
Code Tiling for Improving the Cache Performance of PDE Solvers

Qingguang Huang and Jingling Xue†

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW 2052, Australia

Xavier Vera‡

Institutionen för Datateknik
Mälardalens Högskola

Västerås, Sweden

Abstract

For SOR-like PDE solvers, loop tiling either helps little in
improving data locality or hurts their performance. This paper
presents a novel compiler technique calledcode tilingfor generat-
ing fast tiled codes for these solvers on uniprocessors witha mem-
ory hierarchy. Code tiling combines loop tiling with a new array
layout transformation calleddata tiling in such a way that a sig-
nificant amount of cache misses that would otherwise be present in
tiled codes are eliminated. Compared to nine existing loop tiling al-
gorithms, our technique delivers impressive performance speedups
(faster by factors of 1.55 – 2.62) and smooth performance curves
across a range of problem sizes on representative machine archi-
tectures. The synergy of loop tiling and data tiling allows us to find
a problem-size-independent tile size that minimises a cache miss
objective function independently of the problem size parameters.
This “one-size-fits-all” scheme makes our approach attractive for
designing fast SOR solvers without having to generate a multitude
of versions specialised for different problem sizes.

1. Introduction

As the disparity between processor and memory speeds
continues to increase, the importance of effectively utilising
caches is widely recognised. Loop tiling (or blocking) is
probably the most well-known loop transformation for im-
proving data locality. This transformation divides the itera-
tion space of a loop nest into uniform tiles (or blocks) and
schedules the tiles for execution atomically. Under an ap-
propriate choice of tile sizes, loop tiling often improves the
execution times of array-dominated loop nests.

However, loop tiling is known not to be very useful (or
even considered not to be needed [15]) for 2D PDE (partial
differential equations) solvers. In addition, tile size selec-
tion algorithms [5, 6, 12, 14, 18] target only at the 2D ar-
rays accessed in tiled codes. To address these limitations,
Song and Li [16] propose a new tiling technique for han-
dling 2D Jacobi solvers. But their technique does not apply
to SOR (Successive Over-Relaxation) PDE solvers. Rivera

†This work is supported by an ARC Grant A10007149.
‡The author was performing part of his PhD studies at UNSW whenthis

work was carried out. He was also supported by the same ARC grant.

and Tseng [15] apply loop tiling and padding to tile 3D PDE
codes. However, they do not exploit a large amount of the
temporal reuse carried by the outermost time loop. In this
paper, we present a new technique for improving the cache
performance of a class of loop nests, which includes multi-
dimensional SOR PDE solvers as a special case.

Our compiler technique, calledcode tiling, emphasises
the joint restructuring of the control flow of a loop nest
through loop tiling and of the data it uses through a new
array layout transformation calleddata tiling. While loop
tiling is effective in reducing capacity misses, data tiling re-
organises the data in memory by taking into account both
the cache parameters and the data access patterns in tiled
code. By taking control of the mapping of data to memory,
we can reduce the number of capacity and conflict misses
(which are referred to collectively asreplacement misses)
methodically. In the case of SOR-like PDE solvers assuming
a direct-mapped cache, our approach guarantees the absence
of replacement misses in every two consecutively executed
tiles in the sense that no memory line will be evicted from
the cache if it will still be accessed in the two tiles (Theo-
rems 4 and 6). Furthermore, this property carries over to the
tiled code we generate for 2D SOR during the computation
of all the tiles in a single execution of the innermost tile loop
(Theorem 5). Existing tile size algorithms [5, 6, 12, 14, 18]
cannot guarantee this property.

The synergy of loop tiling and data tiling allows us to find
a problem-size-independent tile size that minimises a cache
miss objective function independently of the problem size
parameters. This “one-size-fits-all” scheme makes our ap-
proach attractive for designing fast SOR solvers for a given
cache configuration without having to generate a multitude
of versions specialised for different problem sizes.

We have evaluated code tiling for a 2D SOR solver on
four representative architectures. In comparison with nine
published loop tiling algorithms, our tiled codes have low
cache misses, high performance benefits (faster by factors
of 1.55 – 2.62), and smooth performance curves across a
range of problem sizes. In fact, code tiling has succeeded in
eliminating a significant amount of cache misses that would
otherwise be present in tiled codes.

The rest of this paper is organised as follows. Section 2
defines our cache model. Section 3 introduces our program
model and gives a high-level view of our code tiling strat-
egy. Section 4 describes how to construct a data tiling trans-

formation automatically. Section 5 focuses on finding opti-
mal problem-size-independent tile sizes. Section 6 discusses
performance results. Section 7 reviews related work. Sec-
tion 8 concludes and discusses some future work.

2. Cache Model

In this paper, a data cache is modeled by three parame-
ters: C denotes its size,L its line size andK its associativ-
ity. C andL are in array elements unless otherwise speci-
fied. Sometimes a cache configuration is specified as a triple
(C,L,K). In addition, we assume a fetch-on-write policy so
that reads and writes are not distinguished.

Definition 1 (Memory and Cache Lines) A memory line
refers to a cache-line-sized block in the memory while a
cache linerefers to the actual block in which a memory line
is mapped.

From an architectural standpoint, cache misses fall into
one of three categories:cold, capacity, andconflict. In this
paper, cold misses are used as before but capacity and con-
flict misses are combined and calledreplacement misses.

3. Code Tiling

We consider the following program model:

for I1 = p1, q1
· · ·

for Im = pm, qm
A(I) = f(A(MI + c1), . . . , A(MI + cη))

(1)

whereI = (I1, . . . , Im) is known as theiteration vector,M
is ann ×m integer matrix, the loop boundspk andqk are
affine expressions of the outer loop variablesI1, . . . , Ik−1,
the vectorsc1, . . . , cη areoffsetinteger vectors of lengthn,
andf symbolises some arbitrary computation on theη array
references. Thus,A is ann-dimensional array accessed in
the loop nest. In this paper, all arrays are in row major. As is
customary, the set of all iterations executed in the loop nest
is known as theiteration spaceof the loop nest:

S={I=(I1, · · · , Im) : pk ≤ Ik ≤ qk, k=1, . . . ,m} (2)

This program model is sufficiently general to include
multi-dimensional SOR solvers. Figure 1 depicts a 2D ver-
sion, where thet loop is called thetime loopwhose loop
variable does not appear in the subscript expressions of the
references in the loop body. In addition, the linear parts
M of all subscript expressions are the identity matrix, and
the offset vectorsc1, . . . , cη contain the entries drawn from
{−1, 0, 1}. These solvers are known asstencil codes be-
cause they compute values using neighbouring array ele-
ments in a fixed stencil pattern. The stencil pattern of data
accesses is repeated for each element of the array.

Without loss of generality, we assume that the program
given in (1) can be tiled legally by rectangular tiles [19]. For

doubleA(0 : N + 1, 0 : N + 1)
for t = 0, P − 1
for i = 1, N
for j = 1, N

A(i, j) = 0.2 ∗ (A(i, j) + A(i − 1, j) + A(i, j − 1)
+A(i + 1, j) + A(i, j + 1))

Figure 1. 2D SOR code.

doubleA(0 : N + 1, 0 : N + 1)
for i = 0, P + N − 2
for j = 0, P + N − 2
for t = max(0, i − N + 1, j − N + 1), min(P − 1, i, j)

A(i−t, j−t)=0.2 ∗ (A(i−t + 1, j−t) + A(i−t, j−t+1)
+A(i−t, j−t)+A(i−t, j−t−1)+A(i−t−1, j−t))

Figure 2. Skewed 2D SOR code.

the 2D SOR code, tiling the inner two loops is not beneficial
since a large amount of temporal reuse carried by the time
loop is not exploited. Due to the existence of the depen-
dence vectors(1,−1, 0) and(1, 0,−1), tiling all three loops
by rectangles would be illegal [19]. Instead, we skew the it-

eration space by using the linear transformation
[

1 0 0
1 1 0
1 0 1

]

and

then permute the time step into the innermost position. This
gives rise to the program in Figure 2. We choose to move the
time step inside because a large amount of temporal reuse in
the time step can be exploited for largeP .

Loop tiling can be understood as a mapping from the iter-
ation spaceS toZZ

2m such that each iteration(I1, . . . , Im) ∈
S is mapped to a new point inZZ2m [7, 19]:

(I1, . . . , Im) → (b I1
T1

c, . . . , b Im
Tm

c, I1, . . . , Im) (3)

where (T1, . . . , Tm) is called the tile size and
(bI1/T1c, . . . , bIm/Tmc) uniquely identifies the tile
that the iteration(I1, . . . , Im) belongs to. Viewed as a loop
transformation, loop tiling decomposes anm-dimensional
loop into a2m-dimensional loop nest, where the outerm
loops are thetile loops controlling the execution of tiles
and the innerm loops are theelement loopscontrolling the
execution of the iterations in a tile.

Definition 2 (Adjacent Tiles) Two tiles identified by
(u1, . . . , um) and (u′1, . . . , u

′

m) are said to beadjacentif
u1 = u′1, . . . , um−1 = u′m−1 andum = u′m − 1.

Definition 3 (Intra-, Inter 1- and Inter2-Tile (Replace-
ment) Misses and Cold Misses)Letu be a given tile andu′

be its adjacent tile previously executed. Let there be a total
of k accesses,a1, · · · , ak, to a memory linè in the tileu.
Any of the lastk − 1 such accesses,ai, wherei > 1, is a
replacement miss if̀ is found not to be in the cache when
ai is executed. Such a replacement miss is called aintra-tile

Algorithm: CodeTiling
INPUT: • A program that conforms to the model (1)

• Cache parameters(C,L, 1) (in array elements)
OUTPUT: Tiled code for the given program

(a) Generate the initial tiled code using loop tiling [19].

The2m loops go here // omitted
A(I) = f(A(MI + c1), . . . , A(MI + cη))

(b) Construct a data tiling transformationg : ZZ
n → ZZ,

to eliminate both intra- and inter1-tile misses (Section 4).
(c) Find the problem-size-independent tile size to miminise

the inter2-tile misses as described in Section 5.
(d) Modify the tiled code obtained in (a) to get:

The code to copyA to a new 1D array namedB
The same loop nest as in (a) goes here // omitted

B(g(I)) = f(B(g(MI + c1)), . . . , B(g(MI + cη)))
The code to copy the results inB to A

(e) Computeg incrementally using additions/subtractions and
apply loop distribution, if necessary, to avoidmax andmin.

Figure 3. Code tiling for direct-mapped cache.

(replacement) miss. If the accessa1 is a miss, there are three
cases. (a) If̀ was also previously accessed inu′, then the
miss is called aninter1-tile (replacement) miss. (b) If ` was
previously accessed but not inu′, then the miss is called an
inter2-tile (replacement) miss. (c) Otherwise, the miss is a
cold miss as will be classified in the standard manner.

According to this definition, there are four kinds of cache
misses in tiled code: cold, intra-tile, inter1-tile and inter2-
tile.

Let u andu′ be two adjacent tiles. If a tiled loop nest
is free of intra- and inter1-tile misses in both tiles, then no
memory line will be evicted from the cache during their exe-
cution if it will still be accessed inu andu′, and conversely.

Figure 3 gives a high-level view of code tiling for direct-
mapped caches. In Step (b), we construct a data tilingg to
map then-dimensional arrayA to the 1D arrayB such that
the tiled code operating onB is free of intra- and inter1-
tile misses (Definition 4). There can be many choices for
such tile sizes. In Step (c), we choose the one such that
the number of inter2-tile misses is minimised. The optimal
tile size found is independent of the problem size because
our cost function is (Section 5). Finally, our constructionof
g ensures that the number of cold misses in the tiled code
has only a moderate increase (due to data remapping) with
respect to that in the original program.

Definition 4 (Data Tiling) Let a direct-mapped cache
(C,L, 1) be given. A mappingg : ZZ

n → ZZ (constructed in
Step (b) of Figure 3) is called adata tiling if the tiled code
given is free of intra- and inter1-tile misses.

For aK-way set-associative cache(C,L,K), whereK >
1, we treat the cache as if it were the direct-mapped cache

(K−1

K C,L, 1). As far as this hypothetical cache is con-
cerned,g used in the tiled code is a data tiling transforma-

tion. By using the effective cache sizeK−1

K C to model the
impact of associativity on cache misses, we are still able to
eliminate all intra-tile misses for the physical cache (The-
orem 3). In the special case whenK = 2, the cache may
be under utilised since the effective cache size is onlyC/2.
Instead, we will treat the cache as if it were(C,L, 1). The ef-
fectiveness of our approach has been validated by extensive
experiments conducted (only) on set-associative caches.

4. Data Tiling

In this section, we present an algorithm for automating
the construction of data tiling transformations. Throughout
this section, we assume a direct-mapped cache, denoted by
(C,L, 1), where the cache sizeC and the line sizeL are both
in array elements. An application of the results in this sec-
tion for set-associative caches is discussed in Section 3.

We will focus on a loop nest that conforms to the program
model defined in (1) with the iteration spaceS given in (2).
We denote byoffset(A) the set of the offset vectors of allη
array references toA, i.e., offset(A) = {c1, . . . , cη}. The
notationei denotes thei-th elementary vector whosei-th
component is1 and all the rest are0.

Recall that a loop tiling is a mapping as defined in (3) and
thatT = (T1, · · · , Tm) denotes the tile size used. LetST be
the set of all the tiles obtained for the program:

ST = {u = (u1, . . . , um) : u=(b
I1

T1
c, . . . , b

Im

Tm

c), I ∈ S} (4)

Let T (u) be the set of all iterations contained in the tileu:

T (u) = {v = (v1, . . . , vm) : ukTk ≤ vk ≤ (uk + 1)Tk−1,
k = 1, . . . , m}

(5)

In this definition, the constraintI ∈ S from (4) is omitted.
Thus, the effect of the iteration space boundaries onT (u) is
ignored. As a result,|T (u)| is invariant with respect tou.

For notational convenience, the operatormod is used as
both an infix and a prefix operator. We do not distinguish
whether a vector is a row or column vector and assume that
this is deducible from the context.

Let addr be a memory address. In a direct-mapped cache
(C,L, 1), the address resides in the memory linebaddr/Lc
and is mapped to the cache linemod(baddr/Lc, C/L).

In Section 4.1, we give a sufficient condition for a map-
ping to be a data tiling transformation. In Section 4.2, we
motivate our approach by constructing a data tiling transfor-
mation for the 2D SOR program. Section 4.3 constructs data
tiling transformations for the programs defined in (1).

4.1. A Sufficient Condition

For a tileu ∈ ST , its working set(i.e., the set of elements
accessed insideu), denotedD(T (u)), is given by:

D(T (u)) = {MI + c : I ∈ T (u), c ∈ offset(A)} (6)

j

i T2 + T3 + L

T
1
+
T

3
+

1

D(T (u))

D(T (u′))

Figure 4. An illustration of Theorem 1 using the 2D SOR in
Figure 2. It is assumed T1 = T2 = T3 = L = 2 and u and u′

are two arbitrary adjacent tiles executed in that order. Thus,
|T (u)| = |T (u′)| = 2×2×2 = 8. The corresponding working
sets D(T (u)) and D(T (u′)) are depicted by the solid and
dotted (larger) boxes, respectively. Thus, each (small) solid or
plain box at (i, j) depicts an array element A(i, j) identified by
its array indices (i, j). The two “distance numbers” T1+T3+1
and T2 + T3 + L will be referred to in Section 4.2.

It is easy to show thatD(T (u)) is a translate ofD(T (u′))
for u, u′ ∈ ST . This property plays an important role in our
development, which leads directly to the following result.

Theorem 1 Let u, u′ ∈ ST be two adjacent tiles, where
u′ = u + em. Then|D(T (u)) \D(T (u′))| = |D(T (u′)) \
D(T (u))| and|D(T (u′)) \D(T (u))| is independent ofu.

Figure 4 illustrates Theorem 1 with the 2D SOR ex-
ample in Figure 2. This theorem implies that the num-
ber of elements that are accessed inu but not inu′, i.e.,
|D(T (u)) \ D(T (u′))| is exactly the same as the num-
ber of elements that are accessed inu′ but not in u, i.e.,
|D(T (u′)) \ D(T (u))|. If we can find a 1-to-1 mapping
ψ : D(S) → ZZ such thatψ : D(T (u′)) \ D(T (u)) →
ψ(D(T (u)) \ D(T (u′))) mod C and use the mapping to
map the elementA(MI + c) to B(ψ(MI + c)), where
c ∈ offset(A), then the two corresponding elements in the
two sets will be mapped to the same cache line. By conven-
tion,D(S) is the union ofD(T (u)) for all u ∈ ST . As a re-
sult, the newly accessed data in the setD(T (u′))\D(T (u))
whenu′ is executed will evict from the cache exactly those
data in the setD(T (u)) \D(T (u′)) previously accessed in
u.

However, this does not guarantee that all intra- and inter1-
tile misses are eliminated. Below we give a condition for
data tiling to guarantee these two properties.

For a 1-to-1 mappingg : ZZ
n → ZZ and a subsetW ⊂

ZZ
n, g : W → g(W) is said to be a(C,L)-1-to-1 mapping

onW if whenever the following condition

mod(bg(w1)

L c, C/L) = mod(bg(w2)

L c, C/L) (7)

holds, wherew1, w2 ∈W , then the following must hold:

bg(w1)

L c = bg(w2)

L c (8)

A mappingg : D(S) → ZZ is said to be(C,L)-1-to-1 on
ST if g is (C,L)-1-to-1 onD(T (u)) for all u ∈ ST .

Theorem 2 Let a direct-mapped cache(C,L, 1) be given. A
mappingg : D(S) → ZZ is a data tiling ifg is (C,L)-1-to-1
onST .

Proof. Follows from Definition 4 and the definition ofg.

Theorem 3 Consider a K-way set-associative cache
(C,L,K) with an LRU replacement policy, whereK > 1. If

a mappingg : D(S) → ZZ is (K−1

K C,L)-1-to-1 onST , then
there are no intra-tile misses in the tiled code from Figure 3.

Proof. For theg given, there can be at mostK − 1 distinct
memory lines accessed during the execution of any single
tile. By Definition 4, there cannot be any intra-tile misses.

In the case of LRU, we tend to reduce also inter1-tile
misses by usingK−1

K C as the effective cache size.

4.2. Constructing a Data Tiling for 2D SOR

In this section, we construct a data tiling transformation
to eliminate all intra- and inter1-tile misses for 2D SOR. We
will continue to use the example given in Figure 4. Since the
arrayA is stored in row major, the elements depicted in the
same row are stored consecutively in memory. In Step (b)
of Figure 3, we will construct a data tilingg to mapA toB
such that the elements ofB will reside in the memory and
cache lines as illustrated in Figure 5. (It should be pointed
out thatg is not a block-cyclic array layout transformation.)

The basic idea is to divide the set of all elements of
A into equivalence classes such thatA(i, j) andA(i′, j′)
are in the same class ifi = i′ mod (T1 + T3 + 1) and
j = j′ mod (T2+T3+L). For all array elements ofA in the
same equivalence class, we will constructg such that their
corresponding elements in the 1D arrayB have the same
memory address (moduloC). In other words,A(i, j) and
A(i′, j′) are in the same class iffg(i, j) = g(i′, j′) mod C.
In Figure 5, the two elements ofA connected by an arc are
mapped to the same cache line. This ensures essentially
that the unused elements that are accessed in a tile will be
replaced in the cache by the newly accessed elements in
its adjacent tile to be executed next. As mentioned earlier,
this does not guarantee the absence of intra- and inter1-tile
misses. To eliminate them, we must impose some restric-
tions on(T1, T2, T3). For example, a tile size that is larger
than the cache size will usually induce intra-tile misses.

In the 2D SOR program given in Figure 2, the linear part
of an array reference is defined as follows:

M =

(

1 0 −1
0 1 −1

)

andoffset(A) = {c = (c1, c2) : |c1| + |c2| ≤ 1}.
Let u = (ii, jj, tt), u′ = (ii, jj, tt + 1) ∈ ST be two

adjacent tiles.T (u) andT (u′) are defined according to (5).
By Definition 4, it suffices to find a(C,L)-1-to-1 map-

ping on ST . To do so, we need a2-parallelotope con-
tainingD(T (u)) defined by{I ∈ ZZ

2 : −T3 ≤ G1I ≤

j

i

14 12 13 14

2 0 1 2

5 3 4 5

8 6 7 8

11 9 10 11

14 12 13 14

2 0 1 2

Figure 5. Memory reorganisation effected by a data tiling g
when C=30 and L=2. Continuing from Figure 4, g ensures
that the elements of A are mapped to B so that all elements
in B are aligned at the memory line boundaries as shown.
Each dashed box indicates that the two elements inside are in
the same memory line; the number below indicates the cache
line to which the memory line is mapped. The elements con-
nected by an arc are mapped to the same cache line.

T1 + T3,−T3 ≤ G2I ≤ T2 + T3}, whereG1 = (0, 1) and
G2 = (1, 0). This parallelotope can be obtained by our al-
gorithmsFindFacets andFindQ given in Appendix A. We
denote by(G,F (u),K) this parallelotope, whereF (u) =
(−T3,−T3),K = (T1 + T3, T2 + T3) and the first and
second rows ofG areG1 andG2, respectively. Accord-
ing to (G,F (u),K), we classify the points in the data space
[0, N + 1] × [0, N + 1] (i.e., the set of array indices ofA)
and find a mapping such that the points in the same class are
mapped into the same cache line. We say that two points
(i, j) and (i′, j′) are equivalentif G1(i − i′, j − j′) =
s(T1 +T3 +1) andG2(i− i′, j− j′) = t(T2 +T3 +L), i.e.,
if i = i′ + s(T1 + T3 + 1) andj = j′ + t(T2 + T3 +L), for
some integerss andt. Two points are in the same class iff
they are equivalent. (For example, the two points connected
by an arc in Figure 5 are in the same equivalence class.)

Let T13 = T1 + T3 + 1 andT23 = dT2+T3+1

L eL. We
define:

g(i, j) = (bi/T13cd(N − 1)/T23e + bj/T23c)C
+ mod (i, T13)T23 + mod(j, T23)

(9)

Theorem 4 Let a direct-mapped cache(C,L, 1) be given.
Then g defined in (9) is a data tiling transformation for
the 2D SOR if(T1, T2, T3) satisfies the following two con-
ditions:

1. L divides bothT2 andT3, and
2. (T1 + T3 + 1)dT2+T3+1

L eL 6 C

Proof. See Appendix A.
Therefore,g in (9) for 2D SOR guarantees that the tiled

code for the program is free of intra- and inter1-tile misses
provided the conditions in Theorem 4 are satisfied.

In the example illustrated in Figures 4 and 5, we have
T1 = T2 = T3 = L = 2 andC = 30. Both conditions in

Theorem 4 are true. The resulting data tiling can be obtained
by substituting these values into (9).

In fact, ourg has eliminated all inter2-tile missesamong
the tiles in a single execution of the innermost tile loop.

Theorem 5 Under the same assumptions of Theorem 4,g
defined in (9) ensures that during any single execution of the
innermost tile loop, every memory line, once evicted from the
cache, will not be accessed during the rest of the execution.

Proof. See Appendix A.

4.3. Constructing a Data Tiling for (1)

We now give a data tiling, denotedg, for a program of the
form (1). This time we need anr-parallelotope [17] that con-
tainsD(T (u)), wherer is the dimension of the affine hull
of D(T (u)). This parallelotope, denotedP(T (u)), is found
by our algorithmFindFacets. We can see thatP(T (u))
is the smallestr-parallelotope containingD(T (u)) if the
components of the offset vectors inoffset(A) are all from
{−1, 0, 1}. Therefore, it is only necessary to map the ele-
ments ofA that are accessed in the loop nest toB. Hence,g
is a mapping fromZZ

r to ZZ, wherer 6 n.
Let φ(T) andψ(T) be the number of elements contained

in D(T (u)) andP(T (u)), respectively. From now on we
assume that a tile fits into the cache, i.e.,ψ(T) ≤ C. Let
P(T (u)) = (G,F (u),K) be found byFindFacets andQ by
FindQ. Without loss of generality, we assume that0 ∈ D(S)

andGQ̃S = {v = (v1, . . . , vr) : vi = bGiI/Qic, I ∈
S, i = 1, . . . , r}, whereQ̃ = diag(Q̃1, . . . , Q̃r), Q̃1 =

Q1, · · · , Q̃r−1 = Qr−1 and Q̃r = dQr

L eL. We call

GQ̃S the data tile space. For the 2D SOR example, we
haver = 2, Q = diag(T1 + T3 + 1, T2 + T3 + 1) and
Q̃ = diag(T1 + T3 + 1, dT2+T3+1

L eL). Assume that LBi
and UBi are the smallest and largest of thei-th components
of all the points inGQ̃S, respectively. ForI ∈ D(S),
let y(I) = (y1(I), . . . , yr(I)) = bQ̃−1GIc and z(I) =

(z1(I), . . . , zr(I)) = GI − Q̃y(I).
Let v = (v1, . . . , vr) and

rowLayout(v1, . . . , vr)=Σr−1
j=1 mod (Gjv, Q̃j)Πr

k=j+1(Kk+1)

+ mod (Grv, Q̃r)
(10)

Let

g(v1, . . . , vr) = rowLayout(z1(v), . . . , zr(v))
+CΣr

j=1yj(v)Πr
k=j+1(UBk − LBk)

(11)

whereΠr
k=r+1(UBk − LBk) = 0.

Theorem 6 Let a direct-mapped cache(C,L, 1) be given.
Theng defined in (11) is a data tiling transformation for (1)
if the following two conditions are true:

1. L dividesFr(u) for all u ∈ ST .

2. (Πr−1
k=1Qk)dQr

L eL 6 C.

Proof. Under the given two conditions,g is (C,L)-1-to-1 on
ST . By Theorem 2,g is a data tiling as desired.

5. Finding Optimal Tile Sizes

Let a loop nest of the form (1) be given, whereA is the
array accessed in the nest. Let this loop nest be tiled by the
tile sizeT = (T1, . . . , Tm). Let T̃ = (T1, . . . , Tm−1, 2Tm).
Using the notation introduced in Section 4.3,φ(T) repre-
sents the number of distinct array elements accessed in a tile
andφ(T̃) the number of distinct array elements accessed in
two adjacent tiles. Thus,φ(T̃) − φ(T) represents the num-
ber of new array elements accessed when we move from one
tile to its adjacent tile to be executed next.

Our cost function is given as follows:

f(T) =
T1 × · · · × Tm

φ(T̃) − φ(T)
(12)

For each tile size that induces no intra- and inter1-tile misses
under data tiling, the number of cache misses (consisting of
cold and inter2-tile misses) in the tiled code is dominated
by |ST |/f(T). Hence, the optimal tile size is a maximal
point of f such that the conditions in Theorem 6 (or those
in Theorem 4 for 2D SOR are satisfied). Of all tile sizes
without intra- and inter1-tile misses, we therefore take the
one such that the number of inter2-tile misses is minimised.
Hence, the total number of cache misses is minimised.

The set of all tile sizes is{(T1, . . . , Tm) : 1 6

T1, . . . , Tm 6 C}. The optimal one can be found efficiently
by an exhaustive search with a worst-time complexity being
O(Cm), whereC is the cache size in array elements (rather
than bytes). (The worst-time complexity whenm = 2 can
be tightened to beO(C log C).) Essentially, we simply go
through all tile sizes that satisfy the conditions mentioned
above and pick the one that is a maximal point off .

Next we provide a characterisation of cache misses for
a programp of the form (1) whenL = 1; it can be gener-
alised to the case whenL > 1. LetOMN(T) be the smallest
among the cache miss numbers of all tiled codes forp ob-
tained using the traditional loop tiling under a fixedT but
all possible array layouts ofA. Let DTMN(T) be the cache
miss number of the tiled code forp we generate when the
layout ofA is defined by a data tiling transformation.

Theorem 7 Let a direct-mapped cache(C, 1, 1) be given.
Assume thata1 > 0, . . . , am > 0 are constants and the
iteration space of (1) is[0, Na1 − 1] × · · · × [0, Nam −
1]. Let T and T ′ be two tile sizes. IfP(T (u)) =
D(T (u)), then OMN(T ′) − DTMN(T) ≥ Πm

s=1(Nas +

1)(
Πm

s=1
(1−2/(Nas+1))

f(T ′) − 1
f(T) − 1

Nam+1).

Proof. WhenL = 1, we have the two inequalities:

OMN(T ′) ≥ Πm
s=1bNas/T ′

sc(φ(T̃) − φ(T))

= Πm
s=1bNas/T ′

scΠ
n
s=1T

′
s/f(T ′)

≥ Πm
s=1(Nas − 1)/f(T ′)

DTMN(T) ≤ Πm−1
s=1 (Nas+1) + Πm

s=1(Nas+1)/f(T)

which together imply the inequality in the theorem.
This theorem implies that whenN is large and if we

chooseT such thatf(T) > f(T ′), then the number of cache
misses in our tiled code is smaller than that obtained by loop
tiling regardless what array layout is used for the arrayA.

6. Experimental Results

We evaluate code tiling using the 2D SOR solver and
compare its effectiveness with nine loop tiling algorithms
on the four platforms as described in Table 1. In all our ex-
periments, the 2D SOR is tiled only for the first level data
cache in each platform.

All “algorithms” considered in our experiments are re-
ferred to by the following names:seq denotes the sequen-
tial program,cot denotes code tiling,lrw is from [18],
tss from [5], ess from [6], euc from [14], pdat from
[12], andpxyz is the padded version ofxyz with pads of
0–8 elements (the same upper bound used as in [14]).

Our tiled code is generated according to Figure 3. The
program after its Step (a) is given in Figure 6. The data
tiling function g required in Step (b) is constructed accord-
ing to (9). The problem-size-independent tile sizes on the
four platforms are found in Step (c) according to Section 5
and listed in Table 2. Note that in all platforms, the opti-
mal T3 = L holds. The final tiled code obtained in Step
(d) is optimised as described in Step (e). Note thatT3 does
not appear in the tiled code given in Figure 6 since the two
corresponding loops are combined by loop coalescing.

Platform (T1, T2, T3)

Pentium III (33, 32, 4)
Pentium 4 (15, 16, 8)

R10K (50, 60, 4)
Alpha 21264 (76, 80, 8)

Table 2. Problem-size-independent tile sizes.

All programs are in ANSI C, compiled and executed on
the four platforms as described in Table 1. The last two plat-
forms are SGI Origin 2000 and Compaq ES40 with multiple
processors. We used only one single processor during our
experiments. All our experiments were conducted when we
were the only user on these systems.

The SOR kernel has two problem size parametersP and
N . In all our experiments except the one discussed in Fig-
ure 11, we fixP = 500 and chooseN from 400 to 1200 at
multiples of 57.

Figure 7 shows the performance results on Pentium III.
Figure 7(a) plots the individual execution times, showing
that all tiled codes run faster than the sequential program
except foress at the larger problem sizes. But our tiled
codes perform the best at all problem sizes (represented by
the curve at the bottom). Figure 7(b) highlights the overall
speedups of all tiled codes over the sequential program. This
implies that code tiling is faster by factors of 1.98 – 2.62 over
the other tiling algorithms, as shown in Figure 7(c).

Figure 8 shows the performance results on Pentium 4.
This time, however, loop tiling is not useful as shown in
Figure 8(a). Figure 8(b) indicates that neither of the existing
tiling algorithms yields a positive performance gain but code
tiling attains a speedup of 1.56. Figure 8(c) shows that code
tiling is faster than these algorithms by factors of 1.56 – 1.59.

for ii = 0, (P +N − 2)/T1

for jj = 0, (P +N − 2)/T2

for t = max(0, ii ∗ T1 −N + 1, jj ∗ T2 −N + 1),min(P − 1, (ii+ 1) ∗ T1 − 1, (jj + 1) ∗ T2 − 1)
for i = max(ii ∗ T1, t),min((ii+ 1) ∗ T1, t+N) − 1
for j = max(jj ∗ T2, t),min((jj + 1) ∗ T2, t+N) − 1

A(i− t, j − t) = 0.2 ∗ (A(i− t+ 1, j − t) +A(i− t, j − t+ 1) +A(i− t, j − t)
+A(i− t, j − t− 1) +A(i− t− 1, j − t))

Figure 6. Tiled 2D SOR code.

CPU Pentium III (Coppermine) Pentium 4 MIPS R10K Alpha 21264
Clock rate 933MHz 1.8GHz 250MHz 500MHz
L1 D-cache 16KB/32B/4 8KB/64B/4 32KB/32B/2 64KB/64B/2
L1 Replacement Policy LRU LRU LRU FIFO
L2 D-cache 256KB/32B/8 512KB/128B/8 4MB/128B/2 4MB/64B/4
RAM 256MB 512MB 6GB 6GB
cc version gcc 3.2.1 gcc 3.2.1 MIPSpro 7.30 DEC C 5.6-075
cc switches -O2 -O2 -O2 -O2
OS Debian Linux 3.0 Debian Linux 3.0 IRIX64 6.5 OSF1 4.0

Table 1. Machine configurations.

0

10

20

30

40

50

60

40
0

45
7

51
4

57
1

62
8

68
5

74
2

79
9

85
6

91
3

97
0

10
27

10
84

11
41

11
98

E
xe

cu
ti

o
n

 T
im

es
 (

se
cs

)

seq

cot

lrw

tss

ess

euc

plrw

ptss

pess

peuc

pdat

2.80

1.34 1.35

1.07

1.35 1.40 1.34

1.07

1.40 1.41

0

0.5

1

1.5

2

2.5

3

cot lrw tss ess euc plrw ptss pess peuc pdat

A
ve

ra
g

e
S

p
ee

d
u

p
s

2.80

2.09 2.07

2.60

2.07 2.00 2.08

2.62

2.00 1.98

0

0.5

1

1.5

2

2.5

3

seq lrw tss ess euc plrw ptss pess peuc pdat

A
ve

ra
g

e
S

p
ee

d
u

p
s

(a) Execution times (b) Speedups overseq (c) Speedups ofcot over others

Figure 7. Performance on Pentium III.

0

5

10

15

20

25

30

35

40
0

45
7

51
4

57
1

62
8

68
5

74
2

79
9

85
6

91
3

97
0

10
27

10
84

11
41

11
98

E
xe

cu
ti

o
n

 T
im

es
 (

se
cs

)

seq

cot

lrw

tss

ess

euc

plrw

ptss

pess

peuc

pdat

1.56

0.98 0.99 0.99 1.00 1.00 0.99 0.98 0.99 1.00

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

cot lrw tss ess euc plrw ptss pess peuc pdat

A
ve

ra
g

e
S

p
ee

d
u

p
s

1.56 1.59 1.57 1.58 1.56 1.56 1.57 1.59 1.57 1.57

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

seq lrw tss ess euc plrw ptss pess peuc pdat

A
ve

ra
g

e
S

p
ee

d
u

p
s

(a) Execution times (b) Speedups overseq (c) Speedups ofcot over others

Figure 8. Performance on Pentium 4.

0

10

20

30

40

50

60

70

80

90

40
0

45
7

51
4

57
1

62
8

68
5

74
2

79
9

85
6

91
3

97
0

10
27

10
84

11
41

11
98

E
xe

cu
ti

o
n

 T
im

es
 (

se
cs

)

seq

cot

lrw

tss

ess

euc

plrw

ptss

pess

peuc

pdat

2.01

1.04 1.03 1.04 1.03 1.04 1.04 1.04 1.04 1.04

0

0.5

1

1.5

2

2.5

cot lrw tss ess euc plrw ptss pess peuc pdat

A
ve

ra
g

e
S

p
ee

d
u

p
s

2.01
1.93 1.95 1.94 1.95 1.93 1.93 1.94 1.93 1.92

0

0.5

1

1.5

2

2.5

seq lrw tss ess euc plrw ptss pess peuc pdat

A
ve

ra
g

e
S

p
ee

d
u

p
s

(a) Execution times (b) Speedups overseq (c) Speedups ofcot over others

Figure 9. Performance on R10K.

0

5

10

15

20

25

30

35

40

45

40
0

45
7

51
4

57
1

62
8

68
5

74
2

79
9

85
6

91
3

97
0

10
27

10
84

11
41

11
98

E
xe

cu
ti

o
n

 T
im

es
 (

se
cs

)

seq

cot

lrw

tss

ess

euc

plrw

ptss

pess

peuc

pdat

1.57

1.01 0.98 1.00 0.99 1.01 0.99 1.02 1.01 1.01

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

cot lrw tss ess euc plrw ptss pess peuc pdat

A
ve

ra
g

e
S

p
ee

d
u

p
s

1.57 1.56 1.60 1.57 1.58 1.56 1.60 1.55 1.55 1.55

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

seq lrw tss ess euc plrw ptss pess peuc pdat

A
ve

ra
g

e
S

p
ee

d
u

p
s

(a) Execution times (b) Speedups overseq (c) Speedups ofcot over others

Figure 10. Performance on Alpha 21264.

Figure 9 shows the performance results on R10K. Loop
tiling helps little. But code tiling achieves a speedup of 2.01,
which is in sharp contrast to the negligible positive speedups
from the other tiling algorithms. Overall, code tiling is faster
by factors of 1.92 – 1.95 over the other algorithms.

Figure 10 shows the performance results on Alpha 21264.
Similar trends as in Pentium 4 can be observed. Code tiling
is faster than the other algorithms by factors of 1.55 – 1.60.

Some other properties about code tiling are in order.

Copy Cost. All execution times include the copy over-
heads. In the tiled code for 2D SOR, the copy cost
contributes onlyO(1/P) to the overall time complex-
ity, whereP is the number of time steps. We measured
the copy cost to be 0.8% – 1.2% on Pentium III, 0.1
– 1.5% on Pentium 4, 0.1 – 1.0% on R10K and 0.1 –
1.3% on Alpha 21264 of the total execution time.

Address Calculation Cost. The data tiling functions used
involve integer division and remainder operations and
is thus expensive. They are efficiently computed by us-
ing incremental additions/subtractions and distributing
loop nests to avoid excessive max/min operations.

High and Smooth Performance Curves.Figures 7(a) –
10(a) show clearly that code tiling enjoys high, smooth
performance curves across a range of problem sizes on
four platforms. To see our stability advantage further,
Figure 11 plots the time differencesT (N)−T (N − 3)
between two adjacent problem sizes at multiples of 3.

Space Requirement.The size of the 1D arrayB intro-
duced in in Figure 3 is given byg(N,N) in (9). For
the 2D SOR, we find thatg(N,N) 6 N2 +N

√
C + C,

-2500
-2000
-1500
-1000
-500

0
500

1000
1500
2000
2500

50
3

50
6

50
9

51
2

51
5

51
8

52
1

52
4

52
7

53
0

T
(N

)
-

T
(N

-3
)

(m
se

cs
)

seq
cot
lrw
tss
ess
euc
plrw
ptss
pess
peuc
pdat

Figure 11. Performance stability on Pentium III (P = 500).

whereC is the cache size in terms of array elements
rather than bytes. For the problem sizes used in our
experiments,g(N,N) ranges from1.03N2 to 1.16N2.
Note that the multiplier is only 1.33 whenN = 100.
WhenN is even smaller, tiling is usually not needed.
The tiling technique for the Jacobi solvers [16] em-
ploys array duplication to remove anti and output de-
pendences. So their constant multiplier is 1.

Cache Misses.To support our claim that code tiling has
eliminated a large amount of cache misses present in
the tiled codes generated by loop tiling, we evaluated
cache performance for all codes involved in our ex-
periments usingPCL [13]. Figure 12 plots the real
L1 data cache misses for all methods on Pentium III.
In comparison with Figure 7(a), the significant perfor-
mance gains correlate well with the significant cache
miss reductions at most problem sizes. Note thatlrw
has comparable or even smaller cache miss numbers at
some problem sizes. This is because in our tiled codes,

some temporaries are required to enable incremental
computation of the data tiling function (see Step (d)
in Figure 3) and they are not all kept in registers due
to a small number of registers available on thex86 ar-
chitecture. Despite of this problem,cot outperforms
lrw at all problem sizes. This can be attributed to sev-
eral reasons (e.g., TLB and L2 misses).

0

100

200

300

400

500

600

40
0

45
7

51
4

57
1

62
8

68
5

74
2

79
9

85
6

91
3

97
0

10
27

10
84

11
41

11
98

M
is

se
s

(m
ill

io
n

s)

seq

cot

lrw

tss

ess

euc

plrw

ptss

pess

peuc

pdat

Figure 12. L1 data cache misses on Pentium III.

7. Related Work

To the best of our knowledge, we are not aware of any
previous work on applying aglobaldata reorganisation strat-
egy to minimise the cache misses in tiled codes. Some ear-
lier attempts on partitioning the cache and mapping arrays
into distinct cache partitions can be found in [2, 10]. Man-
jikian et al[10] allocate arrays to equal-sized regions. Chang
et al [2] allow varying-sized regions but assume all arrays to
be one-dimensional. These techniques cannot handle the 2D
SOR solvers since these kernels each use one single array —
there is nothing to partition.

Compiler researchers have applied loop tiling to en-
hance data locality. Several tile size selection algorithms
[5, 6, 12, 14, 18] find tile sizes to reduce the cache misses in
tiled codes. Since these algorithms rely on the default lin-
ear layouts of the arrays, padding has been incorporated by
many algorithms to help loop tiling stabilise its effectiveness
[12, 14].

While promising performance gains in many programs,
loop tiling is not very useful for 2D PDE solvers and may
even worsen their performance as shown by our experi-
ments. In recognising this limitation, Song and Li [16]
present a tiling technique for handling 2D Jacobi solvers.
This paper contributes a new technique for improving the
performance of multi-dimensional SOR solvers. Rivera and
Tseng [15] extend their previous work [14] to 3D solvers but
they do not exploit a large amount of temporal reuse carried
at the time step as we do here.

Kodukulael al [9] propose a data shackling technique to
tile imperfect loop nests. But this technique itself does not
tell which tile size to use. Like loop tiling, data shacklingis
a loop transformation. As such, it does not modify the actual
layouts of the arrays used in tiled codes.

Chatterjeeet al [3] consider nonlinear array layouts and
achieve impressive performance speedups in some bench-
marks when they are combined with loop tiling. However,

their technique is orthogonal to loop tiling; they rely on a
tile size selection algorithm to find appropriate tile sizes.
In addition, they choose nonlinear layouts for all the arrays
without making any attempt in partitioning and reorganis-
ing them in memory. In other words, they do not directly
aim at reducing the cache misses in tiled codes. This may
partially explain why they obtain increased cache misses in
some benchmarks (due to conflict misses between tiles).

The importance of combining data transformations with
loop transformations was recognised earlier [4]. Subse-
quently, several researchers [8, 11] permit the co-existence
of different array layouts (row major, column major, diago-
nal or others) in a kernel or program-wise and obtain mod-
erate performance gains for benchmark programs.

The PhiPAC project [1] uses an exhaustive search to pro-
duce highly tuned tiled codes for specific level-3 BLAS ker-
nels, which are specialised not only for a given cache con-
figuration but also a given problem size. Our code tiling
methodology generates automatically a single “optimised”
version for an SOR PDE solver for all problem sizes.

8. Conclusion

We have presented a new compiler technique for improv-
ing the performance of a class of programs that includes
multi-dimensional SOR PDE solvers as a special case. Code
tiling combines loop tiling with data tiling in order to re-
duce cache misses in a predictable and methodical man-
ner. We have evaluated its effectiveness using the classic
2D SOR solver – for which loop tiling is ineffective – on
four representative architectures. Our experimental results
show that code tiling has eliminated a significant amount
of cache misses that would otherwise be present in tiled
codes. This translates to impressive performance speedups
over nine loop tiling algorithms for a range of problem sizes.

We believe that code tiling can be generalised to other
programs, at least to dense matrix codes for which loop
tiling is an appropriate means of control flow restructuring
for data locality. This will have the potential to eliminate
a significant amount of conflict misses still present in tiled
codes. Some preliminary results we have obtained on matrix
multiplication are extremely encouraging.

References

[1] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Op-
timizing matrix multiply using PHiPAC: A portable, high-
performance, ANSI C coding methodology. InInternational
Conference on Supercomputing, pages 340–347, 1997.

[2] C.-Y. Chang, J.-P. Sheu, and H.-C. Chen. Reducing cache
conflicts by multi-level cache partitioning and array elements
mapping. In7th International Conference on Parallel and
Distributed Systems (ICPADS’00), Iwate, Japan, 2000.

[3] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and
M. Thottethodi. Nonlinear array layout for hierarchical mem-
ory systems. InACM International Conference on Supercom-
puting (ICS’99), pages 444–453, Rhodes, Greece, Jun. 1999.

[4] M. Cierniak and W. Li. Unifying data and control transfor-
mations for distributed shared memory machines. InACM

SIGPLAN’95 Conference on Programming Language Design
and implementation, California, 1995.

[5] S. Coleman and K. S. McKinley. Tile size selection using
cache organization and data layout. InACM SIGPLAN’95
Conference on Programming Language Design and Imple-
mentation (PLDI’95), pages 279–290, Jun. 1995.

[6] K. Esseghir. Improving data locality for caches. M.S. thesis,
Rice University, Dept. Computer Science, 1993.

[7] F. Irigoin and R. Triolet. Supernode partitioning. In15th
Annual ACM Symposium on Principles of Programming Lan-
guages, pages 319–329, San Diego, California., Jan. 1988.

[8] M. Kandemir and J. Ramanujam. A layout-concious iteration
space transformation technique.IEEE Transactions on Com-
puters, 50(12):1321–1335, Dec. 2001.

[9] I. Kodukul, N. Ahmed, and K. Pingali. Data-centric multi-
level blocking. InACM SIGPLAN ’97 Conference on Pro-
gramming Language Design, pages 346–357, 1996.

[10] N. Manjikian and T. Abdelrahman. Array data layout for the
reduction of cache conflicts. In8th Int. Conf. on Parallel and
Distributed Computing Systems, 1995.

[11] M. F. P. O’Boyle and P. M. W. Knijnenburg. Integrating loop
and data transformations for global optimisation. InInterna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT’98), 1998.

[12] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau. Aug-
menting loop tiling with data alignment for improved cache
performance.IEEE Transactions on Computers, 48(2):142–
149, 1999.

[13] PCL. The Performance Counter Library Version 2.2, 2003.
http://www.fz-juelich.de/zam/PCL.

[14] G. Rivera and C.-W. Tseng. A comparison of compiler tiling
algorithms. In8th International Conference on Compiler
Construction (CC’99), Amsterdam, The Netherlands, 1999.

[15] G. Rivera and C.-W. Tseng. Tiling optimizations for 3D sci-
entific computations. InSupercomputing ’00, 2000.

[16] Y. Song and Z. Li. New tiling techniques to improve cache
temporal locality. InACM SIGPLAN’99 Conference on Pro-
gramming Language Design and Implementation (PLDI’99),
pages 215–228, May 1999.

[17] R. Webster.Convexity. Oxford University Press, 1994.
[18] M. E. Wolf and M. S. Lam. A data locality optimizing al-

gorithm. InACM SIGPLAN’91 Conf. on Programming Lan-
guage Design and Implementation, Jun. 1991.

[19] J. Xue. On tiling as a loop transformation.Parallel Process-
ing Letters, 7(4):409–424, 1997.

Appendix A
Algorithm FindFacets
Input: M andoffset(A) in (1), T andT (u)
Output: The facets(G, F (u), K) of P(T (u))
For a subsetσ of [1, m] and x = (x1, . . . , xm), we denotexσ =
Σi∈σxiei andxσ = Σi∈[1,m]\σxiei.

1. Calculate the rank ofM . Let r = rank(M). Let M =
[M1, . . . , Mm], whereMi is thei-th column ofM .

2. K̃ = {{k1, . . . , ks} : 1 ≤ k1 < · · · < ks ≤
m, rank([Mk1

, . . . , Mks
]) = r − 1}.

3. max K̃ = {σ ∈ K̃ : 6 ∃ σ′ ∈ K̃ such thatσ ⊂ σ′, σ 6= σ′}.
4. Forσ = {σi1 , . . . , σis} ∈ maxK̃, find aGσ ∈ IRm such that

GσMσi
= 0, i = 1, . . . , s, Gσ 6= 0 andGσ is a linear combination

of M1, . . . , Mm.
5. Let ti = uiTi and t′i = (ui + 1)Ti − 1. Let node(T (u)) =

{x = (x1, . . . , xm) : xi ∈ {ti, t′i}}. For σ ∈ maxK̃, find

x, z ∈ node(T (u)) such thatGσMxσ ≤ GσMyσ ≤ GσMzσ for
all y ∈ node(T (u)). Putσ− = xσ andσ+ = zσ. ThenMT (u)±σ
is a facet ofMT (u), whereT (u)±σ = {yσ + σ± : y ∈ T (u)}.

6. Let maxK̃ = {σ1, . . . , σp}, Gi = Gσi andT±
i = T (u)

±

σi
. Let

Γ(M) = {γ = (γ1, . . . , γr) : 1 ≤ γ1 < · · · < γr ≤ p}. For
γ ∈ Γ(M), we have anr-parallelotope(Gγ , F γ , Kγ) containing
MT (u), where(Gγ , F γ , Kγ) = {y ∈ H : F γ

i ≤ Gγi
y ≤

F γ
i +Kγ

i }, F γ
i = Gγi

MT−
γi

andKγ
i = Gγi

MT+
γi

−Gγi
MT−

γi
.

Find aγ such that the volume of(Gγ , F γ , Kγ) is not smaller than
the volume of(Gγ′

, F γ′

, Kγ′

) for all γ′ ∈ Γ(M).
7. Let (Gγ , F γ , Kγ) be found in Step 6. Findci

−, ci
+ ∈ offset(A)

such thatGγ
i ci

− ≤ Gγ
i c ≤ Gγ

i ci
+ for all c ∈ offset(A).

8. An r-parallelotope (G, F (u), K) containing
∪c∈offset(A)(MT (u) + c) is found, where G =

Gγ , F (u) = (F1, . . . , Fr), K = (K1, . . . , Kr) and
Fi = F γ

i + Gγ
i ci

−, Ki = Kγ
i + Gγ

i ci
+ − Gγ

i ci
−.

Algorithm FindQ
Input: M andoffset(A) in (1), T (u) and(G, F (u), K) of P(T (u))
Output: Q

1. PutGi = Gσγi , whereσγi is defined Step 6 ofFindFacets. Let
1 ≤ m0 ≤ m and1 ≤ r0 ≤ r such thatGiMm0

6= 0, i =
1, . . . , r0, GiMm0

= 0, i = r0 + 1, . . . , r andGiMs = 0, i =

1, . . . , r, s = m0 + 1, . . . , m. Let {GiMyσγi + Gic : y ∈
T (u), c ∈ offset(A)} = {hi

1, . . . , hi
q}, wherehi

1 < · · · < hi
q .

2. Let∆ = t′m0
− tm0

+1. If GiMm0
> 0, then take the smallesthi

j

such thathi
j +∆GiMm0

> hi
q and defineQi = hi

j +∆GiMm0
−

hi
1. Otherwise, take the largesthi

j such thathi
j + ∆GiMm0

< hi
1

and defineQi = hi
q − (hi

j + ∆GiMm0
).

Proof of Theorem 4:
By Theorem 2, we only need to prove thatg is (C,L)-1-to-1 on
ST . Let u = (ii, jj, tt) and T (u) = {(i, j, t) : iiT1 ≤ i <
(ii + 1)T1, jjT2 ≤ j < (jj + 1)T2, ttT3 ≤ t < (tt + 1)T3}. Thus,
D(T (u)) = {(i − t, j − t) + c : (i, j, t) ∈ T (u), c ∈ offset(A)}.
Let (G, F (u), K) be the 2-parallelotope containing D(T (u)).
Then F (u) = (iiT1 − ttT3, jjT2 − ttT3). Suppose that
mod(bg(i, j)/Lc, C/L) = mod(bg(i′, j′)/Lc, C/L), where
(i, j), (i′, j′) ∈ D(T (u)). By the second hypothesis, we
have that bmod(j, T23)/Lc, bmod(j′, T23)/Lc < C. Thus,
mod(i, T13)(T23/L) + bmod(j, T23)/Lc = mod(i′, T13)(T23/L) +
bmod(j′, T23)/Lc. Since bmod(j, T23)/Lc < T23/L and
bmod(j′, T23)/Lc < T23/L, we have thati = i′, and hence,
that bmod(j, T23)/Lc = bmod(j′, T23)/Lc. By the first hypoth-
esis thatL divides bothT2 and T3, L must divide g(F (u)) for all
u ∈ ST . Clearly, L divides g(F (u) + (0, T23)) since L divides
T23. Since g(F (u)) ≤ g(i, j), g(i, j′) < g(F (u) + (0, T23))
and g(F (u) + (0, T23)) − g(F (u)) < C, we havebg(i, j)/Lc =
bg(i′, j′)/Lc. Hence, we have proved thatg is (C,L)-1-to-1 onST .

Proof of Theorem 5:
Let u = (ii, jj, tt) be an arbitrary tile andD(T (u)) be defined as in the
proof of Theorem 3. Letu′ = (ii, jj, tt + 1) andu′′ = (ii, jj, tt + m),
wherem ≥ 1, andD̃(T (u′)) andD̃(T (u′′)) be similarly defined. Let
D̃(T (u)) be the set of memory lines̀such that̀ ∈ D̃(T (u)) iff there
is (i, j) ∈ D(T (u)) such thatB(g(i, j)) resides iǹ . From the proof of
Theorem 4 we see thatg is (C,L)-1-to-1. Thus, any memory line that is
accessed in a tile cannot be evicted from the cache in that tile. If a memory
line ` ∈ D̃(T (u)) is evicted from the cache when the tilesu andu′ are
executed, we prove next that` must be contained iñD(T (u))\ D̃(T (u′)).
In fact, if ` 6∈ D̃(T (u)) \ D̃(T (u′)), then` ∈ D̃(T (u′)). Suppose that
` ∈ D̃(T (u′)). Then` ∈ D̃(T (u)) ∩ D̃(T (u′)), and hence,̀ cannot be
evicted from the cache in eitheru or u′. This contradicts to the assumption
on `. SinceT3 = L, L dividesT2 andT23, and by noting (9), it is easy to
see that(D̃(T (u)) \ D̃(T (u′))) ∩ D̃(T (u′′)) = ∅. Combining this with
that` ∈ D̃(T (u)) \ D̃(T (u′)) shows that̀ will not be accessed inu′′.

