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Abstract—Tree traversals are widely used irregular applica-
tions. Given a tree traversal algorithm, where a single tree
is traversed by multiple queries (with truncation), its efficient
parallelization on GPUs is hindered by branch divergence, load
imbalance and memory-access irregularity, as the nodes and their
visitation orders differ greatly under different queries.

We leverage a key insight made on several truncation-induced
tree traversal regularities to enable as many threads in the
same warp as possible to visit the same node simultaneously,
thereby enhancing both GPU resource utilization and memory
coalescing at the same time. We introduce a new parallelization
approach, REGTT, to orchestrate an efficient execution of a tree
traversal algorithm on GPUs by starting with BFT (Breadth-
First Traversal), then reordering the queries being processed
(based on their truncation histories), and finally, switching to
DFT (Depth-First Traversal). REGTT is general (without relying
on domain-specific knowledge) and automatic (as a source-code
transformation). For a set of five representative benchmarks used,
REGTT outperforms the state-of-the-art by 1.66x on average.

I. INTRODUCTION

Irregular applications are widely used in the real world. In
addition to graph-based applications [1], [2], another important
subclass includes tree traversal algorithms. Operating on a tree,
tree traversal is the process of visiting every tree node exactly
once (unless truncated otherwise) in a particular order. In this
paper, we focus on tree traversal algorithms, where a single
tree is traversed multiple times under multiple input queries
(i.e., by multiple points). Such algorithms are ubiquitous in
the real world. Some representative examples are the Barnes-
Hut tree traversal in physics and astronomy (e.g., in N-
body simulations) [3], the k-dimensional tree traversal in data
mining and graphics (e.g., in Point Correlation solvers) [4],
and the vantage-point tree traversal in machine learning (e.g.,
in Nearest Neighbor classification) [5].

Compared with regular applications [6], [7], [8], [9], [10]
that exhibit predictable memory accesses, such repeated tree
traversals (with truncation) are challenging to parallelize on
GPUs. As the nodes and their visitation orders are highly
input-dependent and thus vary greatly across the queries, a
simple-minded solution would result in low GPU resource
utilization caused by branch divergence and load imbalance
as well as long memory latency caused by memory-access
irregularity. On the other hand, as different queries traverse a
tree independently, repeated tree traversals are well-suited to
SIMT parallelization on massive multi-threading GPUs due to
their high-performance and power efficiency.

AUTOROPES [11] represents the only solution for paralleliz-
ing general-purpose tree traversal algorithms on GPUs. AU-
TOROPES parallelizes an algorithm by applying DFT (Depth-
First Traversal) in either lockstep or non-lockstep mode. In
non-lockstep, AUTOROPES aims to maximize GPU resource
utilization by allowing different threads that handle different
queries in the same warp to visit different tree nodes at the
same time at the expense of branch divergence and memory-
access irregularity. In lockstep, AUTOROPES makes the oppo-
site tradeoff by ensuring that all the threads in the same warp
visit the same tree node at the same time, even though many
threads are idle traversing a truncated node or no node at all.

In this paper, we leverage a key insight made on tree traver-
sal regularities induced by tree truncations (i.e., by skipping a
subtree rooted at a certain node) across the queries. These
regularities are concerned with truncation condition checks
at sibling tree nodes, truncation possibilities at different tree
levels, and future traversal behaviors of different queries with
similar truncation histories. By exploiting these regularities,
we introduce a new parallelization approach, called REGTT, to
orchestrate an efficient execution of a tree traversal algorithm
on GPUs by starting with BFT (Breadth-First Traversal), then
reordering the queries being processed (based on their trun-
cation histories), and finally, switching to DFT. By switching
from BFT (encountering some but not excessively many tree
truncations) to DFT (operating on reordered queries so that
queries with similar truncation histories are regrouped into the
same warp) at a suitable tree depth, we can potentially enable
as many threads in the same warp as possible to visit the
same tree node simultaneously. As a result, we can improve
potentially both GPU resource utilization (by reducing branch
divergence and load imbalance) and memory coalescing (by
mitigating memory-access irregularity). To the best of our
knowledge, REGTT is the first to sequence BFT and DFT
this way, with a runtime query reordering in between.

REGTT is general (without relying on domain-specific
knowledge) and automatic (as a source-code transformation).
This paper makes the following contributions:

o We describe some important observations about regulari-
ties in repeated tree traversals, which enable tree traversal
algorithms to be parallelized effectively on GPUs.

e We introduce an effective parallelization approach,
REGTT, for tree traversals on GPUs, that can enhance
both resource utilization and memory coalescing simul-



Algorithm 1: A Generic Tree Traversal Algorithm

Input: Tree T', Set Q
Procedure TreeTraversal ()
1 Let n be the root node of T7;
2 foreach query ¢ € Q do
L Traversal (n, q);
rocedure Traversal (Node n, Query q)
visit(n); // Performing a node-specific task
if /Truncation(n, q) then
foreach child node n’ of n do
| Traversal (0, q);
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taneously as well as improve load balance in a warp.

o We have compared REGTT with AUTOROPES [11], the
state-of-the-art, on parallelizing a set of five represen-
tative benchmarks on GPUs. REGTT outperforms AU-
TOROPES by 1.66x on average.

The rest of this paper is organized as follows. In Section II,
we introduce a generic tree traversal algorithm and discuss
some challenges faced for its parallelization on GPUs. In Sec-
tion III, we describe our key observations about tree traversal
regularities, review the state-of-the-art, and finally, discuss the
design and implementation of REGTT. In Section IV, we
evaluate REGTT by comparing with the state-of-the-art. In
Section V, we describe related work. Finally, in Section VI,
we conclude the paper and discuss some future work.

II. PROBLEM STATEMENT
A. A Generic Tree Traversal Algorithm

In Algorithm 1, we give a generic tree traversal algorithm
performed in the DFT manner. Given a set of queries (), each
query ¢ is answered when it traverses a tree 7' from its root
node. For each node n, wvisit(n) represents an application-
specific task to be performed at n when n is said to be visited.
Truncation(n,q) is an application-specific condition to be
tested to see if further visits of n’s child nodes are necessary
or not. If not, the subtree rooted at n will be truncated. As a
result, the nodes and their visitation orders are highly input-
dependent and thus vary greatly across the queries.

Let us consider a Point Correlation solver [4], which collects
all the objects close to a given query object with their distances
being no more than R in a k-dimensional space. This is
illustrated in Figure 1 (with k& = 2). Figure 1(a) depicts a
2-dimensional space containing 10 objects, denoted by the 10
nodes in solid circles. Figure 1(b) shows a binary tree built
based on the spatial relations among the 10 objects. This is
done by dividing recursively the given 2-dimensional space
into two halves such that their node counts differ by at most
one. Eventually, a leaf node (depicted by a circle) represents
an object and a non-leaf node (depicted by a gray circle)
represents the geometric center of its descendant leaf objects.
The location of a node is represented by its bounding box.

Let us apply Algorithm 1 to process aset Q = {4, B,C, D}
of four queries depicted in Figure 1(a) with respect to the
search tree in Figure 1(b). Their DFT sequences are given in
Figure 1(c). Due to tree truncations, some nodes are skipped.
Take query A for example. When visiting node (5), the distance

between A and (5) (i.e., the distance between the location of A
and the bounding box of the (5)) is larger than R as shown, the
subtree rooted at (5) is truncated. As a result, its two children,
(® and (7), are not visited.

B. Tree Traversals on GPUs

Repeated tree traversals for multiple queries can be solved
in parallel on GPUs in the SIMT fashion as all the queries are
handled independently. A Nvidia GPU consists of a number
of streaming multiprocessors (SMs), where each SM contains
a number of cores called streaming processors (SPs). A tree
traversal algorithm can be executed by a grid of threads over
these cores. Threads are grouped into several thread blocks,
and assigned to SMs. Threads in one block are partitioned into
32-thread warps, which are the units of the thread execution.

There are three challenges faced in parallelizing tree traver-
sals on GPUs due to query-dependent tree truncations:

e Memory-Access Irregularity The threads that handle
different queries in the same warp may visit different
nodes at the same time, making it hard to take advantage
of memory coalescing, a well-known optimization for co-
alescing a number of simultaneous global accesses from
the threads in a warp into a single memory transaction
to reduce GPU’s global memory access overhead.

« Load Imbalance Different threads in the same warp may
have different workloads due to query-dependent tree
truncations, resulting in poor load balance.

e Branch or Warp Divergence The threads that handle
different queries in a warp may suffer from branch,
i.e., warp divergence at the truncation test at Line 5 of
Algorithm 1, resulting in poor resource utilization.

Therefore, these three challenges must be addressed in order
for repeated tree traversals to run efficiently on GPUs.

III. EFFICIENT TREE TRAVERSALS ON GPUS

Exploring regularities in repeated tree traversals is critical
to ensure that such traversals can be parallelized efficiently on
GPUs. We first summarize three types of regularities observed
(Section III-A). We then discuss why AUTOROPES [11] fails
(Section III-B) but our REGTT approach succeeds (Sec-
tion III-C) in exploiting these regularities. Finally, we describe
our implementation of REGTT (Section III-D).

A. Discovering Tree Traversal Regularities

We describe below three types of regularities regarding (1)
truncation condition checks at sibling tree nodes, (2) truncation
possibilities at different tree levels, and (3) future traversal
behaviors of different queries with similar truncation histories.

Observation 1. If a tree node is visited (at Line 4 of
Algorithm 1), then all its sibling nodes are also visited.

This observation is validated by the presence of Line 5 of
Algorithm 1. If one node is visited, then all its sibling nodes
will also be visited. Thus, for the purposes of performing
truncation checks at a set of sibling nodes, the relevant data
at these sibling nodes will have to be retrieved, together
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Fig. 1: Tree traversals for a point correlation solver.

with some other data, if necessary. This is an obvious fact,
but seemingly little noticed or exploited in parallelizing tree
traversal algorithms on GPUs by the prior work.

Observation 2. Tree truncation (at Line 5 of Algorithm 1) is
less likely to happen higher in the tree being traversed.

This follows from how a search tree is constructed for
a tree traversal algorithm and how a truncation condition
is formulated. In general, a truncation happens at a node
only when all its descendant leaf nodes can be neglected
without affecting the overall correctness and/or precision of
the algorithm. Therefore, the higher a node is in the tree, the
less likely the subtree rooted at the node will be truncated.

Observation 3. Queries with similar truncation histories tend
to exhibit similar future traversal sequences.

Truncation similarity provides a strong hint for spatial
similarity. Queries that have similar truncation histories (with
sufficiently many truncations) tend to be close together, sug-
gesting that their future traversal behaviors will also be similar.

B. Examining the State-of-the-Art

In addition to domain-specific tree traversal algorithms on
GPUs [12], [13], [14], AUTOROPES [11] represents the only
approach for automatically parallelizing general-purpose tree
traversal algorithms (abstracted in Algorithm 1) on GPUs.
Two parallelization strategies, lockstep and non-lockstep, are
considered, with different tradeoffs. In Figure 2, we show how
AUTOROPES works for our example in Figure 1 and discuss
its limitations. We assume that the warp size is 2.

1) lockstep: As shown in Figure 2(a), AUTOROPES forces
all the threads in a warp to visit the same tree node at
every traversal step. As a result, there does not exist any
non-coalesced memory access (represented by @) across the
nodes. In addition, all memory accesses at the same node
are trivially coalesceable (marked by @ ). Unfortunately, a
thread that handles a query is effectively idle (marked by ©)
when it is forced to traverse a node that is truncated, i.e., not
supposed to be visited at Line 4 of Algorithm 1 by the query.
By forcing all the threads to run in lockstep, AUTOROPES
avoids warp divergence altogether (with no divergent branches
represented by @ ). However, the GPU resources can be
severely underutilized due to poor load balance, caused by
the presence of potentially many idle threads in a warp.

2) non-lockstep: As shown in Figure 2(b), AUTOROPES
makes the opposite tradeoff as above. In this case, different
threads in a warp can visit their respective nodes as intended
(at their own discretion). Thus, AUTOROPES improves GPU
resource utilization but at the expense of warp divergence
and memory-access irregularity. For example, the warp that
handles queries A and B suffers from branch divergence when
accessing two nodes, (4) and @ at the same time (highlighted
by @), as well as long memory latency since the memory
accesses at the two nodes are unlikely coalesceable (high-
lighted by @). While GPU resource utilization has improved
(compared to lockstep), idle threads still exist at the end of a
warp execution due to load imbalance (marked by ©).

3) Discussion: AUTOROPES makes opposite tradeoffs in
its lockstep and non-lockstep modes. Neither is superior over
the other. A better strategy should tackle the three challenges
discussed in Section II-B by improving both GPU resource
utilization and memory coalescing simultaneously. This is
possible if we can ensure that the threads in a warp can visit
simultaneously the same tree node as often as possible.

In Section III-A, we have examined some regularities in re-
peated tree traversals. By Observations 1 and Observations 2,
the threads in a warp should visit all the sibling tree nodes first
before their child nodes to reduce potentially warp divergence.
By Observation 3, a warp should be responsible for handling
queries with similar truncation histories.

However, AUTOROPES fails to exploit these regularities. In
addition, AUTOROPES also suffers from some limitations by
performing DFT alone. As the deeper nodes are reached, warp
divergence will likely become more frequent. For lockstep,
GPU resource utilization will be worse due to poor load
balance (with more idle threads). For non-lockstep, warp
divergence will be more severe and global memory access
overhead will also increase (due to non-coalesced accesses).

Below we demonstrate how our REGTT approach can over-
come these limitations by exploiting tree traversal regularities.

C. Designing Our REGTT Approach

We first present our REGTT approach (Section III-Cl1).
We then examine its three major phases in more detail (Sec-
tions III-C2 — III-C4). Finally, we illustrate our approach in
Figure 3 by revisiting our motivating example (Section III-C5).

1) Overview: REGTT is designed to exploit Observa-
tions 1 — 3 to accelerate tree traversals on GPUs. As il-
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Fig. 2: Tree traversals with AUTOROPES.

lustrated in Algorithm 2, REGTT answers a set of queries
Q@ on a tree T, by employing a procedure Tree_Traversal
running at the host CPU and three GPU kernels, Tree_BFT(),
stable_sort_by_key() (from Thrust), and Tree_DFT().

Initially, BFT is performed on the tree nodes at depths
less than an reorder depth d (starting from 0), based on
Observations 1 and 2. Then all the queries are reordered at
depth d according to their truncation histories, based on Ob-
servation 3. Finally, DFT is applied to the tree nodes at depth
d or deeper. How to select d is discussed in Section III-D2.
W, V and K are thread-local. W keeps track of the work
(i.e., a set of nodes) to be visited by each thread. V' records
the truncation information for each query. Finally, K contains
an integral representation of the truncation history for each
query.

Following AUTOROPES [11], REGTT performs a tree traver-
sal in either lockstep or non-lockstep mode. This is indicated
by Mode, which is initialized to 1 if lockstep is used and O if
non-lockstep is used. For each thread ¢ that handles a particular
query, V; maintains its truncation information. As an invariant
in both modes, V;[n] = False (i.e., 0) if and only if n’s child
nodes are not visited (at Line 4 of Algorithm 1). This means
that the subtree rooted at n has been truncated.

These two execution modes are handled differently at Lines
21 and 33. In lockstep, we make use of a CUDA function
_any(V[n]) that returns true if there exists at least one
thread ¢ in the warp such that V;[n] = true for node n. This
forces all the threads in the same warp to visit the child nodes
of n in lockstep. To ensure correctness, thread ¢ is effectively
idle at n if it is truncated for its corresponding query, which
is indicated when V;[n] = false at Lines 19 and 31, causing
visit(n) to be skipped correctly. In non-lockstep, every thread
t decides whether to visit the child nodes of a node n by
considering its own V¢[n] only (as in Algorithm 1).

2) Breadth-First Traversal: If no tree truncation happens
at a parent node, all its child nodes will be visited according
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Fig. 3: Tree traversals with REGTT (d = 3).

DFT with non-lockstep,

to Observation 1. To ensure that all such sibling nodes can
be visited before their child nodes, BFT rather than DFT (as
adopted originally in Algorithm 1) is performed.

BFT exploits better tree traversal regularities at sibling
nodes than DFT. However, applying BFT exclusively to an
entire search tree is ineffective for two reasons. First, more
branch divergence and higher memory access overhead are
expected to happen at the nodes deeper in the tree according
to Observation 2, resulting in poor GPU resource utilization.
Second, the memory usage incurred by BFT grows exponen-
tially as we increase the depth of the tree to be explored.

As a compromise, we apply BFT only to the nodes lower
than a given reorder depth d, by calling the GPU kernel
Tree_BFT(). For these nodes, tree truncations will happen,
but moderately rather than excessively (Observation 2). The
truncation histories for all queries are recorded in V. For the
remaining nodes at depth d or deeper, we switch to DFT (but
on reordered queries based on their truncation histories).

3) Query Reordering: Query-dependent tree truncations
can cause warp divergence and memory-access irregularity,
resulting in poor performance. However, queries with similar
truncation histories tend to exhibit similar future traversal be-
haviors according to Observation 3. Thus, we are motivated to
rearrange the queries being processed based on their truncation
histories. The threads with similar truncation histories will be
regrouped together to execute in the same warp. As a result,
these threads will be more likely to visit the same tree node
simultaneously, resulting in improved memory coalescing and
load balance as well as reduced warp divergence.

Query reordering introduces pure overhead. All the threads
need to synchronize with each other before the reordering
phase takes place. The performance penalty caused by frequent
reorderings can outweigh the performance benefit achieved. In
our REGTT approach, we apply query reordering only once.

In theory, query reordering can be done at any time during
the tree traversal. However, we choose to do it between BFT



Algorithm 2: REGTT (lockstep and non-lockstep)

Input: Tree T, Set Q, Mode = 1 (lockstep) or 0 (non-lockstep)
Procedure Tree_Traversal ()

Compute a reorder depth d by profiling and regression analysis;
Let ThreadCnt be the total number of GPU threads available;
for i = 0 to Q.size() — 1 step ThreadCnt do

Let @; be the subset of @ processed at the i-th iteration;
W0 : ThreadCnt — 1] is an array of work lists (() initially);
K0 : ThreadCnt — 1] is an array of keys (uninitialized);
V « {V; | 0 <t < ThreadCount}, where V; is a bit vector
for thread ¢ (initially O, i.e., False for all its bits);

8 Tree_BFT (Q;, W, K, V,d);

9 stable_sort_by_key (K, W);

10 Tree_DFT (Q;, W, V),

R N SO S

GPU_Kernel Tree_BFT (Ser Q, Array W, Array K, Set V, Depth d)
1 foreach GPU thread t do

12 Let ¢ € @ be the query handled by ¢;

13 Add T’s root node n, at the end of W{t];

14 Vi[ny] <True;

15 while front node of W t] is at a depth less than d do
16 n < FRONT node of W t] removed and assigned;
17 if n has a parent node n, then

18 L Vin] < Vi[npl;

19 if Vi[n] then

20 | wisit(n); // Line 4 in Algorithm 1

21 Vi[n] < Vi[n] && !Truncation(n, q);

2 if Mode ? __any(V[n]) : Vi[n] then

23 | Add child nodes of 7 at the end of W[t];

24 | Compute K [t] from the truncation history in V%;

GPU_Kernel Tree_DFT (Set Q, Array W, Set V')
25 foreach GPU thread t do

26 Let g € @ be the query handled by ¢;

27 while W [t] # 0 do

28 n < BACK node of Wt] removed and assigned;
29 if n has a parent node np then

30 L Vin] < Vi[npl;

31 if Vi[n] then

3 L visit(n); // Line 4 in Algorithm 1

33 Vi[n] < Vi|n] && !Truncation(n, q);

34 if Mode ? __any(V[n]) : V¢[n] then

35 L Add child nodes of n at the end of Wt];

and DFT by calling Thrust::stable_sort_by key (K, W), a
C++ template library for CUDA from Thrust, at Line 9. Here,
W is an array of worklists to be sorted according to its parallel
array K of sorting keys. At Line 24, K[t] is obtained as an
integral representation of the truncation history for the query
handled by thread ¢. Let ng, n1, ..., ns—1 be the BFT sequence
produced for all the s nodes at depths less than d in the search
tree 7' considered. Kt] is simply the integer derived from its
binary representation V;[ng|Vi[ni]- - Vi[ns_1].

4) Depth-First Traversal: After having reordered the
queries, the GPU kernel Tree_DFT() is called to perform DFT
afterwards. The threads that exhibit similar future traversal
behaviors are now regrouped into the same warp, resulting in
improved memory coalescing and GPU resource utilization.

5) Example: Let us explain REGTT in Figure 3 by using
our motivating example in Figure 1. We will continue to
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Fig. 4: Query reordering for Figure 3. The nodes shown for
each query represent the work left by BFT in its worklist and
handled over to DFT.

assume that the warp size is 2. In addition, we assume that
d = 3. Figure 3(a) illustrates one case when both BFT and
DFT are performed in lockstep. Figure 3(b) illustrates another
case when both BFT and DFT are performed in non-lockstep.
Figure 4 shows how query reordering is performed. At the
BFT phase, the truncation histories for all the four queries A
— D are recorded in V' and transformed into the four sorting
keys stored in K. Note that W contains the work handled over
from BFT to DFT. Specifically, Wt] contains the root nodes
of a forest of subtrees to be visited in the DFT manner for its
corresponding query. For BFT, the four queries are processed
in the order of A, B, C and D (arbitrarily), so that A and B
are executed in one warp and C' and D are executed in another
warp. For DFT, its performance-enhancing order is found to
be A, C, D and B. As a result, A and C' will be regrouped
into one warp and D and B will be regrouped into another.
Compared with AUTOROPES as illustrated in Figure 2,
REGTT can make significant performance improvements, by
reducing branch divergence, improving memory coalescing,
and enhancing load balance (i.e., GPU resource utilization).

D. Implementing Our REGTT Approach

BFT and DFT are well-known techniques. In this section,
we describe our implementation of REGTT, by focusing on
how to reduce memory consumed by DFT (Section III-D1),
how to select reorder depths (Section III-D2), how to deal
with query-dependent traversal orders for sibling nodes (Sec-
tion III-D3), and how to reduce global memory access over-
head with simple data layout transformations (Section III-D4).

1) Reducing Memory Usage by Bit Vectors: In REGTT
(Algorithm 2), V; keeps track of the truncation history for
its corresponding query by both BFT and DFT. Due to the
nature of DFT, the space consumed by V; at the DFT phase
can be reduced significantly. V; can be limited to a bit vector
of size equal to the maximum depth of the search tree, by
re-cycling its bits in the DFT manner. How to limit the space
consumed by V; at the BFT phase is discussed below.

2) Selecting an Reorder Depth: We use a simple technique
to predict an reorder depth d to be used for a tree traversal
algorithm by combining profiling and regression analysis. In
Section IV, we show that this simple model is reasonably
precise for a set of five representative benchmarks evaluated.

The total execution time 7 elapsed on executing a tree
traversal algorithm under REGTT can be estimated as:

Q.size()

I=[—"———
ThreadCnt

()]



where T; is the time consumed by each iteration of the for
loop at Line 3 of Algorithm 2. I gives the total number of iter-
ations executed when all the queries in () are block-cyclically
distributed to all the available threads totaling T'hreadCnt.
The per-iteration execution time 7; can be broken into:

T, =TE +TE + TP )

which is the sum of the times spent at the three major phases
of REGTT: BFT, query reordering and DFT.

Let a search tree be k-ary with N nodes in total. In the
worst case, k7 represents the maximum number of nodes at
depth j (starting from 0). According to Observation 2, the
number of nodes visited at BFT is estimated roughly by:

e
NB = Z K = (3)
j=0

k—1

Thus, the number of nodes visited by DFT is estimated as:

kt—1
kE—1

NP=N_-NB=N-

“

For our parallelization approach, we consider three per-
formance metrics under a traversal strategy s € S, where
S = {B, D}, with B standing for BFT and D for DFT:

e M7: percentage of the number of times that an idle
thread visits a truncated node or no node at all (marked
by o in Figures 2 and 3) over the number of times that
any thread visits any node or no node at all

o Mi g\ percentage of the number of global load trans-
actions over the number of global load requests

o M3 percentage of divergent branches over the total
number of branches executed (at Line 5 of Algorithm 1)

Let P = {TI, MEM, BD}. We model each of these three
performance metrics as a quadratic function of d:

M =al xd®+b5 xd+c) ©)

where p € P. Here, a;, bf, and c; are coefficients to be found.

Recall that REGTT runs in two modes: lockstep and non-
lockstep. As illustrated in Figures 2 and 3, M7, is relevant to
lockstep while M3 gy and Mg are relevant to non-lockstep.
Thus, 77 and TP can be estimated as follows:

T8 _ pPZ x 08 x NB x ME; (lockstep)

’ pB x 08 x NB x ME gy x ME
7D _ pP x 0P x NP x ME, (lockstep)

P pP x 0P x NP x ME gy x MBp (non-lockstep)
where p® denotes the average processing time at a node for
each query and 6° denotes the percentage of nodes visited

(over IN®) under a particular traversal strategy s € S.
In (2), the query reordering time T/ can be estimated as:

(non-lockstep)

(N

TE = ¢ x NB ®)

where ¢ represents the average sorting time per node, subject
to the following constraint on global memory usage:

1
G > 3 x NB x ThreadCnt ©)

where G is the global memory size in bytes.

Combining (2) — (8) and then substituting into (1), we obtain
a function T' = f(d) that relates the execution time 7" to d. To
discover all the unknown coefficients in I" for a benchmark un-
der a particular traversal strategy, we execute it under REGTT
on GPUs for m times under different input queries ) with m
different values of d subject to (9), dy,d1, - - - d,—1, and record
the corresponding executions times as Ty, 71, - - - 17, —1. Given
the data set {(d;,T;) | 0 < ¢ < m}, we find all the unknown
coefficients in 7T for the benchmark by performing a non-
linear regression analysis. Finally, the optimal reorder depth
d for the benchmark can be found by solving the non-linear
function T' = f(d) subject to (9) by using a math tool, e.g.,
Mathematica assisted with its advanced visualization package.

3) Regulating Traversal Orders on Siblings: In Algo-
rithm 1, the order adopted for traversing the child nodes of
a parent node is left unspecified at Line 6. When there is
no preferable traversal order, such sibling nodes can always
be traversed from left to right. However, in some algorithms
such as Nearest Neighbor classification [5], the traversal order
for the child nodes at a particular parent node is decided at
run time. This is an optimization technique as visiting some
nodes earlier enables refining the truncation condition used
sooner, thereby allowing more nodes to be truncated in future
traversals. For such algorithms, non-lockstep works in the
usual way as different threads in the same warp can work on
different nodes at the same time. For lockstep, all the threads in
the same warp will select the traversal order for the child nodes
at a parent node by majority voting, by examining only the first
child node traversed by each thread, as in AUTOROPES [11].

4) Optimizing Memory Access: We improve memory ac-
cess efficiency by enhancing memory coalescing as follows:

e« When constructing a search tree, we store its nodes
consecutively in the global memory according to the order
in which they are likely to be accessed. The nodes at
depths less than d are stored in the BFT order. The
remaining ones are stored in the DFT order.

« In tree traversals, the same field of different struct objects
is often requested simultaneously by multiple threads,
which may cause great memory access overhead if the
requests cannot be coalesced. In order to avoid this, we
apply an AoS (Array of Structures) to SoA (Structure
of Arrays) transformation when the tree data are copied
from the host main memory to the device global memory.

IV. EVALUATION

We evaluate REGTT against the state-of-the-art, AU-
TOROPES [11], for parallelizing tree traversal algorithms on
five representative benchmarks. REGTT outperforms AU-
TOROPES by 1.66x on average, by enhancing load balance, im-
proving memory coalescing and reducing branch divergence.

A. Methodology

1) Experimental Setting: All experiments are conducted on
a Nvidia Tesla K20c GPU, which has 13 SMs with each SM
containing 192 SPs running at 706MHz. The GPU has 4GB of



TABLE I: Benchmark characteristics.

Bench-

Tree Construc-{Object Repre- Traversal Order for Sibling

mark L Description ‘#Objects #Queries tion Algorithm| sentation Tree Type Nodes at Line 6 of Algo. 1
BH astronomy si?rlllljl(; (til}(/) n 100,000 |10,000,000 bh-tree leaf nodes oct-tree fixed (left-to-right)
NN pattizriliarg::iggiﬁigtion ﬁngé?ghﬁf)ﬁeﬂ 100,000 [ 100,000 kd-tree leaf nodes |binary-tree dynamic (app-specific)
(ll((lil;) pattde?;argigéﬁigtion nef;;leclitnr%egﬁbl;rs 100,000 { 100,000 kd-tree all tree nodes |binary-tree dynamic (app-specific)
VP graphics ﬁngierilghgzarzest 100,000 [ 100,000 vp-tree all tree nodes |binary-tree dynamic (app-specific)
PC physics ﬁndfiﬁﬁnrjgugli):}:lrinog r;zii%ﬁsors 100,000 | 100,000 kd-tree leaf nodes |binary-tree fixed (left-to-right)

global memory and 48KB of shared memory per block. The
version of CUDA is 7.5 with compute capability 3.5.

2) Benchmarks: Table 1 lists a set of five benchmarks
from several real-world application areas as shown. To build
the search tree for a benchmark, we give its dataset size,
the algorithm used for its construction, the type of the tree
constructed (bh-tree [3], kd-tree [15] and vp-tree [5]), and
the number of queries issued. In the case of BH, the same
100,000 objects are issued in 100 time steps. In addition,
we also indicate whether the traversal order for sibling nodes
at Line 6 of Algorithm 1 is fixed (or static), e.g., from left
to right or dynamic (to be determined at run time). Finally,
NN and kNN are considered to be different (as shown in
Column “Object Representation”). In NN, the information
in the objects is stored in “leaf nodes” only. In kNN, such
information is also stored in interior nodes. This affects only
how visit() is executed at Line 4 of Algorithm 1.

3) Automatic Parallelization: Given a sequential tree
traversal algorithm (in C), REGTT applies Algorithm 2 to
automatically transform it into a CUDA program, which is
then compiled by the NVCC compiler under -O2. To provide
insights on our experimental results, the Nvidia profiler nvprof
is used to measure some metrics introduced in Section III-D2.

B. Performance Improvements

Table II compares REGTT and AUTOROPES under their
best threading configurations for the five benchmarks, with
each configuration identified by the total number of threads
created, i.e., ThreadCnt in Algorithm 2. As in [11], these
best configurations are found by experimentation. For REGTT,
the predicted reorder depths for these configurations are used
and will be discussed in Section IV-C1. The inputs used are
taken from [11] and explained briefly in Section IV-B2.

REGTT outperforms AUTOROPES by 1.66x on average. The
best speedup 8.24x is observed at PC with input Geocity in
non-lockstep. REGTT is inferior slightly at VP with Random
in lockstep (0.91x) and Covtype in non-lockstep (0.99x).

1) Benchmarks: The average speedups of REGTT over
AUTOROPES are 1.18x for BH, 1.82x for NN, 1.38x for kNN,
1.10x for VP, and 2.58x for PC under all the configurations
considered (with different inputs under the two execution
modes). PC is the best performer due to its fixed left-to-right
order for traversing all sibling nodes (Table I). While also
adopting the same fixed order, BH does not benefit as much
due to its relatively larger query reordering overhead incurred

on an oct-tree used. The remaining three benchmarks, VP, NN
and kNN, are all concerned with finding nearest neighbors, by
dynamically deciding the visitation orders for sibling nodes
(Table I). Among the three, VP is the worst performer while
NN is the best. As shown in Table I, NN and kNN’s search
trees are kd-trees while VP’s search tree is a vp-tree. In the
sequential setting (Algorithm 1), vp-trees are introduced to
solve nearest neighbor queries but may end up with too many
branches for high-dimensional datasets [16]. For each node,
VP visits its child node that most likely contains the nearest
neighbor. This way, VP can update its truncation condition
more effectively, thereby potentially skipping more nodes than
NN and kNN. Thus, REGTT is more effective for NN and kNN
than VP. Despite this, REGTT still outperforms AUTOROPES
slightly for VP, due to improved memory coalescing and GPU
resource utilization made at the DFT phase under most of
the configurations evaluated. Note that different parallelization
strategies may visit different numbers of nodes, affecting
possibly their performance but not correctness.

2) Inputs: All the inputs are taken from [11]. In particular,
Random is a dataset for objects with random information,
Plummer is a dataset for bodies of equal mass, Covtype
represents a forest cover dataset, Mnist is a dataset of
handwritten digits, and Geocity represents a 2-dimensional
point city location dataset. Plummer, Covtype, Mnist and
Geocity are derived from real-world applications, in which
objects tend to cluster together in space. Thus, REGTT always
performs better under one of these real inputs than Random,
as spatially close queries can be handled efficiently, initially
under BFT and later under DFT on reordered queries.

3) lockstep vs. non-lockstep: REGTT outperforms AU-
TOROPES by 1.34x in lockstep and 1.98x in non-lockstep.
In lockstep, REGTT improves performance by reducing the
number of threads idling on visiting a truncated node or no
node at all. In non-lockstep, REGTT improves performance
by enhancing memory coalescing and load balance as well as
reducing branch divergence. Thus, REGTT is more effective
for non-lockstep, as analyzed further in Section IV-C3.

C. Performance Analysis

We analyze our results by examining the effects of reorder
depths on performance (Section IV-C1), the effects of query re-
ordering on performance (Section IV-C2), and the correlations
of the performance improvements with the three performance
metrics introduced in Section III-D2 (Section IV-C3).



TABLE II: Performance results of comparing REGTT and AUTOROPES.

Lockstep Non-lockstep

Bencﬁ- Input Autoropes RegTT Speid)- Autoropes RegTT Sp e?d)-
mar ThreadCnt]|Time (ms) [ThreadCnt| d |Time (ms) P X) rhreadCnt | Time (ms) | ThreadCnt| d |Time (ms) up x
BH Plummer 174720 29775 199680 4 25271 1.18 199680 58087 291200 3 44237 1.31
Random 149760 31141 199680 3 28325 1.10 199680 39249 66560 4 34711 1.13
Covtype 66560 5091 174720 10 3255 1.56 58240 5006 33280 13 3572 1.40
NN Mnist 66560 5088 174720 10 3231 1.57 66560 5415 33280 13 4298 1.26
Random 133120 1524 174720 9 930 1.64 58240 660 33280 11 552 1.20
Geocity 66560 1552 133120 10 898 1.73 66560 2492 16640 11 593 4.20
Covtype 66560 5291 66560 5 3812 1.39 58240 725 266240 8 601 1.21
KNN Mnist 58240 5321 58240 5 3988 1.33 58240 1276 266240 8 1053 1.21
Random 66560 5367 58240 6 3810 1.41 58240 977 16640 10 739 1.32
Geocity 66560 3171 124800 4 1759 1.80 66560 14 33280 8 10 1.40
Covtype 66560 2483 349440 2 2241 1.11 133120 408 199680 2 412 0.99
VP Mnist 58240 3590 149760 2 3560 1.01 66560 1361 199680 2 1359 1.00
Random 66560 3520 266240 2 3852 091 66560 1329 199680 2 1326 1.00
Geocity 66560 190 399360 2 134 1.42 133120 25 49920 6 19 1.32
Covtype 16640 2918 116480 6 2309 1.26 83200 6505 16640 14 1892 3.44
PC Mnist 133120 1162 133120 6 946 1.23 66560 1502 66560 12 805 1.87
Random 66560 1938 99840 6 1597 1.21 66560 2785 16640 13 1271 2.19
Geocity 66560 1120 99840 8 909 1.23 116480 1573 133120 10 191 8.24
Average 80888.89 6124.56 | 165475.56 [5.56| 5045.94 1.34 90133.33 7188.28 | 107697.78 [8.33| 5424.50 1.98

1) Reorder Depths: Different benchmarks tend to settle
with different reorder depths at their best configurations, as
shown in Table II. When interpreting the reorder depths for
BH, we need to recall the fact that it uses an oct-tree (Table I).
As for VP, its reorder depths are small (i.e., 2 except for one
input) due to the nature of its vp-tree used, as discussed earlier
in Section IV-B1. We will analyze the speedups achieved by
REGTT with such small reorder depths in Section IV-C3.

In general, lockstep prefers reorder depths that are no larger
than non-lockstep (except for BH with P1lummer). In lockstep,
REGTT aims to improve only GPU resource utilization, which
is translated indirectly into performance. In non-lockstep,
REGTT reduces branch divergence and improves memory
coalescing, which are both related directly to performance.
As a result, with relatively larger reorder depths, more precise
truncation histories can be discovered, giving rise to greater
overall benefits to non-lockstep than lockstep.

Figure 5 shows the performance gaps of REGTT with the
predicted reorder depths used (in Table II) and their corre-
sponding optimal ones (found by exhaustive experimentation).
Our simple prediction model (Section III-D2) appears to be
reasonably accurate. The average gap is 1.06%, with the largest
being 8.07%, observed at PC with Mnist in non-lockstep. In
this case, the predicted reorder depth is 12 while the optimal
one is 11. With the suboptimal choice, REGTT still delivers
a speedup of 1.87x over AUTOROPES (Table II).

2) Query Reordering: To understand the effects of query
reordering on performance, Table III gives the speedups over
AUTOROPES with query reordering turned off (using the same
baseline as in Table II). These results demonstrate clearly its
significantly positive impact on performance. Without reorder-
ing, REGTT is not attractive, with 1.02x for lockstep and
1.01x for non-lockstep, on average. However, this does not
undermine the significant role that BFT plays when query
reordering is turned on. With BFT, we are able to keep track
of queries’ truncation histories effectively at the top of a tree

TABLE III: Speedups of REGTT over AUTOROPES without
query reordering.

Speedups (x)

Benchmark Input { Lockstep | Non-Lockstep %
BH Plummer 0.99 0.98
Random 1.00 0.96
Covtype 0.99 0.94
NN Mnist 0.98 0.92
Random 0.99 0.95
Geocity 0.99 0.99
Covtype 1.02 1.07
Mnist 1.01 1.08
kNN Random 1.01 1.02
Geocity 1.04 1.27
Covtype 0.99 0.96
VP Mnist 0.99 0.96
Random 0.99 0.96
Geocity 0.98 0.96
Covtype 1.15 0.99
pC Mnist 1.09 1.01
Random 1.03 0.94
Geocity 1.07 1.23
[ Average | [ 102 ] 1.01 l

without introducing much bookkeeping overhead, enabling
REGTT to achieve significant speedups over AUTOROPES.

For NN or PC with large reorder depths, REGTT is still
slightly superior over AUTOROPES without query reordering
due to improved memory coalescing and GPU resource utiliza-
tion at the BFT phase. In the case of VP with relatively smaller
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Fig. 5: Accuracies of predicted reorder depths in terms of
the execution times achieved (with the optimal REGTT as the
baseline).



reorder depths used, performing BFT before DFT without
applying query reordering is not beneficial.

3) Performance Metrics: Let us provide some insights on
the results given in Table II, by examining the correlations
between the speedups achieved by REGTT over AUTOROPES
with the three performance metrics, M1, Mygm and Mpp,
introduced in Section III-D2. Recall that M represents the
percentage of the threads idling on visiting a truncated node or
no node at all, My g\ captures the percentage of transactions
over all memory requests made, and Mpp measures the
percentage of divergent branches (at Line 5 of Algorithm 1)).

As discussed in Section III-D2, M is relevant to lockstep
while Myem and Mpp are relevant to non-lockstep. In
non-lockstep, there are some threads idling at the end of a
warp execution, as shown in Figure 3. However, My is
insignificant relative to Mygy and Mpp and thus ignored in
(7) and our analysis below. For lockstep, Myem and Mpp
can be regarded as 1 and 0, respectively. When parallelizing
an algorithm with lockstep, we strive to reduce its M.
When parallelizing an algorithm with non-lockstep, we strive
to reduce its Mygym and Mpp simultaneously.

Figure 6 depicts the measurements of the three metrics for
AUTOROPES and REGTT for all threading configurations in
Table II. For each metric, the lower a bar is, the better. For each
benchmark, we obtain My by instrumentation, and Mygm
and Mgp by tracking nvprof’s gld_transactions_per_request
and branch_efficiency events, respectively.

a) lockstep: Idle Threads: In this execution mode, AU-
TOROPES avoids branch divergence and the need to perform
memory coalescing across the tree nodes at the expense of
generating idle threads. REGTT improves its thread under-
utilization by rearranging queries so that more queries with
similar traversals are performed by the threads in the same
warp. As shown in Figure 6(a), REGTT has achieved a smaller
M1 than AUTOROPES for all the five benchmarks under all
the inputs tested, with an average reduction of 3.60%.

By reducing Mr, REGTT enables more threads to run
on more GPU cores, as ThreadCnt is always no smaller
under REGTT than AUTOROPES in their best threading con-
figurations (Table II). Consider kNN with Mnist. By using
the same configuration as REGTT, AUTOROPES cannot fully
utilize the resources available, causing it to drop from its peak
performance by 15.05%. Note that a small average reduction
of 3.60% in My is significant, since this enables REGTT
to more than double the number of threads utilized by AuU-
TOROPES, thereby improving the hardware resource utilization
and achieving an average speedup of 1.34x (Table II).

VP represents an interesting case. Due to the nature of
its VP-tree used, as discussed in Section IV-BI, its optimal
reorder depths are expected to be small, which are indeed the
smallest in Table II. In lockstep, d = 2 for all the four inputs
tested. Despite this, REGTT outperforms AUTOROPES under
the three real-world inputs, Covtype, Mnist and Geocity.
As the objects in these inputs tend to be highly clustered,
a fairly short truncation history can produce a performance-
enhancing better for DFT. For example, REGTT reduces Mg

B Plummer ZZ] Covtype EXA Mnist Y Random EE Geocity
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Fig. 6: Comparing AUTOROPES and REGTT in terms of My,
Myuewm and Mpp for all the configurations in Table II (X—B:
benchmark B parallelized by X € {Au, Re}, where Au stands
for AUTOROPES and Re for REGTT).

by 28.59% under the input Geocity compared to AUTOROPES,
resulting in a speedup of 1.42x. For Random, we see only a
small reduction of 1.16% in My, due to a random distribution
of its objects. However, REGTT is slower than AUTOROPES
by 0.91x. In this case, the benefit obtained by REGTT from
a small reduction in My is out-weighed by the extra cost
incurred due to REGTT’s visiting (redundantly) on some nodes
that happen to have been truncated by AUTOROPES.

b) non-lockstep: Memory Coalescing and Warp Diver-
gence: In this execution mode, AUTOROPES aims to improve
GPU resource utilization by allowing different threads in the
same warp to visit different nodes at the expense of memory-
access irregularity and branch divergence. REGTT attempts to
improve memory coalescing and reduce branch divergence by
reorganizing the queries processed so that similarly-behaved
queries can be executed by the threads in the same warp.

As shown in Figures 6(b) and (c), REGTT has improved
AUTOROPES in reducing Mygm and Mpp by 51.17% and
19.10%, respectively, on average. These reductions are largely
responsible for the speedups achieved by REGTT (Table II).
Note that REGTT has also obtained a better overall load bal-
ance than AUTOROPES by utilizing 19.49% more threads due
to improved intra-warp load balance (from query reordering).

In particular, REGTT has successfully reduced Mygym and
Mgpp for all the five benchmarks under all the inputs except
for VP under Random. In this exceptional case, REGTT has
increased Mygm by 3.36% but deceased Mpp by 2.22%.
Overall, no performance variation is observed.

Finally, REGTT is more effective in boosting the perfor-
mance of AUTOROPES in non-lockstep than lockstep (Table II).
This is because reducing Mygn and Mpp together in non-
lockstep is more beneficial than reducing My in lockstep.



V. RELATED WORK
A. Domain-Specific Techniques

In many applications where tree traversals are frequently
used, domain-specific knowledge has been used to guide
optimization. For ray tracing in graphics, two kd-tree traversal
algorithms, kd-restart and kd-backtrack, are demonstrated to
alleviate per-ray stack limits on GPUs [17]. With the same
objective, a tree traversal implementation for GPUs [18§]
creates neighbor cell links on the tree pointing to adjacent
nodes, and executes in the SIMT fashion for packets of rays.
For nearest neighbor classification in graphics and machine
learning, a kd-tree construction algorithm on GPUs [13] is
presented that selects a splitting plane heuristically and treats
large and small nodes differently. For n-body simulations in
astrophysics, one CUDA implementation [12] is designed to
minimize memory accesses and thread divergence with various
global and kernel-specific optimization techniques.

To reduce cache misses caused by irregular tree traversals,
sorting the queries into some order was tried before, such
as the domain-specific efforts made for ray tracing [14] and
n-body simulations [19]. REGTT accelerates tree traversals
without considering any application-specific knowledge.

B. General-Purpose Techniques

Many compiler techniques have been proposed to transform
tree traversal applications automatically to better utilize the
underlying hardware. We examine several below.

1) CPUs: To improve cache locality, point blocking [20]
applies loop tiling [21] to block frequently accessed nodes,
based on the queries sorted according to application semantics.
Traversal splicing [4] makes point blocking more general by
sorting the queries on-the-fly with a node accessing history
(rather than a truncation history as introduced in this paper).
These two approaches are later combined to exploit SIMD par-
allelism [22]. To facilitate traversing irregular data structures,
an intermediate language and a runtime scheduler are devel-
oped for efficient SIMD execution [23]. Code transformations
and scheduling strategies are combined to vectorize recursive,
task-parallel programs [24].

2) GPUs: G-Streamline [25] is designed to remove mem-
ory access and control flow irregularities through data re-
ordering and job swapping. HP-RDA [26] is introduced to
parallelize a reuse distance analysis by flattening a traditional
tree representation of memory access traces. To the best of our
knowledge, AUTOROPES [11], which is significantly improved
by REGTT in this paper, is the only general approach for
parallelizing tree traversals on GPUs previously.

VI. CONCLUSION

We introduce a general approach, REGTT, for efficiently
parallelizing tree traversals on GPUs. By exploiting tree
traversal regularities, which are neglected by the prior work,
we demonstrate that REGTT can outperform the state-of-the-
art significantly on five representative benchmarks tested. In
future work, we will explore new ways to reorder queries for
better performance. We will also investigate how to better

parallelize vp-tree-based algorithms with gradually-refinable
truncation conditions. Finally, we will generalize REGTT for
multiple GPUs and heterogeneous CPU-GPU systems.
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