
Loop Recreation for Thread-Level Speculation

Lin Gao, Lian Li and Jingling Xue
University of New South Wales, Australia

Tin-Fook Ngai
Microprocessor Technology Lab, Intel

Abstract

For some sequential loops, existing techniques that
form speculative threads only at their loop boundaries
do not adequately expose the speculative parallelism in-
herent in them. This is because some inter-iteration
dependences, which translate into inter-thread depen-
dences at run time, are too costly to synchronize or
speculate. This paper presents a novel compiler tech-
nique, called loop recreation, to transform a loop into
a prologue, a kernel loop — formed with instructions
from two adjacent iterations, and an epilogue so that the
inter-iteration dependences in the kernel are less costly
to enforce at run time than those in the original loop.
We prove the concept by giving an algorithm for find-
ing an optimal loop recreation with respect to a simple
misspeculation cost model and by demonstrating perfor-
mance advantages of loop recreation over two recent
techniques for speculative multi-core systems running
four irregular applications with indirect array accesses.

1. Introduction

The emerging hardware support for speculative mul-
tithreading (SpMT) or thread-level speculation allows
the compiler to optimistically create speculatively par-
allel threads for sequential applications without having
to prove they are independent. This can be particularly
effective for applications that are difficult to parallelize
traditionally due to, for example, their use of irregular
data structures (via pointers and subscripted subscripts).
To achieve good performance on SpMT architectures,
the management of inter-thread dependences is crucial.

Maximizing speculative thread-level parallelism in
loops can often achieve significant performance im-
provements in many applications. If we turn loop itera-
tions directly into speculative threads as in existing loop-
oriented compiler techniques [3, 10, 11, 13, 14, 15],
some inter-iteration dependences in the loop, which be-
come inter-thread dependences at run time, can be too
costly to enforce. Furthermore, value prediction may
not be effective for irregular loops accessing arrays with

Gtop[i]

Gbot[i]

i=1,N

O
rig
in
a
l L
o
o
p

Gbot[i]

Gtop[i+1]

Gtop[1]

Gbot[N]

i=1,N-1

K
e
rn
e
l L
o
o
p

E
p
ilo
g
u
e

P
ro
lo
g
u
e

transformation

Figure 1. Loop recreation.

pointers and subscripted subscripts. Therefore, loop
boundaries are not good to serve as thread boundaries
for some loops. Existing compiler techniques [6, 9] for
whole programs allow thread boundaries to be formed
at control flow edges. But they are not designed specif-
ically to maximize the speculative parallelism in loops.
For example, in the important special case when a loop
consists of one single basic block, loop boundaries will
remain to be thread boundaries.

In this paper, we present a novel compiler tech-
nique, calledloop recreationand illustrated in Figure 1,
to speculatively parallelize sequential loops. Our loop
recreation transformation is denotedLRT. LRT amounts
to finding a partitionGpar = {Gtop, Gbot} of the set
of instructions in a loop (withG denoting its data de-
pendence graph) and then transforming the loop into a
prologue, a kernel loop and an epilogue. The objective
is to form a kernel loop with a different set of inter-
iteration dependences from that in the original loop by
overlapping instructions from two adjacent iterations in
the original loop. When the resulting kernel is specu-
latively executed, its inter-iteration dependences will be
less costly to enforce at run time than those in the orig-
inal loop. As a result, the speculative thread-level par-
allelism (TLP) in the kernel is improved. A motivating
example is presented in Figure 2.

The rest of this paper is organized as follows. Sec-
tion 2 describes the loop and execution models used.
Section 3 presents a loop recreation algorithm. In Sec-
tion 4, we describe the compiler framework in which our

DO 120 I=I3,I4
CX(IJ(I)) = CX(IJ(I)) + X
CX(IJ(I)+1) =CX(IJ(I)+1) + Y

(a) Original loop

mov I <- I3
brif (I > I4), L3

L1: // Original Loop
add I <- I, 1
fork(L1, L2, I)
ld r1<- IJ[I-1] (1)
ld r2 <- CX[r1] (2)
add r3 <- r2, rx (3)
st CX[r1] <- r3 (4)
add r4 <- r1, 1 (5)
ld r5 <- CX[r4] (6)
add r6 <- r5, ry (7)
st CX[r4] <- r6 (8)
brif (I <= I4), L1
L2:

kill

L3:

0
.0

5
0

.1
0

0
.6

0

0
.0

1

(b) Parallelized byPar, where

(rx)=X and(ry)=Y

mov I <- I3
brif (I > I4), L3

Prologue:
ld r1 <- IJ[I] (1)
ld r2 <- CX[r1] (2)
add r3 <- r2, rx (3)
st CX[r1] <- r3 (4)
brif (I = I4), Epilogue

L1: // Kernel Loop
add I <- I, 1
fork(L1, L2, I)
wait r1
add r4 <- r1, 1 (5)
ld r1 <- IJ[I] (1)
post r1
ld r5 <- CX[r4] (6)
add r6 <- r5, ry (7)
st CX[r4] <- r6 (8)
ld r2 <- CX[r1] (2)
add r3 <- r2, rx (3)
st CX[r1] <- r3 (4)
brif (I+1 <= I4), L1
L2:

kill

Epilogue:
add r4 <- r1, 1 (5)
ld r5 <- CX[r4] (6)
add r6 <- r5, ry (7)
st CX[r4] <- r6 (8)
L3:

0
.1

0
0

.0
5

0
.0

1

0
.2

5

(c) Parallelized byLRT

Figure 2. Loop recreation for a loop abstracted
from loop 120 in subroutineparmvr of wave5 in
SPECfp95. In (a), the loop code is given. In (b), the
loop in assembly code is parallelized byPar, a tech-
nique that maps loop iterations directly into threads. In
(c), the loop is parallelized byLRT where Gtop =
{1, 2, 3, 4} and Gbot = {5, 6, 7, 8}. Only inter-
iteration dependencesare shown, together with their
probabilities. In (c),(1) → (5) is a register dependence
on r1. By (1), LRT has reduced the misspeculation
probability of a thread from1−(1−0.05)(1−0.6)(1−
0.01)(1 − 0.10) = 0.66 in (b) to 1 − (1 − 0.25)(1 −
0.10)(1 − 0.01)(1 − 0.05) = 0.37 in (c).

algorithm is implemented. Section 5 presents our ex-
perimental results. Section 6 reviews the related work.
Section 7 concludes the paper.

2. Loop and Execution Models

As in [3], when parallelizing a loop, we presently
consider only its data dependences. In addition, an iter-
ation in a parallelized loop will be divided by a thread-
spawning instruction into a pre-fork and a post-fork re-
gion. The pre-fork region consists of only instructions
for computing the loop index for the successor thread to
be spawned by the thread-spawning instruction.

The iterations of a parallelized loop are distributed
to cores in an SpMT system in a round-robin fashion.
The oldest thread in sequential order is called thehead
thread, which is the onlynon-speculativethread and
thus allowed to commit its results. All others arespec-
ulative. Misspeculated threads are squashed and new

threads spawned to re-execute their alloted iterations.
This work is not concerned with deciding which de-

pendences should be synchronized or speculated. All
inter-iteration register dependences are synchronized us-
ing the technique described in [14]. All inter-iteration
memory dependences are speculated.

3. A Loop Recreation Algorithm

We present an algorithm for finding an optimal loop
recreation for a loop with respect to a simple misspec-
ulation cost model. Our algorithm consists of solving a
min-cut problem on a set of flow networks derived from
the data dependence graph (DDG) of a loop.

3.1. Data Dependence Graph (DDG)

The DDG for a loop is standard except that the
weights of dependences are so assigned that a misspec-
ulation cost model can be developed for both synchro-
nized and speculated dependences in a unified manner.

The DDG of a loop is a weighted directed multigraph,
denotedG = (V, E, W), whereV is the set of instruc-
tions in the loop,E is the set of directed edges repre-
senting the data dependences between instructions and
the weight functionW is computed as described shortly.

Inter-iteration anti- and output dependences do not
appear in the DDG since they are all automatically en-
forced by the hardware. However, intra-iteration anti-
and output dependences must be included. This is nec-
essary to ensure the legality of a loop recreation transfor-
mation (Lemma 1). Their weights are set to 0 because
they will not cause any overhead to enforce even when
they are transformed into inter-iteration dependences.

For a true dependenceu → v, W (u, v) ranges over
[0, 1] and is referred to as itsprobability regardless
whether it is a register or memory dependence. The in-
tent is thatW (u, v) represents the fraction of a loop it-
eration (in cycles) that is wasted due to synchronization
(misspeculation) ifu → v is synchronized (speculated).

The weightW (u, v) of a memory dependence(u, v)
is set as its dependence probability indicating how often
the dependenceu → v actually takes place at run time.

The weightW (u, v) of a register dependenceu → v
in a loop is defined to represent the incurred communi-
cation delay as a fraction of the total execution time for
one loop iteration in a parallelized version. Note thatu
represents a write access andv a read access. In addi-
tion, u appears lexically after the readv. Let I be the
set of all instructions that lie on a critical dependence
path fromv to u in the DDG of a loop. When the loop
or its parallelized versions are scheduled, all instruc-
tions in I must be scheduled betweenv andu. Then
the weightW (u, v) is estimated (optimistically) to be

max(0, ((
∑

I∈I∪{u,v} CI) − Spawn Overhead)/CL),
whereCI is the number of cycles spent on executing in-
structionI, CL is the total number of cycles spent on
executing one loop iteration andSpawnOverheadis the
number of cycles taken to spawn a new thread.

3.2. A Misspeculation Cost Model

It is difficult, if not impossible, to determine accu-
rately the relative timing of dependent instructions in
different threads. As in [3, 9], we make some conserva-
tive assumptions when estimating misspeculation over-
head: (1) different dependences are independent, and (2)
an inter-thread memory dependence is always misspec-
ulated.

As shown in Figure 1, a loop recreation for a loop is
uniquely specified by a partition of the set of nodes in its
DDG, G, into Gpar = {Gtop, Gbot}. The transformed
loop byGpar is referred to as therecreated loop.

Let D(Gpar) be the set of all inter-iteration depen-
dences in the recreated loop generated by a loop recre-
ationGpar = {Gtop, Gbot}. The misspeculation proba-
bility of a thread is approximated by:

P(Gpar) = 1 − Π(u,v)∈D(Gpar)(1 − W (u, v)) (1)

In practice, if there are several inter-thread register de-
pendences, the communication delayed incurred by a
thread is roughly equal to the largest communication de-
lay incurred by one of these dependences. For practi-
cal loops with hundreds or even thousands of instruc-
tions, the weights of register dependences are small. In
this case, our cost model will over-approximate slightly
the misspeculation probability for a thread. By over-
approximating, we ensure that the recreated loop cre-
ated by any optimal solution is always no worse than the
original one (with respect to this cost model used).

3.3. Algorithm

The key idea behind a loop recreationGpar =
{Gtop, Gbot} is to transform some intra-iteration depen-
dences into inter-iteration dependences and vice versa.
As can be observed in Figure 1, the distance of a de-
pendence fromGtop to Gbot is increased by 1 while the
distance of a dependence fromGbot toGtop is decreased
by 1. Hence, the following two results are immediate.

Lemma 1 A loop recreationGpar = {Gtop, Gbot} for
a loop is legal if and only if there are no intra-iteration
dependences pointing fromGbot to Gtop.

Lemma 2 A loop recreationGpar = {Gtop, Gbot} for
a loop affects its dependenceu → v spanningGtop

and Gbot as follows. Ifu → v is an intra-iteration
(inter-iteration) dependence pointing fromGtop (Gbot)

1 LRT(G) // G = (V, E, W) is a DDG
2 ConstructF from G

3 for every flow networkGf = (Vf , Ef , Cf) in F do
4 LetG′

f be the simple graph converted fromGf

5 (Sf , Tf) = Find Min Cut(G′
f)

6 Let (Sopt, Topt) be one of2|CAB| minimum cuts found

above such that the capacity of the cut is the smallest
7 return (Sopt \ {s}, Topt \ {t})

Figure 3. An optimal algorithm.

to Gbot (Gtop) in the loop, thenu → v becomes an
inter-iteration (intra-iteration) dependence in the recre-
ated loop. Otherwise, an intra-iteration (inter-iteration)
dependence in the loop remains so in the recreated loop.

Definition 1 (Optimality) Gpar = {Gtop, Gbot} is op-
timal if P(Gpar) is the smallest possible.

Minimizing P(Gpar) is equivalent to minimizing

∑

(u,v)∈D(Gpar)

ln(
1

1 − W (u, v)
) (2)

In our implementation, ifW (u, v) = 1 for a dependence
u → v, thenW (u, v) = 0.99 will be used instead.

This objective function motivates us to formulate the
problem of finding an optimal loop recreation for a loop
as one of solving a min-cut problem on a set ofs-t flow
networks derived from its DDG. The goal is to find a
minimum cut on one of these flow networks so that the
cut induces an optimal loop recreation for the loop.

However, we cannot find a loop recreationGpar =
{Gtop, Gbot} for a loop by directly solving a min-cut
problem on the DDG of the loop. This is because all
inter-iteration dependence edges confined in eitherGtop

or Gbot do not manifest themselves as cut edges. To
overcome this, some inter-iteration dependence edges
will be duplicated in flow networks created fromG. The
notions of A- and B-duplicated edges are defined below.

Definition 2 (A- and B-Duplicated Edges) Let x, y ∈
V . We writeD∗(x, y) = I if there exists a directed path
of intra-iteration dependences fromx to y in G. LetGc

be the set of inter-iteration dependence edges inG. The
sets of only A-duplicated edges, only B-duplicated edges
and both A- and B-duplicated edges are:

CA = {(u, v) ∈ Gc | D∗(u, v) 6= I,D∗(v, u) = I}
CB = {(u, v) ∈ Gc | D∗(u, v) = I,D∗(v, u) 6= I}

CAB = {(u, v) ∈ Gc | D∗(u, v) 6= I,D∗(v, u) 6= I}

Note thatD∗(u, v) = I ∧ D∗(v, u) = I is impossible
sinceu andv do not depend on each other.

We are ready to defineF as a set of2|CAB| s-t flow
networks constructed fromG = (V, E, W). Each flow
networkGf = (Vf , Ef , Cf) is built as follows:

Step 1 The node setVf is V ∪ {s}∪ {t}, wheres andt
are the unique source and sink, respectively.

Step 2 For everyu → v ∈ E, we add two edges to

Ef : u
Cf (u,v)
−→ v and v

Cf (v,u)
−→ u. If u → v is

an intra-iteration dependence, we setCf (u, v) =
ln(1

1−W (u,v)) andCf (v, u) = ∞. Otherwise, we

setCf (u, v) = ln(1
1−W (u,v)) andCf (v, u) = 0.

Step 3 If u → v ∈ CA, we adds
ln(1

1−W (u,v)
)

−→ v and

u
ln(1

1−W (u,v)
)

−→ t to Ef . This is called anA-

duplication. If u → v ∈ CB, we adds
ln(1

1−W (u,v)
)

−→

u andv
ln(1

1−W (u,v)
)

−→ t to Ef . This is called aB-
duplication. If u → v ∈ CAB, we add either an A-
or B-duplication toEf .

In Step 2, for every dependenceu → v in G, we add
two edges toEf : u → v andv → u, where the former
edge represents the situation whenu → v spans from
Gtop to Gbot and the latter edge represents the situation
whenu → v spans fromGbot to Gtop. Therefore, their
weights are set as implied by Lemma 2. Ifu → v is an
intra-iteration dependence, the weight ofv → u in Gf

is set to be∞ to prevent it from becoming a cut edge.
By convention, the absence of an edge in a flow net-

work implies its capacity to be 0. Thus, ifu → v is an
inter-iteration dependence, thenGf will consist of im-

plicitly s
0

−→ u, s
0

−→ v, u
0

−→ t andv
0

−→ t. There-
fore, there is no guarantee thatu → v will be a cut edge
in a cut. Ifu → v is not a cut edge, then its weight will
not be included in the capacity of the cut.

In Step 3, two more copies are introduced for every
inter-iteration dependence dependenceu → v in CA and
CB. Then everys-t cut is guaranteed to include at least
one copy ofu → v. Since an edge inCAB will be both
A- and B-duplicated,|F| = 2|CAB| holds.

Figure 3 gives our optimal algorithm.

3.4 An Example

We illustrate our algorithm using a DDG abstracted
from loop 120 in subroutineparmvr of wave5 in
SPECfp95. For the DDG depicted in Figure 4(a), it is
easy to check thatCA = {4 → 2, 8 → 6}, CB = ∅,
and CAB = {8 → 2, 4 → 6} since D∗(2, 4) = I ∧
D∗(4, 2) 6= I, D∗(6, 8) = I∧D∗(8, 6) 6= I, D∗(2, 8) 6=
I ∧ D∗(8, 2) 6= I andD∗(4, 6) 6= I ∧ D∗(6, 4) 6= I.
Hence,F consists of2|CAB| = 4 flow networks.

1

2

3

4

5

6

7

8

0.25

0.
25

0.
37

5
0.

37
5

0.
25

0.
37

5
0.

37
5

0.60 0.
01

0.
25

0.
25

0.
05

0.
10

(a)G (where solid (dashed) arrows represent
intra-iteration (inter-iteration) dependences)

s

1

2

3

4

5

6

7

8

t

0.29

0.
29

0.
47

0.
47

0.
29

0.
47

0.
47

0.92

0.
01

0.
29

0.
29

0.
05

0.
10

0.
05

0.
92

0.11

0.01

0.05

0.
01

0.
92

0.
11

∞
∞

∞

∞
∞

∞

∞

∞ ∞

0 0

0

0

(b) G
8

A
−→2,4

B
−→6

Figure 4. An illustration ofLRT .

Of the four flow networks inF , G
8

A
−→2,4

B
−→6

, in

which8 → 2 is A-duplicated and4 → 6 is B-duplicated,
is shown in Figure 4(b). This network is constructed
as follows. For each of the nine intra-iteration depen-
dences, its two copies in the network are created in Step
2. For each of the four inter-iteration dependences, its
two copies are created in its Step 2 and the other two
created in Step 3 (with4 → 2, 8 → 6 and8 → 2 being
A-duplicated and4 → 6 B-duplicated).

Figure 4(b) also depicts the minimum cut from which
the optimal loop recreationGpar = {Gtop, Gbot} =
{{1, 2, 3, 4}, {5, 6, 7, 8}} is found.

3.5 Optimality

Theorem 1 The partition{Sopt \ {s}, Topt \ {t}} re-
turned byLRT is optimal.

Proof. The basic idea behind buildingF is as follows.
If Gpar = {Gtop, Gbot} is a legal loop recreation forG,

then(Gtop ∪ {s}, Gbot ∪ {t}) is ans-t cut that is free of
∞-weighted cut edges in every flow network inF . The
converse is true, too. We create2|CAB| networks inF to
ensure that all inter-iteration dependences in a recreated
loop are captured as cut edges in ans-tcut. Furthermore,
(Sopt \ {s}, Topt \ {t}) is optimal if (Sopt, Topt) has the
smallest capacity. �

3.6 Time Complexity and Practical Efficiency

We have used Goldberg’s implementation of his
push-relabelHIPR algorithm [4] to find minimum cuts.
Its worst-case time complexity when applied toG =
(V, E, W) is O(|V |2 ×

√

|E|). In line 3 ofLRT, there
can be|F| = 2|CAB| flow networks. So the worst-case
time complexity ofLRT is O(|V |2 ×

√

|E| × 2|CAB|).
In practice, LRT is efficient if we adopt the fol-

lowing simple strategy. LetGf ∈ F . Let
u1 → v1, . . . , um → vm be all the B-duplicated edges
in Gf . For any minimum cut inGf , a B-duplicated
edge will be cut in one of the four possible ways: (1)
s ∈ Gtop andu, v, t ∈ Gbot, (2) s, u, v ∈ Gtop and
t ∈ Gbot, (3) s, u ∈ Gtop and v, t ∈ Gbot and (4)
s, v ∈ Gtop andu, t ∈ Gbot. Hence, the capacity of
any minimum cut inGf must be larger than or equal
to

∑m

i=1 W (ui, vi). We will first find the minimum cut
for the unique flow network inF in which all edges
in CAB are A-duplicated and then examine the remain-
ing flow networks in the order in which more and more
edges inCAB are B-duplicated. We ignore a flow net-
work if

∑m

i=1 W (ui, vi) for all its B-duplicated edges
u1 → v1, . . . , um → vm is larger than or equal to the
capacity of the best minimum cut found so far.

The compile times can be reduced further if some
edges inCAB given in Definition 2 are ignored when
their weights are small. This will over-approximate
slightly the misspeculation probabilityP in (1).

Table 1 gives the compile times for the four bench-
marks used in our experiments.

Benchmark #Nodes #Edges |CAB| Time (msecs)

Wave5 796 1572 12 21.17
Fmda3d 868 1864 12 12.06

Irreg 85 173 0 0.60
Nbf 80 189 0 0.61

Table 1. Compile times (on a 3.2GHz P4).

4. Implementation

Figure 5 depicts the SUIF/MachSUIF compilation
framework in which this work is implemented. Our loop
recreation pass is invoked just before MachSUIF’s reg-
ister allocation pass. All virtual registers (i.e., scalars)

Profiling info

Regs allocated

MachSUIF IR

source code

SUIF IR

SUIF Front-end

MachSUIF IR

Instrumented

MachSUIF IR

Transformed

MachSUIF IR

MachSUIF S2M

Dependence Analysis

Instrumentation

Loop Recreation

MachSUIF RAGA

MachSUIF M2A

assembly code

Profiler

Figure 5. A compilation framework.

in the MachSUIF IR are candidates for synchronization.
The remaining ones are memory variables, which give
rise to speculated memory dependences.

We have added the three modules that are highlighted
in gray. A program is first converted into the SUIF IR
by the SUIF front-end. The SUIF IR is then converted
into the MachSUIF IR, on which our loop recreation al-
gorithm operates as a separate pass. The dependence
analysis module builds the DDG for a loop. To obtain
the probability of a speculated memory dependence, the
MachSUIF IR is fed to our profiler. Our loop recreation
module reads the MachSUIF IR of a loop and produces
the parallelized code in the form of MachSUIF IR.

5. Experimental Results

In this section, we demonstrate performance advan-
tages of loop recreation over two existing paralleliza-
tion methods using four irregular applications under two
different squash mechanisms:eager squashand lazy
squash. In the former case, all misspeculated threads
are squashed and restarted as soon as they are detected
at some write accesses. In the latter case, these only hap-
pen when the squashing thread has run to completion.

5.1. SpMT Architecture

We consider a SpMT multi-core system, where each
core has its private function units, register file, separate
L1 instruction and data caches. All the cores share a
common L2 unified cache. Each core is capable of exe-
cuting the Alpha ISA with the main architectural param-
eters listed in Table 2, which are similar to those used in
recent papers [3, 9]. Before a loop is executed, registers
holding all live-in values for the loop are copied to all
cores. This happens only once for a loop since the live-
ins between its iterations are synchronized. A latency of

8 cycles for “Copy Overhead” is assumed for one copy
operation; this is conservative since a maximum of 13
live-ins for a loop are observed in our experiments.

Parameter Value

Fetch, Issue, Commit bandwidth 4, out-of-order issue
L1 I-Cache 16KB, 4-way, 1 cycle (hit)
L1 D-Cache 16KB, 4-way, 3 cycle (hit)
L2 Cache (shared) 1MB, 4-way, 12 cycles (hit), 80 cycles (miss)
Local Register File 1 cycle
Interconnect Latency 3 cycles
Spawn Overhead 5 cycles
Commit Overhead 5 cycles
Invalidation Overhead 12 cycles
Copy Overhead 8 cycles

Table 2. SpMT architecture.

5.2. Benchmarks

We examine four irregular applications accessing
arrays with subscripted subscripts:Irreg and Nbf
from [5] and two kernel loops from SPEC bench-
marks. Irreg is a representative of iterative PDE
solvers found in computational fluid dynamics (CFD)
applications. Nbf is a widely used kernel abstracted
from the GROMOS molecular dynamics code.Wave5
from SPECfp95 solves Maxwell’s equations and particle
equations of motion on a cartesian mesh with a variety of
field and particle boundary conditions. We have chosen
loop 120, a one-deep nest, in subroutineparmvr and
named itWave5-120. To model the fact thatparmvr
is called over 60065 times, an outer loop with an itera-
tion count of 4000 is added for this kernel loop.Fma3D
from SPECfp2000 is a 3D inelastic, transient dy-
namic response simulation code based on finite element
analysis. The loop chosen, namedFma3d-NUMP4,
is the one with the upper boundNUMP4 in sub-
routine SCATTER ELEMENT NODAL FORCE PLATD,
which has 721 invocations. The inner loop, which has
eight iterations, are fully unrolled. To simulate these
many subroutine invocations, an outer loop with an it-
eration count of 20 has been added.

5.3. Simulations

For the two SPEC benchmark loops, the train inputs
are used to collect profiling information (i.e., the proba-
bilities of memory dependences) while the reference in-
puts are used in simulations. ForIrreg andNbf, the
input graphs used to collect profiling information are dif-
ferent from those used in simulations. In each case, the
simulation results for two different input graphs are pre-
sented.Irreg-I32 denotesIrreg running with an
input graph with 131072 nodes and 3538944 edges and
Irreg-I35 denotes the case when the input graph has

171500 nodes and 4630500 edges.Nbf-N28 denotes
Nbf running with an input graph with 87808 nodes and
2370816 edges andNbf-N32 denotes the case when the
input graph has 131072 nodes and 3538944 edges.

The threaded loops generated by different methods
are usually different. To compare their performance re-
sults accurately, each program is run for a common set
of (consecutive) iterations for all methods compared. All
programs are simulated for between 1 to 1.5 billion in-
structions. ForWave5a-120 andFma3d-NUMP4, the
first 12 and 15 million instructions are skipped, respec-
tively. As for Irreg-I32, Irreg-N35, Nbf-N28
and Nbf-N32, the number of skipped instructions
ranges between 3 and 7 billion.

5.4. Methods Compared

In our experiments, we evaluate the performance im-
provements ofLRT over two methods,Par andSPT [3].
Par simply maps each iteration in a loop into a thread
(cf. Figure 2(b)). We will also give the speedups ofLRT
over sequential programs, which are generated byNon
(which stands for none). Unlike SPT as described in [3],
full rather than partial re-execution is used.

SPT is guided by a misspeculation cost model to par-
allelize a given loop [3]. In our experiments, the best
solutions it could ideally generate for all four programs
are used. ForIrreg andNbf, SPT generates the same
parallelized loops asPar. In each case, the pre-fork re-
gion serves only to compute the value of loop variable
for the successor thread. Therefore, the results forSPT
andPar as depicted in Figures 6(c) – (f) and 7 are iden-
tical. ForWave5-120, there are six sections of code
exhibiting the same dependence patterns as those shown
in Figure 4(a).SPT achieves the best result when the ra-
tio of pre-fork/post-fork is 1/5, in which case about half
of a code section in two of the six sections are moved
into the pre-fork region. ForFma3d-NUMP4, the num-
ber of code sections with similar dependence patterns as
those in Figure 4(a) is 12. The four of these end up each
being split evenly in the pre-fork and post-fork regions.
So the ratio of pre-fork/post-fork is also 1/5.

As for LRT, the pre-fork region of a parallelized loop
it generates for any given loop is the same as that gen-
erated byPar. For each benchmark, all code sections
that share the same dependence characteristics as the
loop given in Figure 4(a) have been successfully par-
allelized. Based on our cost model given in (1),LRT
has reduced the misspeculation possibilities forWave5,
Fma3D,Irreg andNbf from 0.82, 0.99, 0.85 and 0.87
to 0.05, 0.00, 0.19 and 0.04, respectively.

5.5. Speedups and Analysis

We present our results for 2-, 4-, 6- and 8-core sys-
tems in Figures 6 – 9, where L stands forLRT, P for
Par, S for SPT, N for Non, EA for “Eager Squash”,
and LA for “Lazy Squash”. We first take a look at the
speedups ofLRT over other methods and then describe
the reasons behind these performance improvements.

5.5.1 Speedups

Figure 6 compares all the methods in terms of their
performance results. All the execution times are nor-
malized with respect toLRT. So the execution time for
a particular method represents the speedup ofLRT over
that method. As a result, when comparing the bars for
two methods in a configuration, the one with a shorter
bar generates faster code and is thus better than the other.

First of all, we observe thatLRT improves scalably
the execution time of every program. Note that the per-
formance improvements (ofLRT overNon) under both
squash mechanisms are nearly the same. Thus, the nor-
malized execution times happen to also allow us to find
out how well a particular method works for a program
under the two different squash mechanisms.

Next, let us take a look at the performance improve-
ments ofLRT over Par. For every benchmark, the
speedup ofLRT over Par under each squash scheme
generally increases as the number of cores increases.
In general,Par performs much better under EA. In the
case ofwave5-120 andFma3d-NUMP4, Par is even
slightly worse thanNon. However, even when EA is
assumed,LRT outperformsPar in nearly all configura-
tions. The speedups ofLRT overPar on a 8-core sys-
tem forWave5-120, Fma3d-NUMP4. Irreg-I32,
Irreg-I35, Nbf-N28 andNbf-N32 are 1.67, 1.59,
3.71, 3.69, 3.59 and 3.54, respectively. Due to cache
effects (as will be explained shortly in Section 5.5.2),
some slight performance slowdowns are observed when
Fma3D-NUMP4 is run on 2- and 4-core systems.

Finally, let us examine the performance improve-
ments ofLRT over SPT. SPT performs slightly bet-
ter under EA for all the four programs. When LA is
used, the speedups ofLRT over SPT on a 8-core sys-
tem forWave5-120, Fma3d-NUMP4. Irreg-I32,
Irreg-I35, Nbf-N28 andNbf-N32 are 1.70, 1.59,
3.75, 3.73, 3.93 and 3.87, respectively. If EA is used
instead, these numbers become 1.54, 1.58, 3.71, 3.69,
3.59 and 3.54, respectively. Again, due to cache effects,
some slight performance slowdowns are observed when
Fma3D-NUMP4 is run on 2- and 4-core systems.

0.0

0.2

0.4

0.6

0.8

1.0

L P S L P S L P S L P S L P S L P S L P S L P S L P S L P S L P S L P S L P S L P S L P S L P S

LA EA LA EA LA EA LA EA LA EA LA EA LA EA LA EA

2 cores 8 cores 2 cores 8 cores 2 cores 8 cores 2 cores 8 cores

WAVE5-120 FMA3D-NUMP4 IRREG-I35 NBF-N32

T
h

re
ad

 S
q

u
as

h
 R

at
io

s

Figure 7. Misspeculation penalties.

5.5.2 Analysis

To shed some light on the results given in Figure 6
and understand the impact of the two squash mecha-
nisms on these results, we present some synchronization
and misspeculation statistics in Figures 7 and 8.

Misspeculation Figure 7 compares the thread squash
ratios of a program parallelized byLRT, Par andSPT
under the LA and EA squash mechanisms. The squash
ratio of a program is referred to as the percentage of
the number of squashed threads over the total num-
ber of spawned threads. In each benchmark, a thread
is squashed mainly due to data dependence violations.
However, some threads are also squashed when the
backedge of a parallelized loop is violated, the only form
of control dependence violations in this work.

LRT has the smallest squash ratio among all meth-
ods compared under either squash scheme. In addition,
its squash ratios (due to mainly control misspeculations)
are small in all programs exceptNbf-N32, which at-
tracts a squash ratio of 4% with two cores and of 20%
when eight cores are used. These squashes are mainly
caused by control misspeculations since the iteration
count of the parallelized loop, which is nested inside two
other loops, is small. In general,Par suffers the highest
squash ratios in our experiments. Note thatPar andSPT
have parallelizedNbf andIrreg identically.

Synchronization All sequential loops in our bench-
marks are free of inter-iteration register dependences.
Thus, there are no synchronized register dependences in
the parallelized loops generated byPar andSPT.

In all the four benchmarks exceptFma3d-NUMP4,
LRT has transformed some intra-iteration register de-
pendences into inter-iteration register dependences. Fig-
ure 8 shows the synchronization costs incurred byLRT.
The synchronization costs in these benchmarks are
small, representing less than 4.3% of their total exe-
cution times. Fma3d-NUMP4 is synchronization-free.

6.256.25 7.274.904.905.69

0.0

1.0

2.0

3.0

4.0

L P S N L P S N L P S N L P S N L P S N L P S N L P S N L P S N

LA EA LA EA LA EA LA EA

2 cores 4 cores 6 cores 8 cores

N
o

rm
al

is
ed

 E
xe

cu
ti

o
n

 T
im

es

6.746.746.855.055.055.14

0.0

1.0

2.0

3.0

4.0

L P S N L P S N L P S N L P S N L P S N L P S N L P S N L P S N

LA EA LA EA LA EA LA EA

2 cores 4 cores 6 cores 8 cores

N
o

rm
al

is
ed

 E
xe

cu
ti

o
n

 T
im

es

(a) Wave5-120 (b) Fma3d-NUMP4
6.156.154.534.53

0.0

1.0

2.0

3.0

4.0

L P S N L P S N L P S N L P S N L P S N L P S N L P S N L P S N

LA EA LA EA LA EA LA EA

2 cores 4 cores 6 cores 8 cores

N
o

rm
al

is
ed

 E
xe

cu
ti

o
n

 T
im

es

6.286.284.604.60

0.0

1.0

2.0

3.0

4.0

L P S N L P S N L P S N L P S N L P S N L P S N L P S N L P S N

LA EA LA EA LA EA LA EA

2 cores 4 cores 6 cores 8 cores

N
o

rm
al

is
ed

 E
xe

cu
ti

o
n

 T
im

es
(c) Irreg-I32 (d) Irreg-I35

4.04 4.04 4.77 4.77

0.0

1.0

2.0

3.0

4.0

L P S N L P S N L P S N L P S N L P S N L P S N L P S N L P S N

LA EA LA EA LA EA LA EA

2 cores 4 cores 6 cores 8 cores

N
o

rm
al

is
ed

 E
xe

cu
ti

o
n

 T
im

es

4.954.95 4.184.18

0.0

1.0

2.0

3.0

4.0

L P S N L P S N L P S N L P S N L P S N L P S N L P S N L P S N

LA EA LA EA LA EA LA EA

2 cores 4 cores 6 cores 8 cores

N
o

rm
al

is
ed

 E
xe

cu
ti

o
n

 T
im

es

(e) Nbf-N28 (f) Nbf-N32

Figure 6. Normalized execution times (with respect toLRT).

The percentage synchronization costs forWave5-120
are about 4.3% in the worst case. The synchroniza-
tion costs forIrreg-I35 andNbf-N32 are relatively
large considering the small sizes of their loop bodies.

The results under both squash schemes are similar
since the misspeculation statistics forLRT are similar.

Eager Squashes vs Lazy SquashesWe can now un-
derstand better the speedup numbers given in Figure 6
and the impact of two squash mechanisms on these re-
sults. Let us examineWave5-120 first. Recall that
its loop body can be divided into six sections with each
sharing the same dependence characteristics as the DDG
given in Figure 4(a). LRT has parallelized each sec-
tion as shown in Figure 4(b). As a result,LRT performs
similarly under both squash mechanisms since misspec-
ulations are infrequent (as shown in Figure 7). This

fact can be deduced in Figure 6, where the two N bars
in each configuration have the same height (up to two
decimal points). In the case ofPar, the loop body of
its parallelized loop consists of a frequently occurring
memory dependence in each of its six above-mentioned
code sections. Therefore,Par suffers frequent misspec-
ulations under LA (as shown in Figure 7) to the extent
that the threads are nearly sequentialized (as shown in
Figure 6). From Figure 7, we can see that by squash-
ing misspeculated threads earlier forWave5-120 un-
der EA, the squash ratio has been reduced significantly.
Thus, by squashing misspeculated threads and restart-
ing them earlier, more parallelism has been attained.
The parallelizedWave5-120 fromPar runs 1.90 (4.32)
faster under EA than under LA in the two-core (eight-
core) configuration. In the case ofSPT, the ratio of
pre-fork/post-fork is 1/5. Due to this delay in spawn-

0%

10%

20%

30%

40%

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

LA EA LA EA LA EA LA EA

WAVE5-120 FMA3D-NUMP4 IRREG-I35 NBF-N32

P
er

ce
n

ta
g

e
o

f
S

ta
lls

stall due to synchronization stall due to insufficient cores

Figure 8. Synchronization cost forLRT.

0.0E+00

3.0E+07

6.0E+07

9.0E+07

1.2E+08

1.5E+08

2 cores 4 cores 6 cores 8 cores

L
1

M
is

se
s

L-LA P-LA S-LA L-EA P-EA S-EA

Figure 9. Cache misses ofFma3D-NUMP4.

ing threads, the speculated memory dependences behave
similarly in both squash schemes. So the performance
variations in both cases are small.

The situation forFma3d-NUMP4 is similar to that
for Wave5-120. For Irreg andNbf, LRT behaves
similarly under both squash schemes since the misspec-
ulations for both programs are infrequent. BothPar and
SPT generate same parallelized code. So their perfor-
mance results for each program are identical. Let us
examinePar. The dependence violations forIrreg
are infrequent and usually happen at the end of an it-
eration. So small performance variations are observed
under both squash schemes. The dependence violations
for Nbf happen slightly earlier in an iteration. Thus,Par
performs better under EA forNbf.

Cache Effects WhenFma3d-MUMP4 is run on two-
and four-core systems,LRT performs equally as well
as or slightly worse thanPar under EA and thanSPT
under both LA and EA. As mentioned in Section 5.2,
the Fma3d-MUMP4 loop is parallelized only after its
eight-iteration inner loop has been fully unrolled. This
creates possibly accesses to all fields of eight different
structure elements of an array, namedFORCE. In con-
trast withPar andSPT, LRT forms a new loop iteration
from the instructions in two adjacent iterations in the
Fma3d-MUMP4 loop. As a result,LRT has happened

to decrease the amount of spatial reuse among these ac-
cesses in the L1 data cache private to each core. The
performance slowdowns ofLRT in two- and four-core
cases are due to increased L1 data cache misses shown in
Figure 9. As the number of cores increases,LRT outper-
formsPar andSPT since the more parallelism exposed
by LRT has significantly more than offset the cache ef-
fects. The lack of sufficient cores makes it difficult to
harness the amount of parallelism exposed by our loop
recreation technique, as indicated in Figure 8. We have
verified thatLRT will slightly outperformPar andSPT
if the extra L1 cache misses had not occurred in the two-
and four-core configurations.

6. Related Work

Loop recreation works on any architecture that pro-
vides hardware support for speculative multithreading
(SpMT). Therefore, we will review only some compiler
techniques related to this work.

Helper threads [2, 7, 8, 16] are used to speculatively
execute a code region to reduce the latency of some ex-
pensive instructions in the region. A helper thread for a
loop may be formed from any of its instructions in any
order since it does not have to be concerned with pro-
gram correctness. However, as a loop transformation,
loop recreation is correctness-preserving.

Software-based value prediction techniques [3, 9] are
used to predicate some live-in values for a thread to
reduce misspeculation penalties. For example, once a
thread is created, the Mitosis compiler [9] will generate a
piece of code (called P-slice) to predict the live-in values
for each speculative thread. P-slices are not necessarily
part of the original program and the values they produce
do not have to be correct. However, these techniques
may not be effective for irregular applications accessing
arrays via pointers and indirection arrays.

When reviewing existing speculative parallelization
techniques, we first consider loop-oriented techniques
and then general-purposeones. To the best of our knowl-
edge, existing loop-oriented techniques [3, 10, 11, 13,
14, 15] form threads only at loop boundaries by turn-
ing loop iterations into threads. In [10, 14, 15], fre-
quently occurring dependences are synchronized. The
post andwait instructions associated with a synchro-
nized dependence are moved as close as possible. As a
result, the time for communicating the required values
can be reduced. In this work, we have adopted the tech-
nique described in [14] to insert thepost andwait
instructions required for synchronized dependences.

The SPT compiler [3] attempts to move the producer
instructions of some inter-thread dependences into the
pre-fork region (subject to their cost model), thereby re-
ducing squashes caused by frequently occurring inter-

thread dependences. A software value prediction tech-
nique is used to predict some live-in values when their
producer instructions are not in the pre-fork region.

Some general-purpose compiler techniques [1, 6, 9,
12] can walk through the CFG of a program and form
threads at the boundaries of control flow edges. Let us
examine how loops are handled. The earlier algorithm
used in the Multiscalar project [12] forms threads only
at loop boundaries. The follow-up work [1] may allow
large loop iterations to be sliced into multiple threads but
loop boundaries remain to be thread boundaries. The
Mitosis compiler [9] and the work [6] may turn some
basic blocks in a loop into a thread. But they are not
designed to specifically maximize the speculative paral-
lelism in loops. For instance, when a loop has one basic
block, they will still restrict threads to loop boundaries.

Software pipelining improves instruction level paral-
lelism by overlapping the execution of adjacent loop it-
erations on single-core processors. However, loop recre-
ation improves TLP by overlapping the execution of two
adjacent loop iterations on SpMT multi-core processors.

7. Conclusion

The development of speculative parallelization tech-
niques for improving the performance of sequential pro-
grams is very challenging. In this paper, we present
a new compiler technique, called loop recreation, for
restructuring a loop into a prologue, a kernel loop, an
epilogue so that the kernel can yield higher speculative
parallelism than the original loop. We present a loop
recreation algorithm and demonstrate significant perfor-
mance advantages of loop recreation over some recent
techniques using four irregular applications.

References

[1] A. Bhowmik and M. Franklin. A general compiler frame-
work for speculative multithreaded processors.IEEE
Trans. Parallel Distrib. Syst., 15(8):713–724, 2004.

[2] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-
F. Lee, D. Lavery, and J. P. Shen. Speculative precom-
putation: long-range prefetching of delinquent loads. In
ISCA ’01: Proceedings of the 28th Annual International
Symposium on Computer Architecture, pages 14–25, New
York, NY, USA, 2001. ACM Press.

[3] Z. H. Du, C. C. Lim, X. F. Li, C. Yang, Q. Zhao, and T. F.
Ngai. A cost-driven compilation framework for specula-
tive parallelization of sequential programs. InProceed-
ings of Conference on Programming Language Design
and Implementation, 2004.

[4] A. Goldberg. Network Optimization Library, 2003.
http://www.avglab.com/andrew/soft.html.

[5] H. Han and C.-W. Tseng. Exploiting locality for irregu-
lar scientific codes.IEEE Transactions on Parallel and
Distributed Systems, 17(7):606–618, Jul. 2006.

[6] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar.
Min-cut program decomposition for thread-level specu-
lation. In Proceedings of Conference on Programming
Language Design and Implementation, 2004.

[7] S. S. Liao, P. H. Wang, H. Wang, G. Hoflehner, D. Lavery,
and J. P. Shen. Post-pass binary adaptation for software-
based speculative precomputation. InPLDI ’02: Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming language design and implementation, pages
117–128, New York, NY, USA, 2002. ACM Press.

[8] C.-K. Luk. Tolerating memory latency through software-
controlled pre-execution in simultaneous multithreading
processors. InISCA ’01: Proceedings of the 28th An-
nual International Symposium on Computer Architecture,
pages 40–51, New York, NY, USA, 2001. ACM Press.

[9] C. G. Quinones, C. Madrile, J. Sanchez, P. Marcuello,
A. Gonzalez, and D. M. Tullsen. Mitosis compiler:
An infrastructure for speculative threading based on pre-
computation slices. InProceedings of Conference on Pro-
gramming Language Design and Implementation, 2005.

[10] J. G. Steffan, C.B.Colohan, A.Zhai, and T. C. Mowry.
Improving value communication for thread-level specu-
lation. InInternational Symposium on High-Performance
Computer Architecture, 2002.

[11] J. Y. Tsai and P. C. Yew. The superthreaded architecture:
Thread pipelining with run-time data dependence check-
ing and control speculation. InInternational Conference
on Parallel Architecture and Compiler Techniques, pages
35–46, 1999.

[12] T. N. Vijaykumar and G. S. Sohi. Task selection for a
multiscalar processor. InMICRO 31: Proceedings of the
31st annual ACM/IEEE international Symposium on Mi-
croarchitecture, pages 81–92, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

[13] S. Y. Wang, X. R. Dai, K. S. Yellajyosula, A. Zhai, and
P. C. Yew. Loop selection for thread-level speculation.
In The 18th International Workshop on Languages and
Compilers for Parallel Computing, 2005.

[14] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry.
Compiler optimization of scalar value communication be-
tween speculative threads. InInternational Symposium
on Architectural Support for Programming Languages
and Operating Systems, 2002.

[15] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry.
Compiler optimization of memory-resident value com-
munication between speculative threads. InInternational
Symposium on Code Generation and Optimization, 2004.

[16] C. Zilles and G. Sohi. Execution-based prediction us-
ing speculative slices. InISCA ’01: Proceedings of the
28th Annual International Symposium on Computer Ar-
chitecture, pages 2–13, New York, NY, USA, 2001. ACM
Press.

