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ABSTRACT

Return-oriented programming (ROP) is an effective code-reuse at-
tack in which short code sequences (i.e., gadgets) ending in a ret
instruction are found within existing binaries and then executed
by taking control of the call stack. The shadow stack, control flow
integrity (CFI) and code (re)randomization are three popular tech-
niques for protecting programs against return address overwrites.
However, existing runtime rerandomization techniques operate on
concrete return addresses, requiring expensive pointer tracking.

By adding one level of indirection, we introduce BarRA, the first
shadow stack mechanism that applies continuous runtime reran-
domization to abstract return addresses for protecting their corre-
sponding concrete return addresses (protected also by CFI), thus
avoiding expensive pointer tracking. As a nice side-effect, BarRA
naturally combines the shadow stack, CFI and runtime rerandom-
ization in the same framework. The key novelty of BarRA, however,
is that once some abstract return addresses are leaked, BarRA will
enforce the burn-after-reading property by rerandomizing the map-
ping from the abstract to the concrete return address space in the
order of microseconds instead of seconds required for rerandomiz-
ing a concrete return address space. As a result, BarRA can be used
as a superior replacement for the shadow stack, as demonstrated by
comparing both using the 19 C/C++ benchmarks in SPEC CPU2006
(totalling 2,047,447 LOC) and analyzing a proof-of-concept attack,
provided that we can tolerate some slight binary code size increases
(by an average of 29.44%) and are willing to use 8MB of dedicated
memory for holding up to 220 return addresses (on a 64-bit platform).
Under an information leakage attack (for some return addresses),
the shadow stack is always vulnerable but BarRA is significantly
more resilient (by reducing an attacker’s success rate to 1

220 on
average). In terms of the average performance overhead introduced,
both are comparable: 6.09% (BarRA) vs. 5.38% (the shadow stack).

KEYWORDS

Shadow Stack, Runtime Rerandomization, Control Flow Integrity,
Return-Oriented Programming

∗Thanks to all the reviewers for their valuable comments. This research is supported
by an Australian Research Council grant (DP180104069).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380439

0

200

400

600

800

1000

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

# of Information Disclosure Vulnerabilities

Figure 1: Rise of information disclosure vulnerabilities [13].

1 INTRODUCTION

Software security is becoming increasingly important due to in-
creased reliance on computer systems. For performance reasons, C
and C++ are still the de facto languages for implementing OS ker-
nels, browsers and web servers. Due to their lack of memory safety,
security vulnerabilities such as buffer overflows are frequently
found in C/C++ software applications ranging from servers to em-
bedded systems [31, 32, 45, 46, 51]. This has allowed an attacker to
launch control-flow hijacking attacks to redirect execution to mali-
cious code by modifying code pointers such as return addresses on
the call stack [38]. Due to the widespread adoption of data execution
prevention (DEP) techniques such as W⊕ X [29], code-injection
attacks (which rely on malicious code injected into a program) [23]
are no longer threatening. To circumvent DEP, code reuse attacks
(which rely on malicious code formed from existing code fragments
known as gadgets) are becoming more prevalent [5, 8, 42]. In par-
ticular, return-oriented programming (ROP) [42] is an effective
code-reuse attack in which a return address on the call stack is
modified to redirect execution to a sequence of gadgets with each
ending in a ret instruction (ROP gadgets) to perform arbitrary ma-
licious computations. It is thus imperative to develop mitigation
techniques to protect programs against return address overwrites.

Problem Statement. A shadow stack [1, 3, 21] protects a func-
tion’s return address on the call stack by hiding it in the shadow
stack, which cannot be as easily modified by a buffer overflow hap-
pening on the call stack. However, this mechanism relies on informa-
tion hiding (for the shadow stack), and consequently, is vulnerable
to information disclosure and side-channel attacks [9, 16, 18, 36].
ASLR (Address Space Layout Randomization) [47], which random-
izes the locations of modules at load time, is also vulnerable to
information leakage attacks [9, 16, 18, 36]. As shown in Figure 1,
the number of information disclosure vulnerabilities reported on
the CVE website [13] has surged in recent years.

Control flow integrity (CFI) [1] can also be used to protect return
addresses, by limiting all ROP gadgets to a set of predefined return
addresses, but the resulting attack surface is still too large [7, 15].
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Given that some information leaks are detected during program
execution, we investigate how to apply continuous runtime reran-
domization to make the shadow stack significantly more secure.

Challenges. There are three challenges faced. First, how do we
provide lightweight runtime rerandomization, especially if it needs
to be frequently performed during program execution? Second,
how do we minimize the instrumentation overhead thus intro-
duced for maintaining the shadow stack? Finally, how can we make
the shadow stack significantly more secure by applying runtime
rerandomization, and possibly, CFI at the same time?

Prior Work: Rerandomizing Concrete Return Addresses. Ex-
isting runtime rerandomization techniques [4, 26] operate on con-
crete return addresses, and consequently, are applied to the call
stack directly. Once a return address on the call stack has been
leaked, indicating that it may soon be replaced by the address to
a ROP gadget, runtime rerandomization [4, 26] can be applied so
that the address of the ROP gadget becomes invalidated, thereby
mitigating the impact of information leakage. However, rerandom-
izing concrete return addresses requires expensive and difficult
pointer tracking. For example, RuntimeASLR [26] (a state-of-the-
art runtime rerandomizer) takes 35 seconds to track the pointers for
the nginx web server. Due to its excessive performance overhead,
RuntimeASLR rerandomizes a freshly-forked child process only
once, at the time of fork(), by reusing the pointer tracking results
of its parent (as the child process inherits the state of its parent
just before it starts its execution). By failing to rerandomize a child
process that has executed for a while, RuntimeASLR avoids the
costs incurred by new time-consuming pointer tracking operations,
but at the risk of being vulnerable to code-reuse attacks (Figure 1).

To the best of our knowledge, CFI [1] has been applied to protect
forward edges, i.e., indirect calls via function pointer and virtual
calls (instead of backward edges, i.e., return addresses). The research
on forward-edge CFI [21, 48? ] assumes usually that the shadow
stack mechanism is used for enforcing backward-edge CFI.

This Work: Rerandomizing Abstract Return Addresses. By
adding one level of indirection, we introduce the first shadow stack
mechanism, BarRA, that applies a novel runtime rerandomiza-
tion technique to rerandomize abstract return addresses in the
shadow stack to protect their corresponding concrete return ad-
dresses, thereby avoiding expensive pointer tracking as required
in RuntimeASLR [26]. Under some information leaks, BarRA will
immediately rerandomize the mapping from the abstract to the
concrete return address space in the order of microseconds instead
of seconds as required by RuntimeASLR [26]. This enforces the
burn-after-reading property, which requires all leaked (return ad-
dress) information to be made obsolete via rerandomization. As a
result, BarRA has made the traditional shadow stack significantly
more secure while incurring a comparable instrumentation over-
head on average. Finally, BarRA represents the first approach that
protects programs against return address overwrites by combining
the shadow stack, CFI and runtime rerandomization altogether.

This paper makes the following two major contributions:

• We introduce a novel shadow stack mechanism that is ca-
pable of applying continuous microsecond-level runtime
rerandomization for protecting return addresses, making

the traditional shadow stack significantly more secure at
comparable performance overheads (Sections 2 and 3).

• We have implemented BarRA as a software hardening tool
and experimentally confirmed BarRA as a superior replace-
ment for the traditional shadow stack (Section 4). In our eval-
uation, we have used all the 19 C/C++ benchmarks in SPEC
CPU2006 (totalling 2,047,447 LOC) and a proof-of-concept at-
tack. In the case of information leakage, the shadow stack is
always vulnerable. However, if we can tolerate slight binary
code size increases (by an average of 29.44%) and are willing
to use 8MB of dedicated memory for holding up to 220 return
addresses (on a 64-bit platform), we can make BarRA signifi-
cantly more resilient than the traditional shadow stack by re-
ducing an attacker’s success rate to 1

220 on average. Both have
comparable average performance overheads: 6.09% (BarRA)
vs. 5.38% (the shadow stack).

2 BARRA: METHODOLOGY

We motivate our BarRA methodology by describing how we can
transform a traditional shadow stack into a significantly more se-
cure “burn-after-reading” shadow stack. Section 2.1 uses an example
to explain how a buffer overflow can lead to return address over-
writes on the call stack. Section 2.2 describes how this vulnerability
in the example can be exploited to launch a ROP attack. Continuing
with the same example, we describe why the traditional shadow
stack mechanism is vulnerable to ROP attacks in the presence of
information leakage (Section 2.3) and how our “burn-after-reading”
shadow stack is significantly more secure (Section 2.4).

2.1 Buffer Overflow Vulnerabilities

Figure 2 illustrates how a buffer overflow bug can cause the return
address of a function on the call stack to be modified.

high

low

01 void read_and_echo(void){

02 char buf[BUFSIZE];

03 gets(buf);

04 printf(buf);

05 }

06 void do_request(){

07 while(1){

08 read_and_echo();

09 }

10 }

ret addr

...

buf[ ]

ret addr

...

buf[ ]

do_request

read_and_echo

call stack

Figure 2: A buffer overflow vulnerability.

In lines 1-5, read_and_echo() reads some user input and saves
it in a local buffer buf. As the C library function дets() does not
check the capacity of buf, there is a buffer overflow vulnerability in
line 3. In addition, the C library function print f () invoked in line 4
also contains an information disclosure vulnerability [9] (exploited
in a proof-of-concept attack in Section 4). By inputting more data
than buf can hold, an attacker can corrupt the return address of
read_and_echo() on the call stack with one of her choosing. When
read_and_echo() returns, the control flow will be hijacked.
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2.2 Return Oriented Programming

Figure 3 illustrates a ROP attack [42], where three ROP gadgets, A,
B and C, are chained to compute *target = num. By exploiting
a buffer overflow vulnerability (Figure 2), an attacker can replace
the return address of read_and_echo() with the address of gadget
A. Once this victim function returns, gadgets A, B and C will be
triggered one by one, resulting in a control-flow hijacking attack.

...

addr of gadget C

num

addr of gadget B

target

addr of gadget A

...

addr of gadget C

num

addr of gadget B

target

addr of gadget A

call stack

03 pop %rsi

04 ret

01 pop %rdi

02 ret

05 mov %rsi,(%rdi)

06 ret

gadget C

gadget B

gadget A

ret slot

fake ret

fake ret

*target = num

Figure 3: A ROP attack (by exploiting, say, the buffer over-

flow vulnerability in read_and_echo() of Figure 2), where %rsi

contains the value of num and %rdi the value of target.

ROP is Turing complete [42]. As a special case, when a gadget
begins at the entry of a function, we have a so-called return-into-

libc attack [5, 42]. The C library function system("/bin/sh") is thus a
popular choice for hijacking the victim by launching an interactive
shell (in a proof-of-concept attack in Section 4).

2.3 The Traditional Shadow Stack

To mitigate a ROP attack illustrated in Figure 3, a shadow stack has
traditionally been used to hide the return addresses on the call stack.
To prevent the return address of read_and_echo() from being over-
written, as shown in Figure 4, the return address of read_and_echo()
is saved in the shadow stack at the offset −OFFSET + 8 + (%rsp)
(lines 3-4) on entering the function and restored (from the same
location) on leaving the function (lines 6-8). By convention, %rsp is
the standard stack pointer pointing to the top of the call stack. For
simplicity, the shadow stack is assumed to have the same size as
the call stack rather than as a FILO stack to save space [6, 21].

saved ret addr

...

saved ret addr

...

shadow stack

01 read_and_echo:

02 # save return address

03 popq -OFFSET(%rsp)

04 subq $8, %rsp

...

05 # retore return address

06 addq $8, %rsp

07 movq -OFFSET(%rsp),%r11

08 jmpq *%r11

ret addr

...

buf[ ]

ret addr

...

buf[ ]

call stack

Figure 4: The traditional shadow stack mechanism for pro-

tecting the return address of read_and_echo() in Figure 2.

As shown in Figure 4, the shadow stack usually appears below the
call stack at a fixed offset,OFFSET , which is generated randomly at

01 all_ret_addrs = {

02  ra_0, ra_1,..., ra_N-1

03 }

// mapping table

04 BAR_mtable[M]= {…,ra_2,…}

// indirect jump

05 ret_id = fetch_ret_id();

06 jmp BAR_mtable[ret_id]

ret addr

...

buf[ ]

ret addr

...

buf[ ]

call stack

(a) The BARRA stack instrumentation 

rand ret id

...

rand ret id

...

...

202

...

202

BARRA stack

...

  202

...

  202

204  => 
    gadget A

204  => 
    gadget A

read re-rand
...

8202

...

8202

attacked
...

204

...

204

8204  =>  gadget A
204    =>  non-gadget A 

rand 
ret id

204  => 
    non-gadget A

(b1) (b2) (b3) (b4) 

(b) Burn after reading 

BAR_mtable:

BARRA stack BARRA stack BARRA stack

BARRA stack

Figure 5: The burn-after-reading shadow stack for protect-

ing the return address of read_and_echo() in Figure 2 against

the ROP attack (with gadgets A – C) illustrated in Figure 3.

the beginning of program execution and then hidden subsequently,
say, in a read-only code section. This mechanism, which relies on
hiding the location of the shadow stack, is vulnerable to information
disclosure and side-channel attacks [9, 16, 18, 36].

As discussed already in Section 1, several complementary or
orthogonal mitigation techniques are ineffective: ASLR [47] (which
is still vulnerable to information disclosure and side-channel at-
tacks [9, 16, 18, 36]), CFI [7, 15] (which still has a large attack
surface), and runtime rerandomization on concrete return ad-
dresses [26] (which is too expensive in its pointer tracking op-
erations to be applied frequently, and is thus also vulnerable).

2.4 The “Burn-After-Reading” Shadow Stack

Figure 5 illustrates our BarRA methodology, with the underlying
shadow stack now referred to as the BarRA stack. Unlike the case
for the shadow stack, even if the location of the BarRA stack is
leaked, BarRA can still prevent the control flow from being hijacked
by modifying the return address of read_and_echo() with a high
probability, resulting in a significantly stronger security guarantee.

The key novelty of BarRA is to abstract a concrete return address
with a randomized return id and store the abstract return address
thus obtained in the BarRA stack. This one level of indirection
makes it possible to apply continuous runtime rerandomization
efficiently to the BarRA stack to enforce the burn-after-reading
property (requiring all leaked return ids to be made obsolete).

Figure 5(a) illustrates how the BarRA stack works. By apply-
ing program analysis, all the N return addresses in the program
are found and saved in all_ret_addrs (lines 1-3). During program
execution, a table, named BAR_mtable , of size M , where M ⩾ N ,
maintains a mapping from return ids to their concrete return ad-
dresses (line 4). When a BarRA-protected function returns, its
return id is fetched from the BarRA stack (line 5) and an indirect
jump is made to its corresponding concrete return address (line 6).
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Figure 6: The workflow of BarRA.

Figure 5(b) illustrates how BarRAmitigates the ROP attack with
gadgets A – C (Figure 3), where the attacker attempts to replace
the return id of read_and_echo() with the return id of gadget A.
Currently, the return id of read_and_echo() is 202 (Figure 5(b1)).
By performing some information leakage attacks, the attacker has
found the return id for gadget A to be 204. On detecting this in-
formation leak (Section 3.3), BarRA will enforce immediately the
burn-after-reading property as illustrated in Figure 5(b2). This is
done by rerandomizing the mapping BAR_mtable . Afterwards, as
shown in Figure 5(b3), the return ids for read_and_echo() and gad-
get A have been changed to 8202 and 8204, respectively. Even if the
attacker manages to replace the return id of read_and_echo() with
204 in the BarRA stack, as shown in Figure 5(b4), gadget A can no
longer be executed (as its return id is now 8204)!

To recap from Section 1, BarRA has several salient properties:
• Lightweight Runtime Rerandomization. Rerandomizing
BAR_mtable can be done simply by modifying a randomly gen-
erated offset added to all the return ids (moduloM). This requires
the return ids in the BarRA stack to be updated, in the order of mi-
croseconds instead of seconds as required by RuntimeASLR (due
to its expensive pointer tracking) [26], delivering a six-orders-of-
magnitude speedup.

• Low Instrumentation Overheads. BarRA exhibits compara-
ble instrumentation overheads as the shadow stack mechanism.

• Strong Security Guarantees. As the maximum number of re-
turn ids isM (the size of BAR_mtable), the chance of guessing cor-
rectly the return id for gadget A to be 8204 in Figure 5(b4) is only
1
M . If we use 8MB of memory (on a 64-bit platform) to implement
BAR_mtable (where M ≫ N is possible), an attacker’s success
rate is only 1

220 . Finally, unlike RuntimeASLR [26], BarRA inte-
grates CFI (by limiting all gadgets to be within all_ret_addrs in
Figure 5(a)) with the shadow stack and runtime rerandomization.

3 BARRA: DESIGN AND IMPLEMENTATION

We focus on protecting return addresses by adopting the same
threat model as before [1, 21, 47, 48, 52? , 53]. The attacker can read
any readable memory or write any writable memory by exploiting
existing vulnerabilities in order to hijack the control flow.

We have designed and implemented BarRA in the LLVM com-
piler tool chain, as shown in Figure 6. Given a C/C++ program, its
source files are compiled and linked by the LLVM tool chain into
a single LLVM-IR (known as bitcode). We use a compiler wrap-
per, WLLVM [39], to build a whole-program LLVM bitcode file.
The BarRA assembly instrumentator, which is added in this pa-
per, generates instrumented assembly code that is amenable to
lightweight runtime rerandomization on abstract return addresses.
Finally, the instrumented assembly code is assembled and linked
into a hardened binary by the assembler and linker, respectively.

As is standard, every function is assumed to have at most one
return instruction (with jumps added where appropriate).

Belowwe use an example given in Figure 7 to illustrate the instru-
mentation added by BarRA. For the motivating example repeated
in Figure 7(a), BarRA maintains the (unused) concrete return ad-
dresses in the call stack (for compatibility reasons) (Figure 7(b)) and
their abstract return ids in the BarRA stack (Figure 7(c)). Figure 7(d)
(Figure 7(e)) gives the instrumented code (data) section.

3.1 Data Instrumentation

Figure 7(e) lists an instrumented data section added, consisting
of a read-only table all_ret_addrs containing all the return ad-
dresses in the program (lines 24-34), a randomly generated value
BAR_randval (lines 35-42), and our mapping table BAR_mtable
(lines 43-50). Both BAR_randval and BAR_mtable reside in the
.BSS sections, and thus take no actual space in the object file.

In this example, all_ret_addrs of size N = 5 contains five re-
turn addresses. BAR_randval , which is a 8-byte value, is stored in
a 4096-byte page (on page-aligned boundaries) such that the entire
page can be set as read-only after BAR_randval has been gener-
ated after each round of runtime rerandomization. BAR_mtable
of size M , where M ⩾ N , will be initialized at load time, such
that ∀ 0 ⩽ i < N : BAR_mtable[i] = all_ret_addrs[i] and
∀ N ⩽ i < M : BAR_mtable[i] = address of a ROP catcher. When
an attacker tampers with the BarRA stack with a stale return id
mapped into the ROP catcher, a warning message can be issued.

In our approach, BAR_mtable is disclosed to the attacker. How-
ever, on detecting information leaks (or at the program startup),
every return id, i , will be changed randomly to (i + BAR_randval)
mod M , so that the burn-after-reading property is enforced.

To provide strong security guarantees, BAR_mtable should be
reasonably large. It is suggested to allocate 8MB of memory (on a 64-
bit platform) forBAR_mtable so that it can hold up toM = 0x100000
(i.e., 1M) return addresses. This way, an attacker’s success rate for
guessing the return id of a gadget correctly is only 1

M =
1
220 .

3.2 Code Instrumentation

Figure 7(d) shows how to instrument a call instruction and its
corresponding return instruction. We need to add instrumentation
code before the call for read_and_echo() (but after all its parameter-
pass instructions, if any) in do_request() (line 16). We also add
instrumentation code to replace the return instruction (not shown
explicitly) in read_and_echo(), whose (concrete) return address is
BAR_retaddr_2, i.e., 0x401296 and (abstract) return id is 2.

Unlike the shadow stack mechanism that instruments a call
instruction by adding its instrumentation code at the beginning of
all the callee functions (Figure 4), BarRA instruments all the calls
separately in order to also protect their return edges using CFI [1].
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01 void read_and_echo(void){

02 char buf[BUFSIZE];

03 gets(buf);

04 printf(buf);

05 }

06 void do_request(void){

07 while(1){

08 read_and_echo();

09 }

10 }

24 ###  void *all_ret_addrs[N]; 

###  N is 5.                  

25   .section .rodata

26   .type all_ret_addrs, @object

27   .globl all_ret_addrs

28  all_ret_addrs:

29   .quad BAR_retaddr_0

30   .quad BAR_retaddr_1

31   .quad BAR_retaddr_2

32   .quad BAR_retaddr_3

33   .quad BAR_retaddr_4

34   .size all_ret_addrs, 40 

35 ###  int BAR_randval;       

    ###  Random value          

36    type BAR_randval, @object

37   .globl BAR_randval

38   .bss

39   .p2align 12

40  BAR_randval:

41   .zero 4096

42   .size BAR_randval, 4096

43 ###  void *BAR_mtable[M];  

    ###  M is 0x100000.        

44    .type BAR_mtable, @object

45    .globl BAR_mtable

46    .bss

47   .p2align 12

48  BAR_mtable:

49   .zero 8388608

50   .size BAR_mtable, 8388608

11 do_request:

...

12  401274: 48 c7 c0 02 00 00 00   mov    $0x2,%rax

13  40127b: 48 03 04 25 00 50 e0 00   add    BAR_randval,%rax

14  401283: 48 25 ff ff 0f 00      and    $0xfffff,%rax

15  401289: 48 89 84 24 f8 ff ff fe   mov    %rax,-(BAR_OFFSET+8)(%rsp)

16  401291: e8 2a 00 00 00         callq  read_and_echo

17 BAR_retaddr_2:

    401296: ...

  

18 read_and_echo:

...

19  401311: 4c 8b 9c 24 00 00 00 ff   mov    -BAR_OFFSET(%rsp),%r11

20  401319: 4c 2b 1c 25 00 50 e0 00   sub    BAR_randval,%r11

21  401321: 49 81 e3 ff ff 0f 00   and    $0xfffff,%r11

22  401328: 48 83 c4 08            add    $0x8,%rsp

23  40132c: 42 ff 24 dd 00 50 60 00   jmpq   * BAR_mtable(,%r11,8)

(a) Source code

(d)  Instrumented code section (e)  Instrumented data section 

0x401296

...

0x401296

...

2 + BAR_randval

...

2 + BAR_randval

...

ret addr ret id

(c) BARRA stack(b) Call stack

Figure 7: BarRA’s instrumentation illustrated for an example program.

3.2.1 Call Instructions. For the call to read_and_echo(), our in-
strumentation code (lines 12-15) inserts its randomized return id
(2 + BAR_randval) mod M into the BarRA stack at its location
−BAR_OFFSET−8+(rsp), where themodulo operation is realized in
line 14. Here, (rsp) − 8 points to the return address BAR_retaddr_2
on the call stack. As in the case of the shadow stack (Section 2.3),
the BarRA stack appears below the call stack at a fixed distance of
BAR_OFFSET . In line 16, BAR_retaddr_2 will still be pushed into
the call stack even it is not used (for compatibility reasons).

3.2.2 Return Instructions. To replace the return instruction in
read_and_echo(), we rely on some instrumentation code again
(lines 19-22). In lines 19-21, we retrieve its return id saved after
undoing the rerandomization as (2 + BAR_randval) (line 19) −
BAR_randval (line 20) mod M (line 21) ≡ 2 from the BarRA
stack. In line 22, we adjust rsp by skipping the (unused) return
address BAR_retaddr_2 in the call stack for compatibility reasons.

3.3 Runtime Rerandomization

On detecting an information leak (or at the program startup),BarRA
will start a new round of runtime rerandomization (for the abstract
return addresses), by invoking rerandomize() in Figure 8. Instead of
rerandomizing BAR_mtable directly, we achieve the same effect (as
validated easily by inspecting lines 12-15 and 19-23 in Figure 7(d))
more efficiently by modifying BAR_randval randomly.

To randomize BAR_randval, as shown in Figure 8(a), we incre-
ment it by a randomly generated offset, curDelta (lines 13-15). We
then call update_BarRA _stack(rbp) to add this offset to the return
ids in the BarRA stack (lines 16-17). In line 16, rbp = GET_RBP()
is initialized to point to the beginning of the list of the frame point-
ers (rbps) saved on the call stack, as illustrated in Figure 8(b). By
traversing this list (lines 5-10), we can locate the return ids for all
the callers stored in the corresponding BarRA stack.

There are general approaches to detecting information leaks in
a program [19, 55]. In our evaluation, we monitor whether some
input/output functions such as дets() in Figure 7 are called (as
in [4]) and invoke rerandomize() as soon as this has happened.
Specifically, every input/output function can be hooked so that
rerandomize() will be always executed just before it. On arriving at
the server (where a BarRA-protected program is running) from a
remote attacker, a malicious packet will be handled by such hooked
functions, resulting in burn-after-reading (via rerandomization).

3.4 An Example

We revisit ourmotivating example by refining Figure 5(b) to Figure 9
to see how BarRA mitigates the ROP attack in Figure 3, in which
the attacker attempts to replace the return id of read_and_echo()
with the return id of gadget A in the BarRA stack.

At time t0, we have two return ids, 2 for read_and_echo() and
4 for gadget A. At the program startup t1, BAR_randval = 200
is generated. Just before read_and_echo() is called (lines 12-15 in

5
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...

return address

prev frame pointer

...

return address

prev frame pointer

...

return address

prev frame pointer

...

return address

prev frame pointer

call stack

GET_RBP()

BAR_OFFSET- sizeof(unsigned long) 

return id

...

return id

return id

...

return id

BARRA  stack

01 void * all_ret_addrs[N];  // all return addresses

02 void * BAR_mtable[M];  // BARRA mapping table 

03 int curDelta;  

04 void update_BARRA_stack(unsigned long rbp){

05     while(rbp != STACK_END){

06         unsigned long * pRetId = (unsigned long *)

07 (rbp + sizeof(unsigned long) - BAR_OFFSET);

08         *pRetId = (*pRetId + curDelta) % M;

09         rbp = *((unsigned long *)rbp);

10     }

11 }

 

12 void rerandomize(){

13     srandom (time (0));

14     curDelta = random() % M;

15     BAR_randval = (BAR_randval + curDelta) % M;

16     unsigned long  rbp = GET_RBP();

17     update_BARRA_stack(rbp);

18 }

BAR_randval

circular queue

0

N-1

M-1

(a) Algorithm for runtime rerandomization (b) Stack layout

Figure 8: BarRA’s runtime rerandomization (with the police icon representing the return ids mapped to a ROP catcher).

init read attacked return

t0 t1 t2 t3 t4 t5 t6 t7

curDelta 0 200 200 8000 8000 8000

BAR_randval 0 200 200 8200 8200 8200

return id 2 202 202 8202 204 (204 - 8200)%M

first ROP gadget id 4 204 204 8204 8204 8204

Figure 9: BarRA’s mitigation for the ROP attack in Figure 3

by protecting the return id of read_and_echo() in Figure 7.

Figure 7(d)), its randomized return id 202 is inserted into the BarRA
stack. The randomized return id for gadget A has been changed to
204, which is discovered by the attacker at t2. To enforce burn-after-
reading, BarRA calls rerandomize() at t3, so that BAR_randval =
curDelta + 200 = 8000 + 200 = 8200. At t4, the randomized return id
of read_and_echo() on the BarRA stack has been changed to 8202,
and the return id of gadget A has been re-randomized to 8204. With
the attack coming at t5, the randomized id 8202 on the BarRA stack
will be overwritten with a malicious but stale gadget id 204. When
the attacked function returns, the instrumented code in lines 19-22
in Figure 7(d) will generate a return id (204 − 8200)%M , which is
not gadget A. If (204 − 8200)%M represents our ROP catcher, then
the attack will be flagged at t7 (marked by the police icon).

4 EVALUATION

We have implemented BarRA in C/C++ in the LLVM compiler
tool chain. Currently, BarRA supports both 32-bit and 64-bit x86
assembly code.

To ensure that BarRA is compatible with closed-source, i.e.,
unprotected binaries, we have also implemented a simple static
analysis on top of SVF [44], an open-source pointer analysis frame-
work, to identify the functions in a software application that may
be called from closed-source binaries. These functions will be pro-
tected by the traditional shadow stack mechanism as their call

instructions cannot be instrumented. In future work, we will con-
sider binary instrumentation [28, 33] and disassembly [2, 30] to
provide full BarRA-protection for all the functions in the program.

Our evaluation demonstrates the efficiency and effectiveness of
BarRA in protecting return addresses in real-world applications
(with the shadow stack as the baseline). We have selected all the
19 C/C++ programs in SPEC CPU2006 (totaling 2,047,447 LOC),
including 67,855 functions and 339,983 call instructions (Table 3).

We have also developed a proof-of-concept attack, which works
by exploiting some format string vulnerabilities, such as CVE-2019-
7715 and CVE-2019-7712 on the CVE website [13]. We show that
under some information leakage attacks, the shadow stack is always
vulnerable but BarRA is substantially more secure.

We address the following three research questions (RQs):
• RQ1. Is BarRA’s runtime rerandomization lightweight?
• RQ2. Does BarRA have low instrumentation overheads?
• RQ3. Is BarRA effective in protecting return addresses in
the presence of information disclosure vulnerabilities?

Our platform consists of a 3.20 GHz Intel Xeon(R) E5-1660 v4
CPU with 256 GB memory, running the (64-bit) Ubuntu OS. All
the SPEC CPU2006 programs are compiled under the optimization
flag “-O2”. When running a program, the call stack used is 8MB (by
default) and its corresponding shadow/BarRA stack is also 8MB.
The time measurement for each metric is the average of 5 runs.

To enforce the burn-after-reading property, BarRA uses 8MB
of memory to implement its BAR_mtable as illustrated in Figure 7.
However, this is not needed by the traditional shadow stack.

4.1 RQ1: Lightweight Rerandomization

According to rerandomize() in Figure 8, the time spent in each round
of runtime rerandomization depends on the depth of the call stack.
By reading /proc/pid/stack for all the 19 SPEC CPU benchmarks,
the depths of their call stacks are found to be all under 256. To
cover more cases, we have written a range of test programs with

6
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Table 1: The times spent for BarRA to perform runtime

rerandomization under different call stack depths.

Call Stack Depth Time (microseconds)
64 2
128 2
256 3
512 5
1024 8
2048 17
4096 33
8192 63

Table 2: Comparing RuntimeASLR and BarRA.

RuntimeASLR BarRA
Address Space Concrete Abstract
Randomization Timing fork() Any Time
Coverage All Pointers Return Addresses
Pointer tracking ✓ ×

Burn-after-Reading × ✓
Overhead Seconds Microseconds

different call stack depths. The runtime rerandomization overheads
under different call stack depths are listed in Table 1. It is worth
emphasizing that no more than 3 microseconds are needed when
the call stack depth is below 256. Elsewhere [4], the average call
stack depth observed is much smaller. In general, the time taken by
rerandomize() is linearly proportional to the depth of the call stack.

Table 2 summarizes the major differences between BarRA (oper-
ating on an abstract address space) and RuntimeASLR [26] (a state-
of-the-art runtime rerandomizer operating on a concrete address
space), as already discussed in Section 2. RuntimeASLR rerandom-
izes all the pointers in the program. In contrast, BarRA rerandom-
izes only the return addresses (i.e., backward edges) while leaving
the protection of the forward edges to CFI [1]. By operating on a
concrete address space, RuntimeASLRmust perform expensive and
difficult pointer tracking. Due to its excessive overheads (e.g., 217
seconds for soplex ), RuntimeASLR opts to apply runtime rerandom-
ization to a child process only at the time of fork(), thus failing to
enforce the burn-after-reading property in the presence of frequent
information leakage attacks. In contrast, BarRA is lightweight, mak-
ing it suitable to enforce the burn-after-reading property whenever
some information leaks are detected.

In summary, BarRA performs runtime rerandomization in the
order of microseconds while RuntimeASLR operates in the order
of seconds. For the call stacks containing less than 256 calls, BarRA
turns out to be six-orders-of-magnitude faster (Table 1).

4.2 RQ2: Low Instrumentation Overheads

Table 3 lists the statistics for the 19 C/C++ SPEC benchmarks. For
each benchmark, #LOC, #Text, #Funs and #Calls give its source code
size, its binary code size, the number of its functions, and the num-
ber of its calls, respectively. Under “Inst Overheads” (Columns 6-7),
we see the instrumentation overheads introduced by the traditional

shadow stack and BarRA. Under “Code Size Increases” (Columns
8-9), we see the code size increases under two approaches.

Below we compare both approaches in terms of their instrumen-
tation overheads introduced and code size expansion incurred.

4.2.1 Instrumentation Overhead. Despite significantly stronger
guarantees provided (Section 4.3), BarRA exhibits comparable in-
strumentation overheads as the shadow stack, 5.38% for the shadow
stack vs. 6.09% for BarRA (on average), as revealed in Columns
6-7. These results correlate well with a similar number of instru-
mentation instructions executed under the shadow stack (Figure 4)
and BarRA (Figure 7). To instrument a call, BarRA introduces a
memory read (for BAR_randval ) in line 13 and a memory write in
line 15 (Figure 7). In contrast, the shadow stack adds the instrumen-
tation code at the beginning of each of its callee functions (Figure 4).
Its pop instruction (line 3) consists of essentially a read on the call
stack and a write on the shadow stack. As the page that contains
BAR_randval is accessed frequently, its cache hit rate is expected
to be high, reducing its memory read overhead. In addition, BarRA
uses two additional non-memory-access instructions (lines 12 and
14 in Figure 7), while the shadow stack uses only one (line 4 in
Figure 4). A similar analysis applies to the instrumented code for a
return instruction. Therefore, BarRA is expected to have similar
instrumentation overheads as the shadow stack.

4.2.2 Code Size Expansion. In order to protect return addresses
better than the shadow stack (Section 4.3), BarRA generates slightly
larger binaries across the benchmarks, 6.15% for the shadow stack
vs. 29.44% for BarRA (on average), as revealed in Columns 8-9. For
a program, the extra code added by BarRA consists of (1) a table
all_ret_addrs containing its return addresses (Figure 7(e)), (2) the
instrumentation code for its call instructions (lines 12-15 in Fig-
ure 7(d)), and (3) the instrumentation code for its return instructions
(lines 19-23 in Figure 7(d)). The total code size increase in (1) and
(2) is proportional to the number of call instructions while the code
size increase in (3) is proportional to the number of functions in the
program. In contrast, the number of instrumentation instructions
added by the shadow stack to a program is always proportional to
the number of its functions (Figure 4). As a program has usually
more calls than functions (Table 3), BarRA is expected to generate
slightly larger binaries than the shadow stack, but in return for
stronger security guarantees provided (as discussed below).

In our actual implementation, the three instrumentation instruc-
tions (lines 13-15 in Figure 7(d)) shared at all calls to a function are
factorized and moved to the beginning of the function.

4.3 RQ3: Strong Security Guarantees

First of all,BarRA hasmade a program’s attack surface substantially
smaller than the shadow stack. Due to the CFI property enforced
by BarRA, the attack surface is limited to the set of potential gad-
gets falling into all_ret_addrs (Figure 7(e)). For the shadow stack,
however, any gadget found in the program can be exploited.

In Figure 10, we demonstrate via a proof-of-concept attack that
the shadow stack is always vulnerable but BarRA is significantly
more secure in the presence of information leakage attacks. We
assume a 32-bit platform with 4-byte addresses. In Figure 10(a),
we have implemented a multiple-process echo server on Ubuntu

7
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Table 3: The statistics for the 19 C/C++ SPEC benchmarks.

Benchmark #LOC #Text #Funs #Calls Inst Overheads Code Size Increases
Shadow Stack BarRA Shadow Stack BarRA

bzip2 8381 83271 100 425 0.77% 3.74% 4.56% 18.07%
gcc 517621 4434399 5572 52763 3.16% 4.14% 3.13% 24.42%

gobmk 197303 1613664 2679 9980 5.65% 9.30% 1.80% 8.21%
h264ref 51752 692436 590 3543 1.93% 4.63% 2.32% 11.57%
hmmer 35992 345292 538 4086 0.57% 0.38% 4.65% 23.15%
lbm 1155 23518 19 71 -0.37% 5.17% 0.31% 13.75%

libquantum 4357 43429 115 556 0.54% 1.62% 8.82% 43.46%
mcf 2685 17381 24 79 4.35% 7.02% 18.36% 36.61%
milc 15042 141659 235 1619 1.07% 1.47% 5.64% 25.26%

perlbench 168274 1419350 1870 15334 3.34% 2.63% 3.41% 22.99%
sjeng 13847 155749 144 1361 4.04% 5.57% 2.56% 17.64%
sphinx 25104 205120 369 2753 0.20% 0.59% 3.86% 28.78%
astar 5842 49896 153 665 3.93% 4.44% 7.52% 36.92%
dealII 198642 4165302 19234 93380 29.81% 20.26% 12.07% 57.62%
namd 3188 477495 140 1497 0.68% 0.54% 1.72% 5.99%

omnetpp 48040 800247 2765 21041 15.69% 17.56% 9.08% 49.38%
povray 155163 1131443 2023 15114 17.14% 19.05% 4.64% 28.53%
soplex 41428 442572 1542 9867 8.63% 7.55% 9.14% 51.09%
Xalan 553631 5516159 29743 105849 1.12% 0.07% 13.31% 55.99%
Total 2,047,447 21,758,382 67,855 339,983

Average 5.38% 6.09% 6.15% 29.44%

Table 4: Read and write primitives by exploiting format strings in printf().

Read/Write Primitive Format String Example Semantics
Absolute write primitive %ku%hn printf("%65535u%hn", val, &cnt) Write two bytes, 0xFFFF (65535), to &cnt
Absolute read primitive %s printf("%s", &str) Read the content at &str
Relative read primitive %08x printf("%08x%08x%08x%08x%08x") Read the first five anonymous arguments
Relative read primitive %k$u printf("%3$u") Read the 3rd anonymous argument

(lines 1-23), which receives a message from a client and sends the
message back to the client via a socket connection. The code for
creating socket connections has been elided. The system call fork()
in line 13 creates a child process and dup2() in line 16 redirects the
standard I/O of the server to the socket connection, so that дets()
in line 3 will read a message from a remote client and printf() in
line 4 will send it back to the client. The source code in lines 1-10
is the same as that in the motivating example in Figure 2.

The attacker will exploit the format string vulnerability in printf()
in line 4. Some read and write primitives at his/her disposal are
listed in Table 4. As illustrated in Figure 10(b), there are two internal
pointers maintained in printf(): fmt initially points to the beginning
of the format string (line 24) and pArg is initialized to point to the
first anonymous argument on the stack (line 25). For a variadic
function like printf(), its number of anonymous arguments is de-
termined by parsing the format string pointed by fmt (lines 26-39).
All the format specifiers (substrings starting with ’%’) are handled
in the normal manner. In the special case when the formal specifier
is "%08x" (lines 28-32), the anonymous argument pointed by pArg

is printed as a sequence of 8 characters (with leading 0’s added if

necessary). Afterwards, pArg is made to point to next anonymous
argument. Once an attacker has controlled the format string, the
attacker can inspect the content in the call stack (by printing some
“anonymous arguments” never passed explicitly to printf()).

Let us explain first how this echo server, protected by the shadow
stack, will be smashed by a formal string attack launched from
printf() in line 4. We then discuss briefly why BarRA provides
significantly stronger security guarantees under the same attack.

4.3.1 Attacking the Traditional Shadow Stack. In Figure 10(c), a
shadow-stack-hardened echo server server_SS is listening on port
9999. Due to some information disclose attacks (by experiment-
ing with different probing format strings sent to the server), the
attacker has succeeded in obtaining the following valuable informa-
tion about the echo server: the return address of read_and_echo()
is 0x08048ea7 stored at 0xffc2c7cc in the call stack and also at
0xfec2c7d0 in the shadow stack, the C library function system()

resides at 0xf7e26da0, and the string "/bin/sh" starts at 0xf7f47a0b.
The attacker is now in action. In Figure 10(e), the attacker sends

a packet that contains a malicious format string to server_SS . For
8
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Table 5: BarRA’s three-in-one approach for protecting return addresses.

Mechanism Strengths Weaknesses
1 Shadow Stack Reducing Buffer Overflow Attacks Vulnerable to Information Leakage Attacks
2 Control flow integrity (Backward) Reducing Available ROP Gadgets Still Permitting Illegal Return Addresses
3 Runtime Rerandomization (Concrete) Alleviating Information Leakage Attacks Problematic Pointer Tracking
BarRA ( 1 + 2 + 3 (Abstract)) All the Above but without Pointer Tracking Probabilistic Protection

clarity, we have split it into multiple lines (lines 48-54). The ob-
jective, as indicated in the inline comments (lines 45-47), is to (1)
overwrite the return address of read_and_echo() in the shadow
stack by 0xf7e26da0 (the address of system()), as shown in Fig-
ure 10(g), and (2) restore the return address of read_and_echo() as
0x08048ea7 in the call stack (for a graceful exit without leaving any
trace) and inject 0xf7f47a0b (the address of "/bin/sh") into the call
stack (as the argument of system()), as shown in Figure 10(h).

When read_and_echo() returns, system("/bin/sh") will be exe-
cuted. The format string vulnerability at printf() in line 4 on the
server has resulted in a control-flow hijack, leading to an interac-
tive shell environment that the attacker can control remotely, as
shown in lines 55-56 of Figure 10(e). In line 55, the attacker enters a
command date , the reply (in line 56) from the server_SS indicates
that the attacker has succeeded in hijacking the remote server.

Below we explain briefly how the format string vulnerability at
printf() in line 4 is exploited to launch this attack. In line 3, дets()
reads the malicious format string prepared in lines 48-54 by the
attacker (Figure 10(e)) into buf stored in the call stack depicted
in Figure 10(g). Just before printf() starts its execution, its two
internal pointers, fmt and pArg, point to this format string and first
anonymous argument on the call stack, respectively. As there may
be some gap between buf and fmt (due to, e.g., register spilling), the
attacker may have to experiment with the right number of "%08x"’s
used in the malicious format string.

Let us focus on describing how 0xf7e26da0 (the address of
system()) is written into the shadow shadow as a fake return ad-
dress for read_and_echo(), as illustrated in Figure 10(g). The format
string parser used internally by printf() parses the first 16×3 regular
characters in lines 48-50, which are printed directly in lines 35-38.
Then in line 51, a sequence of five format specifiers "%0x8" are en-
countered. After having handled all these five formal specifiers in
lines 28-32 (with each printed as a sequence of 8 chars), pArg will be
lifted to point to buf. At this point, printf() has printed 16× 3+ 8× 5
characters after having processed lines 48-51. Next, printf() parses
"%27976u" in line 52, causing the current anonymous argument
on the call stack, i.e., 0x41414141 to be printed as 27976 charac-
ters. On encountering the first "%hn" in line 52, printf() has printed
16×3+8×5+27976, i.e., 0x6da0 characters, which are the lower two
bytes of the address of the function system(), i.e., 0xf7e26da0. This
value will be written to the shadow stack at 0xfec2c7d0 pointed by
the current anonymous argument on the call stack. After having
handled the remaining string "%35394u%hn" in line 52, the higher
two bytes of the address of system(). i.e., 0xf7e2 will be written to
the shadow stack at 0xfec2c7d2. By parsing lines 53-54 (the remain-
ing of the format string) in a similar manner, the return address of
read_and_echo(), i.e., 0x08048ea7 and the address of "/bin/sh" will
be written into the call stack, as shown in Figure 10(h).

4.3.2 Attacking the Burn-After-Reading BarRA Stack. Our BarRA-
hardened echo server, server_BarRA, listening on port 8080 as
shown in Figure 10(d), will be significantly more secure. The at-
tacker can obviously attempt to smash the server in a similar way
by exploiting a format string vulnerability as shown in Figure 10(f).
According to line 65, the attacker would like to replace the re-
turn id of read_and_echo() currently stored in the BarRA stack by
0x000000cc, i.e., 204 in line 65 (as per the comment in line 58) so
that the corresponding gadget (say, gadget A in Figure 3) will be
executed when read_and_echo() returns.

In order to discover this gadget, some information leakage at-
tacksmust bemade. As illustrated earlier in Figure 9, this will trigger
BarRA’s rerandomize() to rerandomize BAR_mtable by changing
204 randomly into, say, 8204, defeating effectively the attack as
shown in Figure 10(d). In our evaluation, BAR_mtable is of size
M = 220. The chance for guessing a gadget id correctly is very low,
i.e., 1

M =
1
220 only.

Due to the enforcement of CFI by BarRA, system() may no
longer be used as a gadget, as its address is not in BAR_mtable .

As shown in Figure 7(e), BAR_mtable of sizeM contains only N
return addresses in its first N slots, where M ⩾ N . All the other
slots are mapped to a ROP catcher. The possibility for the attacker
to be caught immediately by our ROP catcher is given by M−N

M .
If we are to forgo this instant attack-catching capability (as

demonstrated in Figure 10(d)), the slots filled with our ROP catcher
can be omitted to save memory. In this case, only a large virtual
(rather than physical) memory region needs to be allocated to
BAR_mtable to achieve a high entropy. Only when part of the
virtual memory region (containing no return addresses) is accessed
(attacked) will we need to allocate its corresponding physical pages.

4.3.3 Discussions. Therefore, BarRA represents a three-in-one so-
lution that combines naturally shadow stack, control flow integrity
and runtime rerandomization together to protect return addresses
against control-flow hijacks, as summarized now in Table 5.

In the absence of information leakage, BarRA provides the same
level of security guarantees as the traditional shadow stack mech-
anism in mitigating buffer overflow attacks. In the presence of
information leakage, however, the shadow stack becomes bypass-
able but BarRA will still provide strong security guarantees albeit
probabilistically. There are two reasons. First, BarRA restricts a
gadget to start only with an address maintained in all_ret_addrs
(Figure 7(e)) due to the CFI thus enforced. In contrast, the shadow
stack mechanism allows a gadget to start from any address. Second,
BarRA invokes immediately rerandomize() (Figure 8) to modify
the mapping maintained in BAR_mtable (on detecting an informa-
tion leakage), reducing significantly the chances for the attacker to
hijack the control flow successfully (as shown in Figure 5).

9
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44 U@ubuntu:echo$ ./client_SS 127.0.0.1 9999

    

45 // write 0xf7e26da0 to memory at 0xfec2c7d0

46 // write 0x08048ea7 to memory at 0xffc2c7d0

47 // write 0xf7f47a0b to memory at 0xffc2c7d4

48 \x41\x41\x41\x41\xd0\xc7\xc2\xfe

   \x41\x41\x41\x41\xd2\xc7\xc2\xfe

49 \x41\x41\x41\x41\xd0\xc7\xc2\xff

   \x41\x41\x41\x41\xd2\xc7\xc2\xff

50 \x41\x41\x41\x41\xd4\xc7\xc2\xff

   \x41\x41\x41\x41\xd6\xc7\xc2\xff

51 %08x%08x%08x%08x%08x

52 %27976u%hn%35394u%hn

53 %38597u%hn%31069u%hn

54 %29191u%hn%32233u%hn

55 $date

56 Fri Aug  2 22:50:27  2019

(e) Attack on the echo server hardened by the shadow stack

01 void read_and_echo(){

02 char buf[BUFSIZE];

03 gets(buf);

04 printf(buf);

05 }

06 void do_request(){

07 while(1){

08 read_and_echo();

09 }

10 }

11 void service(){

12 int status;

13 pid_t pid = fork();

14 if(pid == 0){ //child

15 //IO redirection

16 dup2(...); 

17 do_request();

18 exit(0);

19 }else if(pid > 0){

20 waitpid(...);

21 }

22 return 0;

23 }

...

...

0xfec2c7d2

0x41414141

0xfec2c7d0

0x41414141

...

...

0xfec2c7d2

0x41414141

0xfec2c7d0

0x41414141

%08x%08x%08x%08x%08x%27976u%hn%35394u%hn ...

int printf(char *fmt, ...)

fmt

return address

...

pArg

fmt

return address

...

pArg

buf[ ]

0xfec2c7d0

%08x

%08x

%08x

%08x

%27976u

%hn

%35394u

%hn

0xf7e26da00xf7e26da0

call stack

shadow stack
%08x

0xf7e26da0 is the address of the C library function system()

0xf7f47a0b

0x08048ea7

0x08048ea7

0xf7f47a0b

0x08048ea7

0x08048ea7

int system(char *command)

fake ret slot of system( )

command

“/bin/sh”

call stack

saved ret 

0xffc2c7d4

0xffc2c7d0

16*3 + 8*5 + 27976 = 28064 = 0x6da0

 28064 + 35394 = 0xf7e2

(g) Analysis of the malicious format string in (e)

57 U@ubuntu:echo$./client_BARRA 127.0.0.1 8080

58 // write 0x000000cc to memory at 0xfeb9a46c

59 // write 0x080493bf to memory at 0xffb9a470

60 // write 0xf7e4ba0b to memory at 0xffb9a474

61 \x41\x41\x41\x41\x6c\xa4\xb9\xfe

   \x41\x41\x41\x41\x6e\xa4\xb9\xfe

62 \x41\x41\x41\x41\x70\xa4\xb9\xff

   \x41\x41\x41\x41\x72\xa4\xb9\xff

63 \x41\x41\x41\x41\x74\xa4\xb9\xff

   \x41\x41\x41\x41\x76\xa4\xb9\xff

64 %08x%08x%08x%08x%08x

65 %116u%hn%65332u%hn

66 %37823u%hn%29765u%hn

67 %45575u%hn%15833u%hn

68 $date

69 The connection is closed by the remote server.    

(f) Attack on the echo server hardened by BARRA

(h) The call stack  when hijacked in (e)

system(“/bin/sh”)

24 int printf(char *fmt,...){

25  char *pArg =

     ((char *) &fmt)+sizeof(char*);

    // format string parser

26  while(*fmt){

27     if(*fmt == '%'){//parameter

28       if(is_equal(fmt,"%08x")){

29        int value = 

  *((int *)pArg);

30        output_hex(value, 0, 8);

31        pArg += sizeof(int);

32        fmt += strlen("%08x");

33       }else{//others

       ...

34       }

35     }else{ // regular character

36       output_char(*fmt);

37       fmt++;

38     }

39  }

40 }

(a) Echo server  (b) Pseudo code of printf()  

42 U@ubuntu:echo$./server_BARRA 8080

   Server is running ...... 

43 ###### rop_attack_detected #####

(d) Echo server hardened by BARRA 

BARRA

(c) Echo server hardened by the shadow stack 

41 U@ubuntu:echo$./server_SS 9999

   Server is running ...... 

0xffc2c7ccret slot of read_and_echo( )

Figure 10: Echo server hardened by BarRA and shadow stack.
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To launch a ROP attack by exploiting a vulnerability, the attacker
needs to chain together a number of ROP gadgets in the same
payload and then replace a legitimate return id with the return
id of the first gadget in the chain, as illustrated in Figure 3. With
runtime rerandomization in BarRA, the probability of guessing
such a correct return id to use is extremely low. If we useM = 8MB
of memory (on a 64-bit platform) to store BAR_mtable containing
N return addresses, where M ≫ N , the attacker’s success rate in
guessing a correct return id to use as a gadget is only 1

M =
1
220 .

BarRA applies runtime rerandomization by using the hooked
input/output functions as before [4]. By avoiding expensive pointer
tracking as in RuntimeASLR [26], BarRA can start a new round
of its microsecond-level rerandomization at any other time when
needed. To further reduce memory accesses in the instrumented
code, a dedicated register can be allocated for storing BAR_randval .

4.4 Limitations

To enforce burn-after-reading, and consequently, provide stronger
security guarantees than the shadow stack, BarRA needs to con-
sume extra memory for maintaining BAR_mtable to achieve a high
entropy (Figure 7(e)). With 8MB (on a 64-bit platform), we can
reduce an attacker’s success rate to 1

220 (as discussed above). In
addition, BarRA also generates slightly larger binaries (Table 3).

One policy for handling a multiple-threaded program is to let
every thread maintain a separate BarRA stack, protected by a
thread-local version of BAR_randval (say, in the thread local stor-
age %fs:BAR_randval@tpoff on x86). While avoiding the cross-
thread synchronization issue, this simple solution does not guar-
antee that all thread-specific versions of BAR_randval are updated
simultaneously, leading to potential cross-thread stack-smashing
attacks [50]. A more secure solution would be to maintain only
one single BAR_randval for all the threads and modify the thread
dispatcher to suspend all the threads in the current process when
runtime rerandomization occurs. We leave this to our future work.

Currently, we do not consider just-in-time code generation,
which can already be handled by some CFI techniques [34]. In
this case, BarRA can be extended to instrument the dynamically
generated code and update BAR_mtable appropriately.

5 RELATEDWORK

Low-level languages like C/C++ trade security guarantees for per-
formance advantages. The absence of bounds-checking leads to
memory errors [46] in C/C++ programs. StackGuard [11] inserts a
canary in every stack frame and then tests whether the canary on
the call stack has been corrupted or not when the corresponding
function returns. Despite its lightweightness, StackGuard is not
secure, as the attacker is still able to circumvent it by exploiting
some information disclosure vulnerabilities [9, 40].

SafeStack, as a part of the code pointer integrity project [25],
takes advantage of program transformation and information hiding
to hide all the code pointers of a program in the safe region. The
memory errors arising in the unsafe region do not compromise the
safety guarantees made for safe region. Thus, the integrity of code
pointers can be guaranteed. However, the safe region for a program
is too large and thus vulnerable to side channel attacks [16, 36].

SoftBound [31] enforces spatial memory safety for C programs.
By applying compile-time program transformations, SoftBound
works by maintaining and reasoning about the metadata (base ad-
dresses and bounds) for all the pointers in the program. Later, Soft-
Bound is augmented orthogonally to enforce also temporal memory
safety [32]. To provide both types of memory safety, however, the
combined instrumentation overhead is as high as 116%.

ASLR [47] randomizes the base addresses of code and data sec-
tions of a program at load time. In particular, ASR [17] performs
fine-grained rerandomization for the Minix 3 microkernel. CC-
FIR [54] applies coarse-grained CFI and randomization for binary
executables, but was shown later to be bypassable [15]. By exploit-
ing information disclosure attacks, JIT Code Reuse [43] reduces
the effectiveness of code randomization [20, 24, 37, 49]. Protec-
tion mechanisms that use secret memory regions to hide infor-
mation, such as CPI [25] and ASLR-Guard [27], can also be by-
passed [16, 18, 22]. In Readactor [12], all the code sections are
hidden but the code pointers in data sections are still exploitable.

Runtime rerandomization that operates on a concrete address
space requires expensive and difficult pointer tracking in a pro-
gram [26]. For complex C/C++ programs, existing pointer-tracking
techniques [10, 14, 41] are inadequate in discovering all kinds
of pointers reliably. With the support of a customized compiler,
TASR [4], which applies to C rather than C++, can rerandomize
the code sections of a C program at runtime, but it does not work
properly when function pointers are treated as data pointers. Run-
timeASLR [26] has reduced its false positive rate to a negligible
level, but still too costly (as discussed in Section 4.1).

In their seminal research on Control-Flow Integrity (CFI) [1],
Abadi et al observed that the control flow graph of a program is
an inherent property of the program and all runtime program exe-
cution paths should be constrained to be within the control flow
graph. Their work has spurred a great deal of research on enforcing
CFI [21, 35, 48, 52? , 53] and avoiding type-confusing errors [56? ]
in the past decade or so. To the best of our knowledge, CFI [1] has
been applied to protect forward edges, i.e., indirect calls via func-
tion pointer and virtual calls (instead of backward edges, i.e., return
addresses). The research on forward-edge CFI assumes usually that
the shadow stack mechanism is used for enforcing backward-edge
CFI [21, 48? ]. However, the shadow stack is vulnerable to infor-
mation leakage attacks, as demonstrated in our proof-of-concept
attack (Section 4.3). In contrast, BarRA provides a significantly
more secure mechanism for protecting return addresses, by enforc-
ing burn-after-reading via lightweight runtime rerandomization on
abstract return addresses.

6 CONCLUSION

In this paper, we introduce a novel shadow stack mechanism,
BarRA, that applies continuous lightweight runtime rerandom-
ization whenever some information leaks are detected, thereby
enforcing the burn-after-reading property and making the tradi-
tional shadow mechanism significantly more secure. Enforcing
burn-after-reading is essential for BarRA to mitigate information
disclosure vulnerabilities effectively. Performing lightweight run-
time rerandomization on abstract return addresses (with one level
of indirection) is the new enabling technology proposed here.
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