
2005 International Conference on Parallel Processing

Enabling Loop Fusion and Tiling for Cache Performance by Fixing
Fusion-Preventing Data Dependences

Jingling Xue†and Qingguang Huang†

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW 2052, Australia

Minyi Guo
School of Computer Science and Engineering

The University of Aizu
Fukushima 965-8580, Japan

Abstract

This paper presents a new approach to enabling loop fusion
and tiling for arbitrary affine loop nests. Given a set of multiple
loop nests, we present techniques that automatically eliminate all
the fusion-preventing dependences by means of loop tiling and ar-
ray copying. Applying our techniques iteratively to multiple loop
nests yields a single loop nest that can be tiled for cache locality.
Our approach handles LU, QR, Cholesky and Jacobi in a unified
framework. Our experimental evaluation on an SGI Octane2 sys-
tem shows that the benefit from the significantly reduced L1 and
L2 cache misses has far more than offset the branching and loop
control overhead introduced by our approach.

1 Introduction

Due to the ever-widening performance gap between pro-
cessors and memories, loop tiling or blocking [6, 16] re-
mains an important optimisation in improving cache per-
formance. However, loop tiling is applicable to perfect loop
nests only. Unfortunately, dense matrix kernels often con-
tain multiple, imperfectly nested loops over the same data.
Figure 1 shows the four important kernels, LU with partial
pivoting, QR, Cholesky and Jacobi, which are among the
frequently used in scientific applications.

To enable an imperfect loop nest to be tiled, the com-
piler may apply transformations such as loop fusion and
loop distribution to turn parts of the nest into some perfect
loop nests [15] and then apply loop tiling to tile the individ-
ual perfect loop nests. However, these transformations are
mostly dependence-preservingand are thus frequently inap-
plicable since the data dependences in the program would
otherwise be violated. Several recent attempts aim at pro-
viding a more systematic treatment to the problem of tiling
imperfect loop nests. They have tackled the problem from
different angles with varying degrees of success, resulting
in the special-purpose techniques for array factorisations [2]
and stencil computations [12] as well as the general-purpose

†This work is supported by an ARC Grant DP0452623.

techniques for arbitrary loop nests based on data shackling
[8] and iteration space transformations [1].

This paper presents a new general-purpose approach to
tiling imperfect loop nests from yet a different perspective.
Our key motivation can be stated as follows. Many dense
kernel programs include multiple loops iterating over the
same data. Often the most computations in such a kernel are
carried out in a set of loops, which cannot be tiled directly
since they are imperfectly nested. In Figure 1, each kernel
contains one such a nest as highlighted by ∗’s. But fusing
the loops where the most computations are performed with
the others and then tiling the fused loops will greatly im-
prove cache performance. Unfortunately, the fused program
is generally incorrect due to the existence of some fusion-
preventing dependences. We observe that in real programs,
the “trouble spots” that prevent loop fusion can be relatively
few. We are motivated to fix these fusion-preventing depen-
dences so that the fixed program is correct. We eliminate the
fusion-preventing flow and output dependences by applying
loop tiling (which subsumes loop unrolling and unroll-and-
jam [17]) to the appropriate loop nests in the fused program.
We eliminate all the fusion-preventing anti-dependences by
inserting array copy operations wherever appropriate.

Our approach creates loop tiling candidate nests aggres-
sively. As a result, more conditionals (due to code sinking)
and loop control overhead (due to tiling) may be introduced
into the transformed codes. Our experimental evaluation
on an SGI Octane2 system shows that our approach gener-
ates simple tiled codes and achieves performance speedups
across varying problem sizes on an SGI Octane2 computer
system. The benefit from the significantly reduced L1 and
L2 cache misses has far more than offset the branching and
loop control overhead incurred.

The rest of this paper is organised as follows. Section 2
describes the class of programs considered by this work.
Section 3 presents our methodology for tiling imperfect
loop nests. In particular, Section 3.1 presents an algorithm
for fusing multiple perfect loop nests. Section 3.2 discusses
how to apply this algorithm iteratively to a program to yield
larger perfect loop nests. Section 4 presents and analyses
our experimental results for the four kernels shown in Fig-
ure 1. Section 5 compares with the related work. Section 6
concludes by discussing some future work.

1

∗do k=1, N
temp=0
m=k
do i=k, N

d= A(i,k)
if (abs(d).GT.temp)

temp=abs(d)
m=i

if (m.NE.k)
do j=k, N

temp=A(k,j)
A(k,j)=A(m,j)
A(m,j)=temp

do i=k+1, N
A(i,k)=A(i,k)/A(k,k)

∗ do j=k+1, N
∗ do i=k+1, N

A(i,j)=A(i,j)-A(i,k)*A(k,j)

∗do i=1, N

norm=0

do j=i, N

norm=norm+A(j,i)*A(j,i)

norm2=sqrt (norm)

asqr=A(i,i)*A(i,i)

A(i,i)=dsqrt(norm-asqr+(A(i,i)-norm2)2)

do j=i+1, N

A(j,i)=A(j,i)]/A(i,i)

do j=i+1, N

X(j,i)=0

do k=i, N

X(j,i)=X(j,i)+A(k,i)*A(k,j)

∗ do j=i+1, N

∗ do k=i+1, N

A(k,j) = A(k,j)-A(k,i)*X(j,i)

(a) LU (with pivoting) (b) QR
∗do k=1, N

A(k,k)=dsqrt(A(k,k))

do i=k+1, N

A(i,k)=A(i,k)/(A(k,k)

∗ do j=k+1, N

∗ do i=j, N

A(i,j)=A(i,j)-A(i,k)*A(j,k)

∗do t=0, M
∗ do i=2, N-1
∗ do j=2,N-1

L(j,i)=(A(j,i-1)+A(j-1,i)
+ A(j+1,i)+A(j,i+1)*0.25

do i=2, N-1
do j=2, N-1

A(j,i)=L(j,i)

(c) Cholesky (d) Jacobi

Figure 1. Four frequently used kernels in dense matrix computations.

2 Program Model

Our approach is applicable to all affine loop nests. In
general, all loop bounds are required to be affine since the
loops with non-affine bounds are difficult to fuse. How-
ever, some non-affine if-conditional or array subscript ex-
pressions may be allowed (as long as our algorithm given
in Figure 2 can successfully compute the required depen-
dences and eliminate all fusion-preventing dependences).
For example, we can handle the LU program given in Fig-
ure 1, which contains a data-dependent test in line 6.

All programs are given in the FORTRAN-like syntax. In
Figure 1, Jacobi is the classic program for solving PDEs
by explicit method. The other three kernels are taken from
[7] except that the scalar m in LU is not array-expanded
here. Note that QR given here has been simplified in [7]
with some inessential statements removed.

3 Approach

Given a program in the form of an imperfect loop nest,
our approach applies loop fusion inside out to the program

to create larger and larger perfect loop nests, and eventu-
ally one single perfect loop nest if desired. During this pro-
cess, all the fusion-preventing dependences are eliminated
automatically by means of loop tiling and array copying.
The resulting perfect loop nests can be tiled in the normal
manner. Section 3.1 gives an algorithm for fusing multiple
perfect loop nests, which is the key to our approach. Sec-
tion 3.2 describes how to apply this algorithm to a program
iteratively to obtain increasingly larger perfect loop nests.

3.1 Fusing Multiple Perfect Loop Nests

The problem of fusing multiple perfect loop nests is
solved in more or less the same way as the special case when
two perfect loop nests are to be fused.

The fusion of two perfect loop nests is legal iff all de-
pendences from the first (i.e., the lexically earlier) nest to
the second nest are not reversed in the fused program [17,
p. 315]. The dependences that are reversed are known as
the fusion-preventing dependences. There are three kinds
of fusion-preventing dependences: flow (i.e., write before
read) dependences, output (i.e., write before write depen-
dences) and anti- (i.e., read before write) dependences.

Suppose we are given two perfect loop nests that are
to be fused in a certain way. The two nests may not have
the same loop bounds in a common dimension or even the
same number of loops. The violated dependences are fixed
as follows. We first compute the fusion-preventing depen-
dences between the two nests. We then eliminate the fusion-
preventing flow and output dependences automatically by
applying loop tiling to the first loop nest. Finally, we elimi-
nate the fusion-preventing anti-dependences by inserting ar-
ray copy operations inside the second loop nest. The result-
ing program is a perfect loop nest and can thus be tiled for
locality improvement.

In the case of more than two nests, our algorithm first ap-
plies loop tiling bottom-up across all the loop nests to elim-
inate the fusion-preventing flow and output dependences.
We then insert array copy operations to eliminate all the
fusion-preventing anti-dependences.

Suppose there are K perfect loop nests:

L1: do I1 = L1,1, U1,1...
do In1

= L1,n1
, U1,n1

BODY1(I1, . . . , In1
)

...
LK : do IK = LK,1, UK,1...

do InK
= LK,nK

, UK,nK

BODYK(I1, . . . , InK
)

(1)

where the loop bounds of each loop nest are assumed to be
affine. Two different loop nests may not have the same loop
bounds in a common dimension or even the same number
of loops.

Let ISk be the nk-dimensional iteration space of the k-
th loop nest Lk. Let n = max{nk | 1 6 k 6 K}. If the
dependences in the program (1) are ignored for the moment,
it is always possible to fuse the K nests into one perfect loop
nest whose n-dimensional iteration space is:

IS = {(I1, . . . , In) | ∀ 1 6 i 6 n : Li 6 Ii 6 Ui} (2)

The fusion transformation consists of finding an injective
mapping from ISk to IS for every loop nest Lk:

Fk : ISk 7→ IS (3)

The fused program becomes one single perfect loop nest:

do I1 = L1, U1

...
do In = Ln, Un

if (I1, . . . , In) ∈ F1(ISk)
BODY1(F

−1

1 (I1, . . . , In))
...

if (I1, . . . , In) ∈ FK(ISK)
BODYK(F−1

K (I1, . . . , In))

(4)

For many real dense matrix programs, IS is typically the
same or slightly larger than the iteration space of the loop

nest that carries out the most computations in a program
(e.g., the loop nests highlighted by ∗’s in Figure 1). The
iteration space of Lk such that k < n is often embedded at
a boundary of IS. Its exact placement may not be critical
to our approach for two reasons. First, fusing a loop nest
that carries out the most computations with the other loop
nests enables this “important” loop nest to be tiled so that
the overall cache performance of the program is improved.
Second, whichever placement is used, our approach can al-
ways turn the fused loop nest into a correct program.

The loop fusion used for obtaining the fused program
(4) may be illegal. Figure 2 gives an algorithm for fixing
all the fusion-preventing dependences so that the fixed pro-
gram has the same input/output behaviour as the original
program (1).

The following notations (with some from [20]) are used:

I, I ′, I ′′, . . . :an iteration vector in IS
≺ :lexicographic “less than“ operator
[R]:set of iteration vectors at which

reference R is accessed
R(I):subscript expression when the loop

variables have the values specified by I

R1(I)
sub
= R2(I

′):subscripts of R1(I) and R2(I
′) are equal

WritesA(k) :all write references of A in Lk

ReadsA(k) :all read references of A in Lk

Let A be an arbitrary but fixed array in the program (1).
When we transform (1) to (4) by loop fusion, the fusion-
preventing dependences, i.e., the dependences that are vio-
lated are characterised precisely by the following sets:

• WWA(k, k′) gives the output dependences of A that
prevent Lk and Lk′ from being fused, where k < k′:

WWA(k, k′) = {(I, I ′) |
R ∈ WritesA(k) ∧ I ∈ [R]
∧ R′ ∈ WritesA(k′) ∧ I ′ ∈ [R′]

∧ I ′ ≺ I ∧ R(I)
sub
= R′(I ′)}

(5)

• WRA(k, k′) gives the flow dependences of A that
prevent Lk and Lk′ from being fused, where k <
k′. This set is defined exactly as WWA(k, k′) ex-
cept that WritesA(k′) in WWA(k, k′) is replaced by
ReadsA(k′).

• RWA(k, k′) gives the anti-dependences of A that pre-
vent Lk and Lk′ from being fused, where k < k′:

RWA(k, k′) = {(I, I ′, α(R′)) |
R ∈ ReadsA(k) ∧ I ∈ [R]
∧ R′ ∈ WritesA(k′) ∧ I ′ ∈ [R′]

∧ I ′ ≺ I ∧ R(I)
sub
= R′(I ′)}

(6)

where α(R′) indicates that the reference R′ is the LHS
of the α(R′)-th assignment in the loop nest Lk′ . This
component is useful in imposing an execution order for
different writes executed at the same iteration in Lk′ .

1 ALGORITHM: FixDeps
2 INPUT: The fused program (4), denoted P
3 OUTPUT: A program, P ′′, with the same input/output

behaviour as the original program (1)
4 P ′ = ElimWW WR(P)
5 P ′′ = ElimRW(P ′)
6 Insert more coping operations to simplify the if conditionals

introduced in lines 46 – 48

7 ALGORITHM: ElimWW WR(P)
8 Let V be the set of all variables in P
9 P1 := P

10 for k = K − 1, 1

11 // compute the WW and WR dependences
12 for every array A in V
13 for k′ = k + 1,K
14 Compute WWA(k, k′) and WRA(k, k′) in PK−k

15 WWA(k) :=
SK

k′=k+1 WWA(k, k′)

16 WRA(k) :=
SK

k′=k+1 WRA(k, k′)
17 W (k) :=

S

A∈V (WWA(k) ∪ WRA(k))
18 if W (k) = ∅ then GOTO line 34
19 // compute the tile size to tile Lk

20 D1 := W (k)
21 for i = 1, n
22 di = max{Ii − I′i | (I, I′) ∈ Di} // max ∅ =def 0
23 Di+1 := Di \ {(I, I′) | ∀ (I, I′) ∈ Di : Ii − I′i > 0}
24 Let m be the largest value such that dm+1 = · · · = dn = 0
25 Let (T1, . . . , Tm) be a legal tile size for the outermost

loops of LK such that ∀ 1 6 i 6 m : Ti > di

26 Set Tm+1 = · · · = Tn = 1
27 // generate the tile code for Lk

28 Let (O1, . . . , On) be the lexicographic minimum of IS
29 Let T be the tiling transformation, T : Fk(ISk) 7→ Z

2n

T (I1, . . . , In)=(O1+b
I1−O1

T1

c, . . . , (On+b In−On

Tn
c, I1, . . . , In)

30 Let (I1, . . . , In, J1, . . . , Jn) be the loop variables of tiled Lk

31 Let Pt(I1, . . . , In) 6 pt be the inequalities defining the tiles
32 Let Pe(I1, . . . , In, J1, . . . , Jn) 6 pe specify the points in a tile
33 Replace the following code for Lk in (4)

if (I1, . . . , In) ∈ Fk(ISk)

BODY1(F−1

k
(I1, . . . , In))

by:

if Pt(I1, . . . , In) 6 pt
The J1, . . . , Jn loops for enumerating

points in Pe(I1, . . . , In, J1, . . . , Jn) 6 pe in ≺
if (J1, . . . , Jn) ∈ Fk(ISk)

BODYk(F−1

k
(J1, . . . , Jn))

34 PK−k+1 := PK−k (tiled if not from line 18)
35 return PK

Figure 2. An algorithm for fixing all the fusion-
preventing data dependences.

Our algorithm FixDeps has two main procedures. The
ElimWW WR procedure applies loop tiling to the fused
loop nests (4) so that all WWA and WRA sets are empty.
The ElimRW procedure applies array copying so that all
RWA sets are empty. Both procedures are discussed below.

3.1.1 ElimWW WR: Loop Tiling

The basic idea is to apply loop tiling iteratively bottom-up
across the K loop nests starting from the second last loop
nest. By tiling LK−1, we make sure that LK−1 and LK can
be fused without violating any flow and output dependences

36 ALGORITHM: ElimRW(P)
37 Let V be the set of all variables in P

38 for every array A in V
39 for k = K − 1, 1
40 for k′ = k + 1, K

41 Compute RWA(k, k′)

42 RW A(k) :=
SK

k′=k+1
{(I′, k′, s′) |(I, I′, s′)∈RWA(k, k′)}

43 Compute min≺ RW A(k) (see Section 3.1.2)
44 Introduce a new copying array for A, HA,k,

whose size is specified by |min≺ RW A(k)|
45 Insert the following copy operations at the

beginning of the loop body of Lk+1

if (I, k′, s′) ∈ min≺ RW A(k)
HA,k(fR′ (I)) = A(fR′ (I))

where A(fR′ (I)) is the LHS of the s′-th assignment in Lk′

46 for every read reference R of form A(fR(I)) in ReadsA(k)
47 CR := I ∈ [R] ∧ k′ > k ∧ R′ ∈ WritesA(k′) ∧ I′ ∈ [R′]

∧ I′ ≺ I ∧ R(I)
sub
= R′(I′)

48 Replace A(fR(I)) by:

if I ∈ CR

HA,k(fR(I))
else

A(fR(I))

Figure 2. An algorithm for fixing all the fusion-
preventing data dependences (Cont’d).

from LK−1 to LK . By tiling LK−2, we ensure that LK−1,
LK−2 and LK can be fused without violating any flow and
output dependences from LK−2 to LK−1 and LK . This
process is repeated until L1 is processed.

As a loop invariant at the beginning of the loop in line
10, all the fusion-preventing flow and output dependences
in the loop nests Lk+1, . . . ,LK of the fused program (4)
have been eliminated. In lines 11 – 17, W (k) is computed
to be the set of all flow and output dependences from Lk

to Lk+1, . . . ,LK . These are the WW and WR dependences
that are violated when Lk is fused with Lk+1, . . . ,LK . In
lines 19 – 24, we find the outermost m loops in Lk that
carry all the dependences in W (k). These are the loops to
be tiled to eliminate all the violated dependences in W (k).
However, (d1 + 1, . . . , dm + 1) computed in line 22 may
not be a legal tile size if the dependences within Lk are
also taken into account. Thus, in line 25, a legal tile size is
found based also on the dependences within Lk [18, 19]. A
legal tile size always exists. For example, (N1, . . . , Nm) is
always legal, where Ni is the maximum number of points
in the i-th dimension of Fk(ISk). In lines 25 – 26, the tile
size (T1, . . . , Tn) for tiling Lk is selected. In lines 27 – 33,
the tiled code for Lk is generated in the standard manner
[18, 19]. Finally, in line 34, the tiled program becomes the
program that will be used when Lk−1 is tiled.

Theorem 1 All the fusion-preventing flow and output de-
pendences in the original program (1) are eliminated in the
program P ′ generated by ElimWW WR.

3.1.2 ElimRW: Array Copying

The basic idea is to make use of array copying to elimi-
nate all the fusion-preventing anti-dependences. The order
in which the loop nests are processed in line 39 is not signif-
icant. In lines 40 – 41, we compute all the fusion-preventing
anti-dependences from Lk to Lk+1, . . . ,LK . To insert copy
operations correctly, we must know the earliest iteration at
which an anti-dependence is violated. In line 42, we iden-
tify each write access by not only the iteration at which the
access is executed but also the loop nest that contains the
write reference as well as the assignment whose LHS is that
write reference. In line 43, we compute min≺ RW A(k).
Let the specifying constraint for this set be P(I, (I ′, k′, s′)).
This set is defined as follows:

min≺ RW A(k) = {(I ′, k′, s′) | P(I, (I ′, k′, s′))
∧ 6 ∃(I ′′, k′′, s′′) s.t. (I ′′, k′′, s′′) ≺ (I ′, k′, s′)
∧P(I, (I ′′, k′′, s′′)}

(7)

If all constraints in P(I, (I ′, k′, s′)) are affine,
min≺ RWA(k) can be computed parametrically (in
terms of I) using the PIP [4] or Omega Calculator [11].

min≺ RW A(k) contains the earliest writes at which
some anti-dependences are violated in the program P ′ gen-
erated by ElimWW WR. In line 48, we insert the copy
statements to copy the old values of A at these iterations
just before they are overwritten. In lines 43 – 45, we make
sure that the copied values are used correctly only at the
iterations defined by the predicate CR in line 47.

The elimination of the fusion-preventing anti-
dependences relies on the fact that all the fusion-preventing
flow and output dependences have been eliminated.

Theorem 2 The program P ′′ generated ElimRW has the
same input/output behaviour as the original program (1).

The number of copying arrays introduced for an exist-
ing array depends only on the number of fused loop nests.
If array expansion [5] is used to eliminate output and anti-
dependences, the amount of extra space introduced often
depends on the problem size. For example, a 2-D array
of size N × N is often expanded into a 3-D array of size
N × N × N . In our case, the worst-case scenario is
N × N × L, where L is the number of loop nests in the
program. In addition, the following optimisations are often
possible.

If all write references for an array A are located in one
loop nest, then at least one copying array for A is required.

Theorem 3 Let A be an array in the input program P ′ to
ElimRW. If the write references of A are all contained in
one loop nest only, then the copying arrays that may be in-
troduced for A by ElimRW can be combined into one array.

This theorem leads directly to the following result.

Theorem 4 If the input program P ′ to ElimRW is free of
output dependences between different write references, then
the copying arrays HA,2, . . . , HA,K that may be introduced
for an existing array A can be combined into one array.

3.2 Fusing Arbitrary Loop nests Program-wise

We can apply our algorithm FixDeps to a program to
form increasingly larger perfect loop nests inside out. If
desired, a single perfect loop nest can be eventually created.

Let us apply our algorithm to the four kernels given in
Figure 1. By applying code sinking, we obtain the fused
programs given in Figure 3. In each case, all perfect loop
nests fused are numbered. Note that the last iteration of the
k loop in LU has been peeled. Otherwise, loop peeling can
be applied after our algorithm has been applied.

It is straightforward to fix the fusion-preventing depen-
dences for these kernels to obtain the final programs given
Figure 4. For LU, WRm(2, 3) 6= ∅. The final program is
obtained by tiling the i loop with a tile size of N. The treat-
ment of QR is similar. Since WRnorm(2, 3) 6= ∅, the k
loop for the loop nest 2 has been tiled by a tile size of N.
The fused program for Cholesky is already legal. Finally,
the anti-dependences in Jacobi are violated by loop fusion
since RWA(1, 2) 6= ∅. These anti-dependences are fixed
by array copying. We have applied some optimisations to
copy more boundary values of A to simplify the if condi-
tionals introduced in line 48 of ElimRW. The array L can
be eliminated since L(j, i) can be replaced by a scalar.

No extra memory space is introduced for these kernels.

4 Experiments

We evaluate this work using the four kernels given
in Figure 1 on an SGI Octane2 with a 600MHz MIPS
R14000A processor running IRIX64 6.5. Both L1 and L2
data caches are 2-way associative with LRU replacement.
The L1 data cache has a size of 32KB with a line size of
32B while the L2 (unified) cache has a size of 2MB with a
line size of 128B. Our SGI Octane has 3GB of RAM.

For each kernel, seq denotes its sequential program and
tiled its tiled version. The tiled programs are obtained
from the fused codes given in Figure 4 as follows. For LU
and Cholesky, the outermost k loop is tiled. For QR, the
outermost i and j loops are tiled. For Jacobi, we first apply
[

1 0 0
1 1 0
1 0 1

]

to skew the three loops in the fused code and then
permute the time loop to the innermost position. Moving
the time loop inside enables the temporal reuse carried by
the loop to be exploited. Finally, all the three loops are tiled.
Note that code sinking introduces some if conditionals into
the fused programs given in Figure 3. In the tiled codes, the
effect of code sinking is undone as much as possible.

All the kernels are tiled for the L1 data cache only. We
have experimented with two tile-size-selection algorithms
to compute the tile sizes for different problem sizes, LRW
from Wolf and Lam [13] and PDAT from Panda et al. [10].
LRW computes the largest square tile such that the number
of self-interferencing cache misses for one array reference

is minimised. PDAT uses the fixed tile size
√

K−1

K
C, where

C is the size of the L1 data cache and K is its associativity
on the underlying machine. For each of the four kernels, the
performance curves obtained using LRW and PDAT almost

do k=1, N-1
do j=k+1, N

do i=k, N
(1) if (i.EQ.k.AND.j.EQ.k+1)

temp=0
m=k

(2) if (j.EQ.k+1)
d=A(i,k)
if (abs(d).GT. temp)

temp=abs(d)
m=i

(3) if (j.EQ.k+1)
if (m.NE.k)

temp=A(k,i)
A(k,i)=A(m,i)
A(m,i)=temp

(4) if (j.EQ.k+1)
if (i.GE.k+1)

A(i,k)=A(i,k)/A(k,k)
(5) if (i.GT. k)

A(i,j)=A(i,j)-A(i,k)*A(j,k)
temp=0
m=k
d= A(N, N)

if (abs(d).GT. temp)
temp=abs(d)
m=N

do i=1, N

do j=i, N

do k=i, N

(1) if (j.EQ.i.AND.k.EQ.i)

norm=0

(2) if (j.EQ.i)

norm=norm+A(k,i)*A(k,i)

(3) if (j.EQ.i.AND.k.EQ.i)

norm2=sqrt(norm)

asqr=A(i,i)*A(i,i)

A(i,i)=dsqrt(norm-asqr+(A(i,i)-norm2)2)

(4) if (j.GE.i+1.AND.k.EQ.i)

A(i,j)=A(i,j)/A(i,i)

(5) if (j.GE.i+1.AND.k.EQ.i)

X(j,i)=0

(6) if (j.GE.i+1)

X(j,i)=X(j,i)+A(i,k)*A(i,k)

(7) if (j.GE.i+1.AND.k.GE.i+1)

A(j,k)=A(j,k)-A(i,k)*X(j,i)

(a) LU (b) QR

do k=1, N-1
do j=k+1, N

do i=j, N
(1) if(i.EQ.j.AND.j.EQ .k+1)

A(k,k)=sqrt(A(k,k))
(2) if(j.EQ.k+1)

A(i,k)=A(i,k)/A(k,k)
(3) A(i,j)=A(i,j)-A(i,k)*A(j,k)

A(N,N)=sqrt(A(N,N))

do t=0, M

do i=2, N-1

do j=2,N-1

(1) L(j,i)=(A(j,i-1)+A(j-1,i)

+ A(j+1,i)+A(j,i+1)*0.25

(2) A(j,i)=L(j,i)

(c) Cholesky (d) Jacobi

Figure 3. The fused versions of the four kernels given in Figure 1.

always coincide. Therefore, all the results presented here
for tiled codes are obtained using PDAT only.

All the sequential and tiled programs are in ANSI C and
compiled by the SGI MIPSpro compiler (version 7.4) at O3.
For tiled codes, the compiler switch “LNO:blocking=off” is
further used to disable loop tiling by the SGI compiler. (The
sequential programs are equivalent to those in Figure 1 once
the differences in storage order are considered.)

The Jacobi kernel has two problem size parameters, M
and N , while each of the other three kernels has one prob-
lem size parameter, N . In our experiments, we have fixed
M = 500 for Jacobi. For all the four kernels, we choose N
from 200 to 2500 at multiples of 238. This captures some
pathological cases about cache misses that might occur at
some problem sizes [14]. All arrays are double arrays. So
an array of size 512×512 fills up the 2MB L2 cache on our

SGI Octane2 system. Therefore, we are able to investigate
the impact of both L1 and L2 data caches on performance
for all the four kernels. In our experiments, only one of the
two processors in our SGI machine is used.

Figure 5 illustrates the performance improvements of the
four kernels on the SGI Octane2 system. The speedups of
LU range from 0.98 to 2.80, the speedups of QR range from
0.57 to 2.28, the speedups of Cholesky range from 1.11 to
4.27 and the speedups of JacobI range from 2.16 to 7.51. In
all the cases, our tiled codes are simple and achieve good
performance speedups consistently at all problem sizes.

Due to space limitations, we present only the perfor-
mance analysis results obtained using the SGI perfex tool
for Cholesky (abbreviated to CHOL). We measure the im-
proved data reuse in terms of reduced L1 and L2 data cache
misses, the branching overhead introduced by code sinking

do k=1, N-1
do j=k+1, N

do i=k, N
if (i.EQ.k.AND.j.EQ.k+1)

temp=0
m=k
do P=k, N

d=A(P,k)
if (abs(d).GT.temp)

temp=abs(d)
m=P

if (j.EQ.k+1)
if (m.NE.k)

temp=A(k,i)
A(k,i)=A(m,i)
A(m,i)=temp

if (j.EQ.k+1)
if (i.GE.k+1)

A(i,k)=A(i,k)/A(k,k)
if (i.GT. k)

A(i,j)=A(i,j)-A(i,k)*A(j,k)
temp=0
m=k
d= A(N, N)

if (abs(d).GT.temp)
temp=abs(d)
m=N

do i=1, N

do j=i, N

do k=i, N

if (j.EQ.i.AND.k.EQ.i)

norm=0

do P=i,N

norm=norm+A(i,P)*A(i,P)

if (j.EQ.i.AND. k.EQ.i)

norm2=sqrt(norm)

asqr=A(i,i)*A(i,i)

A(i,i)=dsqrt(norm-asqr+(A(i,i)-norm2)2)

if (j.GE.i+1.AND. k.EQ.i)

A(i,j)=A(i,j)/A(i,i)

X(j,i)=0

if (j.GE.i+1)

X(j,i)=X(j,i)+A(i,k)*A(i,k)

if (j.GE.i+1.AND. k.GE.i+1)

A(j,k)=A(j,k)-A(i,k)*X(j,i)

(a) LU (b) QR
do k=1, N-1

do j=k+1, N

do i=j, N

if(i.EQ.j.AND. j.EQ .k+1)

A(k,k)=sqrt(A(k,k))

if(j.EQ.k+1)

A(i,k)=A(i,k)/A(k,k)

A(i,j)=A(i,j)-A(i,k)*A(j,k)

A(N,N)=sqrt(A(N,N))

do k=2,N-1
H(k,1)=A(k,1)
H(1,k)=A(1,k)
H(k,N)=A(k,N)
H(N,k)=A(N,k)

do t=0, M
do i=2, N-1
do j=2,N-1

L(j,i)=(H(j,i-1)+H(j-1,i)
+ A(j+1,i)+A(j,i+1)*0.25

H(j,i)=A(j,i)
A(j,i)=L(j,i) // L(j,i) to be replaced by a scalar

(c) Cholesky (d) Jacobi

Figure 4. The fused codes given in Figure 3 with all the fusion-preventing data dependences fixed.

in terms of increased branches resolved and mispredicted,
and loop control overhead (due to mainly tiling) in terms of
extra instructions introduced.

Figures 6 – 8 present our measurements obtained by per-
fex. The typical L1 and L2 cache miss cycles for both se-
quential and tiled programs are compared in Figure 6. Note
that the vertical axis is drawn in the log scale. The min-
imum and maximum costs for an L1 data cache miss are
10.00 cycles and 14.00 cycles, respectively. Due to the out-
of-order execution, the typical cost is 9.92 cycles. The typ-
ical, minimum and maximum costs for an L2 data cache
miss are 162.55, 166.41 and 196.51 cycles, respectively. By
enabling loop fusion and tiling, our approach has reduced

significantly L1 and L2 cache misses (as a whole). Rela-
tive to the reduced cache miss cycles shown in Figure 6, the
branching overhead is small as illustrated in Figure 7. Each
“resolved” curve represents the number of resolved condi-
tionals, which also represents the number of cycles typically
consumed since it takes one cycle to resolve a conditional
branch. Each “mispredicted” curve represents the number
of cycles typically consumed by mispredicted branches; it is
five times as many as the number of mispredicted branches
since the typical cost for one misprediction is 5 cycles. Fi-
nally, Figure 8 illustrates the total instruction increases in
the tiled codes due to code sinking, fusion and tiling. The
relatively large increases in dynamic instruction counts are

0

50

100

150

200

250

20
0

43
8

67
6

91
4

11
52

13
90

16
28

18
66

21
04

23
42

E
xe

cu
tio

n
Ti

m
es

 (s
ec

s) seq-LU
tiled-LU
seq-QR
tiled-QR
seq-CHOL
 tiled-CHOL
seq-Jacobi
tiled-Jacobi

Figure 5. Performance improvements.

0.01

0.1

1

10

100

1000

10000

100000

20
0

43
8

67
6

91
4

11
52

13
90

16
28

18
66

21
04

23
42

C
ac

he
 M

is
s

C
yc

le
s

(m
ill

io
ns

)

seq-L1 seq-L2 tiled-L1 tiled-L2

Figure 6. The typical miss cycles caused by
L1 and L2 data cache misses for CHOL.

0
200
400
600
800

1000
1200
1400
1600

20
0

43
8

67
6

91
4

11
52

13
90

16
28

18
66

21
04

23
42

B
ra

nc
hi

ng
 O

ve
rh

ea
d

(m
ill

io
n

cy
cl

es
) seq-resolved seq-mispredicted

tiled-resolved tiled-mispredicted

Figure 7. The typical cycles caused by branch
resolutions and mispredictions for CHOL.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

20
0

43
8

67
6

91
4

11
52

13
90

16
28

18
66

21
04

23
42G
ra

du
at

ed
 In

st
ru

ct
io

ns
 (m

ill
io

ns
)

seq tiled

Figure 8. Graduated instructions for CHOL.

observed at all problem sizes. However, the extra instruc-
tions introduced are all integer operations (e.g., loads, stores

and conditionals), which each take usually one cycle to ex-
ecute. On the other hand, eliminating one single L2 data
cache miss saves typically at least (typical L2 miss penalty
- typical L1 miss penalty) = 162.55 – 9.92 = 152.63 cy-
cles. By comparing Figure 6 with Figures 7 and 8, we see
clearly that the benefit from the improved data reuse has
far outweighed the cost due to branching and loop control
overheads, resulting in performance speedups for Cholesky
at all the problem sizes.

Figures 6 shows that our method may impact L1 and L2
cache misses differently for different kernels. While being
almost equally effective for reducing both L1 and L2 misses
in QR and Jacobi (not shown here), our method is far more
effective in reducing L2 misses for LU and Cholesky.

Unlike the other three kernels, the tiled code for Jacobi
is more efficient than the sequential version. Fusing the two
loop nests in the sequential code results in one single per-
fect loop nest. In the tiled code, no extra conditionals are
introduced. By fusing the two loop nests in the sequential
code, we have also reduced the number of array loads in the
tiled code by an average of 40.9%. The net effect is an av-
erage of 3.4% reduction in the the number of instructions
executed in the tiled code. The speedups of JacobI are the
mostly impressive, ranging from 2.16 to 7.51. Based on the
performance analysis for Jacobi, we may be able to achieve
better speedups for the other kernels if we can reduce the
performance overheads as illustrated in Figure 8.

5 Related Work

Carr and Lehoucq [2] introduce some special-purpose
techniques for tiling matrix factorisations: LU with and
without pivoting, Cholesky and QR. They conclude that LU
with partial pivoting and QR given in Figure 1 are not block-
able based on dependence information alone. They show
how the compiler can generate tiled codes for these two ker-
nels by applying pattern matching for LU with pivoting or
starting with a different algorithm for QR. We can generate
tiled codes for these two kernels starting from the programs
given in Figure 1 based on the dependence information only.

Song and Li [12] describe special-purpose techniques for
tiling stencil computations. They transform Jacobi into a
perfect loop nest by applying odd-even array copying to re-
move anti- and output dependences. Our approach elimi-
nates flow and output dependences by loop tiling and anti-
dependences by array copying for any affine loop nests. In
the case of Jacobi, we obtain a single loop nest by applying
array copying only. The tiled code is simple and achieves
good performance speedups on three different architectures.

Kodukula et al. [8] describe a data shackling approach
that is applicable to both perfect and imperfect loop nests.
As they mention, their approach cannot handle stencil codes
such as Jacobi and Gauss-Seidel. Ahmed et al. [1] present
an approach to improving data reuse in any affine loop nests
by means of iteration space transformations. They embed
the iteration spaces of different loop nests in a program into
a common iteration space such that the resulting program
exhibits better data reuse. The embedding process must en-
sure that all dependences in the original program are pre-

Method LU QR Cholesky Jacobi

Matrix Factorisations [2]
√ √ √

×
Stencil Computations [12] × × × √

Data Shackling [8]
√ √ √

×
Iteration Space Transforms [8] × ×

√ √

This Work
√ √ √ √

Table 1. A comparison of five methods in
terms of their ability in handling the four ker-
nels given in Figure 1.

served. As a result, the dimensionality of the common iter-
ation space may be larger than that of any existing iteration
space in the original program. In this case, the effectiveness
of tiling the resulting program becomes problematic. As
they mention, their approach cannot handle LU with pivot-
ing and QR. Recently, Menon et al. [9] discuss exclusively
how to carry out automatic restructuring of codes such as
LU with pivoting by symbolic analysis. In contrast, we at-
tempt to solve the problem of tiling imperfect loop nests
from a different angle. We allow arbitrary loop nests to be
fused but we remove all the fusion-preventing dependences
by applying loop tiling and array copying automatically.

Table 1 provides a comparison of our work with the pre-
vious research efforts in terms of their capability in handling
the four important kernels in scientific computations. Our
approach is the only one that can handle both matrix factori-
sations and stencil computations in a unified framework.

6 Conclusion

This paper presents a new approach to improving data
reuse in imperfect loop nests. The basic idea is to fuse
the loop nests in a program into larger perfect loop nests
and then eliminate all the fusion-preventing dependences
so that the resulting program is correct. The perfect loop
nests formed can be tiled for improved cache performance.
We eliminate the fusion-preventing flow and output depen-
dences by means of automatic loop tiling and the fusion-
preventing anti-dependences by means of automatic array
copying. Our approach is applicable to affine loop nests as
well as some non-affine ones including LU with pivoting as
an important example. In comparison with some existing
techniques as shown in Table 1, our approach can handle
the four important kernels shown in Figure 1 for both matrix
factorisations and stencil computations in a unified frame-
work. Our approach is simple and generates simple tiled
code for these four kernels. The tiled codes achieve con-
sistently good performance improvements as validated by
our experiments on an SGI Octane2 high-performance com-
puter system. The benefit from the significantly reduced L1
and L2 cache misses has far more than offset the branching
and loop control overhead introduced by our

One future work is to generalise loop distribution (which
is the inverse of loop fusion) to make it more widely ap-
plicable. Another is to to develop a cost model for guiding
our and other transformations for locality enhancement in
whole programs.

References

[1] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing trans-
formations for locality enhancement of imperfectly-nested
loop nests. In 14th international conference on Supercom-
puting, pages 141–152. ACM Press, 2000.

[2] S. Carr and R. B. Lehoucq. Compiler blockability of dense
matrix factorizations. ACM Trans. Math. Softw., 23(3):336–
361, 1997.

[3] C. Ding and K. Kennedy. Improving effective bandwidth
through compiler enhancement of global cache reuse. In
15th International Parallel & Distributed Processing Sym-
posium, page 38. IEEE Computer Society, 2001.

[4] P. Feautrier. Parametric integer programming. Operations
Research, 22:243–268, 1988.

[5] P. Feautrier. Dataflow analysis for array and scalar refer-
ences. Int. J. of Parallel Programming, 20(1):23–53, Feb.
1991.

[6] F. Irigoin and R. Triolet. Supernode partitioning. In 15th An-
nual ACM Symposium on Principles of Programming Lan-
guages, pages 319–329, San Diego, California., Jan. 1988.

[7] I. Kodukula. Data-centric Compilation. PhD thesis, Cornell
University, 1998.

[8] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-
level blocking. In ACM SIGPLAN ’97 Conference on Pro-
gramming Language Design, pages 346–357, 1996.

[9] V. Menon, K. Pingali, and N. Mateev. Fractal symbolic
analysis. ACM Trans. Program. Lang. Syst., 25(6):776–813,
2003.

[10] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau. Aug-
menting loop tiling with data alignment for improved cache
performance. IEEE Transactions on Computers, 48(2):142–
149, 1999.

[11] W. Pugh. The Omega test: A fast and practical integer pro-
gramming algorithm for dependence analysis. Comm. ACM,
35(8):102–114, Aug. 1992.

[12] Y. Song and Z. Li. New tiling techniques to improve
cache temporal locality. In ACM SIGPLAN’99 Confer-
ence on Programming Language Design and Implementa-
tion (PLDI’99), pages 215–228, May 1999.

[13] M. Wolf and M. Lam. A data locality optimizing algorithm.
In ACM SIGPLAN’91 Conference on Programming Lan-
guage Design and Implementation (PLDI‘91), pages 30–44,
Jun. 1991.

[14] M. E. Wolf and M. S. Lam. A data locality optimizing al-
gorithm. In ACM SIGPLAN’91 Conf. on Programming Lan-
guage Design and Implementation, Jun. 1991.

[15] M. E. Wolf and M. S. Lam. A loop transformation theory
and an algorithm to maximize parallelism. IEEE Trans. on
Parallel and Distributed Systems, 2(4):452–471, Oct. 1991.

[16] M. J. Wolfe. More iteration space tiling. In Supercomputing
’88, pages 655–664, Nov. 1989.

[17] M. J. Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley, 1996.

[18] J. Xue. On tiling as a loop transformation. Parallel Process-
ing Letters, 7(4):409–424, 1997.

[19] J. Xue. Loop Tiling for Parallelism. Kluwer Academic Pub-
lishers, Boston, 2000.

[20] H. Zima. Supercompilers for Parallel and Vector Comput-
ers. Frontier Series. Addison-Wesley (ACM Press), 1990.

