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ABSTRACT
Despite the widespread adoption of heterogeneous clusters
in modern data centers, modeling heterogeneity is still a
big challenge, especially for large-scale MapReduce applica-
tions. In a CPU/GPU hybrid heterogeneous cluster, allocat-
ing more computing resources to a MapReduce application
does not always mean better performance, since simultane-
ously running CPU and GPU tasks will contend for shared
resources.

This paper proposes a heterogeneity model to predict the
shared resource contention between the simultaneously run-
ning tasks of a MapReduce application when heterogeneous
computing resources (e.g. CPUs and GPUs) are allocated.
To support the approach, we present a heterogeneous MapRe-
duce framework, Hadoop+, which enables CPUs and GPUs
to process big data coordinately, and leverages the hetero-
geneity model to assist users in selecting the computing re-
sources for different purposes.

Our experimental results show three benefits. First,
Hadoop+ exploits GPU capability, and achieves 1.4x to 16.1x
speedups over Hadoop for 5 real applications when running
individually. Second, the heterogeneity model can be used
to allocate GPUs among multiple simultaneously running
MapReduce applications, bringing up to 36.9% (17.6% in
average) speedup when multiple applications are running si-
multaneously. Third, the model is verified to be able to
select the optimal or most cost-effective resource consump-
tion.

1. INTRODUCTION
MapReduce is emerging as an important programming

model in data centers for large-scale data-parallel applica-

tions, due to the ease of development and deployment in
large-scale clusters. It has been widely used in a num-
ber of domains, including non-compute-intensive domains,
such as log analysis, and compute-intensive domains, such
as deep learning. To efficiently support these diverse appli-
cations, heterogeneous clusters are being widely adopted in
data centers, to gain advantages in performance and energy
consumption. In such heterogeneous clusters, for a MapRe-
duce application, both of its performance and cost would
vary with the consumed resources. Therefore, two questions
arise. First, how to select computing resources for a MapRe-
duce application under different user purposes, e.g., perfor-
mance or cost-efficiency? Second, how to allocate computing
resources across multiple simultaneously running MapRe-
duce applications? To answer the above two questions, a
heterogeneity model is required to model the behaviors of
MapReduce applications in heterogeneous clusters.

MapReduce was originally proposed by Google in 2004 [14],
which automatically divides large input data into multiple
splits for parallel processing in distributed environments.
Since then, a number of researchers have made great ef-
forts on implementing MapReduce on modern architectures.
As the multi-core CPU has become mainstream, Phoenix is
proposed to automatically distribute map and reduce tasks
on multiple cores in a single shared-memory machine [30].
Based on Phoenix, Ostrich partitions a MapReduce job into
a number of small sub-jobs, and iteratively processes one at
a time to use resources efficiently [9]. As GPUs are emerg-
ing, Mars [20] and MapCG [21] are proposed, which utilize
a large number of GPU threads for map and reduce tasks
and assign each thread a small number of (key, value) pairs
to process. As heterogeneous CPU/GPU clusters are emerg-
ing, HAPI [29] and HadoopCL [19] are proposed to integrate
OpenCL codes into MapReduce to enable the use of accel-
erators in heterogeneous clusters.

Despite the efforts on MapReduce framework on a variety
of architectures, modeling heterogeneity is still a big chal-
lenge for MapReduce applications. Consider a representa-
tive GPGPU platform, a six-core Intel Xeon E5-2620 con-
figured with two NVIDIA Tesla C2050 GPUs. The memory
controller and I/O resource are shared by the CPU cores
and GPUs (via corresponding host threads on the CPU).



When CPU and GPU tasks are running simultaneously, the
resource contention would bring unexpected performance in-
terference. We takeKNN as an example to demonstrate the
problem. When only one GPU task is running, the data pro-
cessing speed of 60MB/s can be attained, however, when we
launch a CPU task to work with the GPU task, the over-
all data processing speed (CPU+GPU) would decrease to
53MB/s. The reason is that resource contention slows the
GPU task down. It demonstrates that more resources do not
always bring performance gain (More details in Section 2).
Therefore it is challenging to model the performance
against different resource consumptions.

In this paper, we propose an approach to model the het-
erogeneity for MapReduce applications in heterogeneous clus-
ters. To this end, we introduce a heterogeneous MapReduce
framework, Hadoop+, which enables user-provided CUD-
A/OpenCL functions to be integrated as plug-ins into Hadoop.
Moreover, Hadoop+ enables users to tune and control the si-
multaneously running GPU and CPU tasks flexibly in order
to maximize data processing speed or select a most cost-
effective configuration.

This paper makes the following contributions:

• We present a Hadoop+ framework, which enables user-
provided CUDA/OpenCL Map and(or) Reduce func-
tions to be embedded into Hadoop as plug-ins, thereby
enabling CPUs and GPUs to process big data coordi-
nately. Our experimental results show that
Hadoop+ exploits the capability of GPUs, and achieves
speedups ranging from 1.4x to 16.1x over Hadoop for
5 real applications when running individually.

• We create a heterogeneity model to predict the shared
resource contention among simultaneously running het-
erogeneous tasks (CPU and GPU, and further pre-
dict the performance gain when allocating a comput-
ing resource to an application. ). Using the model
to allocate GPUs among applications achieves up to
36.9% (17.6% in average) performance improvement
when multiple MapReduce applications are running si-
multaneously.

• Our approach can assist users to select an optimal or
most cost-effective resource allocation strategy for an
application, with no need of running the application
under all possible resource allocation strategies.

The rest of the paper is organized as follows. Section 2
introduces the background and our motivation. Section 3
presents our Hadoop+ framework. Section 4 discusses our
methodology for modeling heterogeneity. Section 5 describes
our experimental validation. Section 6 discusses the related
work. Section 7 concludes.

2. BACKGROUND AND MOTIVATION

2.1 MapReduce
MapReduce [14] is a data-parallel programming model

for processing big data in data centers. Programmers are
only required to specify a Map function which takes a (key,
value) pair as input and generates a list of intermediate
(key, value) pairs, and a Reduce function which takes all
values associated with the same key and produces a list of
(key, value) pairs as output. The Apache Hadoop [5] is a

Java-based open-source implementation of MapReduce pro-
gramming model, built based on a distributed file system
(HDFS).

Algorithm 1 The KNN program in Hadoop
function Map(train, TEST )

Compute All Distances(train, TEST )
end function
function Reduce(test,DistanceOf(test, TRAIN))

Select TopK(Distance(test, TRAIN))
end function

Algorithm 1 shows the pseudo-code of K-nearest neigh-
bors (KNN) algorithm [11] written in Hadoop. KNN is a
widely used algorithm in classification. Given a set of train-
ing examples and a number of testing samples, it computes
the K nearest neighbors in the training set for each testing
sample.

The programmer only needs to implement the two func-
tions of MapReduce primitive Map and Reduce. In particu-
lar, Map takes one train sample (denoted as train) and the
test set (denoted as TEST ) as input, calculates the distance
of train to every item in the test set TEST , and Reduce gets
a list of distances attaching to the same test sample, selects
the topK nearest neighbors for each test sample.

The MapReduce framework automatically divides the in-
put data into multiple splits, which will be processed in par-
allel. Each split is processed by a map task, also called a
mapper. The outputs of the map tasks are grouped by key,
and the outputs with the same key are shuffled to one reduce
task (also called a reducer) for processing.

2.2 Motivation Example

2.2.1 Experimental Methodology

To examine the behavior of a MapReduce application
in heterogeneous clusters, we implement the above KNN in
the Hadoop+ framework, and more details of the framework
will be discussed in Section 3. Here, we only highlight some
features for discussing the motivation example:

• Hadoop+ will launch a user-provided map/reduce task
written with CUDA/OpenCL on a GPU, when a GPU
resource is available.

• Hadoop+ will also launch a traditional map/reduce
task on one or more CPU cores, in the same way with
Hadoop. The Hadoop Mapper or MultithreadedMapper
can be used to issue single-threaded or multi-threaded
map tasks.

The platform we use is an Intel six-core Xeon E5-2620
chip, configured with two NVIDIA Tesla C2050 GPUs. Other
hardware parameters and the parameters for KNN are listed
in Section 5. In this paper, we use the metric of data pro-
cessing speed to represent the performance of an application,
which is calculated with the equation:

dps = V/T (1)

where V represents the total data volume processed on the
cluster and T represents the time for processing the data.
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Figure 1: KNN’s data processing speed.

2.2.2 Key Observations
We evaluate 11 computing resource configurations, as

shown by the horizontal axis in Figure 1. Each configu-
ration is denoted as gG-cC-tT, where g represents for the
number of simultaneously running GPU map tasks, c for
the number of simultaneously running CPU tasks, and t for
the number of threads inside each CPU map task. Figure 1
shows the performance, with the vertical axis representing
the data processing speed. We make two significant obser-
vations from the results:

• Using two GPUs only brings very slight performance
gain over one GPU. When only one GPU is used, the
data processing speed is 60MB/s (the first bar in Fig-
ure 1). However, when another GPU is exploited si-
multaneously, the data processing speed is only slightly
increased to 65MB/s (the second bar in Figure 1).

• Coordinating CPUs together with one GPU leads to
worse performance than that of only using one GPU.
When only one GPU is used, the data processing speed
is 60MB/s (the first bar). However, When one or more
CPU tasks are running simultaneously with one GPU
task (bars 3-7), the overall performance would decrease
unexpectedly, varying from 58MB/s to 51MB/s. A
similar observation can be found for the configurations
containing two GPU tasks.

2.2.3 Analysis
First we demonstrate the different behaviors of a CPU

task and a GPU task in Hadoop+, as shown in Figure 2. As
the red line shows, the I/O traffic of a CPU task keeps almost
unchanged during the task execution. The reason is that
Hadoop+ leverages the execution mechanism in Hadoop for
CPU tasks, which iteratively reads only a small piece of
data and processes them quickly, thus the I/O traffic keeps
low. However, the behavior of the GPU task is different, as
shown by the blue line. To obtain high GPU occupancy, the
GPU task reads a chunk of data, transfers it to the GPU,
and launches the GPU kernel to process it, thus it exhibits
obvious phase behavior. In particular, the I/O traffic is high
when the GPU task is reading data from HDFS (via its host
thread), and low when the GPU task is executing the kernel.

To analyze the reason for the observations in Section 2.2.2,
we take one GPU task, denoted x, and examine its perfor-
mance under the 11 configurations. We find that the key
reason is shared I/O resource contention among CPU and
GPU tasks. To demonstrate this, we comment out the com-
putation in x and run it under the 11 configurations. In

��
���
���
���
���

�� ��� ��� ��� ��� ���� ���� ����

�	

��

�
��
��
���

�
	�
�

��������

������� �������

Figure 2: Behaviors of CPU/GPU tasks.
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Figure 3: KNN’s data reading speed.

this way, each GPU task reads a split from HDFS without
any following computations. Figure 3 shows the data read-
ing speed of x. When only x is running, the data reading
speed can reach 72MB/s (the first bar 1G-0C-0T), while it
drops to 36MB/s when another GPU task is running simul-
taneously (the second bar 2G-0C-0T). Furthermore, when 4
single-threaded CPU tasks and another GPU task are run-
ning together with x, its data reading speed would decrease
to only 14MB/s (the last bar 2G-4C-1T).

2.2.4 Summary - The Challenge
The observations and our analyses demonstrate that it is a

challenge to model the heterogeneity for MapReduce appli-
cations running in heterogeneous clusters. In particular, the
challenge can be summarized into the following questions:

• What factors would affect the performance gain when
allocating a computing resource to an application?

• How will the performance contribution of one comput-
ing resource, e.g., GPU, vary with applications?

• How to select a resource configuration for an applica-
tion for different purposes, e.g., to obtain best perfor-
mance, or to be most cost-effective?

3. HADOOP+ FRAMEWORK
Figure 4 gives an overview of our Hadoop+ framework.

Besides theMap and Reduce primitives in Hadoop, Hadoop+
provides another two primitives, PMap and PReduce, to pro-
grammers. The difference is that the PMap and PReduce
in Hadoop+ enable programmers to write explicit parallel
CUDA/OpenCL functions running on GPUs as plug-ins, as
shown by the box of “User-Provided PMap/PReduce Func-
tion” in Figure 4. Meanwhile, users can also use the Map
and Reduce functions in Hadoop. In Hadoop+, users can
provide Map, PMap or both, and Reduce, PReduce or both.

To support explicit parallel Map functions, Hadoop+ pro-
vides different input parameters for Map and PMap. In
particular, the input of Map is (key, value), while the input
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Figure 4: Overview of Hadoop+ framework. (Only parallel mapper is shown for clarity.)

of PMap is dataset, i.e., a list of (key, value). Meanwhile,
the input parameters for Reduce and PReduce are identical,
which are the outputs with the same key from all map tasks.
The PMap and PReduce functions are defined as follows:

PMap : (k1, v1) ∗ − > (k2, v2) ∗ .
PReduce : (k2, v2∗)− > (k2, v3) ∗ .
We continue to use the example of KNN to illustrate

Hadoop+. Algorithm 2 shows the pseudo code, with the
CUDA kernel omitted. Comparing with Algorithm 1, the
function takes a train dataset rather than an individual
train as the input, and writes explicitly parallel CUDA code
in PMap.

Algorithm 2 The KNN program in Hadoop+
function PMap(train dataset, TEST )

for all train in train dataset do
Compute Distances CUDA(train, TEST )
Insert Distance CUDA(train, TEST ) to TopK(TEST )

end for
end function
function Reduce(test,DistanceOf(test, TRAIN))

Select TopK(Distance(test, TRAIN))
end function

3.1 Overall Workflow
As Figure 4 shows, Hadoop+ also divides the input data

into multiple splits, which will be processed in parallel, with
each split being processed by a mapper. If a mapper does
not include PMap, the split is processed in the same way as
Hadoop, which processes the (key, value) pairs sequentially.
Otherwise, if a mapper includes PMap, each split is parsed
into a “dataset” before processing, which combines a list of
(key, value) pairs, together with the meta data describing
the format of the dataset. Programmers take the dataset
as the input of the PMap function, and Hadoop+ leverages
JNI (Jave Native Interface) to invoke the native functions.

Hadoop+ extends the resource manager in Hadoop for
managing the non-preemptible GPU resources, as shown by
the “GPU-Aware Resource Manager” in Figure 4. At run-
time, each map task has a “Resource Request Agent”, which
is responsible for requesting computing resources from the
“GPU-Aware Resource Manager”. For clarity, we denote the
map task which successfully obtains a GPU as a GPU map-

per. If a mapper does not successfully obtain a GPU, it
would be a CPU mapper and be processed in the same way
with Hadoop, so we discuss only the GPU mapper in this
section.

As in Hadoop, the input split is first read from HDFS
(Hadoop Distributed File System) and parsed into (key, value)
pairs by the RecordReader. To enable the (key, value) pairs
to be accessible and further processed by native functions,
we need to put them into a buffer that can be accessed by
both the Java and native codes. Therefore, we take advan-
tage of the DirectBuffer mechanism in Java, which re-
sides outside of the garbage-collected heap. In particular,
the Java code allocates a DirectBuffer and sequentially puts
(key, value) pairs into the buffer, and the native code reads
the buffer for processing. To assist the native code to cor-
rectly parse the buffer, Hadoop+ automatically generates
the meta data from the input file format description, which
is provided by users in an XML format. In particular, the
meta data serve to instruct the native code how to parse the
input file, as the RecordReader for Hadoop.

With the data in the DirectBuffer, the GPU mapper
processes the data with four steps. First, the data are pre-
processed with some built-in or user-defined functions by the
“Data Pre-Processor”, e.g., text parsing, byte order conver-
sion, etc. Second, the “Data Transfer Engine” accumulates
a chunk of data and transfers the data to the target device,
according to the obtained computing resource via “Resource
Request Agent”. Third, the “User-Provided PMap Func-
tion” would be invoked, and finally the output (key, value)
pairs are transferred back to Hadoop+ for shuffling. Thus
the mapper task terminates.

Afterwards, the output of the mappers with the same key
would be shuffled to one reducer, and the same workflow
in Figure 4 applies for parallel reducers. If no PReduce is
provided, the reducer would be processed in the same way
with Hadoop.

3.2 Resource Management
In Hadoop+, there are two components responsible for re-

source management. The “GPU-Aware Resource Manager”
is global and maintains all the resources in the cluster, serv-
ing all map and reduce tasks. The resource manager is lo-



cated on a preset node denoted as RM in Hadoop scheduler,
YARN [3]. And there is a “Resource Request Agent” for
an individual map or reduce task, to communicate with the
resource manager.

The resource manager maintains a pool for available GPUs,
to ensure that one GPU would not be allocated to multiple
tasks simultaneously. Each machine in the cluster updates
its own available GPUs to the resource manager per heart-
beat, which allows the resource manager to know the status
of all machines. The resource manager processes GPU re-
source requests from all tasks in an FIFO order by default.

For each task, the resource request agent automatically
detects user-provided native functions. If CUDA or OpenCL
functions are detected, it would request a GPU resource
from the resource manager. When the resource manager
receives the request, it seeks for a GPU on that machine.
Once the request is responded as success, the resource re-
quest agent would get the allocated GPU, and launch CUDA
or OpenCL kernels to the corresponding GPU.

Meanwhile, the resource manager maintains a model to
determine the resource configuration, i.e., the number of si-
multaneously running CPU and GPU tasks, together with
the number of threads for each CPU task. The model is
obtained using the approach in Section 4. It can assist users
to determine the resource configuration for an application
for different purposes, e.g., to obtain the best performance,
or the most cost-effective. Furthermore, it can be used to
allocate GPUs across multiple simultaneously running ap-
plications.

4. MODELING THE HETEROGENEITY
In this section, we continue to take KNN as our example

to answer the questions raised in Section 2.2.

4.1 Problem Formulation
The problem of modeling the resource heterogeneity per

node can be formulated as:
On a GPGPU platform with n GPUs, with the host CPU

having p cores, given a resource configuration, i.e., the num-
ber of GPU tasks (g), the number of CPU tasks (c), together
with the number of threads per CPU task (t), how to deter-
mine the data processing speed under the configuration for
any given MapReduce application?

We will continue to use the metric of data processing speed
introduced in Section 2. In particular, for the GPGPU plat-
form in the problem formulation, the data processing speed
of the platform is:

dps = c
tc + g

tg (2)

where tc is the time for processing a split using a CPU map-
per, and tg for a GPU mapper. 1

tc and 1
tg are the data

processing speeds of one CPU and GPU task respectively.
Therefore, the data processing speed of the platform is the
accumulated processing speed of the simultaneously running
c CPU tasks and g GPU tasks.

If a user aims to obtain the best-performing configuration,
we can use the model to maximize the dps. Alternatively,
users can also define other objectives, e.g., cost-efficiency,
which will be discussed in Section 5.

4.2 Characterizing A Task
In Equation 2, tc and tg would vary with the resource con-

figurations due to resource contention. It is impractical to

Table 1: List of parameters for modeling the dps.

Platform p number of CPU hardware threads
n number of GPUs

App.

tdc0 time of reading a split into CPU memory for
CPU base

tpc0 time of processing a split on CPU for
CPU base

tdg0 time of reading a split into CPU memory for
GPU base

tpg0 time of processing a split on GPU for
GPU base

tdcg0 time of transferring a split from CPU into
GPU memory

Conf.
g number of concurrent GPU tasks
c number of concurrent CPU tasks
t number of threads per CPU task

profile the processing time under all configurations. There-
fore, we model dps using the behavior of a single-threaded
CPU and a GPU task running individually on the platform,
to avoid profile space explosion. We call the two tasks as the
CPU base and GPU base of a MapReduce application on
the platform, denoted as βCPU and βGPU respectively.
First, we characterize βCPU and βGPU into two feature

vectors, one for CPU and the other for GPU.{
fvcpu(task) = (tdc0, tpc0)
fvgpu(task) = (tdg0, tdcg0, tpg0)

(3)

where the meanings of tdc0, tpc0, tdg0, tpg0 and tdcg0 are
listed in Table 1. We introduce a 0 in the subscript to em-
phasize that these features are collected only for the base
tasks. Therefore, the feature vectors are determined only
by the application and the platform, and do not vary with
configurations.

Note that the data reading time for βCPU and βGPU may
differ, due to the different data processing patterns on CPUs
and GPUs, as shown in Figure 2.

4.3 Modeling Data Processing Speed
For the problem in Section 4.1, given a configuration k, we

model the dps(k). In particular, a configuration k includes:
the number of GPU tasks running simultaneously (g), the
number of CPU tasks running simultaneously (c), and the
number of threads per CPU task (t). For clarity, we list the
parameters in our model in Table 1.

In this paper we focus only on data-local tasks, i.e., for
a task, its data are located on where the task is executed.
Modeling non-local tasks would introduce network cost and
is beyond the scope of this paper.

For a given task configuration k, the execution time of one
task can be computed using:

Tk =

{
tdc(k) + tpc(k), for CPU task
tdg(k) + tpg(k) + tdcg(k), for GPU task (4)

where tdc, tpc, tdg, tpg and tdcg are the same as in Table 1,
except that these variables represent the corresponding time
under a given configuration k. We observed that the time
of transferring data from CPU to GPU memory is much
less than the time spent on reading data from disk, i.e., 0.2
seconds vs 14.1 seconds for 1GB data. Therefore, we omit
the item of tdcg in Equation 4.
In particular, a map/reduce task can be divided into two

phases: data reading and computing. For GPU tasks, its
computation time tpg(k) does not change with configura-
tions. For multi-threaded CPU tasks, we assume the per-



formance would be perfectly scaled up with the number of
threads. The assumption is reasonable since MapReduce ap-
plications are data parallel and do not include synchroniza-
tion inside a task, and the performance interference across
multiple threads caused by shared cache and bandwidth con-
tentions can be predicted using the approach in [39], which
is ignored in this paper. So the data processing time under
a given configuration k can be computed using Equation 5,
and the data reading time will be discussed in Section 4.4.

{
tpc(k) = tpc0/t
tpg(k) = tpg0

(5)

4.4 Modeling Data Reading Time
In Hadoop+, the CPU and GPU tasks would contend for

the shared I/O resource, and we use map tasks for discus-
sion. As discussed in Section 2, the simultaneously running
tasks would cause shared I/O resource contention and in-
crease the data reading time for each task. Therefore for
the configuration parameters in Table 1, the number of si-
multaneously running CPU and GPU tasks (c and g) would
affect the data reading time.

We empirically observe that the data reading time is af-
fected by two factors: the total I/O traffic, and the number
of applications issuing I/O requests. Our methodology is
based on the observation as follows. First, we construct
a HDFS reader benchmark base which continuously reads
data from a HDFS file and includes no computation. We
launch base to run individually and record the data reading
time d0. Second, we create another HDFS reader bench-
mark hreader, which reads some bytes from a HDFS file
periodically. By adjusting the reading interval, we can vary
its I/O traffic. Then we co-run the hreader with base, and
record the data reading time of base. Third, we launch 2-5
hreader and vary their I/O traffic, co-run with base, and
record the data reading time of base. Finally, we plot these
points into Figures 5 and 6.

Figure 5 shows base’s data reading time varying with co-
runners. In particular, the vertical axis shows the data read-
ing time normalized to d0. Each color represents the data for
one fixed number of co-runners. It gives two observations: 1)
For a given number of co-runners, base’s data reading time
increases linearly with I/O traffic, until an upper bound is
reached. 2) The upper bound is determined by the number
of co-runners, which can be represented as a linear func-
tion, as shown in Figure 6. In particular, when n tasks are
reading a file from HDFS simultaneously, the maximal data
reading time is n times of base task, since only 1/n of the
I/O resource can be obtained for each task.

Thus, the data reading time can be represented as

tdc(k) = min(a ∗ sumio+ b, fmax(g + c ∗ t)) ∗ tdc0
tdg(k) = min(a ∗ sumio+ b, fmax(g + c ∗ t)) ∗ tdg0 (6)

where

fmax(n) = n, sumio = V S
tdc0+tpc0

∗ (c ∗ t) + V S
tdg0

∗ g (7)

In Equation 7, V S is the data volume of one split, there-
fore V S

tdg0
is the I/O traffic for a GPU task. For a CPU task,

due to the pattern of alternating data reading and comput-
ing, the exhibited average I/O traffic of each working thread
would be V S

tdc0+tpc0
. As a result, ( V S

tdc0+tpc0
∗ (c∗ t)+ V S

tdg0
∗g)

is the aggregated I/O traffic for all simultaneously running
tasks. The min function in Equation 6 means that the
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Figure 5: Data reading time with co-runners.
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Figure 6: Maximal data reading time.

maximal data reading time would not exceed the maximum
shown in Figure 6.

Note that the data reading model only depends on the
platform and does not depend on applications. We will
demonstrate this in Section 5.

4.5 Understanding the Motivation Example
Now we use KNN to answer the three questions raised in

Section 2.2.4.
Q:What factors would affect the performance gain when

allocating a computing resource to an application?
A:The performance is determined by the application’s fea-

ture vectors, i.e., the data reading time and computation
time. In other words, the performance gain is relevant to
the ratio between data reading and computation, and the
speedup of GPU computation over CPU computation for
the application.

Q:How will the performance contribution of one comput-
ing resource, i.e., GPU, vary with applications?

A:If an application’s data reading time makes up a high
proportion of the processing, more computing resources
would cause shared I/O resource contention, thereby result-
ing in little performance gain. Contrarily, if an application’s
computation time dominates the processing, more comput-
ing resources would bring significant performance gain.

For KNN, its feature vectors are fvcpu(KNN) = (14.1,
120.2), and fvgpu(KNN) = (14.1, 0.2, 2.9). For the GPU
base task, the data reading time is 14.1 seconds while the
processing time is only 2.9 seconds. Therefore KNN cannot
obtain a significant speedup when more computing resources
are allocated to it, as discussed in Section 2.

Q:How to select a resource configuration for an applica-
tion for different purposes, e.g., to obtain the best perfor-



mance, or to be the most cost-effective to satisfy some per-
formance requirement?

A:We can use our model to predict the data processing
speed under different resource configurations, as illustrated
in Figure 1, and select the resource configuration under dif-
ferent objectives. For KNN, the configuration of 2G-0C-0T
would exhibit the best performance, and the configuration
of 0G-6C-1T is the most cost-effective, as discussed in Sec-
tion 5.

4.6 Summary and Discussion
For an application, we run its GPU base and CPU base

independently and obtain its feature vectors. Then we use
our heterogeneity model to compute the data processing
speeds under different configurations, and determine the re-
source configuration for different purposes. In particular,
we leverage the data reading model in Equation 6 to predict
the data reading time, and Equation 5 to predict the data
processing time under different resource configurations.

So far our model does not consider the following issues,
which will be our future work. First, the model does not
include the resource contention for network communication.
Second, the model does not enable multiple GPU tasks to
run simultaneously on one GPU card. Third, the model
does not enable multiple tasks running simultaneously on
one hardware core.

5. EVALUATION

5.1 Platform and Benchmark
The heterogeneous cluster we use includes 8 nodes, with

each node being an Intel 2.00GHz six-core Xeon E5-2620
chip configured with two NVIDIA Tesla C2050 GPUs, and
each GPU has a 3GB global memory and 14 SMs, each con-
taining 32 Streaming Processors(SPs). Each SM has 32768
registers and a 48KB shared memory.

Our Hadoop+ is implemented based on Hadoop 2.1.0 beta.
We use the following big data applications for evaluation:

• K-nearest neighbors (KNN). Details of the algorithm
have been discussed in Section 2.

The base Hadoop version for comparison is implemented
using the algorithm presented in [11]. For fairness, we
also introduced a maximum heap in the version to se-
lect the top-K training examples before shuffling.

The input data size is 960GB. The dimension of input
is 128, the number of training examples is 977,054,400,
the number of testing examples is 448, and K is 4. The
split size is 1GB.

• K-Means Clustering (Kmeans). Kmeans partitions a
number of objects into k clusters such that similar ob-
jects belong to the same cluster [12].

The base Hadoop version for comparison is mahout-
0.7.0 [1].

The data set consists of 3,932,280,000 four-dimension
vectors. The number of clusters (K) is set to 100. The
split size is set as 1GB.

• Row Similarity (RS). The algorithm is typically used
in recommendation systems. It takes a number of vec-
tors as input, and computes the similarity between two
vectors of the inner product space.
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Figure 7: Speedup of Hadoop+ over Hadoop.

The base Hadoop version for comparison is mahout-
0.7.0 [1].

The dimension of vectors is 16,777,216, the number of
vectors is 8192, the sparsity is set to 0.0625, and the
split size is set as 1GB.

• Naive Bayes Classifier (NB). This is a popular method
for text categorization. It uses word frequencies as the
features, and judges documents as belonging to one
category of the other.

The base Hadoop version for comparison is mahout-
0.7.0 [1].

The size of the input data is 96GB, and the number of
classes is 20, and the split size is set as 1GB.

• Back Propagation (BP). This is a classical algorithm
for training artificial neural networks. It calculates
the gradient of a loss function with respects to all the
weights in the network, and iteratively updates the
weights to minimize the loss function.

We implement the Hadoop version and Hadoop+ ver-
sion using the approach in [25].

The training data are 1,024,000 48-dimension vectors.
The number of nodes in hidden layer and output layer
is set to 65536 and 48 respectively, and the split size
is set as 4MB.

For all the five applications we used, the map phase dom-
inates the execution. Therefore, we write the PMap func-
tions with CUDA using the Hadoop+ interface for GPU
acceleration, and keep using original Reduce functions for
the reduce phase. Meanwhile, the original Map functions
are also included for CPU tasks.

We evaluate Hadoop+ in two scenarios. First, the five ap-
plications are executed one by one in single-application sce-
nario and we evaluate the performance for each application.
Second, two of the five applications are launched simulta-
neously to emulate the multi-application scenario, and we
evaluate the completion time for the two applications. Sec-
tions 5.2 and 5.3 present the performance results for the two
scenarios respectively, Section 5.4 discusses the experimen-
tal results case by case, Section 5.5 verifies our performance
prediction model, and Section 5.6 demonstrates how to find
a cost-efficient resource consumption using our model.

5.2 Results in Single-App Scenario
In this section, we present the overall performance speedup

for the five application implemented in Hadoop+ over Hadoop.
To make a fair comparison, we also tune the optimal con-
figuration for Hadoop applications, which is identical for all
the five applications, i.e., 6 single-threaded CPU tasks.
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Figure 8: Performance improvement of configura-
tion selection using the heterogeneity model.
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Figure 9: Results in a multi-app scenario.

Figure 7 shows that Hadoop+ can achieve 1.4x to 16.1x
speedups over Hadoop. The benefit depends on the features
of applications, and we will further discuss it in Section 5.4.

Figure 8 shows the performance contribution of our het-
erogeneity model, with the obtained optimal task configu-
rations annotated on the horizontal axis. For each appli-
cation, the left bar shows the performance (normalized to
1) of the default configuration, i.e., 2G-4C-1T, and the right
bar shows the normalized performance with the optimal con-
figuration obtained using our heterogeneity model. For RS,
the obtained optimal configuration is identical to the default
value. For Kmeans and BP, the optimal configuration brings
only 1.1% and 0.7% performance improvement. However, for
KNN and NB, the optimal configuration would bring 36.0%
and 8.3% performance improvement respectively.

5.3 Results in Multi-App Scenario
Using the 5 applications, we generate C2

5 = 10 pair-wise
combinations to evaluate the multi-application scenario. With-
out our heterogeneity model, FIFO scheduler is used to allo-
cate GPUs among the simultaneously running applications.
With the heterogeneity model, we can allocate GPUs to the
applications for which GPU can bring more performance
gain. In particular, for two simultaneously running appli-
cations A and B, if A is predicted to be able to get more
performance gain from GPUs than B, A would be given
high priority to obtain GPUs.

Figure 9 shows the normalized completion time for each
combination, with each group representing for one combi-
nation. For each combination, the first bar represents the
completion time when FIFO scheduler is used without the
heterogeneity model, and the second bar represents the com-
pletion time when GPUs are allocated using the heterogene-
ity model. As shown in Figure 9, for the 10 combinations,
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Figure 10: Normalized data processing time.

our performance model would reduce the completion time
up to 36.9%, with the average of 17.6%.

From Figure 9, we make the following observations:

• For a given pair-wise combination, if each application
can get significant benefit from GPUs, the GPU al-
location strategy would not bring significant perfor-
mance improvement for the combination. In partic-
ular, the combinations of Kmeans+RS, Kmeans+BP,
and RS+BP belong to this category.

• For a given pair-wise combination, if one application
can get significant benefit from GPUs while the other
cannot, the GPU allocation strategy would bring sig-
nificant performance improvement. The other 7 com-
binations belong to this category.

5.4 Case Study
As we discussed earlier, the performance gain from lever-

aging GPUs depends on two issues: the ratio between data
reading and computation, and the speedup of GPU com-
putation over CPU computation. In this section, we use
experimental results to demonstrate the analysis.

To analyze the application features, we use Figure 10 to
break down the data reading time and computation time
for GPU and CPU tasks. For each application, the left
bar shows the execution time of a CPU base task, which
is normalized to 1, and the right bar shows the execution
of a GPU base task, normalized by the CPU base’s execu-
tion time. Furthermore, both bars are broken down into
data reading time (the dark blue section on the bottom)
and computation time (the light blue section on the top).

We take KNN for the first case study, the speedup of
Hadoop+ with GPU over Hadoop is 1.4x, since the data
reading time dominates the data processing time for the
GPU task, i.e., the data reading takes 14.1 seconds while
the computation takes only 2.9 seconds. Even if the GPU
task exhibits a significant speedup over CPU computation
(2.9 seconds vs 120.2 seconds), the high proportion of I/O
reading time makes the GPU speedup concealed from the
perspective of the whole application execution. In particu-
lar, Hadoop issues 6 CPU single-threaded tasks to run si-
multaneously, and can complete 6 splits in 138.9 seconds,
while Hadoop+ can process one split in 17.0 seconds. Thus
the overall speedup is only 1.4x.

Kmeans, RS and BP exhibit different behaviors in Fig-
ure 10, for which the GPU task spends very little time on
data reading, thus the tasks are dominated by GPU com-
putations. For Kmeans, RS and BP, the data reading time
occupies less than 0.6% of the total execution time. Mean-
while, the computation on GPU obtains significant speedups
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Figure 11: KNN’s predicted data reading time.
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Figure 12: KNN’s predicted processing speed.

over CPU, i.e., 61.6x, 34.0x, and 22.6x for Kmeans, RS and
BP respectively. Therefore, they obtain 16.1x, 12.5x and
10.8x speedups over Hadoop respectively.

NB is an application in between the above two types. Its
data reading time occupies 53.9% of the total execution time
for GPU tasks, and the computation of GPU obtains 26.7x
speedup. Therefore, its performance is also in between the
above two types, i.e., 4.2x over Hadoop.

5.5 Model Verification
We use the configuration schemes in Figure 1 for our

model verification. Figure 11 shows the predicted and real
data reading time under different resource configurations for
KNN, with the left bars representing the predicted values,
and the right for the real values. The average error is only
5.9%. Furthermore, our model can accurately predict KNN’s
overall data processing speed of the whole cluster under dif-
ferent resource configurations (For clarity, each node in the
cluster shares the same resource configuration). Figure 12
shows the predicted and real data processing speed of the
cluster, with an average error of 3.8%.

Using the same approach, we can create the data process-
ing model for the other 4 applications. Due to space lim-
itations, we select five 2-GPU configurations to verify our
model. Figure 13 presents the experimental results for these
applications, and it shows that our model can accurately
predict the data processing speed under different resource
configurations, with an average error of 2.5%.

5.6 Cost Efficiency
In this section, we leverage our model to help users select

the most cost-effective resource configuration. We use the
official price of our CPU and GPU card to define the cost
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Figure 13: Predicted vs. measured data processing
speeds. (Normalized to dps on Hadoop.)
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Figure 14: Cost efficiency for KNN.

per time unit [4, 28]. In particular, the price of a CPU is
$408, with each core priced $68, and the price of a GPU
card is $2499. Therefore, if the cost per time unit of one
CPU core is normalized to 1, the cost per time unit of one
GPU card would be $36.8. To evaluate the cost efficiency,
we use the 11 configurations in Figure 1, together with 6
extra configurations with GPUs disabled.

Now we seek for the most cost-effective resource configu-
ration for each application. Given a MapReduce application
and a platform with p CPU cores and n GPUs, for a given
resource configuration, its cost-efficiency is defined as the
cost divided by the performance:

cost efficiency(k) = cost(k)/performance(k)
= (G ∗ g + C ∗ c ∗ t) ∗ (V/dps)/dps (8)

where G and C represent the cost per time unit for a GPU
card and a CPU core respectively. For a given configuration
k, it uses g GPUs and c ∗ t CPU cores, thus G ∗ g+C ∗ c ∗ t
is the accumulated cost per time unit of the configuration k,
and V/dps is the execution time. So (G∗g+C∗c∗t)∗(V/dps)
represents the total cost for completing the application, and
dps is used for representing the performance.

Figure 14 presents the cost efficiency for KNN, which
shows that the most cost-effective configuration is using only
CPUs (0G-6C-1T). Table 2 lists the most cost-effective con-
figurations obtained using our model for the 5 applications.
NB is similar to KNN, with the 0-GPU configuration being
the most cost-effective. For Kmeans, BP and RS, leveraging
GPU would increase the cost efficiency, with Kmeans and
BP using 1 GPU, and RS using 2 GPUs.



Table 2: The most cost-effective configurations.
Benchmark g c t
KNN 0 6 1
Kmeans 1 0 0
RS 2 0 0
NB 0 4 1
BP 1 2 3

6. RELATED WORK
There has been a lot of work on developing MapReduce

frameworks on modern architectures, especially for GPU-
involved heterogeneous platforms/clusters.

On single-node GPGPU platform, Catanzaro et al pre-
sented a MapReduce framework which executes user-provided
mapper and reducer CUDA kernels on a GPU [7]. He et al
proposed Mars, which provides a similar MapReduce pro-
gramming API and introduces a sort stage to sort the in-
termediate (key, value) pairs [20]. Hong et al proposed
MapCG, another framework which can port user-provided
MapReduce programs to either CPU or GPU [21]. Compar-
ing with Mars, MapCG proposed a GPU-based hash table,
to avoid sorting intermediate (key, value) pairs before re-
duce [21]. Furthermore, Ji et al, Chen et al proposed to
use shared memory to optimize MapReduce framework on
GPUs [22, 8]. All these related work are single-node MapRe-
duce frameworks, requiring the data to be processed can fit
into a single GPU’s memory.

On GPU clusters, Stuart and Owen proposed GPMR, a
stand-alone C++-based MapReduce framework, which en-
ables user-written CUDA kernels. Meanwhile, GPMR in-
troduced a number of intermediate stages, such as partial
reduction and accumulation to minimize inter-node commu-
nication. Furthermore, GPMR also supports multiple GPUs
per node with dedicated processes for each GPU [32].

On CPU/GPGPU hybrid clusters, HAPI [29] and
HadoopCL [19] are representative work. Both of them use
APARAPI [18] to automatically generate GPU OpenCL ker-
nels from Java code. In particular, HAPI provides a hetero-
geneous mapper class, including preprocess, gpu and gpupro-
cess, which are provided by users. After users provide these
class implementations in Hadoop, HAPI can automatically
generate the corresponding OpenCL mapper kernel on GPU
using APARAPI. At runtime, the HAPI would invoke the
generated OpenCL kernel via JNI. HadoopCL further en-
hances HAPI to provide more friendly programming inter-
face for programmers. Glasswing [16] is another MapRe-
duce framework using OpenCL to exploit multi-core CPUs
and accelerators. It uses pipeline to overlap computation,
communication, memory transfer and disk access, and ex-
ploits fine-grained parallelism within each stage by taking
advantage of a variety of devices.

HAPI and HadoopCL are most closely related to our work.
However, our work has the following differences: 1) Hadoop+
takes the shared resource contention into consideration and
provides a heterogeneity model, to guide users to select their
desired resource utilization for the purposes of improving
performance or cost-efficiency, or to guide the GPU allo-
cation across multiple simultaneously running MapReduce
applications. Thus users can select specific computing re-
sources under different purposes. 2) Hadoop+ enables users
to provide explicitly parallel functions as plug-ins, thus it
can easily integrate existing high-performance libraries into

a large-scale data-processing framework, thus facilitating ex-
ploitations of GPUs in the Hadoop framework. 3) Hadoop+
enables the original Map and Reduce functions in Hadoop
to co-exist with user-provided explicitly parallel PMap and
PReduce functions. Thus users can take existing CUDA/
OpenCL codes, plug it into existing Hadoop programs, to
make the applications coordinately run on both CPUs and
GPUs. For example, in our evaluation, we directly down-
load the CUDA code of K-means from [2] and plug it into
the Hadoop implementation of K-means in mahout [1], thus
facilitating programming for heterogeneous clusters.

Performance degradation caused by shared resource con-
tention is another related area of our work. There has been
a lot of work addressing contentions on shared cache [10,
23, 38], memory bandwidth [15, 37, 36], memory subsys-
tem [26, 27, 40, 17, 33, 34, 39], and I/O resource [6, 35, 24].
Meanwhile, GPUPerf [31] has been developed to predict the
performance and understand bottlenecks of GPGPU appli-
cations. Our work focuses on MapReduce applications and
models their behaviors in heterogeneous clusters.

7. CONCLUSION AND FUTURE WORK
This paper presents a heterogeneous MapReduce frame-

work, Hadoop+, which enables user-provided explicit par-
allel functions written in native languages to be embedded
in Hadoop as plug-ins. Furthermore, we leverage Hadoop+
to model the heterogeneity for a MapReduce application,
thus determining the optimal or most cost-effective resource
configuration for an application. We evaluate the model
by using 5 real-world big data applications and demonstrate
that Hadoop+ enables users to exploit GPU capability, thus
achieving 1.4x–16.1x speedups over Hadoop for the 5 real ap-
plications. Moreover, the heterogeneity model can be used
to allocate GPUs among multiple simultaneously running
MapReduce applications, bringing up to 36.9% (17.6% in
average) performance improvement.

In future work, we plan to take the non-data-local tasks
into consideration. And we will extend this work to model
the heterogeneous resource contention for more distributed
computing applications, e.g., MPI applications, and for more
architectures, e.g., closely integrated on-chip GPUs. Fur-
thermore, we will consider to automatically generate CUDA
codes for MapReduce applications [13].
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