
EIGENVECTORS-BASED PARALLELISATION OF NESTED LOOPS
WITH AFFINE DEPENDENCES

Patrick Lenders and Jingling Xue
School of Mathematical and Computer Science

University of New England, Armidale, NSW 2351, Australia

This paper is concerned with parallelising a special class of nested loops with affine depen-
dences. The data dependences of the program are captured in aso-called dependence matrix.
Based on the eigenvalues and eigenvectors of this matrix, the proposed approach can generate
a greater degree of

��� ��
parallelism than traditional unimodular transformations.

1 Introduction

Although many compiler techniques (including the well-known unimodular trans-
formations) have been developed

� �� �� �� �	 �
 �� �� �
 ��� ���
, the ��� �� parallelisation for

nested loops with affine dependences remains a challenging task. This paper is con-
cerned with parallelising nested loops with affine dependences. We restrict ourselves
to doubly nested loops, although our method can be generalised to any�-dimensional
nested loops. Our method is based on the concept of eigenvalues and eigenvectors
that are derived from the dependence structures of the program. In comparison with
the unimodular approach, our method can find a greater degreeof parallelism for a
special class of nested loops. However, our method may fail where the unimodular
approach succeeds (Section 3).

Section 2 describes the program model and our formalism for characterising the
data dependences in a program. Section 3 presents our methodfor parallelising loops
with affine dependences. Section 4 concludes the paper.

2 Program Model

This paper considers doubly nested loops of the form (in the style of C):�� ��� � � �� � � � � �� � � � � ���� ��� � � �� � � � � �� � � � � �� �! �� �� � " � �# �� �� $ % % % �
where

� � �� � $ � � � is a point in theiteration space, which is the set of points satisfying& � �� � � � � � � ' �� � � � � ��, and! and
#

are affine functions of loop variables:! �� � � (� � � and
�� � �) � � * , where($) + ,,� -� and� $ * + ,,� .

The two array references can access the same element of

at two different iter-
ations. Thus, there is a dependence between point

�
and point. �� � (if such a point is

in the iteration space) such that. �� � � # /� �! �� ��. In the case of affine dependences,
we have the followingdependence function:

. �� � �) /�(� �) /� �� 0 * � � 1� � 2
where the matrix1 is called thedependence matrix. This dependence is represented
by the difference between the followingrelative dependence function:3 �� � � . �� � 0 � � �1 0 4 �� � 2

Let us relate our dependence abstraction with the usual dependence vector ab-
straction

�
, 3 �� � is a flow or true dependenceoriginating at

�
and sinking at. �� � if3 �� � � �, and ananti-dependenceoriginating at. �� � and sinking at

�
if 3 �� � � �. In

the case when3 �� � � �, . �� � is said todependon
�
, and this dependence is charac-

terised by the dependence vector3 �� �. When3 �� � � �,
�

is said to(anti-) dependon
. �� �, and this dependence is characterised by the dependence vector 03 �� �. When
representing dependences in the iteration space, a flow dependence is drawn with a
solid arrow and an anti-dependence with a dashed arrow. In both cases, the point at
the arrow head always depends on the point at the arrow tail.

Thus, all dependence vectors in the iteration space are lexicographically positive.
According to the lexicographic sign of3 �� �, the iteration space is divided into:� � � � � � �	
 � � � � � ��
 �	
 � � � �
 �	
 � � � � � �	
 � �
� � � � � �	
 � � � � � ��
 �	
 � � � �
 �	
 � � � � � �	
 � �
�� � � � � �	
 � � � � � �
 �	
 � � � � � �	
 � �

where the dependence vectors contained in
&�

(
&

) are all flow dependences (anti-
dependences), and the points in

&� are all mutually independent of each other.
The following lemma identifies the nature of dependences between the three re-

gions
&�

,
&

and
&� and provides an ordering to schedule them for execution.

Lemma 1 (a) All (flow or anti-) dependences spanning across
&�

and
&

originate
from

&�
and terminate at

&
. (b) All points of

&� are independent of each other and,
if 1 is nonsingular, these points are also independent of those in

&�
and

&
.

Let us use an example to illustrate the concepts introduced so far.
Example 1 Consider a double loop:�� � �	
 � �� � 	
 � � � 	
 � �
�� � �	 � � �� � 	 � � � � 	 � � �
� ��	
 � �	 � � � 	
 � �	 �
 � ! " � �	
 � 	 � 	 � � #

The array subscript functions! and

#
are:$ �	
 � % 	 � & � '� �# �(� '���() �	
 � * 	 � + � '# #� #(� '�#(

The dependence function. is:, �	
 � -	 � . � ' � ## � (� ' �!� # (
The eigenvalues of1 are 2 and 4, corresponding to the eigenvectors

�/ $ 0 /� and�/ $ /�, respectively. The relative dependence function3 is:
3 �� � � �1 0 4 �� � 2 � 0 1 // 1 2 � � 0 010 / 2

The two lines3� �� � � � and3� �� � � � separate the iteration space into the three
regions

&�
,
&

and
&� , as depicted in Fig. 1.

&� � 3 �/ $ � �4, and
&�

has both flow
dependences and anti-dependences originating from it and terminating at

&
.

3 Eigenvectors-Based��� �� Parallelisation

Two assumptions are made about the dependence matrix1 .

1 1 must have rational eigenvalues, ensuring that the corresponding eigenvectors
are integer vectors and can be used to generate��� �� parallelism.

� �

� �
&�
&� &� � 3 �/ $ ��4

3 � �� � � �

3� �� � � �
�

Figure 1: The iteration space of Example 1 (� � ��).

2 1 must be nonsingular, implying that both(and) are nonsingular. In this
case, the program has a single assignment semantics. That is, every array
element is written (or read) at most once. Thus, the dependence function
. �� � � 1� � 2 captures all dependences involving both

 �! �� �� and
 �# �� ��.

Next, we provide a quick outline of our method. Anexecution ordering� is a
partial order on the iteration space

&
, where� � � means that iteration� is executed

before iteration�. An execution ordering for a program islegal if it preserves the
data dependences of the program. In other words, any ordering that does not schedule
an iteration before all its dependent iterations have been executed is legal. In our
formalism, this idea translates into the following definition.
Definition 1 (Legality of Execution Ordering) An execution ordering� on

&
is

legal if � � + &� 	 � � . �� � and� � + & 	 . �� � � �
.

Note that by Lemma 1, the points of
&� can be executed in any order.

To generate��� �� parallelism from a program, we proceed as follows.
1 We apply a unimodular transformation to the iteration space (Section 3.1):
 	 & 0� & � $
���� � � �
 �

such that in thetransformed space
& �

, the dependence function becomes:
. � �� � � � 1 �� � � 2 �

where1 �
is lower triangular.Unlike the unimodular approach,

usually does

not preserve the data dependences of the program in the traditional sense
�

. In
other words,

 3 �� � (0
 3 �� �) for a dependence vector3 �� � (03 �� �) such that� + &�
(
� + &) can be either lexicographically positive or negative.

2 We analyse the data dependences in the transformed space and detect the par-
allelism inherent in the original program (Section 3.2).

3 We generate the parallel code of the form (Section 3.3):

PAR
code(

� ��
)

SEQ
code(

� ��
)

code(
� �

)

(1)

where the two constructs�� � and ��� are borrowed fromOccam
��

. The
order for executing the three regions follows from Lemma 1. The points of

&�
are independent, socode(

&� � will not be discussed any further. In Section 3.3,
we describe how to constructcode(

& ��
) and code(

& �
) with explicit ��� ��

parallelism while preserving the data dependences of the original program.

Theorem 1 The execution ordering� induced by the code in (1) is legal if� � � +& �� 	 � � � . � �� �� and� � � + & � 	 . � �� � � � � �
.

3.1 Loop Transformation: Triangularisation

In this section, we present the technique used to transform the iteration space in order
to have a lower triangular dependence matrix. Let

be a unimodular transforma-

tion from the original iteration space to the transformed space. Thus the point
� �

in
the transformed space is

� � �
 �
. The new array subscript functions! � and

�
are! � �� � � � ! �
 /�� � � and

� �� � � � # �
 /�� ��. Thus the new dependence function is
. � �� � � � # �/� �! � �� � �� �
 �# /� �! �
 /�� � ��� �
 �. �
 /�� � ��. In the case of affine
dependencies, we have:

. � �� � � = 1 �� � � 2 � �
 1
 /�� � �
 2
and the relative dependence function becomes:3 � �� �� � �1 � 0 4 �� � � 2 � � �
 1
 /� 0 4 �� � �
 2
In the transformed space, the two lines separating it into the three regions

& ��
,
& �

and&� of different lexicographic signs become:3� �
 /�� � � � � and3� �
 /�� �� � �.
Based on the eigenvectors of1 , we provide a constructive approach to finding a

unimodular transformation

such that1 � �
 1
 /�
is a lower triangular matrix.

Theorem 2 Let � � and �� be the two rational eigenvalues of1 , and * � and *� be
the two corresponding (normalised) integer eigenvectors.Let � $ � + ,, be such that
 /� � �	
� �
�
� �� � is unimodular. Then1 � �
 1
 /� � ��
 �� �� �, where� + ,,.
It can be shown that1 �

has the same eigenvalues� � and�� as1 , which correspond
to the two eigenvectors

 * � and

 *� � �� $ /�, respectively.

The eigenvector*� in this theorem is called theparallelising eigenvector. Our
intention is to execute in the iteration space concurrentlyall points in a line parallel to*� . In the transformed space,*� becomes

 *� � �� $ /�. Therefore, we are essentially
attempting to execute in the transformed space all points ina vertical line in parallel.
This corresponds to wavefronting the transformed space along directions� �/ $ ��.
Example 2 In Example 1, we choose

�/ $ 0 /� as the parallelising eigenvector:

 �
 /� � 0 / /� 0 / 2

The new dependence function is calculated to be as follows:

. � �� � � � 0 � �
0 / 1 2 � � � 0 0�/ 2

Fig. 2 depicts the transformed space of the original iteration space in Fig. 1. Note that
some dependences are lexicographically positive and some negative.

1

�

�

�

�

3� �
 /�� �� � �

3� �
 /�� �� � �
� ��

� ��

& �� � 3 $� $� 4
& � � 3� $ � $ 1 4�& �� � 3 �/ $ � �4

3� �
 /�� �� � 1� �� � � �� 0 1 � �
3� �
 /�� � � � � �� 0 � �� 0 / � �

�

Figure 2: Transformed space of Fig. 1 (� � ��). The division of the transformed space into six regions� � � �� � � � 	
and
 as highlighted will be explained in the case when�
 � �.

3.2 Parallelism Detection

In this section, we analyze the cross-iteration dependencies in the transformed space
and detect the parallelism inherent in the program. We shallmake use of the depen-
dence function and relative dependence function in the transformed space:, � �	 �
 � ', �
 �	 �
, �� �	 �
(� '

 �

�
�(� � '. �
. ��(� � �	 �
 � '� �
 �	 �
� �� �	 �
(� '

�# �
�
��#(� � ' . �
. �� (

Theorem 3 Let � � be a line parallel to an eigenvector* of 1 �
. The set of points

depending on any point of� � is on a line,� �, parallel to� �.
This theorem suggests the following parallelization of thetransformed space. All

points on a line parallel to an eigenvector are executed concurrently, then all points
on the next line parallel to the same eigenvector are executed concurrently, and so
on. This eigenvector is referred to as the parallelising eigenvector in Section 3.1. In
Theorem 2, by using

to transform the iteration space, we have implicitly assumed

to use*� as the parallelising eigenvector. In the transformed space. *� becomes
 *� � �� $ /�. Thus, our intention is to execute all points in a vertical line in parallel.
A vertical line is called aself-dependent(vertical) line if all points on the line

depend only on the points on the same line.
The following theorem characterises all self-dependent vertical lines in the trans-

formed space. This is a special case of Theorem 3 when� � and� � are co-linear.
Theorem 4 Consider the transformed space. If� � �� �,

� �� � 02 ��� �� � 0 /� is
the only self-dependent vertical line. If� � � /

and 2 �� � �, all vertical lines are
self-dependent. If� � � /

and2 �� �� �, there are no self-dependent vertical lines.
When� � �� �, there is only one self-dependent vertical line

� �� � 02 ��� �� � 0 /�.
All dependences originating at one side of this line always sink at the same (opposite)
side of the line if� � � � (� � � �).
Theorem 5 Assume� � �� �. Let

� �
be a point in the transformed space not on the

self-dependent line
� �� � 02 ��� �� � 0 /�. Then,

� �
and . � �� � � are on the same side of

the line
� �� � 02 ��� �� � 0 /� if � � � � and on the opposite side if� � � �.

We do not consider the case� � � � because it implies1 is singular. In this case,
all dependences originating at one side of the line

� �� � 02 ��� �� � 0 /� sink on the line.

3.3 Loop Transformation: Parallelisation

In the last section we introduced parallelism detection techniques to identify sets (or
lines) of independent iterations. In this section we use these techniques to generate
code with explicit��� �� parallelism to execute the transformed space. Specifically,
we discuss how to construct���� �& �� � and���� �& �� as given in (1).

Our objective is to execute in the transformed space as many vertical lines in a
single step as possible. We distinguish a total of six cases:(1) � � � /

, (2) � � � � � /
,

(3) � � � /
, (4) � � � 0 /

, (5) 0 / � � � � �, and (6)� � � 0 /
.

�� � � An example is used to illustrate the basic idea only. Consider the trans-
formed space depicted in Fig. 2 from Example 2. The dependence function in the
transformed space is given in Example 2. When� � � /

, Theorem 4 suggests that
there is only one self-dependent line among all vertical lines. In the current example,
the self-dependent line is

� �� � /
. Depending on whether a point is in the half space� �� � /

, on the line
� �� � /

, or in the half space
� �� � /

, we divide
& ��

(
& �

) into the
three regions

,
�

and
�

(
�

, 1 and
�

) as illustrated in Fig. 2.
The parallel code for both

& ��
and

& �
is as follows:

���� �� ��

: �	

���� ��
 � �� ��� � ! � � � !� � � � �� � �
�� �
 ���	 �
 � � � 	 �
 � � �� ��� � � !�
� 	 �
 � �
�� �
 ���	 �� � ��� ��!	 �
 � ! ��
� 	 �� � �	 �
 � � � 	 �� � �
� ��	 �
 � � 	 �
 � !	 ��
 � ! " � �	 �
 �	 �� � #

���� ��
 � �� ��� � � � � � ����� � � � � �� � �
�� �
 ���	 �
 � � � 	 �
 � ��� ��� � ! ����� �
 � 	 �
 � �
�� �
 ���	 �� � �!	 �
 � � � 	 �� � � � 	 �� � �
� ��	 �
 � � 	 �
 � !	 ��
 � ! " � �	 �
 �	 �� � #

���� ��
 � �� ��� � #� � � � � � � !�

/
" 	 �
 � # "

/�� �
 ���	 �� � � � 	 �� � � �� �!� � # �
� 	 �� � �
� �# # � !	 ��
 � ! " � �# �	 �� � #
 ���� �� �
 � �	

���� ��
 � �� ��� � �� �
� � � � � ! � � � ���� �
�� �
 ���	 �
 � � � 	 �
 � ��� � ���� � � # !
 � 	 �
 � �
�� �
 ���	 �� � �� � 	 �� � # � !	 �
 � 	 �� � �
� ��	 �
 � � 	 �
 � !	 ��
 � ! " � �	 �
 �	 �� � #

���� �-
 � �� ��� � �!� � � � � � � � ���� �
�� �
 ���	 �
 � � � 	 �
 � � �� � ���� � � # �
 � 	 �
 � �
�� �
 ���	 �� � �	 �
 � � � 	 �� � � �� ��!	 �
 � ! �
 � 	 �� � �
� ��	 �
 � � 	 �
 � !	 ��
 � ! " � �	 �
 �	 �� � #

���� �!
 � �� ��� � �� � � � � #� � � � �� �

/
" 	 �
 � # "

/�� �
 ���	 �� � � � 	 �� � � �� � � �� � � # � #
 � 	 �� � �
� �# # � !	 ��
 � ! " � �# �	 �� � #

Unlike the existing unimodular approach
�� �� ��

, our eigenvector-based method
schedules far more hyperplanes of iterations of loop

� �� for concurrent execution.� � �� � � This is the opposite of the case when� � � /
. By Theorem 4, all flow

dependences in
& ��

are pointing toward the self-dependent line
� �� � 02 ��� �� � 0 /�

while all anti-dependences in
& �

are pointing away from this line. Thus,
& ��

(
& �

) in
this case can be parallelised in the same way as

& �
(
& ��

) in the case when� � � /
.

As an example, consider a double loop derived from Example 1 with the two
references swapped. The dependence function is the inverseof the one in Example 1:

. �� � � 1� � 2 � 0 ��� 0 /��
0 /�� ��� 2 � � 0 ���/�� 21 has the eigenvalues1�� and ���, corresponding to the eigenvectors

�/ $ /� and�/ $ 0 /�, respectively. With the

in Example 2, we obtain the dependence function:

. � �� � � � 1 �� � � 2 � � 0 1�� �/�� ��� 2 � � � 0 ���
0 /�� 2

in the transformed space as in Fig. 2. So���� �& �� � and���� �& �� are the same as their
counterparts in Example 1 but with loop� reversed and loop

� �� modified accordingly.

�� � � We have3 �� �� � � � �� � 0 /�� �� � 2 �� � 2 ��. We distinguish two cases by
generating outer��� �� parallelism if2 �� � � and inner��� �� parallelism if2 �� �� �.

The analysis of both cases are based on Theorem 4. If2 �� � �, all dependences
in the transformed space are of the form

�� $ ��. Thus, all vertical lines in
& ��

(
& �

) can
be executed independently of each other. A vertical line canbe further parallelised
just like

�
and

�
in Fig. 2 was parallelised.

If 2 �� �� �, all (flow) dependences in
& ��

have the form
�2 �� $ �� while all (anti)

dependences in
& �

have the form
�02 �� $ ��. We can generate inner��� �� parallelism

by wavefronting
& ��

(
& �

) along direction
�2 �� $ �� (

�02 �� $ ��) with �2 �� � consecutive
lines (or waves) being executed in parallel.

&�
&
&� � �

�
 �	
 � �!	
 � 	 � � # � �
� �

� � � �
 �� 	 �
 � �!	 �
 � �	 �� � # � �� ��
0� ��

Fig. 3. The iteration space of Example 3.Fig. 4. The transformed space of Fig. 4 using	 in Example 2.

Example 3 Consider the following example from
��

, where
 was set to 1000:�� � �	
 � #� 	
 � � � 	
 � �
�� � �	 � � #� 	 � � � � 	 � � �
� �	
 � 	 � �	
 � 	 � � �
 � ! " � �	
 � 	 � � # 	
 � !	 � � �

The dependence function is:

. �� � � 0 0 / /1 � 2 � � 0 0 /� 2

The eigenvalues of1 are
/

and01, corresponding to the eigenvectors
�/ $ 0 /� and�/ $ 1�, respectively. Since1 0 4 is singular and���� �1 0 4 $ 2� � 1, we have

&� � �.&�
contains all iterations in the half space3 � �� � � 01� � � � � 0 / � �, and

&
contains all iterations in the opposite half space3� �� � � 01� � � � � 0 / � � (Fig. 3).

With
�/ $ 0 /� chosen as the parallelising eigenvector, we apply the

given in Ex-

ample 2 to transform the iteration space. The dependence function in the transformed
space as shown Fig. 4 is:

. � �� � � � 0 / �
01 01 2 � � � 0 0 /� 2

We wavefront
& ��

and
& �

along
�0 / $ �� and

�/ $ ��, respectively:

���� �� ��
 ��� � �	 �
 � ��� ��� � � 	 �
 � � � 	 �
 � �
�� �
 ���	 �� � ��� �# � 	 �
 ��
� 	 �� � ������
� � � 	 �� � �
� �	 �
 �	 �
 � !	 �� � �
 � ! " � �	 �
 � # 	 �
 � 	 �� � �

���� �� �
 � �� � �	 �
 � ! � 	 �
 � !� � 	 �
 � �
�� �
 ���	 �� � ��� �# �	 �
 ���� �
�

� � ��
� 	 �� � � �� �� # � �	 �

 � 	 �� ��
� �	 �
 �	 �
 � !	 �� � �
 � ! " � �	 �
 � # 	 �
 � 	 �� � �

�� � 0� By Theorem 4,
� �� � 02 �� � �� � 0 /� is the only self-dependent vertical line.

Let
� �� � � be the vertical line closest to

� �� � 02 ��� �� � 0 /� such that��02 ��� �� � 0 /� �
is an integer.

To parallelise
& ��

, we divide it into two regions:

contains the points on
� �� �

02 ��� �� � 0 /� and
�

contains the points not on
� �� � 02 ��� �� � 0 /�. By Theorem 4,

and

�
are independent. By Theorem 5, all dependences in

�
cross the self-dependent

line
� �� � 02 ��� �� � 0 /�. The parallelisation of

�
is the following. At any single step

we execute in parallel two strips of vertical lines that are symmetrical with the line� �� � 02 ��� �� � 0 /�:
Step 1:

��� � 0 �
�
�
/� $ 0� 0 �

�
�
/� � 	� 0 �
�
�
/� $ 0�� � 0 �

�
�
/� �
Step 2:

�0���� 0 �
�
�
/� $ �� � 0 �

�
�
/� � 	0�� � 0 �
�
�
/� $ ��

�� 0 �
�
�
/� �

Step 3:
����� 0 �

�
�
/� $ 0���� 0 �
�
�
/� � 	���� 0 �

�
�
/� $ 0���� 0 �
�
�
/� �

where
�� $ �� (� $ ��) denote all lines

� �� � � such that� is an integer within the range.
To understand this, consider an example where� � � 0� and2 �� � �. The self-

dependent line is
� �� � �. We shall parallelise

�
by executing in parallel, first lines� �� � 01 $ 0 / $ / $ 1, then lines

� �� � 0� $ % % % ,0� $ � $ % % % $ �, and so on.& �
is parallelised in the same way except the order for executing the above strips

is reversed.
Example 4 Consider Example 3 again. We can execute the program in threesteps if�/ $ 1� is selected as the the parallelising eigenvector. The matrix

is:

 � 0 01 // � 2 $
 /� � 0 � // 1 2
The dependence function in the transformed space as shown inFig. 5 is:

&�
&
&� � �� ��

� �� �
 �� 	 �
 � 	 �
 � # � �

The self-dependence line
	 �
 � !��

Figure 5: The transformed space of Fig. 3 using	 in Example 4.

. � �� � � � 0 01 �/ / 2 � � � 0 10 / 2
The self-dependent line is

� �� � 1��, which does not contain any iterations.& ��
is contained in the half space

� �� � 1��. All its points are independent,
since any dependent points on

& ��
must be on the opposite half space

� �� � 1�� by
Theorem 5. The self-dependence line

� �� � 1�� divides
& �

into two regions: the
points on the line

� �� � /
and the remaining points of

& �
. We can execute

& �
in two

steps, with those not on
� �� � /

in the first step and those on it in the second step.
In the original iteration space (Fig. 4), this corresponds to executing the points in

the half space01� �
� 0 / � � in the first step, the points in the opposite half space01� �

� 0 / � � in the second step, and the points on the line01� �
� 0 / � � in the

third step. This is considerably better than the scheme suggested in
��

.

0� � �� � �
This is opposite of the case when� � � 0 /

. So
& ��

(
& �

) in this case
can be parallelised in the same way as

& �
(
& ��

) in the case when� � � 0 /
.

�� � 0� By Theorem 4, the only self-dependence line is
� �� � 2 ���1. Every line� �� � � is inter-dependent only on the line

� �� � 2 �� 0 � symmetric about the line� �� � 2 �� �1 (a corollary of Theorem 5 when� � � 0 /
). We can generate outer��� ��

parallelism by executing every such a pair in sequence and all these pairs in parallel.

4 Conclusion

This paper discussed how to detect and exploit the parallelism inherent in nested
loops with affine dependencies. We showed how to generate coarse-grain and fine-
grain parallelism based on the eigenvectors derived from the dependence matrix1 of
the program. If1 has an eigenvalue� /

, the outer��� �� parallelisation is possi-
ble, making this technique appropriate for MIMD machines. If 1 does not have an
eigenvalue� /

, the inner loop can always be a��� �� loop. Thus this technique is ap-
propriate for VLIW or superscalar machines. For a special class of nested loops, our
method discovers far more parallelism than traditional unimodular transformations.

5 Acknowledgements

Thanks to the referees for their comments and suggestions. This work is supported
by the Australian Research Council grants (A49330441 and A49600987).

References

1. U. Banerjee.Loop Parallelization. Kluwer Academic Publishers, 1994.
2. A. Darte and F. Vivien. A comparison of nested loops parallelization algorithms. Tech-

nical Report 95–11, Ecole Normale Supérieure de Lyon, May.1995.
3. P. Feautrier. Some efficient solutions to the affine scheduling problem, Part I, one-

dimensional time.Int. J. of Parallel Programming, 21(5):313–348, Oct. 1992.
4. P. Feautrier. Some efficient solutions to the affine scheduling problem, Part II, multidi-

mensional time.Int. J. of Parallel Programming, 21(6):389–420, Dec. 1992.
5. W. Kelly and W. Pugh. A framework for iteration reorderingtransformations. In

1st Int. Conf. on Algorithms and Architectures for ParallelProcessing (ICA
�
PP), pages

153–612. IEEE Computer Society Press, Apr. 1995.
6. W. Shang, E. Hodzic, and Z. Chen. On uniformization of affine dependence algorithms.

IEEE Trans. on Computers, 45(7):827–839, Jul. 1996.
7. M. E. Wolf and M. S. Lam. A loop transformation theory and analgorithm to maximize

parallelism.IEEE Trans. on Parallel and Distributed Systems, 2(4):452–471, Oct. 1991.
8. M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,

1996.
9. J. Xue. Automating non-unimodular loop transformationsfor massive parallelism.Par-

allel Computing, 20(5):711–728, 1994.
10. J. Xue. Transformations of nested loops with non-convexiteration spaces.Parallel

Computing, 22(3):339–368, 1996.
11. J. Xue. Unimodular transformations of non-perfectly nested loops.Parallel Computing,

22(12):1621–1645, 1997.
12. A. W. Roscoe and C. A. R. Hoare. The laws ofoccam programming. Theoretical

Computer Science, 60(2):177ff., 1988.
13. L. Lamport. The parallel execution of DO loops.Comm. ACM, 17(2):83–93, Feb. 1974.
14. Ten H. Tzen and Lionel M. Ni. Dependence uniformization:A loop parallelization

technique.IEEE Trans. on Parallel and Distributed Systems, 4(5):547–558, May 1993.

