EIGENVECTORS-BASED PARALLELISATION OF NESTED LOOPS
WITH AFFINE DEPENDENCES

Patrick Lenders and Jingling Xue
School of Mathematical and Computer Science
University of New England, Armidale, NSW 2351, Australia

This paper is concerned with parallelising a special cldssested loops with affine depen-
dences. The data dependences of the program are capturexbicadled dependence matrix.
Based on the eigenvalues and eigenvectors of this matexpribposed approach can generate
a greater degree @OALL parallelism than traditional unimodular transformations

1 Introduction

Although many compiler techniques (including the well-lwmunimodular trans-
formations) have been developeti®*:5:6:7:8:9,10,11 "the DOALL parallelisation for
nested Ioolgs with affine dependences remains a challeragkg This paper is con-
cerned with parallelising nested loops with affine dependsnWe restrict ourselves
to doubly nested loops, although our method can be geneddatisanyn-dimensional
nested loops. Our method is based on the concept of eigesv/ahd eigenvectors
that are derived from the dependence structures of the gmogin comparison with
the unimodular approach, our method can find a greater dedesrallelism for a
special class of nested loops. However, our method may faglrevthe unimodular
approach succeeds (Section 3).

Section 2 describes the program model and our formalismHfaracterising the
data dependences in a program. Section 3 presents our nfethgatallelising loops
with affine dependences. Section 4 concludes the paper.

2 Program Model

This paper considers doubly nested loops of the form (intyle sf C):
for(j1 = £1; j1 < ui; j1 ++)
for(ja = Lo; ja < uz; j2 ++)
A(u(3)) = fFAW(G)), )
wherej = (j1, j2) is a pointin theteration spacewhich is the set of points satisfying
J =11 < j1 < ui ANl < ja < ug, andy andv are affine functions of loop variables:
w(j) = Uj +wandv(j) = Vj + v, wherelU, V € Z*** andu, v € Z>.
The two array references can access the same elemdraifvo different iter-
ations. Thus, there is a dependence between pant pointd(5) (if such a point is
in the iteration space) such thHtj) = v~ !(u(j)). In the case of affine dependences,
we have the followinglependence function
0(j) = VWUj+VY(u—v) = Dj+d
where the matrixD is called thedependence matrixT his dependence is represented
by the difference between the followimglative dependence function

p(j) = 6(G)—j = (D-Dj+d



Let us relate our dependence abstraction with the usuahdepee vector ab-
stractior?, p(j) is aflow or true dependenceriginating atj and sinking av(j) if
p(43) = 0, and ananti-dependenceriginating ati(;) and sinking ag if p(5) < 0. In
the case whep(j) = 0, 6(j) is said todependbn j, and this dependence is charac-
terised by the dependence vecigf). Whenp(j) < 0, j is said to(anti-) dependn
4(7), and this dependence is characterised by the dependertoe vg¢j). When
representing dependences in the iteration space, a flownndepee is drawn with a
solid arrow and an anti-dependence with a dashed arrow. tindases, the point at
the arrow head always depends on the point at the arrow tail.

Thus, all dependence vectors in the iteration space areolgraphically positive.

According to the lexicographic sign ofj), the iteration space is divided into:

T+ = TNp(G) =0 = T A(p1(3) >0V pr1(§) = 0A p2(j) > 0)
T = T Np() <0 = TA(p1(j) <OV p1(j) =0A p2(j) <0)
Jo=JTNAp()=0=JTNA p1(j) =0Ap2(j) =0
where the dependence vectors containedin(7.) are all flow dependences (anti-
dependences), and the pointginare all mutually independent of each other.

The following lemma identifies the nature of dependencesdsen the three re-
gions 7, J. and7, and provides an ordering to schedule them for execution.
Lemma 1 (a) All (flow or anti-) dependences spanning acrggsand 7. originate
from 7, and terminate at7_. (b) All points of 7, are independent of each other and,
if D is nonsingular, these points are also independent of thosg.iand.7..

Let us use an example to illustrate the concepts introducéars
Example 1 Consider a double loop:

for (ju = —N; j1 < N; ji ++)
for (j2 = —N; j» < N; j2 ++)
A(4jr + 472 — 3,51 +3j2) = 2% A(j1 + j2,J2 + 1)
The array subscript functionsandv are:

) , 4 4] . -3 ) ) 1 1], 0
u(J)=UJ+u=[1 3]J+[0], V(J)ZVJ+U=[0 1]]+[1]
The dependence functidnis:
. . 3 1. -2
5(J)=D3+d=[13]]+[_1]
The eigenvalues oD are 2 and 4, corresponding to the eigenvectars-1) and
(1,1), respectively. The relative dependence funcpas:

. . 2 1. —2
o) = 0-niva= |1 |i+| 3]
The two linesp; (j) = 0 andp2(j) = 0 separate the iteration space into the three
regions7;, J. andJ, as depicted in Fig. 1.7, = {(1,0)}, andJ; has both flow
dependences and anti-dependences originating from iteamdrtating at7._.
3 Eigenvectors-BasedOALL Parallelisation
Two assumptions are made about the dependence nfatrix

1 D must have rational eigenvaluesnsuring that the corresponding eigenvectors
are integer vectors and can be used to gen®@at&LL parallelism.



p1(J)
0\000
©0 0o 0 O
0 0o (-]
Hhy o
[ ()
0 0 e -
2332 * 7 = {(1,0)}
o 0o - jl
3>

o\o

N

0000
QO
Yo
D
N
RQQN
OKOO\O\Q‘ AR

ooo}oo °

3
000
Qo oo
00 ]o
000 Q0
00 0% a0aQNY

©qo0000000
ooQoQ]
oo o
oo ;\
~

Figure 1: The iteration space of ExampleX & 10).

2 D must be nonsingulaimplying that bothU and V" are nonsingular. In this
case, the program has a single assignment semantics. Thateiy array
element is written (or read) at most once. Thus, the depemdémction

4(j) = Dj + d captures all dependences involving bdtfu(5)) and A(v(j)).

Next, we provide a quick outline of our method. A&wrecution ordering< is a
partial order on the iteration space wherep < ¢ means that iteratiop is executed
before iterationy. An execution ordering for a program lisgal if it preserves the

data dependences of the program. In other words, any o

does not schedule

an iteration before all its dependent iterations have beecwed is legal. In our

formalism, this idea translates into the following defimiti

Definition 1 (Legality of Execution Ordering) An execution orderings on J is

legalif Vje Jy:j<d(j)andvVje T :0(4) <j.

Note that by Lemma 1, the points ¢f, can be executed in any order.
To generat® OALL parallelism from a program, we proceed as follows.
1 We apply a unimodular transformation to the iteration sp&ection 3.1):

T :J— J', wherej =Tj

such that in theransformed spacg’, the dependence function becomes:

6/(]'/) — Dljl+dl

whereD' is lower triangularUnlike the unimodular approach; usually does
not preserve the data dependences of the program in thditradl sensé . In
other wordsT'p(j) (—=Tp(4)) for a dependence vectp(;) (—p(4)) such that

j € J+ (j € J) can be either lexicographically positive or negative.

2 We analyse the data dependences in the transformed sphdetaat the par-

allelism inherent in the original program (Section 3.2).
3 We generate the parallel code of the form (Section 3.3):

PAR
code(73)
SEQ
code(j;L

code(J’)

1)



where the two construcAR and SEQ are borrowed fronDccam 2. The
order for executing the three regions follows from Lemma le points of7;

are independent, smde(7) will not be discussed any further. In Section 3.3,
we describe how to construcbde(7}) and code(7') with explicit DOALL
parallelism while preserving the data dependences of tlyeal program.

Theorem 1 The execution ordering: induced by the code in (1) is legal ¥ j' €
Ty j'<d(j") andv i’ e J': 6'(5") < 4"

3.1 Loop Transformation: Triangularisation

In this section, we present the technique used to transtoeritération space in order
to have a lower triangular dependence matrix. Telbe a unimodular transforma-

tion from the original iteration space to the transformedcgp Thus the point’ in
the transformed space j§ = T'j. The new array subscript functiop$ andv' are
(3" = w(T~14") andv'(5') = v(T~'5"). Thus the new dependence function is
8GN = v (W (G) = T (u(T~15")) = T(5(T~1")). Inthe case of affine
dependencies, we have:

(3" = D'j'+d = TDT 'j' +Td
and the relative dependence function becomes:
PG = (D'=Dj'+d = (IDT'-1)j'+Td

In the transformed space, the two lines separating it iredgtifee regiong’} , 7' and
Jo of different lexicographic signs become: (7 ~%') =0 andp2 (T ~%') =0.

Based on the eigenvectors Bf we provide a constructive approach to finding a
unimodular transformatio® such thatD’ = TDT~! is a lower triangular matrix.
Theorem 2 Let A\; and A, be the two rational eigenvalues &f, andv; andv, be
the two corresponding (normalised) integer eigenvectbet.a, b € Z be such that
T-' = [} ,. ] isunimodular. TheD’ = TDT~' = [’ 0 ], wherec € Z.

It can be shown thab' has the same eigenvaluksand\; asD, which correspond
to the two eigenvectorBv; andTv2 = (0, 1), respectively.

_ The eigenvector, in this theorem is called thearallelising eigenvector Our
intention is to execute in the iteration space concurraitlyointsin a line parallel to

v2. In the transformed space, becomed v, = (0, 1). Therefore, we are essentially
attempting to execute in the transformed space all poirasviertical line in parallel.
This corresponds to wavefronting the transformed spacegaloectionst(1, 0).

Example 2 In Example 1, we choosd, —1) as the parallelising eigenvector:

_ o |11
T=T"=10 21
The new dependence function is calculated to be as follows:
: 4 0. -3
§'(y') = [ -1 2 J'+ 1

Fig. 2 depicts the transformed space of the original iteregpace in Fig. 1. Note that
some dependences are lexicographically positive and segegine.



—1
p1(Tj
0.0.0.0.0 0,000 0000 Q.00 -1, _ 9,1 R, Y
6.0 0 0 0 07Q O e\ooo}@\o 1]_1)_2..[71_}_'.,72 2=0
070.0 6.0 0 0~0 30 0 & 0 ® 7.7):.71_.72_120
oo\o\ct&o 626,08 0 0 0
0 0.0 0~g70.0~axa 8.0 07, ={A X, B}
oo o\o\k%o\O:Qofe\ i’
0 0 0 6-0.0SQIe 0N0N 0‘7 Z{CYD}
D oomo\o\o\ofgot * - R
00 0 00.0_0~ e
iy . jo_l— {(1,0)}
000 o ..-71
o o-o-
oo
o
T—l/ .
p2( J z e e
oo e
Y

Figure 2: Transformed space of Fig. &/ (= 10). The division of the transformed space into six regions
A, B, X,C,D andY as highlighted will be explained in the case whan> 1.

3.2 Parallelism Detection

In this section, we analyze the cross-iteration dependsngithe transformed space
and detect the parallelism inherent in the program. We shake use of the depen-
dence function and relative dependence function in thestoamed space:

0= )= [e wloelel =[] =[ hleE ]
d(") = } N | = ! /1 ) '(7') = /1 N = ! /1

() [52(1) ¢ n) i el PO i) T e )i T
Theorem 3 Let L; be a line parallel to an eigenvectar of D'. The set of points
depending on any point df; is on a line,L,, parallel to L;.

_ This theorem su%rqests the following parallelization oftla@sformed space. All
points on a line parallel to an eigenvector are executedwoewtly, then all points
on the next line parallel to the same eigenvector are exdadercurrently, and so
on. This eigenvector is referred to as the parallelisingmigctor in Section 3.1. In
Theorem 2, bK using’ to transform the iteration space, we have implicitly assdime
to usew, as the parallelising eigenvector. In the transformed spasebecomes
Tvy = (0,1). Thus, our intention is to execute all points in a vertica¢lin parallel.

A vertical line is called sself-dependenivertical) line if all points on the line
depend only on the points on the same line.

The following theorem characterises all self-dependerttoad lines in the trans-
formed space. This is a special case of Theorem 3 wheandZ, are co-linear.
Theorem 4 Consider the transformed space. Nf # 0, ji = —dj/(\ — 1) is
the only self-dependent vertical line. Xf = 1 andd} = 0, all vertical lines are
self-dependent. X; = 1 andd # 0, there are no self-dependent vertical lines.

When\; # 0, there is only one self-dependent vertical ljje= —d} /(A1 — 1).

All dependences originating at one side of this line alwaiyk at the same (opposite)
side of the line ifA; > 0 (A1 < 0).
Theorem 5 Assume\; # 0. Letj’ be a point in the transformed space not on the



self-dependent lingg = —d} /(A1 — 1). Then,j’ andd’(j’) are on the same side of
the linej; = —d} /(A1 — 1) if Ay > 0 and on the opposite sideif < 0.

We do not consider the case =0 because it implie® is singular. In this case,
all dependences originating at one side of the fine —d' /(A1 — 1) sink on the line.

3.3 Loop Transformation: Parallelisation

In the last section we introduced parallelism detectiohnégues to identify sets (or
lines) of independent iterations. In this section we usedftechniques to generate
code with expliciDOALL parallelism to execute the transformed space. Specifically
we discuss how to construatde(.7; ) andcode(J') as givenin (1).

Our objective is to execute in the transformed space as martical lines in a
single step as possible. We distinguish atotal of six cg4¢9; > 1,(2)0 < Ay < 1,
BAa=1@A@M<-1,5)-1< A <0,and (6)\; = —1.

An example is used to illustrate the basic idea only. Comdide trans-
formed space depicted in Fig. 2 from Example 2. The deperedfnetion in the

transformed space is given in Example 2. When> 1, Theorem 4 suggests that
there is only one self-dependent line among all verticaldinin the current example,

the self-dependent line j§ = 1. Depending on whether a point is in the half space
Jj1 > 1, on the lingj; = 1, or in the half spacg] < 1, we divide7; (J') into the
three regionsd, B andX (C, D andY) as illustrated in Fig. 2.

The parallel code for botly; and.7' is as follows:

code(J%4): PAR
code(A): for(t=2; t<2N;t=4t-3)
forall(j1 = t; j1 < min(4t — 4,2N); ]1 ++)
forall(j, = max(=2j1 +2,=N); j> < —ji +N; jo ++)
A(4F; — 3,1 — 23) = 2 % A(jh g5 +1)
code(B): for(t=0;t> [3 Nt =4t —3)
forall(ji = t; ji >max(4t—2 (5551 gt =)
forall(jz = —2j1 + 3; ja < N; jo ++)
code(X): for(k=1; t < N;t=2t) [xj3 =1%
forall(j, = t; j5 < min(2t — 1 N) jo ++)
A(1,1 - 2j5) = 2% A1, —jj + 1) code(’) : PAR
code(C): for(t = | M1, t>2t= Lt"’ )

, 2

forall(jy = # 51> max(| 512+ 1,2); 4 —-)
forall(jo = —N; ja < 1— 2.71: J2 ++)
A(451 = 3,71 — 2j3) = 2 % A(j1,—ja + 1)
code(D): for(t=—2N;t<0;t= [% )
forall(j5 = ¢; ji < min([&2] —1,0); ji ++)
forall(jy = —]1 N; 5% < mln( 2]1+2 N); g5 ++)
A4t — 3,51 — 2]2) =2x A(j1,—j> +1)
code(Y): for(t=—-N;t<-1t= (%1) [% 1 = 1%/
forall(jh = £; 7 < min([ 3] — 1,-1); 5 ++)
A(1,1 - 2.]5) =2x% A(l —js+1)

w_l




Unlike the existing unimodular approath”®, our eigenvector-based method
schedules far more hyperplanes of iterations of Igjofor concurrent execution.

This is the opposite of the case when> 1. By Theorem 4, all flow

dependences iff| are pointing toward the self-dependent lijjfe= —d; /(A1 — 1)
while all anti-dependences i’ are pointing away from this line. Thug; (J') in
this case can be parallelised in the same way'a§7} ) in the case when; > 1.

As an example, consider a double loop derived from Examplath tive two
references swapped. The dependence function is the invEttse one in Example 1:

: . 3/8 —1/8 | . 5/8
6) = pivd= | g Tyfs )i+ | s
D has the eigenvaluez/8 and4/8, corresponding to the eigenvectqis 1) and
(1,-1), respectively. With th@" in Example 2, we obtain the dependence function:
o v 2/8 017, 6/8
o) = Dy +d = [1?8 4/8]J +[—1§8]
in the transformed space as in Fig. 2.&de(J ) andcode(J') are the same as their
counterparts in Example 1 but with loopeversed and loogl modified accordingly.

)\1 = 1 We havep! (j') = (A — 1)j1 + d} = dj. We distinguish two cases by

generating outddOALL parallelismifd; = 0 and inneDOALL parallelism ifd} #0.
The analysis of both cases are based on Theoremd. # 0, all dependences
in the transformed space are of the fofdnx). Thus, all vertical lines 7} (J') can

be executed independently of each other. A vertical linelmafurther parallelised
just like X andY in Fig. 2 was parallelised.

If d; # 0, all (flow) dependences iy} have the form(d;, x) while all (anti)
dependences 7’ have the forn{—d , *). We can generate innBYOALL parallelism
by wavefronting7}. (J') along d|rect|on( ,0) ((—dy,0)) with |d}| consecutive
lines (or waves) being executed in parallel.

. p1()=—2j1+j2—1=0 PTG =21 —3j5—1=0
J2 oo j1
1
oo .j+
o o
o o ° \7-
° Jo=10
o

O 0 o

Fig. 3. The iteration space of Example &ig. 4. The transformed space of Fig. 4 usifign Example 2.

Example 3 Consider the following example froth, whereN was set to 1000:
for (j1 =1; j1 < N; ji ++)
for (j2 = 1; ja < Nj jo ++)
A +]2,3]1 +]2+3) =2%A(j1+jo+ 1,51 + 252 +4)
The dependence tunction is:

w-[ 43 [



The eigenvalues ob arel and —2, corresponding to the eigenvectdis —1) and
(1,2), respectively. Sinc® — I is singular andank(D — I,d] = 2, we have7, = .
J+ contains all iterations in the half spape(j) = —2j; + j» — 1 > 0, and 7.
contains all iterations in the opposite half spagéj) = —2j; + j» — 1 < 0 (Fig. 3).

With (1, —1) chosen as the parallelising eigenvector, we applytigézen in Ex-

ample 2 to transform the iteration space. The dependencéduarin the transformed
space as shown Fig. 4 is:

. 1 0], -1
=] 4 3o+ ]3]
We wavefront7; andJ' along(—1,0) and(1,0), respectively:

code(J4) :for(ji = | 25225 41 = 5; j1 ——)
forall(js = max(1 — ji, —N); js < [ =2%=2]; j5 ++)
A(j1, 351+ 25 +3) =2x A(j1 + 1,51 —ja + 4)
code(J’) : for(j1 = 2; j1 = 2N; j1 ++)
forall(j3 = max(1—j;, [ 24711, —N); g5 < min(—1,N—4}); j++)
A(j1, 351 + 255 +3) = 2% A(jL + 1,51 — jb +4)

By Theorem4j] = —d; /(A1 —1) is the only self-dependent vertical line.
Letj; = abethe vertical line closest 9 = —d} /(A1 —1) suchthata—d} /(A1 —1)]
is an integer.

To parallelise7| , we divide it into two regionsA contains the points oy =
—d} /(A —1) andB contains the points not gif = —d} /(A1 —1). By Theorem4A
andB are independent. By Theorem 5, all dependencésdnoss the self-dependent
line j; = —d} /(A1 — 1). The parallelisation oB is the following. At any single step
we execute in parallel two strips of vertical lines that aymsetrical with the line
J1=—d/(A - 1)

: d, d, d) d
Step 1: (ah — prem kil i ’\%1;1] [a — Alll’;a)q - Ali}i,)
) 2 2
Step2: (—aM — xq,ah — xq]  [-eh — 5P, aA - )
d d d a
Step 3: (a/\f - ril’ —a/\% e ] [a)‘% - )\liu_a’\? - )\lil)

A1—1

where(a, b] ([a, b)) denote all lineg; = z such that: is an integer within the range.
To understand this, consider an example whgre= —3 andd; = 0. The self-
dependent line ig; = 0. We shall paralleliséB by executing in parallel, first lines
Jj1 =-2,-1,1,2,thenlineg; = -8,---,-3,3,---,8,and so on.
J' is parallelised in the same way except the order for exegtitie above strips
is reversed.
Example 4 Consider Example 3 again. We can execute the program in stepe if
(1,2) is selected as the the parallelising eigenvector. The riAtis:
_ [ -21 g _lo1
T=1 10" T =]1 2
The dependence function in the transformed space as shdwg.if is:



O 00O 0O
OO0 O0OO0OO0OoOOo

oo Q 0 00 0j+
oo o7
Jo=0

The self-dependence ligg = 2/3: '

Figure 5: The transformed space of Fig. 3 usingh Example 4.

=2 2o

The self-dependent line j§ = 2/3, which does not contain any iterations.

J4 is contained in the half spagg > 2/3. All its points are independent,
since any dependent points gff must be on the opposite half spage< 2/3 by
Theorem 5. The self-dependence liffe= 2/3 divides 7' into two regions: the
points on the lingj = 1 and the remaining points gf’. We can executgf/' in two
steps, with those not off = 1 in the first step and those on it in the second step.

In the original iteration space (Fig. 4), this correspomdexecuting the points in

the half space-2i + j — 1 > 0 in the first step, the points in the opposite half space
—2i+j—1 < 0inthe second step, and the points on the {r# + j — 1 = 0 in the

third step. This is considerably better than the schemeesigd irt*.

This is opposite of the case whan < —1. So.7; (J') in this case
can be parallelised in the same way&s(.7} ) in the case when; < —1.

By Theorem 4, the only self-dependence lingjis= d} /2. Every line

ji = ais inter-dependent only on the ling = d; — a symmetric about the line
Jj1 = dj /2 (acorollary of Theorem 5 whek, = —1). We can generate outBOALL
parallelism by executing every such a pair in sequence dldesle pairs in parallel.

4 Conclusion

This paper discussed how to detect and exploit the pasatteinherent in nested
loops with affine dependencies. We showed how to generatsesgaain and fine-
grain parallelism based on the eigenvectors derived frendépendence matri? of
the program. IfD has an eigenvalug1, the outerDOALL parallelisation is possi-
ble, making this technique appropriate for MIMD machindsDldoes not have an
eigenvaluet1, the inner loop can always béDALL loop. Thus this technique is ap-
propriate for VLIW or superscalar machines. For a specad<bf nested loops, our
method discovers far more parallelism than traditionaimodular transformations.



5 Acknowledgements

Thanks to the referees for their comments and su gestidnis.v\?brk is supported

by the Australian Research Council grants (A49330441 ar@b88987).
References

1. U. BanerjeeLoop Parallelization Kluwer Academic Publishers, 1994.

2. A. Darte and F. Vivien. A comparison of nested loops paliatition algorithms. Tech-
nical Report 95-11, Ecole Normale Supérieure de Lyon, Mag5s.

3. P. Feautrier. Some efficient solutions to the affine sdivegiyproblem, Part I, one-
dimensional timelnt. J. of Parallel Programming21(5):313-348, Oct. 1992.

4. P. Feautrier. Some efficient solutions to the affine sdiregiproblem, Part Il, multidi-
mensional timelnt. J. of Parallel Programming21(6):389—-420, Dec. 1992.

5. W. Kelly and W. Pugh. A framework for iteration reorderitrgnsformations. In
1st Int. Conf. on Algorithms and Architectures for ParaRebcessing (ICAPP), pages
153-612. IEEE Computer Society Press, Apr. 1995.

6. W. Shang, E. Hodzic, and Z. Chen. On uniformization of affiependence algorithms.
IEEE Trans. on Computerd5(7):827-839, Jul. 1996.

7. M. E. Wolfand M. S. Lam. A loop transformation theory andedgorithm to maximize
parallelism.IEEE Trans. on Parallel and Distributed Syster@§t):452—-471, Oct. 1991.

8. M. J. Wolfe. High Performance Compilers for Parallel Computind\ddison-Wesley,
1996.

9. J. Xue. Automating non-unimodular loop transformatifmranassive parallelismPar-
allel Computing 20(5):711-728, 1994.

10. J. Xue. Transformations of nested loops with non-coriteration spaces.Parallel
Computing 22(3):339-368, 1996.

11. J. Xue. Unimodular transformations of non-perfectlgtad loops Parallel Computing
22(12):1621-1645, 1997.

12. A. W. Roscoe and C. A. R. Hoare. The lawsoatam programming. Theoretical
Computer Scienc&0(2):177ff., 1988.

13. L. Lamport. The parallel execution of DO loogdomm. ACM17(2):83-93, Feb. 1974.

14. Ten H. Tzen and Lionel M. Ni. Dependence uniformizatiénloop parallelization

technique.lEEE Trans. on Parallel and Distributed Systemé5):547-558, May 1993.



