Let’s Study Whole-Program Cache Behaviour Analytically

Xavier Vera
Institutionen for Datateknik
Malardalens Hogskola
Visteras, Sweden
xavier.vera@mdh.se

Abstract. Based on a new characterisation of data
reuse across multiple loop nests, we present a method,
a prototyping implementation and experimental re-
sults for analysing the cache behaviour of whole pro-
grams with regular computations. Validation against
cache simulation using real codes confirms the ef-
ficiency and accuracy of our method. The largest
program we have analysed, Applu from SPEC{p95,
has 3868 lines, 16 subroutines and 2565 references.
Assuming a 32KB cache with a 32B line size, our
method obtains the miss ratio with an absolute error
of about 0.8% in about 128 secs while the simulator
used runs for nearly 5 hours on a 933MHz Pentium
ITII PC. Our method can be used to guide compiler
locality optimisations and improve cache simulation
performance.

1 Introduction

Data caches are a key component to bridge the
increasing performance gap between processor and
main memory speeds. However, caches are effective
only when programs exhibit sufficient data locality in
their memory access patterns. Optimising compilers
attempt to apply loop transformations such as tiling
[2, 5, 13, 23, 25] and data transformations such as
padding [11, 12, 16, 17] to improve the cache per-
formance of a program. The models guiding these
transformations (in making an appropriate choice of
parameter values such as tile and padding sizes) are
mostly heuristic or approximate. Memory system de-
signers often use cache simulators to evaluate alterna-
tive design options. In both cases, a fast and accurate
assessment of a program’s cache behaviour at compile
time is useful in guiding compiler optimisations and
improving cache simulation performance.

In the past few years, some progress has been made
in the development of compile-time analytical meth-
ods for predicting cache behaviour. These include the
Cache Miss Equations (CMEs) [10], the probabilistic

*HPCA’02, pages 175 — 186, 2002. This work was carried
out during the 1st author’s visit to the 2nd author at UNSW.

*

Jingling Xue

School of Computer Science and Engineering

University of New South Wales
Sydney, NSW 2052, Australia

jxue@cse.unsw.edu.au

method described in [8] and the Presburger-formulas-
based method described in [3]. The underlying idea
is to set up mathematical formulas to provide a pre-
cise characterisation of the cache behaviour of a pro-
gram in the hope that, if these formulas can be solved
or manipulated efficiently, then the information gath-
ered such as the number or causes of cache misses can
be exploited for various performance-enhancing pur-
poses. However, the CMEs [10] and the probabilis-
tic method [8] are limited to analysing perfect loop
nests with straight-line assignments. The Presburger-
formulas-based method [3], which is capable of han-
dling multiple nests and IF conditionals, has been ap-
plied only to loop nests of small problem sizes with a
few references. Its feasibility in analysing larger loop
nests of realistic problem sizes remains to be seen.
Neither of these methods can handle call statements.
This paper presents an analytical method for pre-
dicting the cache behaviour of complete programs
with regular computations. By building primarily
on and extending Wolf and Lam’s framework [23] for
quantifying reuse and the CMEs for characterising
cache misses, we make the following contributions.

Reuse Analysis. By generalising traditional con-
cepts such as iteration vectors and uniformly
generated references for perfect loop nests, we
introduce reuse vectors for quantifying reuse be-
tween references contained in multiple nests.
Our reuse representation includes Wolf and
Lam’s reuse vectors [23] as a special case, al-
lowing potentially existing reuse-driven optimi-
sations to be applied to multiple nests.

Whole Program Analysis. We can handle pro-
grams with regular computations consisting of
subroutines, call statements, IF statements and
arbitrarily nested loops. In order to predict a
program’s cache behaviour statically, these pro-
grams must be free of data-dependent constructs
(e.g., variable bounds, data-dependent IF condi-
tionals, indirection arrays and recursive calls).

Prototyping Implementation. Our prototyping

system consist of components on normalising
loop nests, inlining calls (abstractly), generat-
ing reuse vectors, sampling memory accesses and
forming and solving equations for cache misses.

Whole Program Evaluation Results. We have
validated our method against cache simulation
using programs from SPECfp95, Perfect Suite,
Livermore kernels, Linpack and Lapack. We
include the results for three kernels and three
whole programs. The largest program we have
analysed, Applu from SPECfp95, has 3868 lines
of FORTRAN code, 16 subroutines and 2565 ref-
erences. Assuming a 32KB (directed, 2-way or 4-
way) cache with a 32B line size, our method ob-
tains the miss ratios with absolute errors (0.78%,
0.82% and 0.84%) in about 128 secs while the
cache simulation runs for nearly 5 hours on a
933MHz Pentium III PC. In comparison with
the three recent compile-time analytical meth-
ods [3, 8, 10], ours is the only one capable of
analysing this scale of programs efficiently with
accuracy.

The rest of this paper is organised as follows. Sec-
tion 2 defines the cache architectures used. Section 3
describes our program model, with a particular em-
phasis on abstract call inlining and our new repre-
sentation of reuse vectors for multiple nets. Section 4
outlines two algorithms for cache behaviour analysis.
Section 5 describes the structure of our prototyping
implementation. Section 6 contains some experimen-
tal results. Section 7 discusses the related work. Sec-
tion 8 concludes the paper and discusses future work.

2 Cache Model

We assume a uniprocessor with a k-way set associa-
tive data cache using LRU replacement. In the case
of write misses, we assume a fetch-on-write policy so
that writes and reads are modelled identically. In a
k-way set associative cache, a cache set contains k
distinct cache lines. C; and L, denote the cache size
and line size (in array elements), respectively.

A memory line refers to a cache-line-sized block in
the memory while a cache line refers to the actual
block in which a memory line is mapped.

3 Program Model

Presently, we restrict ourselves to analysing FOR-
TRAN programs with regular computations. We can
handle programs made up of subroutines consisting of

possibly IF statements, call statements and arbitrar-
ily nested loops. In order to predict at compile time a
program’s cache behaviour, the following restrictions
are imposed. All loop bounds and array subscript
expressions must be affine in terms of the enclosing
loops. All IF conditionals must be expressions con-
sisting of loop indices and compile-time known con-
stants. The base addresses of all non-register vari-
ables including actual parameters (scalars or arrays)
must be known at compile time. The sizes of an array
in all but the last dimension must be known statically.
Our program model excludes all and only data-
dependent constructs (e.g., variable bounds, data-
dependent IF conditionals and indirection arrays).

3.1 Loop Nest Normalisation

We normalise all loop nests to put a program into a
suitable form for analysis. During normalisation, we
apply loop sinking to move all statements into their
respective innermost loops by adding IF conditionals
appropriately [23, 24]. After normalisation, all loop
nests are n-dimensional, and, in addition, all loop
variables at depth k are normalised to I.

3.2 TIteration Vectors

A particular instance of a statement S (known as an
iteration or iteration point) of the enclosing loop nest
is identified by a 2n-dimensional iteration vector of
the form 7= (61, Il,ég, IQ, PN ;En; In); where

o L = (0y,0y,--- ,Ly,) is the loop label (vector) for
the innermost loop containing S, and

o« I'= (I, I, ..., I,) is the index vector consisting
of the indices of the n loops enclosing S.

Figure 1 lists the iteration vector for each state-
ment in the example. It is not difficult to see how
the iteration vectors are derived in general.

DOL =... Iteration Vector
DO Ih=...
Sl: B(Ig—l,.[l):--- (].,Il,].,IQ)
DO L, =...
52: :B(IQ,Il) (1,[1,2,[2)
DOLi=---
DO Ih=--.
S3:B(I1,I2) = (2,[1,1,[2)

Figure 1: The iteration vectors for statements.

As usual, the set of all iterations for a particular
loop nest is called the iteration space of that nest.

In a sequential execution, all iteration points are
executed in lexicographical order. The usual lexico-
graphic order operators <, <, > and > are used later.

3.3 Reference Iteration Spaces

The reference iteration space (RIS) of a reference R,
denoted RISg, is defined as the set of iteration points
where the reference is accessed. If a reference is not
guarded by a conditional, its RIS is the entire itera-
tion space of the enclosing loop nest. Otherwise, the
RIS can be a subspace of that iteration space.

We can handle any IF conditionals involving loop
indices and compile-time constants. For a dedicated
treatment of IF statements, we refer to [20].

3.4 Uniformly Generated References

After loop nest normalisation, I = (Iy, I, . .., I,) is
the index vector of all n-dimensional loop nests. The
concept of uniformly generated references for perfect
loop nests [9] can be carried over to multiple nests.
There are two uniformly generated reference sets in
Figure 1: {B(Iz - 1,]1),3(_[2,]1)} and {B(Il,Iz)}

3.5 Reuse Vectors

We generalise Wolf and Lam’s reuse framework [23,
25] to calculate reuse vectors for multiple nests. We
also add additional spatial reuse vectors to capture
the reuse spanning two adjacent columns of an array.

Let R, and R, be two uniformly generated refer-
ences (¢ stands for consumer and p for producer),
which may be contained in different nests. Let R, be
the producer A(M I+n7,) nested inside the innermost
loop labelled by (¢2, 65, --- ,¢F) and R, be the con-
sumer A(MT + ni,) nested inside the innermost loop
labelled by (£5,£5,--- ,£2), where I = (I, I, . .., I,).

Let & = (x1,Z2,...,Ty) be a solution to:
MZ = mp—ni. (1)
and
7= (0§ — 08, 21,05 — 08,20, ... LS, — (P 3p,)

such that 7; > 0. Then r; is a temporal reuse vector
from R, to R.. In addition, 7; represents self reuse if
R, and R, are identical and group reuse otherwise.
There are two kinds of spatial reuse vectors de-
pending on whether they span a single array column
or not. Those spanning a single column are derived
algebraically just like temporal reuse vectors.

In FORTRAN, all arrays are column-major. Let

¥ = (y1,Y2,---,yn) be a solution to:
|My§ — (my, —myg)| < L,

but not a solution to (1), where M; is the first row of
M, m,, (m}) is the first entry of m, (n.), and every
primed term is obtained from its corresponding term
in (1) with its first row or entry removed. Let

5£% - E%;yn)

such that 7; > 0. Then 7; is a spatial reuse vector
from R, to R.. In addition, 73 represents self reuse if
R, and R, are identical and group reuse otherwise.

If a memory line spans two adjacent columns of
an array, we will add spatial reuse vectors to capture
such reuse. The spatial reuse vectors of this second
kind are added individually depending on the itera-
tion space shapes and cache parameters used.

Let us derive reuse vectors for the first two ref-
erences to B in Figure 1. Let R, be B(I, — 1,I)
nested in the inner loop labelled by I:;, = (1,1) and
R. be B(I, I1) nested inside the inner loop labelled
by L. = (1,2). The subscript expressions for both
references are affine:

7o = (05 — 08, y1, 45 — 5, yo, . ..

MT + i,
MI + i,

+
+

(2] +[%"]
[12]+1[8]

In this case, the equation (1) becomes:

(96101 =[%']
which has the unique solution (0,—1). Thus, the
unique temporal reuse vector from B(I, — 1,1;) to

B(I,, 1) is (0,0,1,—1). To find the spatial reuse vec-
tors spanning a single column of B, we solve:

]
]

[1o][m] = 0

[o1][e]+1 < Ls

which is the instance of the equation (2) for
this case. Thus, all these spatial reuse vectors
have the form (0,ys2).
ator produces the following spatial reuse vectors
(0,0,1,-2),(0,0,1,-3),...,(0,0,1, —Ly).

Finally, our reuse vector generator will generate
(0,1,0,1 — N) to capture the reuse for the elements
at the end of one array column and the beginning of
the next column. This is illustrated in Figure 2.

If a reference is guarded by an IF conditional, its
RIS may not be the entire iteration space of the en-
closing loop nest. This causes complications only in

Our reuse vector gener-

R, accessed when (I1,I2) = (i1, N)

B(N*l,il) B(N,il) B(l,il + 1) B(2,’i1 + 1)

| |
' R accessed when (I, I2) = (i1 +1,1) '

I— One Memory Line —l

Figure 2: Spatial reuse across array columns (Ls=4).

the derivation of group temporal reuse vectors. The
self temporal and spatial reuse vectors for a reference
are defined and derived without a need to refer to its
RIS. As for the group reuse vectors from R, to R,
our implementation will generate all potential ones
conservatively. In the case of group temporal reuse,
there can be infinitely many reuse vectors to from
some facets of RISg, to some facets of RISg,. In
our implementation, these reuse vectors are ignored.
Our extensive validation reported in [20] confirm that
an overestimation of cache misses thus caused is neg-
ligible since (a) we overestimate only on some facets
of RISk, and (b) R, may reuse on the facets by other
reuse vectors (usually self reuse vectors).

3.6 Call Statements

In FORTRAN, all arguments are passed by reference.
In an attempt to analyse exactly a program contain-
ing call statements, we perform an abstract inlining
for a call whenever possible. We do not actually gen-
erate the inlined code. We only need to obtain the
information required for analysing the inlined code.
FEach subroutine is associated with an abstract func-
tion consisting of the information about the memory
accesses to the run-time stack, its code body (i.e.,
its loop nests with references), and local variable and
formal parameter declarations. As shown in Figure 3,
every call to a subroutine is abstractly inlined by re-
placing the call with the information in the abstract
function associated with the subroutine.

The calling conventions used for a program are
compiler- and architecture-dependent. Figure 3 de-
picts one such a convention for 32 bit machines.
Stack denotes the run-time stack modelled as a one-
dimensional array of an infinite size. If SP is 0 ini-
tially, its value is known at compile time at every call
site due to the absence of recursive calls. The base
address of Stack, if unknown at compile time, has to
be obtained at run time. Then Stack is treated just
like an ordinary array reference. For large programs,

Program Actual Parameters Calls
P-able | R-able | N-able Total | A-able
Tomcatv 0 0 0 0 0
swim 0 0 0 5 5
su2cor 503 87 0 150 150
hydro2d 122 0 19 82 82
mgrid 68 0 35 23 2
applu 79 0 0 23 23
apsi 1601 0 210 186 118
fppp 83 0 3 17 16
turb3D 759 0 75 111 86
waveb 591 2 110 171 127
CSS 2489 0 8 965 965
LWSI 140 0 19 28 18
MTSI 186 0 2 63 63
NASI 236 0 237 75 41
OCsI 620 0 48 244 209
SDSI 189 18 49 129 103
SMSI 321 0 41 53 38
SRSI 242 0 176 50 13
TFSI 137 0 91 44 13
WSSI 836 127 7 185 179
[TOTAL [[9202 [234 [1130 [[2604 [2251 |
[% [] 87.09 [221 [10.89 [100 [86.44 |

Table 1: Statistics for the actual parameters and calls
in SPECfp95 and Perfect benchmarks.

Stack[BP] = RetAddr
Stack[BP + 4] = QA
Stack[BP + 8] = @B
... = Stack[BP — 4]
CALL (A, B) = """ _ Giack[BP — 8]
f’s code body (with the formals
replaced by actuals or renamed)

RetAddr = Stack[BP — 12]

Figure 3: Abstract inlining of a subroutine call.

the impact of these stack accesses is insignificant.

Not every call can be inlined according to Table 1.
To analyse a call exactly, our method needs to know
at compile time the base addresses of all its actual
parameters. Let AP be an actual parameter that is
either a scalar or an array variable or a subscripted
variable with an affine data access expression and F'P
be its matching formal parameter.

AP is propagateable if, after inlining, every refer-
ence to F'P can be replaced by a reference to AP.
This allows the reuse to AP both in the caller and in
all the callees to be potentially exploited. In Column
“P-able”, we consider AP as propagateable if F'P is
a scalar, or an one-dimensional array or if both AP
and F'P are arrays of the same dimensionality with
matching sizes in all but the last dimension.

AP is renameable if, after inlining, every reference
to F'P can be replaced by a reference to AP’ such

that AP and AP’ have the same base address (i.e.,
@AP = @AP'"). The propagateable actuals are not
also classified as renameable. In Column “R-able”,
we consider AP as renameable if the sizes of all but
the last dimension for AP and F'P are known stat-
ically. This still allows the reuse between the refer-
ences to F'P in the same subroutine to be exploited.

In Column “N-able”, the actuals that are nei-
ther propagateable nor renameable, known as non-
analysable, are represented. The propagateable and
renameable actuals are potentially analysable since
all references to F'P can be analysable if affine.

A call can be abstractly inlined, i.e., is poten-
tially analysable, if all its actuals are analysable. Ta-
ble 1 shows that we can inline 86.44% of calls from
SPEC{p95 and Perfect benchmarks. These statistics
are obtained by examining only a call and its callee.

Figure 4 serves to illustrate the inlining of a code
segment, (which may have out of array bound accesses
if loop bounds are not chosen properly). The inlined
code does not compile but can be analysed by our
method. Hence, the name abstract inlining.

Finally, system calls (to I/O subroutines and in-
trinsic functions) are not inlined. The memory ac-
cesses inside are not accounted for. Theses calls can
be inlined if their abstract functions are known.

4 Cache Behaviour Analysis

There are two kinds of miss equations: compulsory or
cold (miss) equations and replacement (miss) equa-
tions. Cold misses represent the first time a memory
line is touched while replacement misses are those ac-
cesses that result in misses because the cache lines
that would have been reused were evicted from the
cache before they get reused.

4.1 Forming Equations

Let 7 be a reuse vector from the producer reference
R, to the consumer reference R.. We want to find out
if R. at iteration 7 can reuse the cache line accessed
by R, at ¥— 7. Let R; be an intervening reference
such that the access of R; at some iteration point 7
between 7’'—7 and ' may be mapped to the same cache
set as the access of R, at ¥— 7. If that happens, a set
contention occurs between the access of R, at o' —
and the access of R; at 7. In a k-way set associative
cache, it takes k distinct set contentions to evict the
cache line touched by the access of R, at ©— 7.

We give below the miss equations that can be fur-
ther analysed to determine if the access of R, at 7'is

REAL*8 X, A, B
DIMENSION A(10, 10), B(20, 20)
DO =...
DO I, =...
AL, o) = -+
CALL f(X, A, B, B(I1,12))
CALL g(A(IhI?):A(l:I?)aB)

SUBROUTINE f(Y,C, D, S)
REAL*8 Y,C,D,S
DIMENSION C(10, 10), D(400), S(10, 10, *)
DO I3=...
DOIy=...
C(I3,I4 — 1) = Y—|—D(13 — 1420 % (I4 71))
(I3, 14,2) = -

SUBROUTINE ¢(E, F,T)

REAL*8 E,F,T
DIMENSION E(10, 10), F'(10),T°(100, 4)
DO I3=...
DO I4=...
E(I3,14) = F(I4) — T(I3,14)

4

REAL*8 X, A, B, B1, B2
DIMENSION A(10,10), B(20, 20)
C THE FOLLOWING LINE DOES NOT COMPILE
DIMENSION B1(10, 10, *), B2(100, 4)
DOIL =...
DO I =...
AL, Ip) = -+
DOI3=...
Dols=...
A(I3,14—1) = X + B(I3—1+4 20 * (I4—1))
B1(I1 +10% (Ia — 1)+ I3 — 1,14,2) = - - -
DOI3=...
Dolys=...
A(Il—|—13—1,12—|—f4—1) = A(I4,Ig)—BQ(IS,I4)

Figure 4: Propagation and renaming of actual pa-
rameters. All actuals but the last are propagated.
The last actuals in both calls are renamed to Bl and
B2, respectively. After inlining, @B = QB1 = QB2.

a miss or hit, assuming the single reuse vector 7 from
R, to R, and the single intervening reference R;.
Mem_Lineg(?) (Cache_Setgr (7)) denotes the mem-
ory line (cache set) to which the memory address ac-
cessed by reference R at iteration 7’'is mapped.

4.1.1 Cold Equations

The cold equations for R, along 7 represent the iter-
ation points where the memory lines are brought to
the cache for the first time:

7€ RISg,
and
(7— 7 ¢ RISk,
or
Mem_Lineg. (7) # Mem_Liner, (V — 7))

If 7 is temporal, the inequality is false and thus re-
dundant.

Algorithm MissAnalyser
for each reference R
Sort its reuse vectors in increasing order <
Hr =0 // Hits for R
RMp =0 // Replacement misses for R
CMpg = S(R) // Cold misses for R initially
for each reuse vector 7 of R in the sorted list
C’M}2 = solutions of R’s cold miss along 7
for each 7€ (CMp — CMY,)
if 7 4s a "replacement” hit along 7
Hp = Hp U {7}

else
RMpr = RMgp U {i}
CMp = CM;{
Miss_Ratio(R) = [CMal | 3Mnl
> r |RISR|x Miss_Ratio(R)

Loop_Nest_M<iss_Ratio =

>R |RISR]

Algorithm FindMisses

for each reference R (in no particular order)
S(R) = RISg // analyse all points

MissAnalyser

Algorithm EstimateMisses
¢ is the confidence percentage from the user
w is the confidence interval from the user
for each reference R (in no particular order)
compute the volume of RISg
if RISR is too small to achieve (¢, w)
if RISR is large enough to achieve the default
(', w') = (90%,0.15)
S(R) = a sample (¢',w’) of RISk

else
S(R) = RISR // analyse all points
else
S(R) = a sample (c,w) of RISp
MissAnalyser

Figure 5: Two algorithms for computing the cache misses from the cold and replacement miss equations.

4.1.2 Replacement Equations

The replacement equations for R, along 7 are to in-
vestigate if R, at iteration 7 can reuse the cache line
that R, accessed at iteration 7 — 7 subject to the set
contentions caused by the memory accesses from R;
at all intervening points executed between 7—7 and 7

Mem _Liner, (1) = Mem_Liner, (v — 7)
7€ RISRC
7—7 € RIS,
Cache_Setr,.(7) = Cache_Setr;(])
JE€ Jr;

where Jg, denotes the set of all these intervening it-
eration points, called the interference set for R, along
7, and is specified precisely by:

Jr;, = {j€ RISk,

JTEKT-FT>}

where ‘<’ is ‘[” if R; is lexically after R, and ‘(’ oth-
erwise and >’ is [if R; is lexically before R, and
‘(’ otherwise.

4.2 Solving Equations

Figure 5 gives two algorithms for obtaining the cache
misses from a looping construct consisting of multi-
ple references and reuse vectors. Both FindMisses
and FEstimateMisses analyse each reference by going
through its reuse vectors in lexicographical order <.
If an iteration point is a solution to the cold equa-
tions along the current reuse vector 7, its behaviour
is indeterminate and will be examined further using
the other reuse vectors later in the list. Otherwise,
the iteration point is classified either as a hit or a
miss using the replacement equations along 7. Af-
ter all reuse vectors have been tried, the remaining
indeterminate iteration points are cold misses.

Our replacement equations represent only cache set
contentions. In a k-way set associative cache, it takes
k distinct cache set contentions to cause a cache line
to be evicted from the cache set. There will be a cache
miss only when k distinct solutions are found [10, 20].

FindMisses analyses all iteration points in a RIS
and is practical only for programs of small sizes [10,
20]. EstimateMisses analyses a sample of a RIS and
is capable of analysing programs significantly more
efficiently with a controlled degree of accuracy. For
technical details regarding ¢ and w, we refer to [6, 19].

We compute the volume of a RIS using an algo-
rithm discussed in [20]. Other methods for comput-
ing the volume of convex polytopes exist [4, 15].

5 Prototyping Implementation

Figure 6 depicts the structure of our prototyping sys-
tem for finding cache misses and validating the accu-
racy of our method against a cache simulator. The
component Opts optimises the program and allocates
variables to registers or memory. The reuse vectors,
the base addresses of variables and the relative ac-
cess order of memory references are obtained from
a load-store lower-level IR, which is produced from
the Polaris IR [7] of the program. The inlining com-
ponent is currently being implemented. The same
information obtained is fed to both our algorithms
and the cache simulator used.

6 Experiments

We present our results for three isolated kernels and
three whole programs. For a detailed evaluation of

Input Program

The Polaris IR
U instrumentation

[Opts] [Load/Store Level IR]
[Abstract Call Inlining]
Z
[Loop Nest Normalisation]
N

Obtaining Reuse Vectors, Base
addresses, and access order of refs

4

[Forming Eqs] [Cache Parameters]

}4 Slmulator

Figure 6: A framework for analysis and evaluation.

Solvmg Egs
F'mdM isses

EstzmateMzsses

codes consisting of IF statements, we refer to [20].

Unless otherwise specified, we assume a 32KB
cache with a 32B cache line size. The execution times
are all obtained on a 933MHz PentiumIII PC.

6.1 Multiple Loop Nest Kernels

We evaluate the accuracy of our method by compar-
ing FindMisses (which analyses all iteration points)
with a cache simulator. Table 2 presents the results
in both cases for caches of different associativities. In
all but one case, our method obtains exactly the same
miss ratio as the simulator. In the exceptional case,
we overestimate slightly the miss ratio by 0.05.
Figure 7 shows the three kernels used:

e Hydro is a 2-D explicit hydrodynamics from
Livermore (kernel 18). FindMisses and the sim-
ulator yield the same results in all cases.

e MGRID is a 3-D loop nest from MGRID. Again
FindMisses and the simulator agree on their re-
sults in all cache configurations.

e MMT is a 3-D blocked loop nest taken from
[8] that computes the matrix multiplication A
and B”. The two references to W B are not uni-
formly generated due to the transposition of B.
Being unable to exploit their reuse, FindMisses
over-estimates the cache miss ratios in all three

Abs. Execution

Program Cache | gror | Time (secs)
Hydro direct 0.05 0.27
(KN—JN=100) 2-way | 0.05 0.32
Z-way | 0.05 0.36
MGRID direct 0.36 0.19
_ 2-wa, 0.32 0.22

(M=100) Y

4-way 0.32 0.22
MMT direct 0.23 0.10
(B=BJ=100 & BK=50) | 2way | 0.37 0.10
4-way 0.37 0.11

Table 3: Cache misses from EstimateMisses for 32KB
caches with a 32B line size (¢ = 95% and w = 0.05).

cases slightly. Due to transposition, the degree of
reuse between the two references is rather mini-
mal. The inaccuracy lies in the incompleteness of
reuse information rather than our method iself.

Table 2 indicates that FindMisses, while being ca-
pable of finding exactly cache miss numbers, does so
at the expense of large execution times.

Table 3 shows the accuracy and efficiency of Esti-
mateMisses using a 95% confidence with an interval
of 0.05 for all references in the program. In all cases,
the absolute errors are less than 0.4 and the execu-
tion times less than 0.5 seconds. Note that Estimate-
Misses yields only the miss ratio for a program. The
actual miss ratio of each kernel is available in Table 2.

6.2 Whole Programs

We evaluate EstimateMisses against a simulator us-
ing three programs from SPEC{p95 detailed in Ta-
ble 4. In each case, we have succeeded in abstractly
inlining all the calls and obtained one loop nest for
the program. In addition, all actual parameters are
propagateable, meaning that the references to every
actual can be potentially exploited across calls. Since
our inlining component is not working yet, all calls
were inlined by hand. Each program is analysed using
the reference input data. Thus, the variables in all
READ statements are initialised from the reference
data and then treated as compile-time constants.

Table 5 presents the experimental results obtained.
For a scale of programs such as Applu, Estimate-
Misses obtains close to real miss ratios in about 128
seconds. This translates into a three orders of mag-
nitude speedup over the cache simulator used!

Our results are further discussed below.

Tomcatv from SPEC{p95. This example is used
to demonstrate the capability of of our method
in analysing real codes. The number of itera-
tions of the outermost loop is data-dependent.

PROGRAM Hydro
REAL*8 ZA, ZP, ZQ, ZR, ZM, ZB, ZU, ZV, 7ZZ

DIMENSION ZB(jn+1,kn+1), ZU(jn+1,kn+1), ZV(jn+1,kn+1), ZZ(jn+1,kn+1)
T= 0.003700D0
S=0.004100D0
DO k= 2,KN
DO j= 2,JN

ENDDO
ENDDO
DO k= 2,KN
DO j= 2,JN
ZU()= 2U (G 0+S* (ZA (B2 K)-LL(+ 1) LA (1 k)* (42 1)-22(5-1,)))
LB (), K)* (27)- 223 k-1)+ ZB(k-4 1) *(Z2(),k)-22(3k +1)))
ZV(jJ)= 2V (5,0 +S* (ZA (1)) *(ZR(1K)-ZR(+1,K))-ZA(-1k) *(ZR(,K)-ZR(j-1K))
ENDDO
ENDDO
DO k= 2,KN
DO j= 2,JN
ZR(j,k)= ZR(j,k)+T*ZU(j,k)
223, K)= 726+ TRZV (1)
ENDDO
ENDDO
END

DIMENSION ZA(jn+1,kn+1), ZP(jn+1,kn+1), ZQ(jn+1,kn+1), ZR(jn+1,kn+1), ZM(jn+1,kn+1))

ZA(j,k)=(ZP(j-1,k+1)+ZQ(j-1,k+1)-ZP (j-1,k)-Z2Q(j-1,k)) *(ZR(j,k)+ ZR (j-1,k)) /(ZM(j-1,k) + ZM(j-1,k+1))
ZB (.] ak): (ZP (j']-7k)+ZQ(j'1ak)_ZP(j5k)'ZQ (j’k))*(ZR(jak)+ZR(j’k‘1))/(ZM(j 5k)+ZM(j'17k))

PROGRAM MGRID
REAL*8 U,Z
DIMENSION U(M,M,M), Z(M,M,M)
DO 400 I3=2,M-1
DO 200 12=2,M-1
DO 100 11=2,M-1
U(2*11-1,2*12-1,2*13-1)=U(2*11-1,2*12-1,2*13-1)
+7(11,12,13)
100 CONTINUE

PROGRAM MMT
REAL*8 A, B, D, WB

DO J2 = 1,N,BJ
DO K2 = 1,N,BK
DO J=J2,J2+BJ-1
DO K=K2,K2+BK-1

DO 200 I1=2,M-1 ENDDO
U(2*11-2,2*12-1,2*13-1) =U(2*11-2,2*12-1,2*13-1) ENDDO
+0.5D0*(Z(11-1,12,13)+Z(I1,12,13)) DOI=1,N
200 CONTINUE DO K=K2,K2+BK-1
DO 400 12=2,M-1 RA=A(L,K)

DO 300 11=2,M-1
U(2¥11-1,2¥12-2,2%13-1) =T (2*11-1,2%12-2,2*13-1)
+0.5D0%(7(11,12-1,13)4+7(11,12,13))
300 CONTINUE

DO J=J2,J2+BJ-1
D(1,J)=D(L,J)+

DIMENSION A(N,N), B(N,N), D(N,N), WB(N.N)

WB(J-J2+1,K-K2+1)=B(K,J)

WB(J-J2+1,K-K2+1)*RA

DO 400 T1=2,M-1 ENDDO
U(2*11-2,2412-2,2*13-1)="U(2*11-2,2¥12-2,2*13-1) ENDDO
+0.25D0*(Z(11-1,12-1,13)+Z(I1-1,12,13) ENDDO
+Z(11, 12-1,I13)+Z(11, 12,13)) ENDDO
400 CONTINUE ENDDO
STOP END
Figure 7: Three kernels.
#Cache Misses %Loop Nest Miss Ratio | Abs. Execution
Program Cache g3 ulator | FindMisses | Simulator | FindMisses | Error | Time (secs)
Hydro direct 52603 52603 14.12 14.12 0.00 1.07
(KN=IN=100) -way 52603 52603 | 14.12 1412 0-00 1.35
4-way 42703 42703 11.47 11.47 0.00 1.64
MGRID direct 1518879 1518879 9.49 9.49 0.00 91.29
(M=100) 2-way 1424038 1424038 8.90 8.90 0.00 99.45
4-way 1424038 1424038 8.90 8.90 0.00 100.70
MMT direct 145671 147075 4.82 4.87 0.05 43.09
(N=BJ—100 & BK—50) | 2-Way | 171647 172592 | 5.68 5.71 0.03 47.06
4-way 246980 247744 8.18 8.20 0.02 57.44

Table 2: Cache miss ratios for 32KB caches with a 32B line size from FindMisses and a cache simulator.

| | Tomcatv | Swim | Applu | [N[IBI|[BK|[GCs [Ls [k]| Ap | Ag |

#lines 190 429 3868 200 | 100 | 100 | 16 | 8 | 2 | 6.23 | 0.1

#subroutines 1 6 16 200 | 100 | 100 | 256 16 | 2 2.73 0.5

F#call-statements 0 6 27 200 | 200 | 100 32 8 1 6.88 0.06

#references 79 52 2565 200 | 200 | 100 [128 | 8 | 2 | 2.86 | 0.05

200 | 200 | 100 | 128 | 32 | 2 | 44.25 | 16

200 | 50 | 200 | 16 | 4 | 1 | 4.62 | 0.05

Table 4: Three whole programs. 200 | 100 [200 | 32 | 8 | 2| 1251 | 0.1

200 | 100 | 200 | 64 | 16 | 1 | 3.31 | 0.4

Miss Ratio | Abs. || Exe.T || Sim.T 400 | 100 | 100 | 16 8 2 | 448 | 0.03

Program| Cache |[~gj - [E.M | Err || (secs) || (secs) 400 | 100 | 100 | 256 | 16 | 2 | 426 | 0.5

direct || 11.42 | 11.02 | 0.40 || 0.30 || 3676.2 400 | 200 | 100 | 32 | 8 | 1| 265 | 04

Tomcatv| 2-way || 11.40 | 11.0 | 0.40 || 0.37 || 3750.3 400 | 200 | 100 | 128 | 8 | 2 | 5.82 | 0.05

d-way || 1141 | 11.0 | 0.41 || 0.58 || 3860.2 400 | 200 | 100 | 128 | 32 | 2 | 44.68 | 16

direct || 7.26 | 7.0 | 0.25 || 2.47 || 8136.0 400 | 50 | 200 | 16 | 4 | 1 | 2.02 | 0.05

Swim | 2-way || 6.98 | 6.73 | 0.25 || 2.63 || 8281.1 400 | 100 | 200 | 32 8 | 2| 555 | 0.06

4-way || 7.24 | 6.97 | 0.27 3.23 || 8425.8 400 | 100 | 200 | 64 | 16 | 1 | 7.12 0.3

direct || 6.95 | 7.73 | 0.78 || 127.31 || 17089
Applu | 2-way || 6.60 | 7.42 | 0.82 || 127.6 || 17155

4-way || 6.56 | 7.40 | 0.84 [| 127.5 || 17278 Table 6: Comparison with Fraguela et al’s probabilis-

Table 5: Cache misses from EstimateMisses for 32KB
caches with a 32B line size (¢ = 95% and w = 0.05).

For the reference input data used, the outermost
loop runs for 750 iterations. The only data-
dependent IF conditional in the program is al-
ways false. The memory accesses contained in
this conditional are included in our analysis.

Swim from SPECfp95. This
strates that we can analyse codes consisting
of call statements. All calls are parameterless.
The outermost loop is an IF-GOTO construct,
which has been converted into a DO statement.

example demon-

Applu from SPECfp95. This shows that our
method is capable of analysing this scale of pro-
grams efficiently with a good degree of accuracy.
All actual parameters are propagateable. In sub-
routine SSOR, there are some data-dependent
constructs. All but one are guarded by a IF
branch that is false at compile time and are
thus ignored. The remaining data-dependent IF
construct is a WRITE statement for a register-
allocated scalar. The memory accesses in this IF
conditional are included in our analysis.

7 Related Work

We review in detail the three recent compile-time
analytical methods for predicting cache behaviour
[3, 8, 10]. For a survey on trace-driven simulation,
see [18]. Recently, Weikle et al [21] introduce a trace-
based idea of viewing caches as filters. Their frame-
work can potentially handle any programs consisting
of any pattern of memory references.

tic method using MMT. A, denotes the relative er-
ror between the estimated and real miss ratios for the
probabilistic method and A g for our EstimateMisses.

Ghosh et al [10] present their seminal work on using
the CMEs to analyse statically a program’s cache be-
haviour. This framework is targeted at isolated per-
fect nests consisting of straight-line assignments by
emploiting only the reuse vectors between uniformly
generated references in the same nest. They show
that the CMEs can provide insights in choosing ap-
propriate tile and padding sizes. Since analysing all
iteration points is costly, an efficient implementation
of the CMEs based on polyhedral theory and statis-
tical sampling techniques is discussed in [1, 19].

Fraguela et al [8] rely on a probabilistic analytical
method to provide a fast estimation of cache misses.
While allowing multiple nests, they exploit only the
reuse between references contained in the same nest
(as can also be done in the CMEs.) These refer-
ences differ by constants in their matching dimen-
sions, forming a subset of uniformly generated ref-
erences considered in the CMEs. Their experimen-
tal results using three examples indicate that their
method can achieve a good degree of accuracy in es-
timating cache misses for perfect nests. Their two
perfect nest examples can be analysed by the CMEs
and are not compared here. The other one is a 3-
D blocked imperfect nest computing ABT (named
MMT in Figure 7). Table 6 compares their method
with ours. Our EstimateMisses produces better re-
sults in all cases. The two largest relative errors occur
since the total number of misses is small.

Chatterjee et al[3] present an ambitious method for
ezactly modelling the cache behaviour of loop nests.
They use Presburguer formulas to specify a program’s

cache misses, the Omega Calculator [14] to simplify
the formulas, PolyLib [22] to obtain an indiscrimi-
nating union of polytopes, and finally, Ehrhart poly-
nomials to count the number of integer points (i.e.,
misses) in each polytope [4]. They can formulate
Presburger formulas for a looping structure consist-
ing of imperfect nests, IF statements, references with
affine accesses and non-linear data layouts. That is,
they are not restricted to uniformly generated refer-
ences and linear array layouts. When solving their
formulas, they provide only the cache miss numbers
for 20 x 20 and 21 x 21 matrix multiplication without
giving any execution times. In the case of matrix-
vector product, they give Presburger formulas for
N = 100 but did not solve them.

Exact analysis is undoubtedly useful but can be
too costly for realistic codes to be of any use in guid-
ing compiler optimisations to improve performance.
FindMisses can be exact if all necessary reuse vec-
tors are used. Our current implementation exploits
only the reuse among uniformly generated references.
One future work is to derive systematically the reuse
vectors for non-uniformly generated references.

Neither of the three methods discussed above can
handle call statements. In comparison with these ex-
isting techniques, our method can analyse complete
regular programs efficiently with accuracy.

8 Conclusions

We have introduced a new characterisation of reuse
vectors for quantifying reuse across multiple nests.
Based on these reuse vectors, we have developed an
analytical method for statically predicting the cache
behaviour of complete programs with regular compu-
tations. We outlined two algorithms for computing
cache misses. FindMisses analyses all iteration points
and can predict exactly the cache misses for pro-
grams of small problem sizes. EstimateMisses analy-
ses a sample of all memory accesses and can achieve
close to real cache miss ratios in practical cases effi-
ciently. The experimental results obtained for three
kernels and three whole programs (one of which is
Applu from SPEC{p95 with 3868 lines, 16 subrou-
tines and 2565 references) confirm the efficiency and
accuracy of our method. Our method can be used to
guide compiler optimisations and improve the speeds
of cache simulators.

While this work represents a step towards an au-
tomatic analysis of whole programs, data-dependent
constructs (e.g., variable bounds, data-dependent IF
conditionals and indirection arrays) are still non-

10

analysable. We plan to investigate techniques for
their analysis. To go beyond FORTRAN, we need
to cope with pointer constructs and recursive calls.

Acknowledgements

This work has been supported by an Australian Re-
search Council Grant A10007149.

[1] Nerina Bermudo, Xavier Vera, Antonio Gonzalez, and Josep Llosa. Op-
timizing cache miss equations polyhedra. In jth Workshop on Interaction.
between Compilers and Computer Architecture (Interact), 2000.

[2] S. Carr and K. Kennedy. Compiler blockability of numerical algorithms.
In Proc. Supercomputing '92, Nov. 1992.

[3] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis
of the cache behavior of nested loops. In ACM SIGPLAN’01 Conference on
Programming Language Design and Implementation (PLDI’01), 2001.

[4] P. Clauss. Counting solutions to linear and non-linear constraints
through ehrhart polynomials. In ACM International Conference on Super-
computing (ICS’96), pages 278—285, Philadelphia, 1996.

S. Coleman and K. S. McKinley. Tile size selection using cache orga-
nization and data layout. In ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation (PLDI’95), pages 279-290, June 1995.

M.H. DeGroot. Probability and statistics. Addison-Wesley, 1998.

K. A. Faigin, J. P. Hoeflinger, D. A. Padua, P. M. Petersen, and S. A.
Weatherford. The Polaris internal representation. International Journal of
Parallel Programming, 22(5):553—586, Oct. 1994.

[8] B.B. Fraguela, R. Doallo, and E. L. Zapata. Automatic analytical mod-
eling for the estimation of cache misses. In International Conference on
Parallel Architectures and C\ Techniques (PACT’99), 1999.

[9] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and lo-
cal memory management by global program transformations. Journal of
Parallel and Distributed Computing, 5:587—616, 1988.

[10] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler
framework for analyzing and tuning memory behavior. ACM Transactions
on Programming Languages and Systems, 21(4):703-746, 1999.

[11] S. Chatterjee V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thot-
tethodi. Nonlinear array layout for hierarchical memory systems. In
Procs. of Int. Conf. on Supercomputing (ICS’99), pages 444—453, Rhodes,
Greece, June 1999.

[12] M. Kandemir, A. Choudhary, P. Banerjee, and J. Ramanujam. A linear
algebra framework for automatic determination of optimal data layouts.
IEEE Transactions on Parallel and Distributed Systems, 10(2):115-135, Feb.
1999.

[13] M. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance of
blocked algorithms. In Proc. Fourth Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, Apr. 1991.

[14] W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. In Communications of the ACM, 1992.
[15] W. Pugh. Counting solutions to Presburger formulas: how and why. In
ACM SIGPLAN’9; Conference on Programming Language Design and Implemen-
tation (PLDI'9}), pages 121-134, 1994.

[16] G. Rivera and C-W. Tseng. Data transformations for eliminating con-
flict misses. In ACM SIGPLAN’98 Conference on Programming Language Design
and Implementation (PLDI’98), pages 38—49, 1998.

[17] O. Temam, E.D. Granston, and W. Jalby. To copy or not to copy: A
compile-time technique for assesing when data copying should be used to
eliminate cache conflicts. In Procs. of Supercomputing Conf. (SC’93), pages
410-419, 1993.

[18] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation: a sur-
vey. ACM Computing Surveys, 29(3):128-170, Sept. 1997.

[19] X. Vera, J. Llosa, A. Gonzélez, and N. Bermudo.
approach to analyze cache memory behavior. In European Conference on
Parallel Computing (Europar’00), 2000.

A fast and accurate

[20] X. Vera and J. Xue. Analysing cache behaviour for programs with if
statements. Technical Report UNSW-CSE-TRO0107, University of New
South Wales, May 2001.

[21] D. A. B. Weikle, K. Skadron, , S. A. McKee, and W. A. Wulf. Cache as
filters:a unifying model for memory hierarchy analysis. Technical Report
CS-2000-16, University of Virginia, June 2000.

[22] D.K.Wilde. A library for doing polyhedral operations. Technical report,
Oregon State University, 1993.

[23] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In ACM
SIGPLAN’91 Conference on Programming Language Design and Implementation
(PLDI’91), pages 30—44, Toronto, Ont., Jun. 1991.

[24] J. Xue. Unimodular transformations of non-perfectly nested loops. Par-
allel Computing, 22(12):1621-1645, 1997.

[25] J. Xue and C.-H. Huang. Reuse-driven tiling for data locality. Interna-
tional Journal of Parallel Programming, 26(6):671-696, 1998.

