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Abstract

Program parallelization requires mapping computation
and data to processing elements. Navigational Program-
ming (NavP), based on the principle of migrating compu-
tations, offers a different approach than the conventional
solutions that use a SPMD model. This paper focuses on
data distribution for NavP. We introduce the Navigational
Trace Graph (NTG), a mathematical structure that captures
the alignment and distribution preferences of a sequential
program. Graph partitioning is applied to NTGs to obtain
data distribution solutions. The major advantage is that our
methodology can focus exclusively on reducing communica-
tion overhead first and later determine the actual computa-
tion partition and parallelization, because NavP computa-
tions migrate freely across partitions. This is in stark con-
trast to SPMD, where the data partitioning imposes hard
constraints on the threads because they are stationary. We
present experimental results to demonstrate the effective-
ness of our approach.

Keywords: data distribution, navigational trace graph
(NTG), graph partitioning, navigational programming

1. Introduction

Distributed parallel programming is traditionally done in
the Single Program Multiple Data (SPMD) style, in which
a process or thread is stationary to a local partition of the
data and thus is the owner of both the data and the com-
putation associated with the data. Remote data that is re-
quired by a process is communicated by arecv() and a
send() posted by the requester and the owner processes, re-
spectively. Navigational Programming (NavP) [12], which
is the programming of self-migrating computations, is an-
other means to distributed programming. The characteris-
tics of NavP are:(1) Migration is made possible by explic-
itly insertinghop(dest) statements into the code. Remote

communication is achieved by threads carrying data from
one location to another;(2) Migrating computations are
lightweight, user-level threads. They are non-preemptive
and the synchronizations among them are through local
events using thesignalEvent(evt) andwaitEvent(evt)
statements; and(3) There are three kinds of variables: small
data that follows a migrating computation is loaded to a
thread-carried variable, while large data that is stationary
to a PE is stored in anode variable. Multiple disjoint node
variables can be used to construct a logical array spanning
several PEs, called aDistributed Shared Variable (DSV). A
DSV provides a partitioned global address space.

The NavP methodology provides four steps of code
transformations.Step 1. Data Distribution. The input to
this step is a sequential program to be parallelized. The
objective is to find a data distribution that minimizes the
cost of communication for the given sequential program,
with a balanced (data) load as the constraint. What is be-
ing distributed is the large-sized data usually stored in a
DSV. Step 2. Sequential→ DSC. Using the data distri-
bution obtained from Step 1, the sequential code is aug-
mented withhop() statements to obtain adistributed se-
quential computing (DSC)program, following theprinci-
ple of pivot-computes. That is, the computation should take
place on the PE, called apivot node, that owns the largest
portion of the distributed data.Step 3. DSC→ DPC. The
DSC thread from Step 2 can be cut into several shorter DSC
threads to buildmobile pipelinesfor distributed parallel
computing (DPC). The objective is to spread out computa-
tions as early as possible, while respecting dependency re-
quirements.signalEvent() andwaitEvent() are inserted
to synchronize the DSCs constituting the mobile pipeline.
Step 4. Feedback loop.This step estimates the tradeoffs
between communication/parallelism and adjusts other steps
for a minimum overall wall clock time.

In our earlier papers, we introduced our NavP method-
ology [12] and described how to exploit parallelism using
mobile pipelines [11]. Data layouts used in our earlier ex-



periments are standard block or block cyclic distributions,
which are assumed to be given by the programmer. Achiev-
ing good data distribution is the topic of this paper. We
present a data decomposition approach and intend to use it
as part of a data layout assistant tool for regular applica-
tions. The application programs that we are trying to help
out thus are assumed to exhibit repeatable data accessing
patterns – patterns that are seen in small-sized input data
are going to show in very large problems. This assumption
holds also for existing automatic data decomposition tech-
niques for regular applications [1, 2, 3, 5, 8, 13, 10], since
they need static or dynamic performance analysis to find
out problem size parameters such as loop bounds and array
sizes. Irregular applications that are attacked using run-time
solutions (e.g., the Adaptive Mesh Refinement technique)
are outside the scope of this paper.

The rest of this paper is organized as follows. Section 2
reviews the related work. In Section 3, we present our data
decomposition technique in the context of turning sequen-
tial into DSC programs. Section 4 discusses how to find
data distributions for DPC programs. Section 5 presents ex-
perimental results. Section 6 concludes the paper.

2. Related Work
In the SPMD model, data decomposition is performed

first while computation decomposition is inferred from the
data decomposition using the owner-computes rule. In
NavP, computation decomposition is done in the DSC step.
So we will review only some automatic data decomposition
techniques below.

Given a code region, two different approaches are dis-
tinguished:static decompositions[3, 8] (under which the
data distribution for an array is fixed in the entire region)
anddynamic decompositions[1, 2, 5, 13, 10] (under which
different data distributions for an array may be used in dif-
ferent segments of the region). In the latter case, the region
under consideration is divided into code segments, called
phases, such that data remapping is only allowed between
phases [2, 5]. Given a phase, some techniques [5, 8, 13] de-
compose the mapping problem within the phase into two
sequential steps: alignment and distribution. The align-
ment step identifies the dimensions of all arrays that should
be mapped to the same dimension of a PE network. The
distribution step decides which aligned dimensions should
be distributed in a BLOCK, CYCLIC or BLOCK-CYCLIC
manner. The underlying mathematical representation is
mainly CAGs (component affinity graph) [8] or their vari-
ants – CPGscommunication-parallelism graph[2]. Either
only CYCLIC distributions are considered [2] (for triangu-
lar loop nests only) or BLOCK-CYCLIC distributions are
found by an exhaustive search. In this paper, both distri-
bution and alignment are solved using navigational trace
graphs. Both standard data layouts and other regular ones

are supported.
The problem of finding optimal data decomposition is

known to be NP-complete. Previously, different techniques
use different heuristics to estimate the benefits of paral-
lelism and the cost of communication in their formulations.
They find approximately optimal solutions analytically or
by integer programming. Our approach is “numerical” in
the sense that we find optimal solutions by using a graph
partitioning tool (e.g., Metis [4]). Our approach is approxi-
mate since such a partitioning tool is.

3. Finding Data Layouts for DSC
When turning a sequential program into a DSC program,

we must first find a data distribution for the DSC program.
In this section, we present an intra-procedural technique for
achieving this task. Presently, our technique works on indi-
vidual phases, which are well-defined basic algorithms that
are usually in the form of functions. In what follows, by a
program we mean a phase (e.g., a code region) for which
data layouts are to be found. How to find data layouts for
multiple phases is our future work.

There are three key steps:(1) Build a so-callednavi-
gational trace graph(NTG) by program instrumentation;
(2) Find a data layout by partitioning the NTG using a graph
partitioning tool; and(3) Express the data layout found us-
ing the data distribution mechanisms that NavP supports.

Let there beK PEs. To find a data distribution for a DSC
program, we will find aK-way partition of the correspond-
ing NTG. The objective is to find such a data distribution
by minimizing the cost of communication, with a balanced
(data) load as the constraint. In Section 4, we will discuss
how to find a cyclic data distribution for a DPC program
with a balanced computation load. By using cyclic distribu-
tions, we can also make the tradeoffs between communica-
tion cost and exploitable parallelism.

3.1. Building an NTG

Definition 1 An NTG for a program is a weighted undi-
rected graph (without self-loops), where the vertices are the
entries of DSVs (one for every entry of every DSV) and the
edges (with positive weights) represent the affinity relations
among the vertices as the locus of computation finds it way
through them.

The NTG for a program is generated by running the pro-
gram against a small problem. It captures the trace of a DSC
program as the migrating computation follows the data that
it accesses. The larger the weight of an edge is, the stronger
the two incident vertices want to stay together on the same
PE. In addition, the data entries of the arrays that will be dis-
tributed, regardless of which array they belong to, become
the vertices of the same graph. In this way the problems of



1 Algorithm BUILD NTG
2 INPUT: a program
3 OUTPUT: a (weighted undirected graph) NTGG = (V, E)
4 LetListOfStmt be a list of all statements executed in that order

for a given program with respect to a small problem size

5 // Step 1: Edge Creation (with G being a multi-graph)
6 LetV be the set of all DSV entries accessed in the program
7 LetE = ∅

8 // Add L edges
9 for every entryv in every DSV array

10 Add toE an L edge betweenv and each of its neighboring entries
11 // Add PC edges
12 for every statements in ListOfStmt whose LHS is a DSV entry
13 Repeatedly replace every non-DSV data entryv in the RHS ofs, where

v is defined by the statement of the formv = “...”, with the “...”
14 LetRHSs be the set of all DSV entries in the RHS ofs

15 Add toE a PC edge between the LHS and every entry inRHSs

16 // Add C edges
17 for every two statementss andt in ListOfStmt such that no statement

in between inListOfStmt has access to DSV data entries
18 LetVs be the set of all DSV entries accessed ins

Let Vt be the set of all DSV entries accessed int

19 Add toE a C edge between every entry inVs and every entry inVt

20 Remove all self-loops inG

21 // Step 2: Edge Weight Selection
22 #defineL SCALING = a nonnegative value (typically within[0, 1])
23 Letnum Cedgesbe the total of C edges
24 Setc = 1
25 Setp = num Cedges+ 1
26 Setℓ = L SCALING ∗ p

27 Merge the multiple edges linking the same two vertices into
one single edge by accumulating their edge weights

Figure 1. An algorithm for building an NTG.

(1) for i = 1 to M− 1

(2) for j = 0 to N − 1

(3) a[i][j]← a[i − 1][j] + 1

(4) end for

(5) end for

Figure 2. A program for illustrating construc-
tion of NTGs.

alignment and distribution are addressed in a unified man-
ner.

An NTG is constructed in two steps:(1) edge creation,
and(2) edge weight selection.

3.1.1. Edge Creation

The construction of an NTG is based on three kinds of
edges. First, locality (or L) edges are introduced between
the neighboring entries of a DSV and they are assigned with
the weightℓ. These edges represent the locality of data ac-
cess exhibited in many algorithms and they aim at obtain-
ing regular data layouts for each array. Second, a producer-
consumer (or PC) edge with the weightp is introduced be-
tween an LHS DSV array entry and a RHS DSV array en-
try. These edges indicate the occurrence of communication
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Figure 3. NTGs for Fig. 2 (M=4, N=3).

if the two linked entries do not reside on the same PE. Fi-
nally, every array entry of a DSV array in one statement is
connected with every DSV entry in its successive (in time)
statement with a continuity (or C) edge with the weightc.
These edges represent the change of locus of computation
(i.e., trace of hops) if the two linked entries do not reside
on the same PE and their purpose is to help improve the
granularity of computation.

Our algorithm given in Fig. 1 creates these edges in lines
5 – 20. In line 4,ListOfStmt is the list of all execution in-
stances of the assignment statements obtained by running
the sequential program for a relatively small problem size.
In lines 8 – 10, we introduce locality edges. In lines 11 – 15,
we introduce PC edges, which represent data dependences
among DSV entries. Note that a PC edge exists between
two DSV entries if one depends on the other directly or in-
directly via a chain of non-DSV data entries. Hence, line 13
is needed to detect these PC edges. Consider the following
sequence of dynamically executed statements in a program:

...
t1 = b[3] + 1
t2 = a[2] + t1
a[5] = t2 + a[4]
...

wherea[] andb[] are DSVs, andt1 andt2 are non-
DSV entries. After line 13,a[5] = t2 + a[4] be-
comes:

a[5] = a[2] + b[3] + 1 + a[4].

Thus, in lines 14 – 15, a PC edge is added between
the DSV entrya[5] and each of the three DSV entries,
a[2], b[3] anda[4]. After line 13, all the statements
that define the non-DSV entries are ignored. It is possible to



have multiple PC edges between the same two entries since
the RHS entry may be fetched from its hosting PE multi-
ple times. This can happen since the RHS entry is written
multiple times and must be fetched each time before it is
used.

In lines 16 – 19, we add C edges to the NTG. Again, there
may be multiple C edges between the same two entries rep-
resenting multiple hops required if they do not reside on the
same PE. In line 20, we remove all edges linking a vertex to
itself.

At the end of this step, the NTG obtained is a multi-graph
with possibly one L edge, multiple PC edges and multiple C
edges between any two vertices. As an example, applying
this part of our algorithm to the program in Fig. 2 yields the
NTG shown in Fig. 3(a).

3.1.2. Edge Weight Selection

Given the roles that L, PC and C edges play, the relative
magnitudes of their weights will be chosen such that if the
weight of PC edges isp = 1, then the C edges will be as-
signed the weight of infinitesimalc = ǫ > 0, and the L
edges a nonnegative valueℓ > 0.

The motivations for this weight assignment are as fol-
lows. As we shall see in Section 3.2, we obtain a data dis-
tribution for a program by partitioning its NTG such that the
weights of the total cut edges are minimized. Since C edges
have infinitesimal weights compared to PC edges, they
cannot (and should not) collectively affect the producer-
consumer affinity relationship of the data entries. Thus, C
edge cuts are encouraged and so is parallelism because the
C edges are not true dependences but artificial sequencing
relations. As a result, the entries linked with PC edges tend
to stay on the same PE. As for L edges, choosing different
weights makes it possible to tradeoff between data locality
and parallelism. Ifℓ is close top or larger, we will obtain a
more regular partition, which usually results in better data
locality. If ℓ is close to 0, the resulting data partition will
reflect more accurately the actual cost of communication of
the program. Such a partition tends to be less regular but
may allow more parallelism to be exploited.

There can be more than one way of assigning edge
weights. Our solution is given in lines 22 – 27 in
Fig. 1, whereL SCALING is a program-dependent parame-
ter, which can be tuned in the feedback loop of NavP based
on performance profiling and evaluation. Figure 3(b) de-
picts the final NTG obtained for the program given in Fig. 2,
under the assumption thatℓ = 0.5p.

To understand the roles that L, PC and C edges play and
our solution for their weight assignment (lines 22 – 27), let
us consider the four partitions given in Fig. 4 for the ex-
ample given in Fig. 2. In these (and all other) partition
diagrams, all data entries sharing the same grey scale are
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Figure 4. Two-way data distributions for the
program given in Fig. 2 (M=50, N=4).

assigned to the same partition. The NTGs for the example
(with and without final edge weights) can be found in Fig. 3.
Let us consider Fig. 4(a). When only PC edges are used, all
array columns are not linked by any edges. A 2-way parti-
tion thus can contain any half of the columns. Such a parti-
tion exhibits full parallelism at the expense of some thread
hops (i.e., fine grained computation). If we now include C
edges and choose the weights of PC and C edges accord-
ing to line 25, the C edges will play the role of tie-breakers
and bring us a coarser grained data distribution shown in
Fig. 4(b). Through edge weight selection, we prefer to cut
all C edges rather than even a single PC edge when the NTG
is partitioned. As a result, the data distribution obtainedin
Fig. 4(b) admits full parallelism with also a minimal num-
ber of hops. If we did not set edge weights using line 25,
or in other words, if we set the C edges to be larger than
infinitesimal compared to the PC edges, we might get the
partition shown in Fig. 4(c) if the matrix is shaped long and
thin. By introducing L edges, we will obtain more regu-
lar layouts, or precisely, block distributions if the weights
of the L edges are chosen to be relatively large, as shown
in Fig. 4(d). Compared to the first solution, the third and
fourth solutions reduces the number of hops. Compared to
the second solution, they lose some degree of parallelism;
pipeline parallelism is exploitable but full parallelism is not
since the computations on the two partitions cannot start si-
multaneously due to dependences within columns.

3.2. Partitioning the NTG

An NTG will be fed to a graph partitioning tool,
Metis [4], to find aK-way partition with the overall objective
of minimizing communication cost incurred by the partition
under the constraint of a balanced (data) load. Metis uses



a parameter called UBfactor to specify the imbalance al-
lowed between the partitions during recursive bisection [4].
If there aren vertices in the NTG, the number of ver-
tices in each partition during each bisection step is between
(50 − b)n/100 and(50 + b)n/100. In all the applications
considered in this paper, UBfactor=1. In finding aK-way
partition, Metis will minimize the sum of the weights of the
cut edges spanning allK partitions. According to the Metis’
web site, graphs with over1M vertices can be partitioned in
256 parts (i.e.,K = 256) in a few seconds on current gen-
eration workstations and PCs. The number of vertices of an
NTG is the total number of entries of all the DSVs involved
(DEFINITION 1) and the examples presented in this paper
have at most3, 600 vertices.

By finding a minimum cut to partition an NTG, we
are able to minimize the total data movement among the
PEs. We also maintain a data load balance in terms of data
amount on the PEs because a balanced partition is used as an
optimization constraint. However, balanced data load does
not imply balanced computation load. This will not affect
DSC since it runs in one thread. As a matter of fact, a bal-
anced data load leads to a scalable DSC program. For DPC,
we use block cyclic data distribution to achieve computation
load balancing and better parallelism (more in Section 4).

Due to the presence of C edges in the NTG, which repre-
sent change of locus of computation, we minimize the num-
ber of hops. In other words, the C edges keep a coarse level
granularity, which is important for performance. We intro-
duce C edges to capture the artificial sequential dependency
introduced in sequential algorithms. Our NTGs are gener-
ated such that cuts are more likely to be placed on the C
edges to exploit parallelism, other things being equal. If
cuts are on PC edges, they are more likely placed in the “di-
rection” that is “parallel” to the PC edge chains because this
results in less PC edge cuts. For this reason, we claim that
our approach does not hinder parallelism.

3.3. Expressing the Partitions

We build a visualization tool to present the recom-
mended data layouts. Our preliminary results are shown in
Figs. 4, 5, and 7. These results are from regular algorithms
that access structured data structures (e.g., dense squarema-
trices), which means that unstructured data distribution is
desirable even for seemingly simple applications. There-
fore, NavP needs to support not only the classic distribution
mechanisms such as BLOCK and BLOCK-CYCLIC as in
HPF, GENBLOCK and INDIRECT mappings as in HPF-2
but also others that can describe the unstructured data lay-
outs. How to describe unstructured data layouts in NavP
will be part of our future work.
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Figure 5. Transpose of a matrix (3-way).

3.4. Applications

This section discusses how our data distribution tool can
be used to find data distributions for two applications, ma-
trix transpose, and ADI (Alternating Direction Implicit) In-
tegration. For matrix transpose, our approach is able to find
L-shaped communication-free data distributions that cannot
be found by previously existing approaches [2, 3, 5, 8, 9].
We are able to find data distributions for ADI [6, 5, 7] but
do so by solving both alignment and distribution at the same
time using NTGs. In addition, by using a twisted data lay-
out we are able to achieve full parallelism at a low cost of
communication in our NavP implementation. We compare
the performance of this implementation with the one that
uses data redistribution between two different phases.

3.4.1. Matrix transpose

Matrix transpose swaps the anti-diagonal entries of a ma-
trix. The pseudocode is omitted. The data distribution
found as shown in Fig. 5 consists of L-shaped partitions;
it is optimal in the sense that it is communication-free.

If we did not have C edges in the NTG, each anti-
diagonal pair will still be distributed in the same partitions,
but pairs will be distributed in a dispersed fashion, as shown
in Fig. 5(a), unlike what is shown in Figs. 5(b) and (c),
where contiguous partitions are seen.

With L edges (weightℓ = 0.5p), the resulting partition is
regular (except that the bottom-right entry is included in the



top-left partition), as shown in Fig. 5(c). In the absence ofL
edges (ℓ = 0), the partition becomes less regular, especially
along the main diagonal of the matrix, as shown in Fig. 5(b).

Our solution cannot be found by prior approaches since
they are limited to BLOCK and BLOCK-CYCLIC [2, 3, 5,
8, 9]. This optimal solution enables the programmers to ex-
plore full parallelism with zero communication at a coarse
granularity level.

3.4.2. ADI integration

// time iteration

(1) for iter = 1 to niter

// Phase I : row sweep

(2) for j = 2 to N

(3) for i = 1 to N

(4) c[i][j] = c[i][j] − c[i][j− 1] ∗ a[i][j]/b[i][j− 1]

(5) b[i][j] = b[i][j] − a[i][j] ∗ a[i][j]/b[i][j− 1]
(6) end for

(7) end for

(8) for i = 1 to N

(9) c[i][N] = c[i][N]/b[i][N]
(10) end for

(11) for j = N − 1 to 1 by − 1

(12) for i = 1 to N

(13) c[i][j] = (c[i][j] − a[i][j + 1] ∗ c[i][j + 1])/b[i][j]

(14) end for

(15) end for

// Phase II : column sweep (omitted)
(16)end for

Figure 6. Pseudocode of ADI

ADI integration is an example used by several papers
on data distribution [6, 5, 7]. The pseudocode for ADI in-
tegration is listed in Fig. 6 [6, 5]. There are three 2D ar-
rays, namelyc, a, andb, involved in the computation. This
code is usually subdivided into two phases, namely a row
sweep phase (lines (2)-(15)) and a column sweep phase (not
shown). These two phases are surrounded by an outer loop
of time iteration (line (1)). One possible solution, existed in
previous work, is to find two different data mappings suited
for their respective phases. We use our tool to find these two
separate solutions and plot them in Figs. 7(a) and (b). Fig-
ure 7(c) depicts the data distributions for two phases com-
bined together. The two sweeps are twoDOALL loops (i.e.,
full parallelism with no communication) if they use their
own data distribution, but in between the sweeps a dynamic
data redistribution is needed. If both phases are combined,
pipeline parallelism can still be exploited. The advantage
of this data distribution for the entire program is that no dy-
namic data remapping is needed between the two phases.
The cost of a dynamic data remapping can vary dramati-
cally on different platforms.
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Figure 7. ADI integration on a 20x20 matrix
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4. Finding Data Layouts for DPC

In NavP, we parallelize a program by first transforming
it to DSC and then turning DSC into DPC (Section 1). In
Section 3, we presented our methodology for finding data
layouts for DSC. The data partitions found do not hinder
parallelism. Furthermore, they will also serve as the starting
point to exploit more parallelism.

We propose to use a block cyclic data distribution
evolved from the solution suggested by our tool and ap-
ply pipelining code transformation to further improve per-
formance. By “block cyclic distribution” we mean ann-
round cyclic distribution of an(nK)-way partition to aK-
processor machine, where the partitions can be rectangular
or other shaped (e.g., L-shaped) blocks. For example, to
obtain a block cyclic distribution for the problem depicted
in Fig. 5(c), we get a 6-way partition first and then cycli-
cally assign the L-shaped partitions onto 3 PEs. So our
block cyclic distribution is a more general form of BLOCK-
CYCLIC distribution.

Our data distribution tool provides a partition with the
minimum communication cost as our starting point. As we
increase the number of cyclic data blocks, we obtain more
and more parallelism (hence less and less time) at the cost
of increased communication. Note that we follow the data
distribution pattern suggested by our tool when we increase
the number of data blocks (when the number of data blocks
exceeds the number of PEs we call the data blocks “vir-
tual blocks”) – this will make sure that the communication
cost remains the minimum for each and every new parti-
tion we come up with. At some point, the total execution
time will reach the minimum and then start growing if we
further increase the communication cost. Our proposed ap-
proach thus provides a systematic way of achieving the best
performance for a particular application.

As mentioned earlier, our data distribution for DSC guar-
antees data load balancing but not necessarily computa-
tion load balancing. Block cyclic data distribution helps to
achieve computation load balancing because computations



will migrate to all the PEs more evenly.

5. Experimental Results
In this section, we present our experimental results. The

data was obtained using a network of SUNW Ultra-60’s
with 450 MHz UltraSPARC-II CPU, 256MB of main mem-
ory, 1GB of virtual memory, 100Mbps of Ethernet with a
collision-free switch, and using the NFS file-sharing sys-
tem. The C compiler used wasgcc3.2.2 (−O3 optimization
option turned on), the MPI used (for matrix redistribution in
ADI integration) was LAM MPI 7.0.6, and the NavP com-
piler and runtime system used was MESSENGERS1.2.05.

5.1. Matrix Transpose
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We have compared the costs of transposing a matrix in
parallel under two circumstances:(1) Each PE gets a ver-
tical slice of the matrix, as depicted in Fig. 7(b). This
data distribution requires remote data communication; and
(2)Each PE gets an L-shaped slice of the matrix, as depicted
in Fig. 5(c). Only local data movement is needed for this
data distribution. Our experiment, as presented in Fig. 8,
shows that matrix transposing involving remote communi-
cation is more than twice as expensive as done locally.

5.2. ADI integration

We first turn the ADI integration code into a block im-
plementation. That is, we introduce “distribution blocks”
— submatrix blocks that are basic units for data distribution
— in the matrices and convert the loops over the matrix en-
tries into the loops over the entries within the distribution
blocks surrounded by the loops over the distribution blocks.
Next, we go through the NavP steps to parallelize ADI in-
tegration. In particular, we first make the sweeps two DSCs
and turn the outer loop another DSC responsible for inject-
ing the sweeper DSCs. We then cut the sweeper DSCs into
shorter ones and pipeline them.

Figure 9 depicts data distribution patterns in 1D and 2D
cases. Each box in this figure represents a submatrix block
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Figure 9. Block cyclic distribution patterns.

and the number in a box indicates the ID of the PE that this
block is assigned to. It is assumed that in the 1D case we
have two PEs and in the 2D case we have four PEs. As
in Fig. 6, the three square matrices are each of orderN. In
Fig. 9(a), a matrix is cut into four vertical slices each of
N × N/4 and the blocks are assigned to the two PEs in a
block fashion (that is, the first two blocks go to PE1 and
the last two blocks go to PE2). Figure 9(b) depicts a 1D
block cyclic pattern where the blocks are assigned to the
PEs in order until the PEs are exhaustively used, at which
time the block assignment cycles back. In HPF, a 2D block
cyclic pattern is the cross product of two 1D block cyclic
patterns, shown in Fig. 9(c). For 2D, each submatrix block
is N/4 × N/4. We also use a twisted pattern, depicted in
Fig. 9(d), in which the first row of blocks are assigned to
all the PEs in order. (This is unlike the block cyclic pat-
tern where the PEs are arranged as a2× 2 grid and the first
row of blocks are assigned cyclically along the first row of
PEs.) The next rows are assigned to all the PEs in a simi-
lar way, except that they are shifted east-ward one position
from their previous rows. This distribution pattern is effec-
tively a “skewed pattern.” When the sweeper threads sweep
through all the rows or columns, all PEs are busy simul-
taneously. That is, we achieve full parallelism, at the cost
of O(N) as one layer of the matrix entries is carried over
from block to block. In contrast, in the example shown in
Fig. 9(c), only two PEs are busy at any time as the sweeper
DSCs sweep through. The situation for the block cyclic
pattern is worse if the PEs are arranged as a 1D grid when,
e.g., the number of PEs is a prime number. As for the cost
of communication, theDOALL approach mentioned in Sec-
tion 3.4.2 requiresO(N2) in data redistribution.

As presented in Fig. 10 (the numbers in the legend are
matrix orders), the NavP program using the twisted data
distribution pattern performs the best. Using the HPF block
cyclic pattern, the NavP program incurs the same commu-
nication cost ofO(N) but has less degree of parallelism.
Therefore, the performance is inferior, especially when the
number of PEs is a prime number1. Finally, if we employ
data redistribution in theDOALL approach, even though the
two sweeps are fully parallel, the cost of data redistribution,

1A true 2D PE grid for the HPF block cyclic pattern is only possible
when the number of PEs is not a prime number.
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tion.

O(N2), is so large that the overall performance is poor. We
used the MPI library callMPI Alltoall() to obtain the cost
for matrix redistribution.

With ADI integration, we demonstrate the following:
(1) We can solve both alignment and distribution in a uni-
fied manner;(2) The data distribution for DSC is obtained
from minimizing the cost of communication with load bal-
ancing as a constraint. Parallelism is exploited later using
mobile pipelines. Block cyclic data distribution helps to
improve parallelism by making the PEs busy earlier, and
twisted data distribution allows to achieve full parallelism;
and(3) On loosely coupled systems such as clusters, data
redistribution between the two phases, aimed at achieving
full DOALL parallelism for both phases, is prohibitively ex-
pensive. As a result, choosing a data distribution that mini-
mizes communication and further minimizing communica-
tion using DSCs that follow the principle of pivot-computes
are of decisive importance to overall performance. Using
pipelining may result in loss of some degree of parallelism,
but this impact to performance is secondary. Furthermore,
with some adjustment in data distribution using the twisted
pattern, it is still possible to achieve full parallelism using
mobile pipelines at a cost of asymptotically less communi-
cation than what is required in data redistribution.

6. Conclusions
In this paper, we present a new mathematical representa-

tion, callednavigational trace graph(NTG), for represent-
ing the alignment and distribution preferences in a unified
manner. The NTGs aim at a minimum communication cost,
but they do not hinder parallelism because of the weights of
the edges chosen. More parallelism and load balancing are
achieved by using block cyclic data distribution and mobile
pipelining. We apply graph partitioning to a NTG to obtain
a data distribution. Our partitioning tool can find unstruc-

tured data layouts such as the L-shaped blocks. It is able
to do this because it aligns entries rather than dimensions
of the arrays and thus captures more accurately the cost of
data communication. Our approach is independent of array
storage schemes used. We can hence help the programs that
use sparse storage schemes. We use a twisted distribution
pattern, effectively a skewed block data distribution, that al-
lows mobile pipelines to exploit full parallelism without re-
distributing large amount of data. We present experimental
results to show the effectiveness of our technique.
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for integrating data alignment, distribution, and redistribution in dis-
tributed memory multiprocessors.IEEE Trans. Parallel Distrib.
Syst., 12(4):416–431, 2001.

[3] M. Gupta and P. Banerjee. Demonstration of automatic data par-
titioning techniques for parallelizing compilers on multicomputers.
IEEE Trans. Parallel Distrib. Syst., 3(2):179–193, 1992.

[4] George Karypis and Vipin Kumar.hMETIS A hypergraph partition-
ing package (version 1.5.3). Dept. of Computer Science & Engineer-
ing, Univ. of Minnesota, 1998.

[5] Ken Kennedy and Ulrich Kremer. Automatic data layout for
distributed-memory machines.ACM Trans. on Prog. Languages and
Systems, 20(4):869–916, July 1998.

[6] J. Knoop and E. Mehofer. Distribution assignment placement: Effec-
tive optimization of redistribution costs.IEEE Trans. on Para. and
Dist. Sys., 13(6):628 – 647, June 2002.

[7] Peizong Lee and Zvi Meir Kedem. Automatic data and computa-
tion decomposition on distributed memory parallel computers. ACM
Trans. on Prog. Languages and Sys., 24(1):1–50, Jan 2002.

[8] Jingke Li and Marina Chen. The data alignment phase in compil-
ing programs for distributed-memory machines.J. Parallel Distrib.
Comput., 13(2):213–221, 1991.

[9] Angeles Navarro, Emilio Zapata, and David Padua. Compiler tech-
niques for the distribution of data and computation.IEEE Trans.
Parallel Distrib. Syst., 14(6):545–562, 2003.

[10] Daniel J. Palermo and Prithviraj Banerjee. Automatic selection of dy-
namic data partitioning schemes for distributed-memory multicom-
puters. InLCPC ’95: Proc. of the 8th Int’l Workshop on Languages
and Compilers for Parallel Computing, pp. 392–406, London, 1996.

[11] Lei Pan, Ming Kin Lai, Michael B. Dillencourt, and Lubomir F. Bic.
Mobile pipelines: Parallelizing left-looking algorithmsusing naviga-
tional programming. InProc., 12th Int’l Conf. on High Perf. Comp.
- HiPC 2005, vol. 3769 ofLNCS, pp. 201–212, Berlin, Dec 2005.

[12] Lei Pan, Ming Kin Lai, Koji Noguchi, Javid J. Huseynov, Lubomir
Bic, and Michael B. Dillencourt. Distributed parallel computing us-
ing navigational programming.Int’l J. of Parallel Programming,
32(1):1–37, Feb 2004.

[13] Thomas J. Sheffler, Robert Schreiber, William Pugh, John R. Gilbert,
and Siddhartha Chatterjee. Efficient distribution analysis via graph
contraction. InLCPC ’95: Proc. of the 8th Int’l Workshop on Lan-
guages and Compilers for Para. Comp., pp. 377–391, London, 1996.


