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Abstract—Asymmetric chip multiprocessors (ACMPs) have
multiple core types that are instruction-set compatible but op-
timized differently to trade performance and power in mobile
devices. The challenge for ACMPs is to map the program to the
best core type and thread count to achieve performance require-
ments under power constraints. This paper describes an empirical
strategy, MONARCH, to automatically build estimation models
that capture how a multithreaded program’s performance scales
with thread count and core type. We show that MONARCH’s
models are accurate and useful to find mappings that achieve
performance goals while minimizing power.

I. INTRODUCTION

Tablets, smartphones, and other mobile computers execute
a range of workloads under varying quality-of-service (QoS)
and power constraints. To satisfy these requirements, asymmet-
ric chip multiprocessors (ACMPs) are emerging with multiple
core types that use the same instruction-set but are optimized
differently. ACMPs allow a balance between performance and
power by mapping a workload to the most appropriate thread
count and core type, given workload properties, performance
goals and power requirements. Computationally demanding
tasks (e.g., high-definition video playback) are mapped to the
four main cores, while less intensive tasks (e.g., email) are
mapped to the energy efficient core. ACMPs may be integrated
in a system-on-a-chip (SoC) with other accelerators, which are
not instruction-set compatible with the ACMP cores, such as
a graphics processing unit. Mapping the application to ACMP
cores is the focus of this work.

In an ACMP, a power-efficient core type has a low clock
frequency and simple microarchitecture, while a performance
core type has a high clock frequency and sophisticated out-
of-order microarchitecture for instruction- and memory-level
parallelism (ILP/MLP). Multiple cores of each type are usually
available. For example, one variant of ARM’s big.LITTLE has
two types: a “big” Cortex-A15 for performance and a “little”
Cortex-A7 for power efficiency [1]. An application binary
can be executed by either type since they are instruction-set
compatible. Cores are typically organized in clusters of similar
types with a shared cache that is tailored to the cluster’s core
type (e.g., a small cache in a cluster of little cores). Caches
are coherent, and clusters use the same memory subsystem.

The challenge for the operating system (OS) and compiler
in an ACMP is to map the application to the right cores to
meet performance goals (i.e., QoS) while minimizing power.
Progress has been made on mapping for a fixed number of
single-threaded programs. One approach executes a program
on all core types to measure relative performance for picking
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the type that achieves performance and power goals [2], [3].
Recent work uses analytic and experimental models [4], [5],
[6], [7]. Performance Impact Estimation is a state-of-the-art
analytic model to select core type [5]. It uses performance
counters gathered on one core type to predict program perfor-
mance on another core type to choose between narrow in-order
and wide out-of-order cores for single-threaded programs. This
prior research has demonstrated the appeal of modeling to
enable making complex mapping decisions with low overhead.

For single-threaded programs, the mapping problem con-
sists of selecting one parameter, core type, which has been the
focus of past work [8], [9], [10], [5], [6], [2], [3]. To get the full
promise of ACMPs, however, multithreaded programs must
also be considered. Multithreaded programming is increasingly
common in mobile devices to allow using several cores for
compute-oriented tasks, such as high-definition video.

Multithreaded programs make the mapping problem more
complex than single-threaded programs due to an extra pa-
rameter, namely thread count. Techniques for single-threaded
programs do not extend to multithreaded programs. In fact,
thread count interacts with achieving performance under power
constraints. For example, a program can be mapped with a
few threads to a few big cores, or it can mapped with many
threads to many small cores. Both choices may be performance
equivalent, but have different power profiles. Complicating
the problem is a multithreaded program’s inherent scalability,
ILP and MLP, which influence the best choice of core type
and thread count. Because modeling is a proven technique
for single-threaded programs, it is natural to consider this
approach for multithreaded programs. Recent research suggests
that profiling is useful to derive empirical heuristics to remap
a multithreaded program by changing thread count on a
conventional CMP with only one core type [11].

In this paper, we describe an empirical strategy, MON-
ARCH, that automatically creates estimation models to guide
mapping decisions for ACMPs. The models predict perfor-
mance scalability curves that are parametrized by a mapping of
thread count and core type. MONARCH addresses compute-
oriented mobile multithreaded applications where dedicating
a core to each thread is beneficial. Profile data is used to
build the models. To minimize this data, a projection function
transforms a scalability curve for one core type to another
core type without full training. MONARCH is the first to
handle both parameters (thread count and core type) for multi-
threaded programs executed on ACMPs. This paper contributes
(1) estimation models to capture a multithreaded program’s
performance scalability for asymmetric core types (big and



little cores); (2) a strategy (MONARCH) to create and use the
models; (3) a technique to select best model and fit to data;
(4) a technique to transform a model for one core type to
another core type with minimal additional profile data; and,
(5) an extensive evaluation of MONARCH’s effectiveness.

II. MOTIVATION

Thread count and core type affect the performance of a
multithreaded program in an ACMP, influencing whether QoS
is met (e.g., performance within a specified range under a
power cap). The relationship of these parameters is complex,
depending on both software and hardware properties.

The best thread count is affected by communication and
synchronization (software scalability) and the hardware re-
sources (core type) allocated to the program. Core type can
change the relationship between program behaviors, including
the ratio of time in critical versus non-critical sections, time
in computation versus communication, and wait time at syn-
chronization points. For example, using a fast core may cause
a program to spend less time in critical sections, scaling better
from less lock contention. Thread count also has interactions
with hardware factors, including cache and memory pressure.
With more threads and better scaling, there can be more
resource demand on the hardware. This increased demand may
be satisfied by big cores with large caches. Alternatively, the
demand may even limit inherent program scaling on little cores
due to small caches. Similarly, a program that does not scale
may be unable to fully use hardware resources of big cores.

The way threads use core resources affects performance.
Specifically, big cores are designed to extract instruction-level
parallelism (ILP) and memory-level parallelism (MLP). For
a thread to “run fast” on a big core, it needs both ILP and
MLP—in fact, the thread may execute as fast on a small core
as a big core, if it is memory-bound and lacks sufficient ILP
to mask memory operations [5]. For a program with a large
working set, a cluster of big cores with big cache might have
better performance than a cluster with little cores and small
cache. There can even be multiple configurations of thread
count and core type that have equivalent performance, further
compounding the challenge of mapping.

These factors should be balanced during mapping to an
ACMP. For this purpose, we propose an approach, MON-
ARCH, to build estimation models that predict how program
performance scales with thread count and core type, enabling
mapping to simultaneously consider both parameters. The
models can be used to identify a set of performance equivalent
configurations; external requirements on other factors, such
as power consumption, can then drive selection of a specific
configuration from the set of performance equivalent ones. For
example, the models can be combined with power models to
balance performance and power goals.

To ensure accuracy, MONARCH empirically constructs
models from profiling data to expose the interaction be-
tween a program’s properties (scalability, ILP and MLP) and
core/cache architecture. From the profile data, models are gen-
erated using a new adaptive regression analysis that estimates
performance of different configurations of thread count and
core type for a program.

Similar to other profile-driven approaches, the time to pro-
file (train) a model is a concern. To gather a full profile requires
multiple program runs using different thread counts on each

core type. The amount of profiling becomes problematic as
the number of cores increase. Rather than gather full profiles,
MONARCH builds a model of one core type using partial
profiling and projects performance of that type to other core
types. The approach collects partial profile data on the fastest
core in the ACMP, which we call the basis core. The basis
profile is augmented with selected data for each additional
core type, which we call an induction core (or, “inductee”).
A complete model is built by projecting performance on the
basis to inductees using the profile data for the inductees.

III. MODELING PERFORMANCE
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Fig. 1: Overview of MONARCH

Figure 1(a) shows MONARCH’s steps: 1) basis generation,
2) inductee generation, and 3) model use. The steps are
fully automated, and our implementation has no additional
programming burden beyond specifying data sets for profiling
and invoking the tool. Steps 1 and 2 are done only once for a
target device during normal software development. The model
and program are then deployed in step 3 to user devices. A
program’s model is distributed as metadata that can be loaded
by the OS for use on the user’s device. If a model is not
included with a program for a user’s device, the OS can map
the program conventionally without the model.

A. Basis

In step 1, a basis function is created for the fastest, largest
core type. The highest speed speed setting is used when
dynamic voltage frequency scaling (DVFS) is supported by the
architecture. This function estimates a program’s performance
on the biggest core as thread count is changed. The basis
function, B(tc), has an input parameter, tc, for the thread
count, and the function returns predicted performance of the
application with that thread count on the basis core type. B
must accurately estimate performance because it is used to
make mapping decisions for big cores and to approximate
scalability for inductee (little) cores. When DVFS is available,
the basis is the “big” ILP/MLP core at the fastest speed
setting; inductees are big or little cores at lower speed settings.
Profile data about program execution on the basis core type
is used to create B. The profile can be partial to reduce
cost. Profiling gathers hardware counters (instructions retired
and clock cycles) for multiple thread counts. From this data,
MONARCH generates B using adaptive regression analysis
to represent basis performance.



B. Induction

In step 2, functions are created to estimate scalability on
the induction core types from the basis. These functions are
projections that transform B to fit expected scalability for
inductees. A projection function, Pj,gyctee, 1S derived from
basis training with a small amount of additional profiling on
the inductee. Figure 1(b) illustrates the concept. In this figure,
the basis is transformed by a projection to match scalability
for the induction core. There is one projection per inductee.

To get P for each inductee, MONARCH uses regression
analysis between basis and inductee types. Thus, performance
is estimated for each induction core by incorporating B into P.
The analysis requires training on some profiled thread counts
for inductees. We call these thread counts inflection points.
For example, there are two counts used in Figure 1(b). This
process minimizes profiling because only a small amount of
data is needed for induction types. The number of inflection
points can be controlled to trade accuracy versus training cost.
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Fig. 2: Performance for 1-16 threads

This approach works because the scalability curve of an
inductee often follows the basis. Figure 2 shows performance
as thread count is changed for multithreaded programs on
Grande and Petite core types (see Section V). The y-axis
is observed performance at the thread count on the x-axis;
the curves were generated by running the programs on each
core type for 1 to 16 threads. Performance is reported in
BIPS to account for differences in core clock speed. For
our benchmarks, there is no excessive spinlock behavior that
dilutes BIPS. Consequently, we use BIPS since it is easily
measured and leads to similar conclusions as work throughput
for our benchmarks.

The curve shapes for a program are similar across core
type. In BT, each curve matches, except BIPS is shifted down
from the bigger core to the smaller one. In X264, the curves
have similar shapes, despite many “ups and downs” due to
problems with work distribution at some thread counts. The
shift from the big to little core is not simply a matter of
clock speed differences, but reflects changes in architecture and
interaction with program properties. For example, in X264, the
little core smooths out local maxima and minima due to core
architecture limitations to exploit ILP/MLP. For the big core,
the swings are much wider. When the work is well distributed,

the big core maximizes ILP/MLP extraction, achieving the
highest performance. When the work is not well distributed,
the distribution becomes the bottleneck, restricting the big
core from taking full advantage of available ILP/MLP. Other
programs have similar behavior. The figure also illustrates how
many inflection points are needed. For CN, two points are
needed to project from Grande to Petite. However, in some
cases, more inflection points can be beneficial, such as BT
where three points are useful.

The core types in an ACMP are points along a spectrum
of ISA compatible pipelined microarchitectures. Thus, the
scalability trend in the curves for different core types tend
to reflect one another (i.e., they do not exactly match but
show similar shapes), as illustrated in Figure 2. However,
there can be local differences in absolute performance due
to microarchitecture (e.g., X264 and STC). The cache, in
particular, can lead to larger relative differences, depending
on whether the working set fits in one cache size or another.
The curves in Figure 2 were gathered for cores with different
caches, and have differences for this reason. When there
are radical differences between core types (e.g., conventional
pipelined core versus a GPU SIMD core), the performance
curves are likely to be different. However, this is not the target
for MONARCH.

Together, the basis and projection functions define an

estimation model. The example, Mpy, below illustrates a
model generated by MONARCH for BT:

Cara X Bara(te) ty = Grande,
M te, ty) =
ar(fe, ) {CPet X Ppet(tc)  ty = Petite
Beralic) = —0.064 x tc? +1.37 X tc + € te € [1,7),
Grall®) = Z0.018 x tc? — 0.836 x tc+1.644 tc € [7,16)

Ppei(tc) = 0.002 x [Bara(tc)]? + 0.757 x Bara(te) + €1

The model is parametrized by core type, ty, to select the
function (Bgrande O Ppetite). The thread count parameter, tc,
is used by the basis and projections to make a prediction.

Since we use BIPS in this paper as the metric, the functions
are generated to predict instructions per cycle (IPC), which is
scaled by clock cycles per second (clock frequency) of each
core type to account for core speed differences. The basis
function, Bgrande, in this example is piecewise with a degree
two polynomial, to fit the changes in BT’s scalability. Because
scaling on the inductees is similar to the basis, a linear function
is effective for Ppegiite-

C. Model Use

In step 3, the estimation model is used to identify
performance-equivalent mappings of thread count and core
type that meet QoS goals. A specific mapping is then selected
to obey constraints and minimize power.

MONARCH is designed for the use case where the OS
maps a program to different core counts and types due to
changes in QoS at program launch. The OS uses an appli-
cation’s model derived by MONARCH to predict performance
for different mapping choices. The mapping predicted to
achieve QoS and minimize power consumption is selected. The
mapping is fixed throughout program execution; the program
has a single parallel region of interest that can be configured
to execute with different degrees of parallelism. The mapping
assigns one program thread to each core of the indicated type.



For mobile devices, MONARCH’s use case covers the typi-
cal situation for a compute-oriented multithreaded program. In
particular, QoS requirements can change from one program
invocation to the next due to different user task priorities,
battery reserves, etc. Consequently, during invocation, the
program may need to be mapped in a new way to achieve
the lowest power consumption with new QoS goals.

IV. GENERATING A MODEL

An estimation model has a basis and projection, as the
example model, M pr, illustrates. We use a regression analysis,
described next, to generate these functions. For simplicity,
we describe the process assuming a single speed for the big
and little core types. This process can be extended to support
multiple speeds by treating each core type—speed combination
as an inductee, as previously suggested.

A. Adaptive Regression Analysis

Adaptive regression analysis generates the basis and pro-
jections to be accurate and minimize profiling. The analysis
generates a piece-wise basis function, B, with n pieces. Each
piece ¢ in B is estimated by a polynomial of some degree, x;,
where 1 < i < n, r; < MAXDEGREE, and MAXDEGREE is
a fixed limit. A piece is defined by two inflection points, i.e.,
a range of thread counts, [tC;ni,tCin it1). tCin, is the start
inflection point for piece 1.

There is a trade-off between the choice of n and ;.
A larger n implies B will better match sharp changes in
scalability. However, with more pieces, there may be less
available profile data (thread counts) to fit a higher degree
polynomial. There may not even be “enough” profile points for
x; to build a certain degree polynomial, or the function may
overfit. Further, with more pieces, more profiling is necessary
to project from basis to inductees. Thus, the analysis tries to
minimize n and select x; to fit basis training data without
overfitting. To find B, adaptive regression analysis varies n,
tcin,i, and x; to generate candidate functions from which one

is selected. The analysis proceeds in several steps:
1)  Collect profile data for the basis core type by execut-

ing the program at different thread counts. This data
may be incomplete but should uniformly reflect the
expected range of thread counts for the program.

2)  Select a portion of the profile data uniformly dis-
tributed among thread counts to train the basis.

3) Select n, tcin,, and x; to maximize basis accuracy
without overfitting, while reducing induction training.
This step outputs the best B.

4)  For each piece ¢ in B, profile each induction core
type at the start inflection point, tc;y ;. For the last
piece, profile on the last inflection point. If a point is
already profiled, then do not profile it again.

5) Using B and the induction profiles, generate projec-
tions to transform B to fit the profile data. This step
outputs P;,quctee for each inductee.

Figure 3 shows the algorithm, SELECTBASIS, to build the basis
(used in step 3). The algorithm inputs available profile data
for a program. The profile is a database of tuples (zc, ty, hpc)
that record hardware performance counters (HPC) for different
core types (ty) and thread count (fc) combinations. We use
counters to record total retired instructions, instructions, and
clock cycles, cycles, of each thread. The counters are gathered

SELECTBASIS(profile)
1 B = NULL // at end, the best basis function

2 minPenalty = 400

3 train = SELECT(profile, BASIS, TRAINAMT, UNIFORM)
4 test = SELECT(profile, BASIS, ALL)

5 // iterate over pieces, splits of pieces and degrees

6 for n = 1 to MAXSPLITS

7 splits = SPLITPIECES(train, n) // inflection points

8 D = {1,...,MAXDEGREES}" // Cartesian exponentiation
9 for split in splits

10 for degrees in D

11 candidate = GENBASIS(train, split, degrees)

12 if candidate # NULL

13 FE = CoMPUTEMSE(candidate, test)

14 C = NUMMISSINGPOINTS(split, profile)

15 penalty = E? x (C + 1) // penalty function
16 if penalty < minPenalty

17 minPenalty = penalty

18 B = candidate

19 return B

Fig. 3: Algorithm to adapt and select basis function

for parallel portions of the program (the regions of interest,
ROI). Aggregate performance is computed as the sum of the
IPC values for the threads in the profiled thread count.

Regression extrapolates performance scalability of a pro-
gram for the basis core type from the profile data. On
line 3 in the figure, profile data for the basis core is ex-
tracted as train data for regression. This portion of the basis
profile (TRAINAMT) is selected to be uniformly distributed
(UNIFORM) across available thread counts. To evaluate fitness
of a basis candidate function, the full basis profile data is
extracted as test data on line 4. The constant MAXTC is the
largest thread count allowed for the application.

The algorithm traverses the number of pieces (line 6),
inflection points (line 9), and polynomial degree (line 10). The
assignment of thread counts as inflection points defines the
start and end points for the n pieces. The assignments, which
we call “splits”, are determined by SPLITPIECES on line 7.
Similarly, all combinations of polynomial degrees for the splits
are computed on line 8. The maximum number of pieces
and degrees have limits (MAXSPLITS and MAXDEGREES).
to constrain the iteration space and avoid overfitting to the
training data. A small maximum degree polynomial with a
moderate number of pieces works well in practice; we we
set MAXDEGREE= 3 and MAXSPLITS = 3 to allow regression
flexibility to pick a complex function without overfitting while
limiting the search. These constants can be tuned to trade
prediction accuracy and search cost.

On line 11, GENBASIS creates the candidate basis using
least square regression for each piece. Because some parameter
combinations for GENBASIS can lead to an invalid candidate
basis, GENBASIS may return NULL (no basis generated). This
situation happens when there is not enough points in the
train data to allow regression on the function defined by the
parameters. For instance, a large number of pieces (n) and
high-degree polynomials for each piece (degrees) may result
in an invalid function.

A candidate function’s fitness is evaluated on lines 13 to 18
by determining a penalty of relative benefit to cost (line 15).
Benefit is measured indirectly as mean squared error (MSE)
on the test data; a larger MSE implies worse accuracy, and
therefore, less benefit. Cost is how many inflection points in
the candidate basis function have not been profiled. The thread



count for each unseen inflection point on each inductee core
is executed to get data for projection, and thus, the unseen
points impose cost. In the penalty calculation, the error (E) is
weighed more heavily than cost (C).

Once the basis function is selected, projections can be
generated (step 5). A projection function is created for each
induction by “reshaping” the basis to fit performance on an
inductee. Similar to basis generation, inductee projections
are generated using LSQ. A single piece is used and only
polynomial degree is changed. We allow the polynomial degree
to be selected to capture a potentially complex relationship
between basis and induction performance.

To generate a projection, profile data is extracted for an
induction core. The data are tuples of thread count and HPC
values. B is used to predict the performance of the basis core
type, which is mapped by regression to the profile data for the
induction core type. The mapping gives the necessary (z,y)
data required by regression. For a given thread count, B is
used to compute aggregate IPC for the basis as x and the
profile data is used to compute aggregate IPC for the inductee
as y. Using the (IPChasis, I PCinductee) data, a high degree
polynomial is tried first for the projection. If this degree cannot
be used (due to missing data), then the next lowest degree is
tried until a function is generated.

V. EVALUATION
A. Methodology
We used Sniper [13] to simulate a many-core ACMP
for future mobile computers (similar to ARM big.LITTLE),
which we call MOBI. Table I shows MOBI’s architecture
parameters. There are 16 cores of Grande and Petite types.
The microarchitecture of each type differs in ILP and MLP
aggressiveness. Cores of the same type are clustered in groups
of 4 to share a last-level cache (LLC). A Grande cluster has
a large LLC and a Petite cluster has a small LLC. Caches
are kept coherent between clusters. We use 16 cores to stress
MONARCH. With more cores, there are more configuration
choices, exposing increased variability in performance that
must be predicted correctly. Due to long simulation times, we
consider only one speed per core type.

TABLE I: Architecture parameters for MOBI

Grande 1.86GHz,Dispatch=3,Window=64,LSQ=10
Petite 1.36GHz,Dispatch=2,Window=32,L.SQ=2

Processor 16 cores of each type, 4 cores per cluster
LI cache private 1&D, 32 KB, 4-way, 64 B block

Grande L2 cache shared 2 MB, 8-way, 64 B block, 8-cycle hit
Petite L2 cache shared 512 KB, 8-way, 64 B block, 8-cycle hit
L2 sharing Each cluster of 4 cores shares one L2 cache
DRAM 45 ns DRAM, 1 controller w/1 channel

We used performance-oriented multithreaded programs
from PARSEC and SPLASH-2 to cover a spectrum of MLP,
ILP and scaling, including blackscholes (BS), bodytrack (BT),
canneal (CN), fluidanimate (FA), streamcluster (STC), water
(WTR), and x264. We also used Andersen’s parallel analy-
sis [14] for graph traversal (AS). The benchmarks are run to
completion for 1 to 16 threads. One data set (simmedium) was
used to generate the models, and another data set (simlarge)
was used for evaluation. The models were generated using 50%
of the thread counts (uniformly distributed between 1 and 16)
on simmedium. Clang 3.2 (LLVM) with -O3 optimization was
used as the compiler.
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Fig. 4: Model accuracy (MRE for basis and projections)

To evaluate parameter choices for MONARCH, we use
mean relative error (MRE). This metric is the difference
between a model prediction and actual performance reported
by the simulator on simlarge. The parameter choice that
minimizes MRE should be chosen since MRE reflects model
quality for a previously unseen input data set. By selecting a
parameter this way, a more accurate model will be constructed,
which should also be better at predicting trends between core
types to guide mapping. We also evaluate how well trends
are predicted by examining the utility of the models from
MONARCH in selecting mappings that achieve QoS with
minimal power cost. These mappings are compared against
an oracle that always picks the best mapping.

B. Model Accuracy

Figure 4 shows mean relative error for basis and projection
functions, depending on the core type used as the basis.
Bagrande and Bpegite give the error when Grande or Petite
is used as the basis. Per program the choice of basis has
an impact. For example, on STC, Bp¢;;te has minimal error
(0.035), while Bgyande has more error (0.14) because STC’s
behavior varies between core types. On Petite, it scales linearly,
while on Grande it scales with an upward curve. Curves are
harder to predict than lines, resulting in the increased error.
In X264’s case, the basis for Petite has higher error than
the basis for Grande (0.10 versus 0.07). X264’s scalability
(Figure 2) has many local maxima. On Petite the maxima are
flatter due to lower performance. Therefore, MONARCH used
a degree-2 polynomial to reduce inductee profiling. Despite
these differences, the choice of basis actually has negligible
impact. Because the fastest core (Grande), reduces profiling
time, we use it as the basis.

Figure 4 also shows projection accuracy. Bgrande —
Ppetite 1s the error when Grande is projected to Petite and
Bpetite — Pgrande 18 the error when Petite is projected to
Grande. The best basis and inductee depends on the program.
Using the basis and projection together can result in less error
than training on a single core type. For example, AND and BS
for Barande — Ppetite have less relative error than Bpegite
from capturing trends across core types and no overfitting. As
expected, projection often has more error than the basis (AND,
STC, WTR and X264).

STC has the most error in projecting between cores with
approximately 0.28 MRE for both projections. From exami-
nation of execution behavior and scalability for the full runs
of this program (Figure 2), we found that this error is due to
differences in the curves at higher thread counts. On Grande,
performance has an increasing upward swing, while Petite
does not, which proves more difficult for regression to capture
with few inflection points. In comparison, X264 has better
accuracy, despite “ups and downs” in scalability (Figure 2). For
both core types, the same local minima and maxima appear,
although the relative difference between them differs with




B o =0.1: QoS
D o =0.1: QoS+cost

BB —0.05: QoS

.2: QoS
2: QoS+cost B « =0.05: Q0S+cost

RERRRRRRRRRK]

Percent of Perf (QoS) Targets Met

GR:1.84|PE:1.00 96|PE:1.00 GR:6.00|PE:1.00

Fig. 5: Achieving QoS and cost

core type. Because the local minima and maxima appear at
the same thread counts for both core types, projection can
compensate for the relative differences. For this benchmark,
adaptive regression analysis rejects the initial basis function
generated due to negative predictions at low thread counts: An
indication of overfitting. The check causes the analysis to try
a different function that does better at these counts.

C. Using Models

Because MRE is useful only for comparing models, we
also evaluate MONARCH’s models to predict performance for
different QoS goals and power costs. The mapping objective
is to select a configuration that achieves a QoS target, while
minimizing power. For evaluation, we use the models to select
the mapping that is predicted to meet QoS and minimize cost.
We use all actual performance values from the simlarge runs
for all benchmarks at all thread counts as QoS targets.

To specify QoS, we give a target BIPS, Q:qrget, and a
threshold, a. To test many targets, we use all BIPS values
for all benchmarks executed in all configurations of thread
count and core type. The BIPS values are collected with full
simulation on simlarge. The models are trained on simmedium.
We say that a mapping ‘“satisfies” QoS when a program’s
actual performance with simlarge under the mapping meets
or exceeds (1 — ) X Qarget- Using MONARCH’s models,
a configuration is selected that best achieves QoS and power.
This is done for every program and QoS target.

We assume cost is minimized when it falls within a of
the lowest cost mapping. « is varied to adjust QoS and cost
strictness (o € {0.2,0.1,0.05}). Four power cost ratios of
Grande to Petite core types are used: 1.84, 2.57, 3.96, and 6.00.
The ratio is the increased expense of using Grande over Petite.
The ratios are derived from core frequency, microarchitecture,
and supply voltage reported in the literature for big and little
cores, including ARM big.LITTLE. To predict power cost, we
use a linear model parametrized by number of cores (threads)
and core type: COST(tc, ty) = tc x COST(ty).

Figure 5 summarizes the result. The bars “QoS” show the
percentage of mappings for each power cost ratio that satisfied
QoS over all benchmarks. At o = 0.2, the mappings chosen
with the models typically satisfy QoS. On average over all
power ratios, 97% of the mappings satisfied QoS. This high
percentage happens because the models have MREs that are
low enough to fall within the tolerance induced by a.

As a becomes stricter, the percentage of targets achieved
declines. The average across all power cost ratios for av = 0.2
decreases from 97% to 85% at a = 0.1. At the strictest setting
(o = 0.05), 77% of the QoS targets are satisfied, down from

97%. In this case, model error is evident. Furthermore, this
target is challenging: There are far fewer thread count and
core type configurations that satisfy QoS with minimal cost.
From examining the detailed results, we found the percentage
reduction for a = 0.05 is due to the models overestimating
performance in a few cases. As a consequence, a configuration
with less power cost than the optimal one is chosen, under the
inaccurate estimation that performance for that configuration is
above QoS. Our observations hold across all power cost ratios,
except at the narrowest one (1.84) where there is less power
difference between configurations.

The percentage of configurations selected satisfying QoS
and minimizing power are shown by the bars “QoS+cost”.
When cost is considered, the percentage of targets achieved
is less than QoS only due to two reasons. First, performance
is underestimated in several cases, which causes more power-
hungry configuration than needed to be selected. In turn, this
leads to cost falling outside of a of the optimal mapping.
Second, with strict «, there are few configurations within «
in power and performance of optimal. Indeed, at o = 0.05,
only one configuration (optimal) usually satisfies the QoS
and power cost target. Thus, percentage of QoS+cost targets
achieved drops from an average of 75% (across all power cost
ratios) at o = 0.2 to 40% at o = 0.05. A larger power ratio
exacerbates the impact of the stricter «. For example, at a
ratio of 1.84 and a = 0.2, QoS+cost is achieved for 78% of
the targets. This drops to 70% at a 6.0 ratio.

D. Comparison to PIE

To put the results for MONARCH in context to other
approaches, we compared it to PIE [5], which predicts the
performance of a running program on one core type using
hardware performance counters from another core type. Be-
cause PIE was not designed for multithreaded programs, we
extended it to aggregate performance across multiple threads.
The extension, “MultiPie”, extends PIE’s equations that predict
performance of the big core (Grande) from the little core
(Petite) to consider a thread count, tc. We extended the
equations in the original PIE paper to aggregate performance
over multiple threads.

MultiPie determines scalability curves for Petite and
Grande in two steps. First, it profiles the program at all thread
counts 1 < tc < MAXTC using Petite with simmedium. This
profile is over all thread counts, while MONARCH only par-
tially profiles on any one core type. The full profile determines
the scalability curve for Petite. Second, the scalability curve
for Grande is determined from the profile data for Petite by
applying the modified PIE equations. In both MultiPie and
MONARCH, actual evaluation is done with simlarge.

We found that MultiPie can lead to inaccurate predictions
due to overestimating performance (result not shown for
brevity). Yet, despite potential inaccuracy, it usually reflects
the trend in scalability (similar to MONARCH). We now
examine whether this capability is sufficient to achieve QoS
under power constraints. Using the same methodology as
Section V-C, we determined how often MultiPie achieves QoS
at minimum power. Figure 6 shows the results. MultiPie does
a good job for QoS only, selecting configurations performing
similarly or better than MONARCH’s model. However, due to
underestimation of performance, the MultiPie configurations
are overprovisioned to meet QoS, leading to high power



ZZ3 o —0.1: MultiPIE QoS
E=3 a =0.1: MultiPIE QoS+cost
100%

2
2
5%

2 |

%
454
XS

80%

%5

oS

X

ofot

2R
2

X
35S

R

255

o
%8

o9
oS
S

3

s
35
S5
008
%o

60%

&
%5

5
%
XS

%

0%
%5

%

o
<
2%

9%
X
oot

DY

20
potes

%
%t

5

40%

.,.,
8%
S8

3
et

%

XX
X
e

o5
3K
&

Percent of Perf (QoS) Targets Met
&

R KKK RKRRRKXN]

S
293
%

05

20%

—
R
B

0o
%!

20
%!

ZS
o

...,v
<R
22

X

0%

GR:1.84|PE:1.00 GR:2.57|PE:1.00 GR:3.96|PE:1.00 GR:6.00|PE:1.00

Fig. 6: MONARCH and MultiPie comparison

cost, as shown by the percentages for “QoS+cost”. Because
MultiPie underestimates performance, the more powerful core
type (Grande) is usually selected to meet the QoS target.
This powerful core has a high clock speed and advanced
microarchitecture, easily meeting QoS with fewer threads
than the less capable core. The selection of the big Grande
core type comes at the cost of more power consumption.
Thus, MultiPie’s performance underestimation manifests in the
QoS+cost results.

The insight from these results is that accuracy in both
absolute performance and in predicting performance trends are
important to mapping, particularly when a power constraint is
imposed. We conclude that the models generated by MON-
ARCH achieve an effective balance between these two aspects.

VI. RELATED WORK

ACMPs can trade performance and power using multiple
instruction-set compatible core types [1], [3]. New processors
are adopting this architecture to allow a close mapping between
workload and hardware capability. The challenge is to map the
workload to the right resources. Researchers have shown the
importance of mapping applications for QoS with co-runners in
CMPs [12]. Co-runners introduce runtime asymmetry, which
must be managed. This work addressed workloads made of
single-threaded programs for symmetric CMPs. Wang et al.
studied remapping for multithreaded programs using models
derived with machine learning [11]. This approach built a
program-agnostic model to determine thread count, but it did
not consider core type.

Techniques have been proposed to allocate ACMP re-
sources to an a priori amount of work, i.e., the mapping
is only core type. Several approaches integrate performance
estimation and online monitoring to predict performance on
core types, including direct [3] and indirect measurement [15],
[5] of run-time and power. These approaches focused on mul-
tiprogrammed workloads. Our approach builds an independent
model of multithreaded program scalability.

Statistical models, similar to our approach, have been used
to predict performance [9], [10], [16], [4]. Using HPC, analytic
models have been developed to guide migration between core
types [S]. A program’s “signature” on architectural resources
can be used to select models for different core types [17].
Recent work extended PIE with compiler assistance to estimate
cycles per instruction [4]. Unlike MONARCH, these efforts
did not address scalability and core bias of multithreaded
programs. MONARCH uses regression to model scalability of
thread count and core type mapping. The approach adapts un-
derlying functions to fit program behavior. Minimizing training
is also a key aspect of MONARCH.

VII. CONCLUSION

ACMPs have multiple core types to trade performance and
power. This paper describes MONARCH, an empirical strat-
egy, to construct estimation models that predict a multithreaded
program’s performance for different thread count and core type
mappings. The approach automatically derives an estimation
model with low training cost. MONARCH is the first technique
to consider both thread count and core type to predict program
scalability for ACMPs used in mobile devices. Our results
show that model predictions are accurate and beneficial for
mapping multithreaded programs to asymmetric cores.
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