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Abstract

For SOR-like PDE solvers, loop tiling either helps little in
improving data locality or hurts their performance. Thipga
presents a novel compiler technique calbedle tilingfor generat-
ing fast tiled codes for these solvers on uniprocessorsauittem-
ory hierarchy. Code tiling combines loop tiling with a newaar
layout transformation calledata tiling in such a way that a sig-
nificant amount of cache misses that would otherwise be prése
tiled codes are eliminated. Compared to nine existing ooy tal-
gorithms, our technique delivers impressive performapeedups
(faster by factors of 1.55 — 2.62) and smooth performanceesur
across a range of problem sizes on representative mactdhe ar
tectures. The synergy of loop tiling and data tiling allovegaifind
a problem-size-independent tile size that minimises aeaciss
objective function independently of the problem size partars.
This “one-size-fits-all” scheme makes our approach attrador
designing fast SOR solvers without having to generate aitudét
of versions specialised for different problem sizes.

1. Introduction

Malardalens Hogskola
Vasteras, Sweden

and Tseng [15] apply loop tiling and padding to tile 3D PDE
codes. However, they do not exploit a large amount of the
temporal reuse carried by the outermost time loop. In this
paper, we present a new technique for improving the cache
performance of a class of loop nests, which includes multi-
dimensional SOR PDE solvers as a special case.

Our compiler technigue, callecbde tiling emphasises
the joint restructuring of the control flow of a loop nest
through loop tiling and of the data it uses through a new
array layout transformation callethta tiling. While loop
tiling is effective in reducing capacity misses, data gjlire-
organises the data in memory by taking into account both
the cache parameters and the data access patterns in tiled
code. By taking control of the mapping of data to memory,
we can reduce the number of capacity and conflict misses
(which are referred to collectively agplacement missgs
methodically. Inthe case of SOR-like PDE solvers assuming

a direct-mapped cache, our approach guarantees the absence

of replacement misses in every two consecutively executed
tiles in the sense that no memory line will be evicted from
the cache if it will still be accessed in the two tiles (Theo-
rems 4 and 6). Furthermore, this property carries over to the
tiled code we generate for 2D SOR during the computation
of all the tiles in a single execution of the innermost tilepo
(Theorem 5). Existing tile size algorithms [5, 6, 12, 14, 18]

As the disparity between processor and memory speedsgnnot guarantee this property.

continues to increase, the importance of effectivelyasitity
caches is widely recognised. Loop tiling (or blocking) is
probably the most well-known loop transformation for im-
proving data locality. This transformation divides thedte

tion space of a loop nest into uniform tiles (or blocks) and
schedules the tiles for execution atomically. Under an ap-

propriate choice of tile sizes, loop tiling often improvast
execution times of array-dominated loop nests.
However, loop tiling is known not to be very useful (or

even considered not to be needed [15]) for 2D PDE (patrtial

differential equations) solvers. In addition, tile sizéese
tion algorithms [5, 6, 12, 14, 18] target only at the 2D ar-

rays accessed in tiled codes. To address these limitation
Song and Li [16] propose a new tiling technique for han-
dling 2D Jacobi solvers. But their technique does not apply
to SOR (Successive Over-Relaxation) PDE solvers. Rivera

TThis work is supported by an ARC Grant A10007149.
fThe author was performing part of his PhD studies at UNSW vihisn
work was carried out. He was also supported by the same ARE.gra

S

The synergy of loop tiling and data tiling allows us to find
a problem-size-independent tile size that minimises aeach
miss objective function independently of the problem size
parameters. This “one-size-fits-all” scheme makes our ap-
proach attractive for designing fast SOR solvers for a given
cache configuration without having to generate a multitude
of versions specialised for different problem sizes.

We have evaluated code tiling for a 2D SOR solver on
four representative architectures. In comparison wittenin
published loop tiling algorithms, our tiled codes have low
cache misses, high performance benefits (faster by factors
of 1.55 — 2.62), and smooth performance curves across a
range of problem sizes. In fact, code tiling has succeeded in
eliminating a significant amount of cache misses that would
otherwise be present in tiled codes.

The rest of this paper is organised as follows. Section 2
defines our cache model. Section 3 introduces our program
model and gives a high-level view of our code tiling strat-
egy. Section 4 describes how to construct a data tiling trans



formation automatically. Section 5 focuses on finding opti- doubleA(0: N4 1,0: N +1)
mal problem-size-independenttile sizes. Section 6 d&sgsis fort=0P—1
performance results. Section 7 reviews related work. Sec- |fori =1, N
tion 8 concludes and discusses some future work. for j=1,N
A(i, j) = 0.2 (A(i,j) + A(i — 1,5) + A(i,j — 1)
2. Cache Model HAG+LJ) + A5 +1)

In this paper, a data cache is modeled by three parame- Figure 1. 2D SOR code.

ters: C denotes its sizef its line size andC its associativ-
ity. C and. are in array elements unless otherwise speci-

fied. Sometimes a cache configuration is specified as a triple doubleA(0: N +1,0: N + 1)
(C, L£,K). In addition, we assume a fetch-on-write policy so |fori=0,P + N —2
that reads and writes are not distinguished. forj=0,P+N -2

for t = max(0,s — N+ 1,7 — N + 1), min(P — 1,4, 5)
Definition 1 (Memory and Cache Lines) A memory line A(i—t, j—t) =0.2 % (A(i~t + 1, j—t) + A(i—~t, j—t+1)
refers to a cache-line-sized block in the memory while a + A(i—t, j—tH+A(i—t, j—t—1)+A(i~t—1, j—t))
cache linerefers to the actual block in which a memory line
is mapped. Figure 2. Skewed 2D SOR code.

From an architectural standpoint, cache misses fall into
one of three categoriesold, capacity andconflict In this

paper, cold misses are used as before but capacity and cofpe 2D SOR code, tiling the inner two loops is not beneficial

flict misses are combined and calleplacement misses since a large amount of temporal reuse carried by the time
loop is not exploited. Due to the existence of the depen-
ili dence vector§l, —1,0) and(1, 0, —1), tiling all three loops
3. Code Tiling by rectangles would be illegal [19]. Instead, we skew the it-
We consider the following program model: eration space by using the linear transformal{iq)r(l(; ﬂ and
then permute the time step into the innermost position. This
for Iy = p1,q1 gives rise to the program in Figure 2. We choose to move the
. time step inside because a large amount of temporal reuse in
fOr Iy = pons Gom (1) the time step can be exploited for larfe _
A(D) = f(AMI + 1), ..., AMI + ¢)) Loop tiling can be understood as a mapping from the iter-
Y " ation space to Z>™ such that each iteratidd , . .., I,,,) €
wherel = (Iy, ..., I,,) is known as théteration vecto M 5 is mapped to a new point @™ [7, 19]:
is ann x m integer matrix, the loop bounds, andq; are 7 I
?hfgn\/ee?o[)rgsgons of the outer loop variables. . ., I;_1, (I,...,I,) — (L—lJa 2L ) (3)
1,-..,Cy areoffsetinteger vectors of length, T T
and f symbolises some arbitrary computation ondteray
references. Thus4 is ann-dimensional array accessed in where (T1,...,7,,) is called the tile size and
the loop nest. In this paper, all arrays are in row major. Asis ([11/T1], ..., [Im/Tm]) uniquely identifies the tile
customary, the set of all iterations executed in the loop nes that the iteratior{/,, ..., I,,) belongs to. Viewed as a loop
is known as theteration spaceof the loop nest: transformation, loop tiling decomposes andimensional
loop into a2m-dimensional loop nest, where the outer
S={I=1, -, In) :pr < I < qr,k=1,...,m} (2) loops are theile loops controlling the execution of tiles

and the innern loops are theelement loopsontrolling the
This program model is sufficiently general to include execution of the iterations in a tile.
multi-dimensional SOR solvers. Figure 1 depicts a 2D ver-
sion, where the loop is called thegime loopwhose loop Definition 2 (Adjacent Tiles) Two tiles identified by

variable does not appear in the subscript expressions of théuw;, ..., u,,) and (u},...,u,,) are said to beadjacentif
references in the loop body. In addition, the linear parts uy = u},..., um—1 = ul,_; andu,, = u,, — 1.

M of all subscript expressions are the identity matrix, and

the offset vectors, . . ., ¢, contain the entries drawn from  Definition 3 (Intra-, Inter ;- and Inter,-Tile (Replace-

{-1,0,1}. These solvers are known atencilcodes be-  ment) Misses and Cold Missesl.et« be a given tile and’
cause they compute values using neighbouring array ele-be its adjacent tile previously executed. Let there be d tota
ments in a fixed stencil pattern. The stencil pattern of dataof k£ accesses;y,--- ,ar, to a memory lin€ in the tile .
accesses is repeated for each element of the array. Any of the lastk — 1 such accesses;, wherei > 1, is a
Without loss of generality, we assume that the program replacement miss if is found not to be in the cache when
givenin (1) can be tiled legally by rectangular tiles [19rF  «; is executed. Such a replacement miss is calliedra-tile



Algorithm: CodeTiling
INPUT: e A program that conforms to the model (1)

e Cache paramete(§, £, 1) (in array elements)
OUTPUT: Tiled code for the given program

(a) Generate the initial tiled code using loop tiling [19].

The2m loops go here // omitted
A(I) = f(AMI +c1),..., A(MI + cy))

(b) Construct a data tiling transformatign Z™ — Z,
to eliminate both intra- and intettile misses (Section 4).
(c) Find the problem-size-independent tile size to ming@nis
the intep-tile misses as described in Section 5.
(d) Modify the tiled code obtained in (a) to get:
The code to copyl to a new 1D array namel
The same loop nest as in (a) goes here // omitted

B(g(I)) = f(B(g(MI + c1)),..., B(g(MI +cy)))
The code to copy the results Bito A

(e) Computey incrementally using additions/subtractions and
apply loop distribution, if necessary, to avaithx andmin.

Figure 3. Code tiling for direct-mapped cache.

(replacement) misdf the access, is a miss, there are three
cases. (a) I¥ was also previously accesseduf) then the
miss is called ainter; -tile (replacement) misqb) If £ was
previously accessed but notin, then the miss is called an
inter,-tile (replacement) miss(c) Otherwise, the miss is a
cold miss as will be classified in the standard manner.

According to this definition, there are four kinds of cache
misses in tiled code: cold, intra-tile, intetile and integ-
tile.

Let v andu’ be two adjacent tiles. If a tiled loop nest
is free of intra- and intgrtile misses in both tiles, then no
memory line will be evicted from the cache during their exe-
cution if it will still be accessed im andw’, and conversely.

Figure 3 gives a high-level view of code tiling for direct-
mapped caches. In Step (b), we construct a data tilitg
map then-dimensional arrayl to the 1D arrayB such that
the tiled code operating o is free of intra- and intgr

(%—16,5, 1). As far as this hypothetical cache is con-
cerned,g used in the tiled code is a data tiling transforma-

tion. By using the effective cache sii%%—lc to model the

impact of associativity on cache misses, we are still able to
eliminate all intra-tile misses for the physical cache (The
orem 3). In the special case wh&h= 2, the cache may

be under utilised since the effective cache size is Gyly.
Instead, we will treat the cache as ifitwetg L, 1). The ef-
fectiveness of our approach has been validated by extensive
experiments conducted (only) on set-associative caches.

4. Data Tiling

In this section, we present an algorithm for automating
the construction of data tiling transformations. Througtho
this section, we assume a direct-mapped cache, denoted by
(C, L, 1), where the cache sizkand the line siz& are both
in array elements. An application of the results in this sec-
tion for set-associative caches is discussed in Section 3.

We will focus on a loop nest that conforms to the program

model defined in (1) with the iteration spa8egiven in (2).
We denote byffsef A) the set of the offset vectors of ajl
array references td, i.e., offse{A) = {ci,...,¢,}. The
notatione; denotes the-th elementary vector whoseth
componentid and all the rest are.

Recall that a loop tiling is a mapping as defined in (3) and

thatT = (11, - -- ,T,,) denotes the tile size used. L&t be

the set of all the tiles obtained for the program:

St ={u= cu=(| 2 In ) resy @
r={u=(u,um) su= (L) ), T €5 (@)

Let T'(u) be the set of all iterations contained in the tite

.. ,Um) : uka S Vi S (uk —|— 1)Tk—1, (5)

In this definition, the constraint € S from (4) is omitted.
Thus, the effect of the iteration space boundarie om) is
ignored. As a resulf,l’(u)| is invariant with respect to.

For notational convenience, the operatosd is used as
both an infix and a prefix operator. We do not distinguish
whether a vector is a row or column vector and assume that

tile misses (Definition 4). There can be many choices for this is deducible from the context.

such tile sizes. In Step (c), we choose the one such that

the number of intey-tile misses is minimised. The optimal

Letaddr be a memory address. In a direct-mapped cache
(C, L,1), the address resides in the memory ljnddr/L |

tile size found is independent of the problem size becauseand is mapped to the cache lineod (|addr/L|,C/L).

our cost function is (Section 5). Finally, our constructafn

In Section 4.1, we give a sufficient condition for a map-

g ensures that the number of cold misses in the tiled codeping to be a data tiling transformation. In Section 4.2, we
has only a moderate increase (due to data remapping) withmotivate our approach by constructing a data tiling tramnsfo

respect to that in the original program.

Definition 4 (Data Tiling) Let a direct-mapped cache
(C,L,1) be given. A mapping : Z" — Z (constructed in
Step (b) of Figure 3) is called data tiling if the tiled code
given is free of intra- and intettile misses.

For aC-way set-associative cacké, £, K), wherefC >

1, we treat the cache as if it were the direct-mapped cache

mation for the 2D SOR program. Section 4.3 constructs data
tiling transformations for the programs defined in (1).

4.1. A Sufficient Condition

For atileu € S, itsworking sef(i.e., the set of elements
accessed inside), denotedD(7'(u)), is given by:

D(T(u)) ={MI+c:1IecT(u),cec offsefA)} (6)
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Figure 4. An illustration of Theorem 1 using the 2D SOR in
Figure 2. Itis assumed Ty = T, = T5 = £ = 2 and u and u’
are two arbitrary adjacent tiles executed in that order. Thus,
|T(uw)] = |T(u')] = 2x2x2 = 8. The corresponding working
sets D(T'(u)) and D(T'(u’)) are depicted by the solid and
dotted (larger) boxes, respectively. Thus, each (small) solid or
plain box at (¢, j) depicts an array element A(z, j) identified by
its array indices (z, ). The two “distance numbers” T1 +T3+1
and T> + T3 + £ will be referred to in Section 4.2.

It is easy to show thaD(7T'(u)) is a translate oD (T'(u'))

for u,u’ € St. This property plays an important role in our
development, which leads directly to the following result.

Theorem 1 Letu,u’ € St be two adjacent tiles, where

u' = u+epy. Then|D(T(u)) \ D(T'(v'))| = |D(T(u')) \
D(T(u))| and|D(T(u')) \ D(T(w))| is independent of.

Figure 4 illustrates Theorem 1 with the 2D SOR ex-
ample in Figure 2. This theorem implies that the num-
ber of elements that are accesseduiut not inv/, i.e.,
|D(T(u)) \ D(T(u'))| is exactly the same as the num-
ber of elements that are accesseduinbut not inw, i.e.,

[D(T'(u)) \ D(T(u))|.
v : D(S) — Z such thaty : D(T(uv)) \ D(T(u)) —

Y(D(T(u)) \ D(T'(v'))) mod C and use the mapping to
map the element(MI + ¢) to B(y(MI + ¢)), where

¢ € offsefA), then the two corresponding elements in the
two sets will be mapped to the same cache line. By conven-
tion, D(.S) is the union ofD(T'(w)) for all w € St. As are-

If we can find a 1-to-1 mapping

sult, the newly accessed data in the B¢t (u')) \ D(T'(u))

whenw’ is executed will evict from the cache exactly those
data in the seD(T'(u)) \ D(T(u")) previously accessed in

u

data tiling to guarantee these two properties.
For a 1-to-1 mapping : Z" — Z and a subselV’ C

Z", g : W — g(W) is said to be 4C, £)-1-to-1 mapping

on W if whenever the following condition

g(w2)

L

J,¢/L)

However, this does not guarantee that all intra- and jnter
tile misses are eliminated. Below we give a condition for

()

mod(Lg(zl)J,C/L) = mod (|
holds, wherau;, wy € W, then the following must hold:
g(wl) o g(wg)

(8)

A mappingg : D(S) — Z is said to bgC, £)-1-to-1 on
St if gis(C, £)-1-to-1 onD(T(u)) forall u € Sr.

Theorem 2 Let a direct-mapped cach€, £, 1) be given. A
mappingg : D(S) — Z is a datatiling ifg is (C, £)-1-to-1
onSr.

Proof. Follows from Definition 4 and the definition gf =

Theorem 3 Consider a K-way set-associative cache
(C, £, K) with an LRU replacement policy, whekg> 1. If

amapping : D(S) — Zis (%C,E)-l-to-l onSr, then
there are no intra-tile misses in the tiled code from Figure 3

Proof. For theg given, there can be at mokt— 1 distinct
memory lines accessed during the execution of any single
tile. By Definition 4, there cannot be any intra-tile misams.

In the case of LRU, we tend to reduce also ipigie

misses by usiné%%lc as the effective cache size.

4.2. Constructing a Data Tiling for 2D SOR

In this section, we construct a data tiling transformation
to eliminate all intra- and intgrtile misses for 2D SOR. We
will continue to use the example given in Figure 4. Since the
array A is stored in row major, the elements depicted in the
same row are stored consecutively in memory. In Step (b)
of Figure 3, we will construct a data tilingto mapA to B
such that the elements &f will reside in the memory and
cache lines as illustrated in Figure 5. (It should be pointed
out thatg is not a block-cyclic array layout transformation.)

The basic idea is to divide the set of all elements of
A into equivalence classes such thati, j) and A(i’, )
are in the same class if = ¢’ mod (71 + T3 + 1) and
j =j" mod (T>+T3+L). Forall array elements of in the
same equivalence class, we will constrgctuch that their
corresponding elements in the 1D arrByhave the same
memory address (modul@). In other words,A(s, j) and
A(i', j') are in the same class iff(i, j) = g(i’,j’) mod C.
In Figure 5, the two elements of connected by an arc are
mapped to the same cache line. This ensures essentially
that the unused elements that are accessed in a tile will be
replaced in the cache by the newly accessed elements in
its adjacent tile to be executed next. As mentioned earlier,
this does not guarantee the absence of intra- and, ititer
misses. To eliminate them, we must impose some restric-
tions on(7T1, 75, T3). For example, a tile size that is larger
than the cache size will usually induce intra-tile misses.

In the 2D SOR program given in Figure 2, the linear part
of an array reference is defined as follows:

1 0 -1
M= < 01 -1 >

andoffsef A) = {c = (c1,¢2) : |c1| + |ea] < 1}

Letu = (it,jj,tt), v’ = (it,jj, ¢t + 1) € S be two
adjacent tilesT (u) andT(u’) are defined according to (5).

By Definition 4, it suffices to find 4C, £)-1-to-1 map-
ping on Sr. To do so, we need &-parallelotope con-
taining D(T'(u)) defined by{l ¢ Z*® : —T3 < G1I <



Theorem 4 are true. The resulting data tiling can be obtained
by substituting these values into (9).

In fact, ourg has eliminated all intgrtile missesamong
the tiles in a single execution of the innermost tile loop

Theorem 5 Under the same assumptions of Theoreng 4,
defined in (9) ensures that during any single execution of the
innermost tile loop, every memory line, once evicted fraem th
cache, will not be accessed during the rest of the execution.

Proof. See Appendix A.

4.3. Constructing a Data Tiling for (1)

We now give a data tiling, denotedfor a program of the

Figure 5. Memory reorganisation effected by a data tiling g form (1). This time we need anparallelotope [17] that con-
when C =30 and £ = 2. Continuing from Figure 4, g ensures tains D(T'(u)), wherer is the dimension of the affine hull
that the elements of A are mapped to B so that all elements of D(T'(u)). This parallelotope, denotg@(7’(u)), is found
in B are aligned at the memory line boundaries as shown. by our algorithmFindFacets. We can see thaP(7'(u))
Each dashed box indicates that the two elements inside are in is the smallest-parallelotope containing)(T(u)) if the

the same memory line; the number below indicates the cache
line to which the memory line is mapped. The elements con-
nected by an arc are mapped to the same cache line.

components of the offset vectors affse{A) are all from
{-1,0,1}. Therefore, it is only necessary to map the ele-
ments ofA that are accessed in the loop nesBtoHence g

is a mapping fronZ" to Z, wherer < n.

Let ¢(7T") andw(T') be the number of elements contained
Ty + T3, —T3 < Gol < Ty + T3}, whereG; = (0,1) and in D(T'(u)) and P(T_(u)_), respectively. _From now on we
G = (1,0). This parallelotope can be obtained by our al- assume that a tile fits into the cache, i#(1") < C. Let
gorithmsFindFacets and FindQ given in Appendix A. We  P(T'(u)) = (G, F(u), K) be found byFindFacets and@ by
denote by(G, F(u), K) this parallelotope, wher& (u) = FindQ. Wlthout loss of generality, we assume that D(S)
(T3, —T3), K = (T1 + T3, T, + T3) and the first and  andGQS = {v = (v1,...,v,;) : v; = |Gil/Q;],] €
second rows of+ are G; and G, respectively. Accord- g, — 1 . r}, whereQ = diag(Q1,...,0Q,), Q1 =

ing to (G, F(u), K), we classify the points in the data space -, A ~ . ) 1
[OgNJ(r 1] x ([()) N>+ 1] (i.e., tE/e setpof array indices (}tF)) Qo Qo = QrandQp = [Qﬁm we call
and find a mapping such that the points in the same class ar&QS the data tile space For the 2D SOR example, we
mapped into the same cache line. We say that two pointshaver = 2, Q = diag7: + 73 + 1,75 + 75 + 1) and
(i,7) and (7', ') are equivalentif Gi(i —i',j —j') = Q = diag T} + T3 + 1, [%15). Assume that LB
s(I1+T5+ 1) andG,(i —i',j—j') =t(To+Ts+ L), .., and UB are the smallest and largest of théh components

ifi=4i+s(Th+T3+1)andj =5 +t(Tx + T3 + L), for . A .
some integers andt. Two points are in the same class iff of all the points iInGQ)S, respectively. Foll & D(5),

they are equivalent. (For example, the two points connected®t ¥(1) = (i (D),....y:(1)) = [Q7'GI] andz(1) =

by an arc in Figure 5 are in the same equivalence class.)  (21(1); ..., 2(I)) = GI — Qy(I).
LetTi3 =Ty +15 +1 andT23 = ’—%]ﬁ We Letv = (Ula"-;vT> and
define: rowLayoul(vs, . . .,vr):Eg;i mod (ij,Qj)szj_H(KkJrl) (10)
9(i,5) = ([i/Tis][(N —1)/Tas] + [1/T23])C ©) + mod (Grv, Qr)
+ mod (i, T13)T23 + mod(j, Th3) Let
Theorem 4 Let a direct-mapped cach@, £, 1) be given. g(v1, .., o) = rowLayoutz, (v), . . ., zr(v) 11)
Theng defined in (9) is a data tiling transformation for HCEys (T4 (UBg — LBy)
the 2D SOR ifT1,T5, T3) satisfies the following two con-  \herell” (UBy, — LBy) = 0.
ditions: k=r+1
1. Ldivides bothl;g agd]lg, and Theorem 6 Let a direct-mapped cach@, £, 1) be given.
2. (M + T3+ D[ERELC Theng defined in (11) is a data tiling transformation for (1)
Proof. See A dix A if the following two conditions are true:
roof. See Appendix A. g .
Thereforeg in (9) for 2D SOR guarantees that the tiled 1L ?Y;deSF’Cgfé) forall u € Sr.
code for the program is free of intra- and inteile misses 2. (I QuIFILLC

provided the conditions in Theorem 4 are satisfied.
In the example illustrated in Figures 4 and 5, we have Proof. Under the given two conditionsg,is (C, £)-1-to-1 on
T, =T, = T3 = L = 2 andC = 30. Both conditions in St. By Theorem 2y is a data tiling as desired.



5. Finding Optimal Tile Sizes

Let a loop nest of the form (1) be given, whedes the

array accessed in the nest. Let this loop nest be tiled by the

tile sizeT = (Ty,...,Ty,). LetT = (T4, ..., Tp_1,2T).
Using the notation introduced in Section 4@&T") repre-
sents the number of distinct array elements accessed & a til

andqs(f) the number of dis}inct array elements accessed in
two adjacent tiles. Thugi(T) — ¢(T') represents the num-

6. Experimental Results

We evaluate code tiling using the 2D SOR solver and
compare its effectiveness with nine loop tiling algorithms
on the four platforms as described in Table 1. In all our ex-
periments, the 2D SOR is tiled only for the first level data
cache in each platform.

All “algorithms” considered in our experiments are re-
ferred to by the following nameseq denotes the sequen-

ber of new array elements accessed when we move from ongial program,cot denotes code tilingl r wis from [18],

tile to its adjacent tile to be executed next.
Our cost function is given as follows:

Ty X - x Ty,
I = o)

For each tile size that induces no intra- and inte misses

(12)

t ss from [5], ess from [6], euc from [14], pdat from
[12], andpxyz is the padded version ofy z with pads of
0-8 elements (the same upper bound used as in [14]).

Our tiled code is generated according to Figure 3. The
program after its Step (a) is given in Figure 6. The data
tiling function g required in Step (b) is constructed accord-

under data tiling, the number of cache misses (consisting ofing to (9). The problem-size-independent tile sizes on the

cold and integ-tile misses) in the tiled code is dominated
by |Sr|/f(T). Hence, the optimal tile size is a maximal
point of f such that the conditions in Theorem 6 (or those
in Theorem 4 for 2D SOR are satisfied). Of all tile sizes
without intra- and inter-tile misses, we therefore take the
one such that the number of indelile misses is minimised.
Hence, the total number of cache misses is minimised.

The set of all tile sizes is{(T1,...,Tm) 1 <
Ty,...,T, < C}. The optimal one can be found efficiently
by an exhaustive search with a worst-time complexity being
O(C™), whereC is the cache size in array elements (rather
than bytes). (The worst-time complexity when = 2 can
be tightened to b&(Clog(C).) Essentially, we simply go
through all tile sizes that satisfy the conditions mentibne
above and pick the one that is a maximal poinf of

Next we provide a characterisation of cache misses for
a progranyp of the form (1) whenl = 1; it can be gener-
alised to the case wheh > 1. Let OMN(T") be the smallest
among the cache miss numbers of all tiled codefob-
tained using the traditional loop tiling under a fixédbut
all possible array layouts of. Let DTMN(T') be the cache
miss number of the tiled code farwe generate when the
layout of A is defined by a data tiling transformation.

Theorem 7 Let a direct-mapped cach@, 1, 1) be given.
Assume that; > 0,...,a,, > 0 are constants and the
iteration space of (1) i40, Nay — 1] x -+ x [0, Nay, —
1]. LetT and T’ be two tile sizes. IfP(T(u)) =
D(T(u)), then OMN(T") — DTMN(T) > TI"-,(Na, +
1)(H?:1(1_2/(N‘15+1)) o1 1 )

Fm

f(T) — Nan+1
Proof. When£ = 1, we have the two inequalities:

OMN(T') > Iy [Nas/Ti|($(T) — ¢(T))
= Ja \_Nas/Ts/JHQL:1T;/f(T/)
> ML (Nas —1)/f(T)
DTMN(T) < T25'(Nas+1) + 1105 (Nas+1)/f(T)

which together imply the inequality in the theorem. =
This theorem implies that wheW is large and if we
choosel” such thatf (T") > f(7"”), then the number of cache
misses in our tiled code is smaller than that obtained by loop
tiling regardless what array layout is used for the atday

four platforms are found in Step (c) according to Section 5
and listed in Table 2. Note that in all platforms, the opti-
mal T35 = £ holds. The final tiled code obtained in Step
(d) is optimised as described in Step (e). Note thatloes
not appear in the tiled code given in Figure 6 since the two
corresponding loops are combined by loop coalescing.

| Platform | (11,7, T3) |
Pentium Il | (33,32,4)
Pentium4 | (15,16,8)
R10K (50,60, 4)
Alpha 21264| (76,80,8)

Table 2. Problem-size-independent tile sizes.

All programs are in ANSI C, compiled and executed on
the four platforms as described in Table 1. The last two plat-
forms are SGI Origin 2000 and Compaq ES40 with multiple
processors. We used only one single processor during our
experiments. All our experiments were conducted when we
were the only user on these systems.

The SOR kernel has two problem size paramefeend
N. In all our experiments except the one discussed in Fig-
ure 11, we fixP = 500 and chooseV from 400 to 1200 at
multiples of 57.

Figure 7 shows the performance results on Pentium Ill.
Figure 7(a) plots the individual execution times, showing
that all tiled codes run faster than the sequential program
except foress at the larger problem sizes. But our tiled
codes perform the best at all problem sizes (represented by
the curve at the bottom). Figure 7(b) highlights the overall
speedups of all tiled codes over the sequential prograns. Thi
implies that code tiling is faster by factors of 1.98 — 2.6210v
the other tiling algorithms, as shown in Figure 7(c).

Figure 8 shows the performance results on Pentium 4.
This time, however, loop tiling is not useful as shown in
Figure 8(a). Figure 8(b) indicates that neither of the é@xist
tiling algorithms yields a positive performance gain buieo
tiling attains a speedup of 1.56. Figure 8(c) shows that code
tiling is faster than these algorithms by factors of 1.56591.



forii=0,(P+N —2)/Th
for jj =0,(P+ N —2)/T5
fort =max(0,ii+Th — N+ 1,jj«To — N+ 1),min(P—1,(ii+1)«Th — 1,(ji+ 1)« To — 1)
for i = max (4 * T1,¢), min((4i + 1) « Ty, t + N) — 1
for j = max(jj * To,t), min((jj + 1) * Ta,t + N) — 1
Ali—t,j—1t)=02x (Al —t+1,j—t)+ Ali—t,j—t+1)+ Al —t,j —t)
+AG—t,j—t—1)+AG—t—1,j—1))

Figure 6. Tiled 2D SOR code.

CPU Pentium Il (Coppermine Pentium 4 MIPS R10K Alpha 21264
Clock rate 933MHz 1.8GHz 250MHz 500MHz
L1 D-cache 16KB/32B/4 8KB/64B/4 32KB/32B/2 64KB/64B/2
L1 Replacement Policy LRU LRU LRU FIFO
L2 D-cache 256KB/32B/8 512KB/128B/8 | 4MB/128B/2 4MB/64B/4
RAM 256MB 512MB 6GB 6GB
cc version gcc 3.2.1 gcc 3.2.1 MIPSpro 7.30| DEC C 5.6-075
cc switches -02 -02 -02 -02
(O] Debian Linux 3.0 Debian Linux 3.0| [IRIX64 6.5 OSF14.0
Table 1. Machine configurations.
60 37280 37280
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Figure 9. Performance on R10K.
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Figure 10. Performance on Alpha 21264.

Figure 9 shows the performance results on R10K. Loop
tiling helps little. But code tiling achieves a speedup &12.
which is in sharp contrast to the negligible positive spg@adu
from the other tiling algorithms. Overall, code tiling istar
by factors of 1.92 — 1.95 over the other algorithms.

Figure 10 shows the performance results on Alpha 21264.
Similar trends as in Pentium 4 can be observed. Code tiling
is faster than the other algorithms by factors of 1.55 — 1.60.

Some other properties about code tiling are in order.

Copy Cost. All execution times include the copy over-
heads. In the tiled code for 2D SOR, the copy cost
contributes onlyO(1/P) to the overall time complex-
ity, whereP is the number of time steps. We measured
the copy cost to be 0.8% — 1.2% on Pentium Ill, 0.1
— 1.5% on Pentium 4, 0.1 — 1.0% on R10K and 0.1 —
1.3% on Alpha 21264 of the total execution time.

Address Calculation Cost. The data tiling functions used
involve integer division and remainder operations and
is thus expensive. They are efficiently computed by us-
ing incremental additions/subtractions and distributing
loop nests to avoid excessive max/min operations.

2500
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7 1500 - —=—cot
© 1000 4 ——lw
E 500 —e—tss
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é -500 ——euc
= -1000 —&—plrw
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Figure 11. Performance stability on Pentium Il (P = 500).

where( is the cache size in terms of array elements
rather than bytes. For the problem sizes used in our
experimentsg(N, N) ranges fromi.03N? to 1.16 N2,
Note that the multiplier is only 1.33 wheN = 100.
When N is even smaller, tiling is usually not needed.
The tiling technique for the Jacobi solvers [16] em-
ploys array duplication to remove anti and output de-
pendences. So their constant multiplier is 1.

Cache Misses.To support our claim that code tiling has

High and Smooth Performance Curves.Figures 7(a) —
10(a) show clearly that code tiling enjoys high, smooth
performance curves across a range of problem sizes on
four platforms. To see our stability advantage further,
Figure 11 plots the time differenc@&N) — T'(N — 3)
between two adjacent problem sizes at multiples of 3.

Space Requirement.The size of the 1D array3 intro-
duced in in Figure 3 is given by(N, N) in (9). For
the 2D SOR, we find that(N, N) < N2+ NVC +C,

eliminated a large amount of cache misses present in
the tiled codes generated by loop tiling, we evaluated
cache performance for all codes involved in our ex-
periments using®CL [13]. Figure 12 plots the real

L1 data cache misses for all methods on Pentium III.
In comparison with Figure 7(a), the significant perfor-
mance gains correlate well with the significant cache
miss reductions at most problem sizes. Note thraw

has comparable or even smaller cache miss numbers at
some problem sizes. This is because in our tiled codes,



some temporaries are required to enable incrementaltheir technique is orthogonal to loop tiling; they rely on a
computation of the data tiling function (see Step (d) tile size selection algorithm to find appropriate tile sizes
in Figure 3) and they are not all kept in registers due In addition, they choose nonlinear layouts for all the asray
to a small number of registers available on %86 ar- without making any attempt in partitioning and reorganis-
chitecture. Despite of this probleropt outperforms  ing them in memory. In other words, they do not directly
| r wat all problem sizes. This can be attributed to sev- aim at reducing the cache misses in tiled codes. This may

eral reasons (e.g., TLB and L2 misses). partially explain why they obtain increased cache misses in
some benchmarks (due to conflict misses between tiles).
600 The importance of combining data transformations with
o0 o loop transformations was recognised earlier [4]. Subse-
) o lrw quently, several researchers [8, 11] permit the co-existen
5 40 —tss of different array layouts (row major, column major, diago-
€ 300 ess nal or others) in a kernel or program-wise and obtain mod-
% 200 | e erate performance gains for benchmark programs.
% ol +Etss The PhiPAC project [1] uses an exhaustive search to pro-
. S 2 ~pess duce highly tuned tiled codes for specific level-3 BLAS ker-
e RS RSB R g S e B o nels, which are specialised not only for a given cache con-
SYPseerEed o gggg [ figuration but also a given problem size. Our code tiling
methodology generates automatically a single “optimised”
Figure 12. L1 data cache misses on Pentium IIl. version for an SOR PDE solver for all problem sizes.

8. Conclusion

7. Related Work We have presented a new compiler technique for improv-

ing the performance of a class of programs that includes

To the best of our knowledge, we are not aware of any myjti-dimensional SOR PDE solvers as a special case. Code
previous work on applyingglobaldata reorganisationstrat- jling combines loop tiling with data tiling in order to re-
egy to minimise the cache misses in tiled codes. Some eary,ce cache misses in a predictable and methodical man-
lier attempts on partitioning the cache and mapping arraysper, We have evaluated its effectiveness using the classic
into distinct cache partitions can be found in [2, 10]. Man- 2p sOR solver — for which loop tiling is ineffective — on
jikian etal[10] allocate arrays to equal-sized regions. Chang o representative architectures. Our experimentalltesu
et al[2] allow varying-sized regions but assume all arrays to spow that code tiling has eliminated a significant amount
be one-dimensional. These techniques cannot handle the 2[3¢ cache misses that would otherwise be present in tiled
SOR solvers since these kernels each use one single array —codes. This translates to impressive performance speedups
there is nothing to partition. _ . over nine loop tiling algorithms for a range of problem sizes

Compiler researchers have applied loop tiling to en-  \ye pelieve that code tiling can be generalised to other
hance data locality. Several tile size selection algorshm ,rograms, at least to dense matrix codes for which loop
[5, 6,12, 14, 18] find tile sizes to reduce the cache misses ingjjing is an appropriate means of control flow restructuring
tiled codes. Since these algorithms rely on the default lin- to gata locality. This will have the potential to eliminate
ear layouts of the arrays, padding has been incorporated by, gignificant amount of conflict misses still present in tiled
many algorithms to help loop tiling stabilise its effectiess  ¢oges. Some preliminary results we have obtained on matrix

[12, 14]. . . multiplication are extremely encouraging.
While promising performance gains in many programs,

loop tiling is not very useful for 2D PDE solvers and may

even worsen their performance as shown by our experi-References
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Appendix A

Algorithm FindFacets

Input: M andoffse(A) in (1), T andT'(u)

Output: The facet§ G, F(u), K) of P(T'(u))

For a subset of [1,m] andz = (z1,...,zm), We denotez,
Sieozie; andz? = e (1, m]\oTi€i-

(5]

(6]

(7]

(8]

(9]

1. Calculate the rank of\f. Letr = rankM). Let M =
[Mu, ..., Mp], whereM; is thei-th column of M.
2. K = {{ki,...,ks} + 1 < k1 < < ks <

m,rank([My,, ..., My]) =r—1}.

3. maxK ={oc € K: Ao’ € K suchthav C o’,0 # o'}.

4. Foro = {oiy,...,04,} € maxK, find aG, € R™ such that
GoMs;, =0,i=1,...,s5,G5; # 0andG, is alinear combination
of My,..., Mp,.

5. Lett; = u;T; andtg = (u; + 1)T; — 1. Let noddT(u)) =
{x = (@1,...,@m) : & € {t;,t}}}. Foroc € maxK, find

x,z € noddT (u)) suchthalGs Ma? < G, My® < G5 M=z for
ally € nodéT(u)). Putc_ = 2% andoy = 2°. ThenM T (u)E
is a facet of M T (u), whereT (u)E = {yo + ot : y € T(u)}.

6. Let maxK = {o',...,07},G; = G,: andTF = T(u)fi. Let
PM) ={y=(,--,w): 1 <m <+ <~ < p} For
~v € T'(M), we have an-parallelotope(G”, F7, K7) containing
MT(u), where(GY,FY,K7) = {y € H : F;/ < Gyy <
F)+ K]}, F) = G, MT;, andK] = G, MT; — G, MT5,.
Find a~y such that the volume ofG”, F7, K7) is not smaller than
the volume o G¥', F¥', K7') for all v/ € T'(M).

7. Let(G7,FY,K") be found in Step 6. Find’ ,c’, € offsefA)

such thalG) ¢t < GYc < Gl forall c € offsel(A).

8. An r-parallelotope (G, F(u), K) containing
Uccoffseray(MT(u) + ¢) is found, where G =
GV, F(u) = (F,...,F),K = (Ki,...,K,) and

Fi=F)+G]c ,K;i=K] +G]c, —G]ct.

Algorithm FindQ

Input: M andoffse{ A) in (1), T'(u) and(G, F(u), K) of P(T(u))
Output: @

1. PutG; = G4, wherea?i is defined Step 6 ofindFacets. Let
1 <mog < mandl < rg < 7 such thatG; Mm, # 0,4
1,...,70, GiMmg = 0,i =70 + 1,...,7andG;Ms = 0,7 =
1,...,ms = mo +1,...,m. Let {GiMy"'W +Gic : y €
T(u),c € offse{A)} = {h},..., hi}, whereh] < --- < hi.

2. LetA = 1, —tmg + 1. If G;Mm, > 0, then take the smallesf,
suchthah} +AG;Mm, > hy and define; = h}+AG; Mm, —
hj. Otherwise, take the largek}; such thath; + AG; Mm, < hy
and defineR; = hy — (b + AG; Mm,).

Proof of Theorem 4:

By Theorem 2, we only need to prove thatis (C,£)-1-to-1 on
Sp. Letu = (ii,j4,tt) and T(v) = {(3,5,t) : #T1 < i <
(i + V)T, jiTe < j < (§j + 1)Te,ttTs < t < (¢t + 1)T3}. Thus,
D(T(uw)) = {(i —t,j —t) +c: (i,5,t) € T(u),c € offse(A)}.
Let (G,F(u),K) be the 2-parallelotope containing D(T(u)).
Then F(u) (#T1 — ttT3,jjTe — ttT3). Suppose that
mod(|g(i, j)/L],C/L) mod([g(i',j')/£],C/L).  where
(4,9),#,5") € D(T(w)). By the second hypothesis, we
have that |[mod(j, T23)/L], [mod(j’,T23)/L] < C. Thus,
mod(i, T13)(T23/L) + [mod(j, To3)/L] = mod(i’, T13)(T23/L) +
[mod(j’, T>3)/L]. Since |mod(j,T23)/L|] < 1T»3/L and
[mod(j’, T23)/L] < Tes/L, we have thati = 4/, and hence,
that [mod(j, T»3)/L| [mod(j’, T>3)/L|. By the first hypoth-
esis thatL divides bothT, and T3, £ must divide g(F(u)) for all
u € Sp. Clearly, £ divides g(F(u) + (0,7T23)) since £ divides
Tps. Since g(F(u)) < g(3,5),9(3,5") < g(F(u) + (0,T23))
and g(F(u) + (0,T23)) — g(F(u)) < C, we have|g(i,j)/L] =
lg(i’,3")/L]. Hence, we have proved thais (C, £)-1-to-1 onSy. W
Proof of Theorem 5:

Letu = (i1, jj, tt) be an arbitrary tile and (7' (u)) be defined as in the
proof of Theorem 3. Let’ = (i, 54, tt + 1) andu” = (i3, jj, tt + m),
wheremn > 1, and D(T'(v')) and D(T'(v'")) be similarly defined. Let
D(T(u)) be the set of memory line&such that! € D(T'(u)) iff there
is (i,4) € D(T(u)) such thatB(g(, j)) resides in. From the proof of
Theorem 4 we see thatis (C, £)-1-to-1. Thus, any memory line that is
accessed in a tile cannot be evicted from the cache in thattih memory
line ¢ € D(T'(u)) is evicted from the cache when the tilesandw’ are
executed, we prove next thémust be contained i (T (u)) \ D (T (u)).
Infact, if £ ¢ D(T(u)) \ D(T(u)), then¢ € D(T(u')). Suppose that
£ € D(T(u')). Thent € D(T(u)) N D(T(u')), and hencel cannot be
evicted from the cache in eitheror «. This contradicts to the assumption
on/. SinceTs = L, L dividesT> andTz3, and by noting (9), it is easy to
see tha(D (T (u)) \ D(T'(v"))) N D(T'(v"")) = §. Combining this with
that? € D(T(u)) \ D(T'(u')) shows tha? will not be accessed in”. H



