU is more
powerful than the CPU for regular, balanced workloads, but
performs more poorly on irregular, imbalanced workloads. In
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Algorithm 3 A naive workload distribution scheme.
Procedure FETCHANDAPPLY(W)
begin

1 while W 6= ∅ do
2 M← get work from W;
3 APPLY(C, ∆P , δP , M);
4 APPLY(L, ∆P , δC, M);
5 APPLY(∆P−1, S, δC, M);
6 APPLY(F , ∆P , δP , M);
7 APPLY(∆C, P , δP , M);

1 2 3 . . . N − 1 N

CPU & GPU getFromList

Figure 4: The shared worklist W used in Algorithm 3.

Andersen’s analysis, severe inter-warp workload imbalance can
occur when the warps are processing nodes with varying out-
degrees of theirs edges. Figure 5 plots the distributions of the
sizes of the P edges and C edges for svn, a program in
our benchmark suite, in the lg-sqrt format, after Andersen’s
analysis is finished. These sizes vary greatly, starting from
0 and approaching 10000. However, the CPU is capable of
handling such imbalanced workloads more efficiently.
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Figure 5: Sizes of points-to and copy edges for svn.

Different applications of the same rule at the same node
may induce different workloads at different iterations. How-
ever, it is difficult to decide precisely where to execute a rule
(on the CPU or GPU) and when, since these workloads are
changing in an unpredictable manner during the analysis.

Our key observation is that different types of rules in
Andersen’s analysis tend to exhibit different workload char-
acteristics. In general, some rules are more amenable to CPU
execution while the others fare better on the GPU. It is thus
possible to prioritise different types of rules according to the
suitability of CPU or GPU for processing them.

Consider the four rules, COPY, LOAD, OFFSET and ∆COPY,
given in Table III. We will deal with the STORE rule differently

later. For each of these four rules applied at a node x, three
types of outgoing edges, indicated as t1, t2 and t3 in lines 7 –
13 in Algorithm 1, are accessed. In Table III, t1 and t2 appear
in the premise of a rule and t3 in its conclusion.

For each rule R applied at node x in lines 7 – 13 in
Algorithm 1, the amount of work performed is dictated by
|Et1(x)| × |Et2(y)|, where t1 and t2 indicate the types of
edges processed in the premise of the rule. We write DIR to
represent the degree of imbalance for the workloads performed
by applying rule R at all the possible nodes in the constraint
graph, measured by how |Et1(x)|×|Et2(y)| varies across these
nodes (using, for example, its standard derivation).

We propose to use the DIR of rule R to determine the
suitability of the CPU or GPU for applying the rule. The higher
DIR is, the more (less) suitable the CPU (GPU) is for applying
rule R. According to the workload characteristics of the four
rules, COPY, LOAD, OFFSET and ∆COPY, we have:

DI∆COPY > DICOPY > DILOAD > DIOFFSET (4)

We observe that the larger maxv∈V |ET (v)| is for a particular
type of edges in a constraint graph, the greater |ET (v)| varies
across different nodes in V . In general, |EF (v)| is much
smaller than min(|E∆P(v)|, |E∆C(v)|) and |EC(v)|, |EL(v)|
and |EP(v)| are approximately an order of magnitude larger
than max(|E∆P(v)|, |E∆C(v)|). Therefore, DIOFFSET is the
smallest. While being close to |EL(v)| when the constraint
graph is initialised, |EP(v)| and |EC(v)| can increase dramat-
ically during the analysis. So DILOAD is the second smallest.
In general, |EP(v)| is much larger than |EC(v)|, as indicated
in Figure 5. Therefore, we have DI∆COPY > DICOPY.

As the ∆P−1 edges are not stored, we deal with the STORE
rule differently. As discussed in Section III-C1, a separate
worklist,WSTORE, is maintained from which the set VSTORE of
nodes that require the STORE rule to be applied are obtained.
Let DISTORE = max{|E∆P−1(x)| | x ∈ VSTORE} be used to
approximate the degree of imbalance for this rule. Of course,
the ∆P−1 edges, which are not stored, are deduced from the
∆P edges. At each iteration, we decide dynamically whether
the CPU or GPU is more suitable to apply the STORE rule to
the nodes in VSTORE. Our simple heuristic is to select the CPU
if and only if DISTORE > τ , which is set as 20 empirically.

In our CPU-GPU solution of Andersen’s analysis,
FETCHANDAPPLY(W) in Algorithm 2 is given in Algo-
rithm 4. A so-called DI-based dynamic workload distribution
scheme, referred to as IDD, is therefore adopted. At an
iteration, either the CPU or GPU applies the STORE rule to
all the nodes in VSTORE depending on whether DISTORE > τ
holds or not. As for the other four rules, COPY, LOAD, OFFSET
and ∆COPY, the shared worklistW , which is described below,
maintains all rule applications to be executed at any iteration.
The CPU and GPU repeatedly fetch a set M of nodes from
the worklistW and apply appropriate rules to the nodes inM.

Based on (4), our shared worklist, W , illustrated in Fig-
ure 6, consists of four sub-worklists for rules ∆COPY, COPY,
LOAD and OFFSET, sorted in decreasing order of their degrees
of imbalance. Each sub-worklist consists of all the nodes in
the constraint graph as in NAIVE, shown in Figure 4. The CPU
and GPU will fetch the work from the two opposite sides. This
ensures that each side of the system will always apply rules
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Algorithm 4 A DI-based dynamic workload distribution.
Procedure FETCHANDAPPLY(W)
begin

1 APPLY(∆P−1, S, δC, WSTORE); // STORE
2 while W 6= ∅ do
3 (M, r)← get work from W;
4 if r = COPY then APPLY(C, ∆P , δP , M);
5 if r = LOAD then APPLY(L, ∆P , δC, M);
6 if r = OFFSET then APPLY(F , ∆P , δP , M);
7 if r = ∆COPY then APPLY(∆C, P , δP , M);

1 2 3 . . . N − 1 N

W∆C WC WL WF

CPU getFromHead GPU getFromTail

Figure 6: The shared worklist W used in Algorithm 4.

in decreasing order of its suitability for processing these rules.
As a result, IDD achieves better load balance than NAIVE.

While concurrent applications of the same rule in Ta-
ble III can be synchronisation-free, concurrent applications of
different rules may require synchronisation when they may
have write-write races (e.g., between COPY and ∆COPY). To
avoid such synchronisation altogether on CPU or GPU, we
have introduced two barriers, one between W∆C and WC
and one between WL and WF . For this reason, a call to
FETCHANDAPPLY(W) in Algorithm 4 always returns a set
M of nodes associated with the same rule type, r.

IV. OPTIMISATIONS

We describe several optimisations to further improve the
performance of our CPU-GPU solution of Andersen’s analysis.

A. Optimisation I: On Hiding Communication Overhead

In Algorithm 2, E∆CPU
is the union of E∆P

∆CPU
and E∆C

∆CPU
,

which are the sets of ∆P and ∆C edges produced on CPU,
respectively. E∆GPU is similarly decomposed into E∆P

∆GPU
and

E∆C
∆GPU

on GPU. Concurrent Host-to-Device and Device-to-
Host transfers are used to maximise their overlap. To further
reduce communication cost, computation-communication over-
lap is employed at each iteration. As |E∆P

∆CPU
| > |E∆C

∆CPU
| and

|E∆P
∆GPU

| > |E∆C
∆GPU

| usually, the ∆C edges are exchanged
before the ∆P edges between the CPU and GPU. As soon
as one side has received the ∆C edges from the other, the
operations indicated in lines 6 – 7 are performed on ∆C, by
overlapping with the transfer of the ∆P edges.

B. Optimisation II: On ∆P -Equivalence and STORE

∆P-equivalent variables have the same set of outgoing ∆P
edges in the current iteration [15]. For example, if E∆P(x)=
E∆P(y), then applying COPY(z), where EC(z) = {x, y},

yields the same result for z if either E∆P(x) or E∆P(y) is
used.

Work on identifying (1) ∆P-equivalent variables [15] and
(2) the set VSTORE of variables where the STORE rule is
applied (the first phase of this rule application as discussed
in Section III-C2) is expensive on CPU, costing over 3X more
than on GPU. Therefore, such computations are performed on
the GPU, with the results transferred to the CPU.

C. Optimisation III: On Adaptive Heterogeneity

As illustrated in Figure 3, the performance benefit of a
CPU-GPU solution of Andersen’s analysis is more than offset
by the CPU-GPU communication cost incurred during the
first and last few iterations. Therefore, an adaptive scheme is
used. When the cost exceeds the benefit, the faster of the two,
CPU and GPU, will perform the iteration alone. For the first
and last few iterations, the workloads of rule applications are
small with negligible imbalance. The GPU is more suitable
and thus preferred. Therefore, our CPU-GPU solution begins
in the GPU-alone mode, switches to the heterogeneous mode
when ttran 6 tcomp ∗ α, and returns to the GPU-alone mode
again when ttran > tcomp ∗ α. Empirically, α = 0.2 is used.

V. EVALUATION

We show that our parallel solution of Andersen’s analysis
on a CPU-GPU system achieves better average speedups than
CPU-only and GPU-only solutions for a set of seven C
benchmarks considered. Even if the better of the speedups
from CPU-only and GPU-only solutions is selected for each
benchmark, our CPU-GPU solution remains faster on average.

For the CPU-GPU system used in our experiments, the host
(running 64-bit Ubuntu 12.04) is equipped with two eight-core
2.00GHz Intel Xeon E5-2650 CPUs with 62GB of RAM. Each
core has a 64KB L1 cache and a 256KB L2 cache. Each CPU
has a 20MB L3 unified cache shared by its eight cores. The
code for the host is written in C++ using POSIX threads and
compiled under “GCC -O3”. The GPU used is a 0.71GHz
NVIDIA Tesla K20c GPU with 13 SMs, each containing 192
cores. Each SM has a 64KB of on-chip memory configured as
48 KB of shared memory and 16 KB of L1 cache. All SMs
share a 1280KB L2 cache. The CUDA code is compiled under
“nvcc -arch=sm 30” (v5.0).

Table IV lists the seven C benchmarks used, with the
number of variables ranging from 53K to 559K and the number
of statements ranging from 55K to 560K. Note that every
strongly-connected component (SCC) formed by copy edges
is collapsed as its variables have the same points-to edges.

Benchmark #Variables #Statements
perl 53,362 55,977

python 92,599 92,827
svn 107,708 122,558
gcc 120,870 127,171
gdb 232,814 198,933
vim 246,944 89,226

gimp 558,867 565,655

Table IV: Benchmark suite: sizes of initial constraint graphs.
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A. Implementations

Our CPU-GPU solution is implemented as follows:

• For GPU kernels, we use 13 thread blocks (for 13
SMs), 864 threads per block for COPY, LOAD, STORE
and ∆COPY, and 1024 threads for OFFSET. This
represents the same configuration as in [15], limited
by available shared memory (48KB per block) and
maximum number of threads per block (1024).

• As for the host, there are 16 compute threads, one
per core, and two control threads. The GPU-control
thread is responsible for fetching the work from a
shared worklist for the GPU to do, launching kernel
execution and exchanging ∆P and ∆C between the
CPU and GPU. The CPU-control thread oversees and
coordinates the execution of the 16 compute threads.

The 16 CPU compute threads and the GPU-control thread
will fetch the work from a mutex-protected shared worklist,
illustrated in Figure 6. The granularity of each fetch is deter-
mined empirically. For a CPU thread, a chunk of 128 nodes
appears to be a good choice. As for the GPU, any value in the
range 1K – 8K is adequate, even when the GPU happens to
get the last chunk from the shared worklist. So 8K is used.

The CPU-only (GPU-only) solution is derived from our
CPU-GPU solution, by ignoring the GPU-control (CPU-
control) thread, so that the entire analysis is now performed
on the CPU (GPU) alone. The GPU-only solution is the same
as the state-of-the-art GPU implementation introduced in [15].
The CPU-only solution is faster than the CPU implementation
introduced in [16], based on the experimental results given
in [15], since our CPU-only solution is able to apply graph-
rewriting rules in parallel without synchronisation.

B. Speedups

Figure 7 compares the speedups of our CPU-GPU solution
of Andersen’s analysis against the CPU-only and GPU-only
solutions (normalised to GPU-only). For each benchmark, the
left bar is for CPU-only, the middle bar for GPU-only and
the right bar for our solution. Each of our speedup bars is
shown as a breakdown of five components, contributed by (1)
NAIVE (the naive workload distribution given in Algorithm 3),
(2) IDD (our dynamic workload distribution scheme given in
Algorithm 4), (3) Opt I, (4) Opts I + II, and (5) Opts I + II +
III, where the three optimisations are described in Section IV.

We observe that the performance ratios of CPU-only over
GPU-only vary wildly across these benchmarks. It is therefore
not easy to decide which of the two analyses to use for a
given program. However, our CPU-GPU solution outperforms
(1) CPU-only by 50.6%, (2) GPU-only by 78.5%, and (3)
an oracle that behaves as the faster of (1) and (2) for each
benchmark by 34.6% on average. In addition, our solution is
faster than the oracle for six benchmarks. The only exception
is gcc, for which our solution is slightly better than CPU-only
but a lot worse than GPU-only. There are two main reasons
behind. First, gcc induces fewer new points-to edges than the
other benchmarks during the analysis. The overhead incurred
in CPU-GPU communication and workload distribution is rel-
atively high. Second, the performance gap between GPU-only
and CPU-only, 2.3X, is the highest among all the benchmarks

(with vim coming as the second highest). Thus, workload
balance is relatively hard to achieve.

C. Dynamic Workload Balancing

Our dynamic workload distribution scheme, IDD, has
succeeded in accelerating Andersen’s analysis further on top
of NAIVE for all benchmarks. The performance improvements
are substantial in python, svn, gdb and gimp.

To understand why IDD is effective, some statistics are
given in Columns 2 – 7 in Table V. Rx, where x is one of
the five rules given in Table III, represents the ratio of the
time spent by GPU-only over CPU-only on applying Rule x
(accumulated in all iterations). ROFFSET < RLOAD < RCOPY <
R∆COPY holds across the seven benchmarks. This justifies the
priorities assigned to the four rules in (4) on CPU and GPU.

Let us analyse gcc and vim to see why performing
Andersen’s analysis on both CPU and GPU is the least
beneficial among the seven benchmarks. For gcc, ROFFSET,
RLOAD, RCOPY and R∆COPY are smaller than 1, indicating
that the GPU is more suitable than the CPU for applying
these rules. For vim, speedup is limited for a different reason.
The ∆COPY rule is particularly expensive to apply, consuming
30.3% (83.0%) of the analysis time of CPU-only (GPU-only).
As a result, the GPU is rather inefficient for the entire analysis.
As discussed in Section V-A, the granularities of workloads
fetched from the shared worklist by a CPU thread and a GPU
kernel are 128 and and 8K nodes, respectively. The GPU stalls
for 8.5% of its analysis time, waiting for the CPU to finish. The
ratio can be lowered if the granularities are reduced. However,
the overall performance even worsens due to less efficient GPU
kernel execution and more synchronisation overhead incurred.

Let us look at the effectiveness of the heuristic DISTORE >
τ used in determining where to execute the STORE rule, on
CPU or GPU, in line 1 of Algorithm 4. In Table V, SGPU

stands for the percentage of iterations that the STORE rule is
executed on the GPU. The larger RSTORE is (i.e., the slower the
GPU is than the CPU in applying the rule), the smaller SGPU

is (the fewer iterations that the GPU will be asked to execute
the rule). For vim, where SGPU = 100%, the STORE rule is
always applied on the GPU, which is much more efficient than
the CPU (with RSTORE = 0.19). As the number of stores in a
program is small, the benefit of adaptively determining where
to execute the STORE rule is small. Nevertheless, setting τ to
20 still delivers a speedup of 3.3% (2.9%) compared to when
the rule is applied on CPU (GPU) exclusively.

D. Optimisations

For the three optimisations described in Section IV, their
effects on performance are shown in Figure 7. We analyse
them using the statistics given in Columns 8 – 11 in Table V.

Opt I, which overlaps communication with computation,
is the most beneficial for gcc and perl but the least for
gdb and gimp. Its effectiveness depends on the degree of
overlap between (1) the process of exchanging their respective
∆P sets between the CPU and GPU and (2) the computations
performed on the local and remote ∆C sets on both the CPU
and GPU. In Table V, O∆P and O∆C represent the times
elapsed on performing (1) and (2) in percentage, respectively,
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Figure 7: Speedups of our parallel Andersen’s analysis and their CPU-only and GPU-only versions (normalised to GPU-only).

Benchmark IDD workload distribution Opt I Opt II Opt III
SREFROFFSET RLOAD RCOPY R∆COPY SGPU (%) RSTORE O∆P (%) O∆C (%) OH (%) OI (%)

perl 0.07 0.17 0.53 1.62 31.0 7.18 8.1 10.6 9.3 21.1 1.31
python 0.04 0.15 0.70 3.63 37.1 4.52 13.2 9.4 3.9 36.2 1.40

svn 0.04 0.13 0.61 2.41 34.2 7.29 10.5 7.4 5.5 13.6 1.20
gcc 0.09 0.40 0.57 0.61 81.6 1.21 15.2 16.5 14.6 21.8 0.48
gdb 0.04 0.28 0.90 3.31 13.7 5.35 12.3 5.0 5.2 15.0 1.10
vim 0.08 0.50 0.64 5.59 100.0 0.19 15.5 9.7 6.7 34.9 1.18

gimp 0.07 0.56 0.64 3.58 77.6 0.87 11.3 5.3 8.8 27.6 1.03

Table V: Analysis of our CPU-GPU solution (including its key strategies employed).

over the total analysis time for a benchmark. The transfer
times for ∆P are completely hidden for gcc and perl since
O∆P < O∆C for each benchmark, but only hidden by less
than 50% for gdb and gimp since O∆P > 2 × O∆C for
each benchmark. The (unhidden) communication cost is 8.4%
on average, with gcc reaching 16.9%, since it induces fewer
edges than the other benchmarks during Andersen’s analysis.

Opt II, which relies on the GPU to identify ∆P-equivalent
variables and the variables for which the STORE rule should be
applied, is generally more effective than Opt I. In Table V, OH

represents the time spent (in percentage) on these computations
over the total analysis time for a benchmark. Opt II is the least
effective for python, svn and gdb because the values of OH

for these benchmarks, 3.9%, 5.5% and 5.2%, are small.

Opt III, which decides adaptively whether to perform an
iteration of Andersen’s analysis on CPU or GPU or both, is
profitable for all the benchmarks except gdb. In Table V,
OI represents the percentage of iterations executed on the
GPU alone. For gdb, OI = 15%. By offloading this much
of the total analysis to the GPU, the potential performance
benefit obtained may not outweigh the cost incurred. A similar
problem exists for svn, where OI = 13.6%.

E. Overall Effectiveness

We discuss the effectiveness of our CPU-GPU solution with
respect to the reference CPU-GPU solution with its analysis
time (1) derivable from those of CPU-only and GPU-only
solutions. In Table V, SREF represents the speedup of our

solution over this reference. Our solution outperforms the
reference in six benchmarks with an average speedup of 1.1X.
The exception is gcc again, for the reasons discussed above.

These results demonstrate the effectiveness of our solution.
By dispatching graph-rewriting rules to the “better side” of
a CPU-GPU system to apply, our solution performs better
than the reference, for which even zero communication and
synchronisation overhead has been assumed.

VI. RELATED WORK

There is no shortage of optimisations on Andersen’s pointer
analysis in the sequential setting [6], [8], [18], [20], [26], [29],
[30]. Andersen’s analysis is O(n3), where n is the number
of variables, when difference propagation, ∆P , is employed
to reduce the work of propagating points-to edges [3]. Some
later improvements can be found in [19] [26]. In the GPU
implementation of Andersen’s analysis introduced in [15],
∆P is used to overlap the analysis with the transfer of the
new points-to information back from the GPU to the host.
This paper represents the first to take advantage of difference
propagation for not only ∆P but also ∆C to reduce the amount
of data exchanged between CPU and GPU.

There is a lot of work on parallelising graph algorithms
such as breadth-first search (BFS) and single-source shortest
paths on CPUs [1], [10] and on GPUs [2], [7], [10]. Unlike
Andersen’s analysis, these graph algorithms do not modify
the structure of the underlying graph. In the case when
some modifications are made [21], the modifications can be
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predicted statically. Therefore, these existing techniques cannot
be directly used to parallelise Andersen’s analysis.

Recently, there are a few attempts on parallelising Ander-
sen’s analysis on multi-core CPUs [16], [22] or multi-core
GPUs [15]. This paper presents the first parallel solution on
a CPU-GPU system, where both its CPU and GPU cores
are used, based on the state-of-the-art GPU implementation
reported in [15]. By taking advantage of the performance char-
acteristics of two different architectures, Andersen’s analysis
can be accelerated further if both CPU and GPU are used.

There are also a lot of efforts on parallelising graph
algorithms on CPU-GPU systems, where the structure of the
underlying graph is not modified. In [10], the best from
a few implementations of BFS is selected dynamically for
each level of the BFS algorithm. Later, workload-aware and
fixed-partitioned-space strategies [17] are considered for BFS.
In [4], a graph programming model, Totem, is presented
and applied to two applications, BFS and PageRank. In [5],
workload distribution is studied in the Totem framework, by
distinguishing workloads in terms of node degrees, so that the
suitability of CPU or GPU for the workloads can be estimated.
However, this scheme cannot be directly applied to Andersen’s
analysis since the degree of a node changes dynamically in
an unpredictable manner during the analysis. In this paper,
we have introduced a new dynamic workload distribution to
minimise workload imbalance for Andersen’s analysis.

VII. CONCLUSION

This paper describes the first parallel implementation of
Andersen’s analysis on a CPU-GPU system. The presence
of dynamic and unpredictable modifications to a constraint
graph makes it difficult to balance workloads between CPU
and GPU. The sparsity of a constraint graph posts obstacles in
engineering efficient CPU-GPU communication. To overcome
these two challenges, we distribute graph-rewriting rules to
the CPU or GPU that is better suited for processing the
rules and adopt difference propagation of points-to information
between the CPU and GPU to reduce the communication
cost. On a set of seven C programs evaluated, our CPU-GPU
solution outperforms on average the state-of-the-art CPU-only
and GPU-only implementations.
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