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Abstract—Many fault localization (FL) techniques have been
proposed to facilitate software debugging. Due to being
lightweight, spectrum-based fault localization (SBFL) is one of
the most popular FL families and widely deployed in program
repair tools. SBFL ranks program elements by recording the
program coverage under a test suite and calculates the suspi-
ciousness score of each element with a ranking formula. Despite
numerous formulae proposed, SBFL still suffers from providing
no new sources of information other than program coverage.
Mutation-based fault localization (MBFL) iteratively mutates a
faulty program and suggests fault locations through mutants that
overturn failed test cases. However, due to its explosive search
space, MBFL has been adopted by only few program repair tools.

In this paper, we aim at exploiting the advantages of MBFL
and boosting SBFL with low overhead by building a practical
FL tool. We propose FLIP, an FL technique with inferences from
mutated predicates. Based on SBFL, we leverage and extend the
predicate switching technique to infer fault locations no matter
whether the mutated predicate can overturn a failed test case or
not. Finally, we compute a new ranking list with a joint inference
that combines program coverage and mutation inferences.

We use Defects4j (version 1.5.0), containing 438 real-world
faults from six projects to evaluate FLIP. All the seven state-
of-the-art SBFL techniques benefit from FLIP (e.g., by ranking
up to 46.4% more faults in top-1) with low overhead (e.g., by
incurring less than 2-minute average overhead for each fault).
We also offer some insights on how to further improve FL on
real-world faults based on the empirical results.

Index Terms—fault localization, testing, debugging

I. INTRODUCTION

Debugging software is unavoidable, tedious, and time-
consuming in software engineering. To save developers from
this heavy work and reduce the cost of software maintenance,
advanced fault localization (FL) techniques, such as spectrum-
based [1–3, 18, 47, 56], slicing-based [12, 59], mutation-
based [32, 34] and machine-learning-based [49, 55] tech-
niques, have been proposed. FL techniques aim at automat-
ically finding the faulty elements in a buggy program by
collecting and analyzing its static or dynamic information.
Recently, automated program repair (APR) has attracted re-
searchers’ attentions with the majority of APR tools employing
FL tools in the first stage of an APR workflow [31, 33, 54].

Problem Statement. In this paper, we aim at designing an
FL approach to finding real-world faults. To meet the needs
of modern software debugging, an FL technique should be
precise (e.g., able to localize many faulty elements in top-
1) and efficient (e.g., able to do so in minutes instead of
hours). Besides, APR requires an FL tool to be fine-grained

Ochiai [2]: s(`) = NF (`)√
NF ·(NP(`)+NF (`))

Tarantula [18]: s(`) = NF (`)/NF
NF (`)/NF+NP(`)/NP

Jaccard [1]: s(`) = NF (`)
NF+NP(`)

Kulczynski2 [26]: s(`) = 1
2 (
NF (`)
NF + NF (`)

NF (`)+NP(`) )

DStar2 [47]: s(`) = NF (`)2
NP(`)+(NF−NF (`))

Zoltar [16]: s(`) = NF (`)
NF+NP(`)+

10000(NF−NF (`))NP (`)

NF (`)

Goodman [11]: s(`) = 3NF (`)−NF−NP(`)
NF (`)+NF+NP(`)

Fig. 1. Seven state-of-the-art SBFL formulae. NP (NF ) represents the
total number of passed (failed) test cases in the test suite. NP (`) (NF (`))
represents the number of passed (failed) test cases that cover the statement `.

(by, e.g., recognizing faulty elements at the statement level)
and applicable to general-type faults (e.g., without relying on
expert knowledge or program specifications).

Prior Work and Limitations. Spectrum-based fault lo-
calization (SBFL) represents one of the most popular FL
families [48]. For a given test suite, SBFL first records the
execution trace, i.e., program coverage for each test case,
together with the test result, and then calculates the suspicious-
ness score for each program element (e.g., class, method, or
statement) using a ranking formula. Elements that are covered
by more failed test cases and less passed test cases will receive
a higher suspiciousness score. In this paper, we investigate
FL at the statement level, which is quite fine-grained and
compatible with APR tools. Figure 1 lists seven state-of-
the-art SBFL techniques, in which s(`), the suspiciousness
score of a statement `, is calculated by the corresponding
ranking formula. SBFL does not rely on a model for the
tested system and can be easily integrated with existing testing
procedures. Because of its relatively small overhead, SBFL
is the most commonly used technique in APR [31, 33, 54].
However, SBFL only considers program coverage, which is
usually collected at the block level. Due to the lack of extra
information, the effectiveness of SBFL is limited even with a
learning model combining different SBFL techniques [61].

Another popular FL family is mutation-based fault local-
ization (MBFL) [32, 34], which iteratively mutates a faulty
program and tests mutants against the test cases. MBFL
suggests fault locations based on the following assumptions:
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Fig. 2. The workflow of FLIP.

• If mutating a statement ` makes more test cases pass, `
is likely to be the faulty statement.

• If no matter how a statement ` is mutated, the test result
will not be better, then ` is more likely to be correct.

Compared to SBFL, MBFL works at a more fine-grained
level, observing the effects of each statement on testing
results. However, mutating even just one statement will yield
a large number of possible mutants, resulting in the search
space explosion problem. Thus, MBFL may take hours per
fault [27, 36, 61], finding few adoptions in APR tools [29].

Challenges. There are two key challenges in developing an
effective and efficient FL technique. First, the effectiveness of
FL with a single-information source (e.g., program coverage
or mutation testing) is limited by the lack of other kinds
of information. Approaches from different FL families may
complement each other, but it is challenging to combine them
to achieve a better effectiveness. Second, the efficiency and
effectiveness dilemma arises when we combine different FL
techniques. Even with machine learning, we will still need to
collect information from different sources by recording pro-
gram coverage or running mutation testing, inevitably increas-
ing time overhead. Integrating more sources may achieve a
better effectiveness, at the expense of a greater time overhead.

Insights. When combining FL techniques from different
families, we should make full use of their respective advan-
tages during the analysis process instead of running them
independently before integrating their results. One possibility
is to apply a pre-analysis to SBFL so that we can then
subject only the statements with high suspiciousness scores
to mutation testing. Another possibility is to reap the benefits
from mutation testing, but in a time-controlled manner.

We build our work on top of predicate switching [57], a
lightweight MBFL technique. However, this technique con-
siders only the predicates as mutable elements and can thus
dramatically reduce the mutation search space, since a predi-
cate has only one of the two possible states (true and false).
If switching a predicate p makes a failed test case pass, p
is called a critical predicate and the faulty code may be
found by manually examining its root cause, which can be
assisted by dynamic slicing to reduce the number of potential
faulty statements found [57]. However, if the actual faulty

statement is far away from the critical predicate, quite a few
related statements may be sliced but without a relative ranking.
Besides, the critical predicate may not exist for a general fault.
Therefore, predicate switching has a limited application in FL
and so far only works for predicate-related faults in APR (e.g.,
ACS [51] uses predicate switching to locate faulty predicates).

Our Solution. In this paper, we propose FLIP, a lightweight
FL tool that combines two FL families, SBFL and MBFL, by
reaping both of their benefits. Figure 2 shows the workflow of
FLIP. First, we follow a standard SBFL workflow to collect
program coverage and compute a ranking list. Then we select
relatively highly ranked predicates for mutation testing. For
every mutated predicate, we make an inference as follows:
• For a critical predicate p, we collect all the statements

that may affect the values of p and regard them to be
suspicious statements executed by a failed test case.

• For an uncritical predicate p′, we collect all the statements
that only affect the values of p′ and regard them to be
less suspicious statements executed by a passed test case.

Through the above mutation inferences, FLIP can obtain
extra information from every mutated predicate no matter
whether it is critical or not, which can be further integrated
into the original program spectra seamlessly. Then we make a
joint inference with the original SBFL formula and rerank the
suspicious statements based on the enhanced program spectra.
This approach applies to all faults except for the program
without executed predicates, which is either rare or trivial.
In summary, this paper makes three main contributions:
• Novel Approach. We propose FLIP, a novel FL approach

for boosting SBFL by leveraging mutation testing, in
which non-program-coverage information can be inferred
from every mutation to improve the effectiveness of FL.

• Lightweight Technique. When leveraging mutation test-
ing, we only mutate selected predicates, with each pro-
ducing only one mutant for testing. On average, FLIP
spends less than 2 minutes for handling a single fault.

• Extensive Evaluation on Real-World Faults. We evaluate
FLIP on Defects4j (version 1.5.0), which contains 438
real-world faults from six projects. All the seven SBFL
techniques benefit from FLIP, e.g., by being now able
to rank up to 46.4% more faults in top-1. In addition,



Faulty Program Program Coverage Mutation Inference
t1 t2 t3 t4 t5 t6 Score Rank `879 `876 Score Rank

- public TimeSeries(...){
- ...;

175 this.data=new ArrayList(); 7 3 3 3 3 3 0.41 8 7 0.54 5 ↑
176 this.maxCount=Integer.MAX_VALUE; 7 3 3 3 3 3 0.41 8 0.29 8
177 this.maxAge=Long.MAX_VALUE; 7 3 3 3 3 3 0.41 8 0.29 8

- }
- public int getCount(...){

238 return this.data.size(); 7 3 3 3 3 3 0.41 8 7 0.54 5 ↑
- }
- public Object clone(){

857 Object clone=createCopy(0,getCount()-1); 7 3 3 0.58 2 7 0.71 1 ↑
858 return clone; 3 3 0.00 11 0.00 11

- }
- public TimeSeries createCopy(int s,int e){

876 if(s < 0){ 7 3 3 3 3 0.45 4 3 0.29 8 ↓
877 ...;//IllegalArgumentException is thrown 3 0.00 11 0.00 11

- }
879 if(e < s){ 7 3 3 3 3 0.45 4 7 0.58 2 ↑
880 ...;//IllegalArgumentException is thrown 7 3 0.71 1 0.50 3 ↓

- }
882 TimeSeries copy=(TimeSeries)super.clone(); 3 3 3 3 0.00 11 0.00 11

- ...;}

(a) The fault Chart-17 in Defects4j with its original and added program spectra. ti denotes the i-th test case.
3(7) indicates that the statement is executed by a passed (failed) test case.
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Fig. 3. A motivating example (with simplifications).

we provide some insights on how to further improve the
effectiveness of FL on real-world faults.

II. A MOTIVATING EXAMPLE

We use a real-world example to illustrate how FLIP com-
bines SBFL and MBFL to locate a faulty statement than either
approach alone. Figure 3(a) illustrates the fault, Chart-17
in Defects4j, found in the class TimeSeries.

First, we go through a standard SBFL workflow, running
test cases and recording the corresponding program coverage.
Since all the seven formulae in Figure 1 generate the same
ranking results for this fault, we use Ochiai as a representative
for illustrations below. As shown in Figure 3(a), there is one
failed test case t1 (NF = 1) and five passed test cases t2 – t6
(NP = 5). Figure 3(b) gives the call graph generated from t1.
The method main() calls the constructor TimeSeries(),
and then clone(), which calls createCopy() in `857 with
the return value of getCount() as one of its arguments.
The faulty statement is `857, which calls createCopy()
with wrong arguments and thus triggers an illegal argument
exception in `880. In the original program spectra comprising
program coverage only, `857 is executed by one failed test case
(NF (`857) = 1) and two passed test cases (NP(`857) = 2),
resulting in a suspiciousness score of 0.58, ranking behind
`880, which has the highest suspiciousness score 0.71.

To improve SBFL, FLIP works (by leveraging MBFL) as
follows. We explain its three steps below.

Step 1: Selecting and Mutating Predicates. First, we
select predicates for mutation testing. Instead of exhausting
all the predicates in the program, we will settle with only
relatively highly ranked ones in the original ranking list, since
they are more likely to be related to the fault. For the fault in
the example, only two predicates in `876 and `879 exist and
both happen to be selected and mutated, producing one mutant

for each (e.g., with the predicate in `876 mutated to s >= 0).
Then we test each mutant by rerunning the failed test case t1.

Step 2: Inferring from Mutated Predicates. After mu-
tation testing, t1 remains failed with the mutated `876 but
passes with the mutated `879. We can infer that the outcome
of the predicate in `879 (`876) is most likely wrong (correct)
when the original program runs under t1. For the predicate
in `879, FLIP collects all the statements that may affect its
values and will regard them as suspicious. Figure 3(c) gives
the data dependences on the predicate in `879. In addition to
`879, three other suspicious statements, `175, `238, and `857,
make it possible for the faulty statement `857 to be captured
successfully. FLIP also makes an inference from the mutated
predicate in `876, which fails to overturn t1, by assuming itself
and the other statements that only affect the outcome of `876
to be less suspicious. For the fault in the example, only `876
is relevant. We will elaborate the details in Section III-B2.

Step 3: Reranking with the Enhanced Program Spec-
tra. By mutation testing and inference, we have successfully
distilled not only program coverage but also some dependence-
related information from the program. To integrate all into the
original program spectra, we treat the statements inferred from
the critical (uncritical) predicates as the statements executed by
failed (passed) test cases. We then rerank suspicious statements
based on their suspiciousness scores calculated using the
ranking formula but on the enhanced program spectra. As
shown in the last column of Figure 3(a), the statements that are
assumed to be suspicious (less suspicious) found in mutation
inferences rank up (down), as desired, causing the actual
faulty statement `857 to rise from the second (when SBFL
is applied alone) to first in the ranking list (when MBFL is
also exploited), made possibly by our new approach.

With the enhanced program spectra, `857 will rank the
first as the most suspicious statement by all the seven SBFL
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formulae given in Figure 1, a result that is difficult to
achieve with program coverage or mutation inferences alone.
FLIP combines two complementary information sources to
achieve efficiently better results without any learning process.

III. APPROACH

We describe FLIP’s three steps for selecting and mutating
predicates (Section III-A), making inferences from mutated
predicates (Section III-B), and reranking suspicious statements
with the enhanced program spectra (Section III-C).

A. Selecting and Mutating Predicates

Once a faulty program has been pre-ranked by SBFL, we
only select top K predicates as mutation candidates. Currently,
we set K = 10 by default and will discuss how the value of K
affects the FL effectiveness in Section V-B1. This mechanism
increases our chances in obtaining fault-related information
through mutation testing efficiently (in a limited time).

Given a set of candidate predicates P = {p1, p2, ..., pK}, we
generate a set of program mutants M = {mp1

,mp2
, ...,mpK

},
in which the mutant mpi

is generated by transforming pi
to ¬pi in the original program. Then, we rerun the set of
failed test cases, TF , on each mp ∈M and divide P into the
following two sets according to the test results as follows:

∃ t ∈ TF , t passes on mp =⇒ p ∈ Pc

∀ t ∈ TF , t fails on mp =⇒ p ∈ Pu

where t denotes a test case in TF . Pc and Pu denote the set
of critical and uncritical predicates obtained, respectively.

As pointed out in [57], a predicate may be executed multiple
times in a test case, when, for example, it appears in a loop or
recursion. To find out whether such a predicate p is critical or
not, we need to enumerate all the possible states of p. Figure 4
illustrates the search space of p that is executed n times, where
n > 1, by a failed test case. Here, pi represents the outcome
(true or false) of p during its i-th execution. For every pi

(1 6 i 6 n), we may switch it or not, resulting in a huge search
space with a total of 2n − 1 possible combinations. Without
exhausting its search space, the predicate p is not necessarily
uncritical even if no failed test case passes. However, such an
exhaustive search is nevertheless impractical.

To balance performance and precision, we choose to switch
all the states of p (during all its possible executions) by
statically negating p. Then we keep p during the further
inference if it is critical and discard it if no failed test case has

Algorithm 1: Inferring from critical predicates
Input: a statement `p
Output: a set of statements Sp

1 Function CriticalSlicer(`p)
2 Let ex be an empty set;
3 foreach t ∈ TF do
4 if t passes on mp then
5 Add statements executed by t to ex;
6 return InterSlicer(`p, ∅, ex);
7 Function InterSlicer(`, Sp, ex)
8 Let mtd be the method containing `;
9 Let cfg be the control flow graph of mtd;

10 Let visited be an empty set;
11 Let workList be an empty stack;
12 workList.push(`);
13 while workList is not empty do
14 ` = workList.pop();
15 if ` ∈ visited then continue;
16 visited.add(`);
17 foreach `′ in cfg do
18 if `′ ∈ ex and `′

data−−−→ ` then
19 workList.push(`′);
20 Sp.addAll(visited);
21 if any statement in visited uses any of mtd’s

parameters then
22 foreach ` in mtd’s call sites in CallGraph do
23 if ` ∈ ex and ` /∈ Sp then
24 Sp.addAll(InterSlicer (`, Sp, ex));
25 return Sp;

passed. This mutation strategy can be extended by selectively
switching some states of p, by, e.g., selecting its first k states.

B. Inferring from Mutated Predicates

After mutation testing, we apply two different algorithms
to make mutation inferences from critical predicates (Sec-
tion III-B1) and uncritical predicates (Section III-B2).

1) Inferring from Critical Predicates: For any critical
predicate p ∈ Pc, we apply Algorithm 1 to collect a set
of statements Sp that may affect the values of p and will
classify them as being suspicious. For simplicity, our algorithm
assumes the absence of static variables in a program. However,
global variables can be handled in the standard manner [15].

Let us start with CriticalSlicer in lines 1-6. First,
we have ex, a set of statements executed by the test cases
failing on the original program but passing on mp. Then we
call InterSlicer to compute interprocedurally a backward
slice starting from `p, where the critical predicate p resides.

In InterSlicer (lines 7-25), we compute a backward
slice from the statement `, as is done traditionally [15, 45],
except that we consider only the data dependences and the
statements in ex in line 18. CallGraph in line 22 represents
the call graph of the program built using Soot [41].



Example 1. We use some examples in Figure 5 to explain
the reasons why we consider only data dependences while
ignoring control and potential dependences [5, 12].

1 a = x + y;
2 if(a > 0){
3 b = x - y;
4 if(a <= b){
5 ...;
6 }
7 }

8 a = x + y;
9 if(a > 0)
10 b = x - y;
11 else
12 b = x * y;
13 if(a <= b)
14 ...;

(a) Control dependence (b) Potential dependence

Fig. 5. Examples of control and potential dependences.

Figure 5(a) gives an example for illustrating control de-
pendences. The mutated predicate p resides in `4, which has
a control dependence on `2. However, `2 only affects the
execution of `4 but not the value of p. Since switching p can
produce a correct execution, we mark `2 as less suspicious and
do not include `2 in the slice. Note that the slice computed by
our mutation inferences is not required to be executable.

Figure 5(b) gives an example for illustrating potential de-
pendences. If the outcome of a branch guarded by a predicate
p does not affect the execution of a statement `, i.e., ` has
no control dependence on p, but affects the values of the
variables used in `, ` has a potential dependence on p. As
shown, the value of the mutated predicate p in `13 is potentially
affected by the outcome of the predicate in `9. Accounting
for such potential dependences will result in conservatively
an over-sized slice according to relevant slicing [5, 12, 59].
To obtain a more precise slice and locate execution omission
errors better, Zhang et al. [59] introduced the notion of implicit
dependences. For a potential dependence, if the outcome of
predicate p does affect the test result, by, e.g., making a
failed test case pass, it is called an implicit dependence.
In Figure 5(b), if switching the predicate in `9 makes a
failed test case pass, `13 has an implicit dependence on `9.
Keeping track of only implicit dependences instead of all
the potential dependences will significantly reduce the size
of a slice without missing the actual faulty statement. Thus,
Algorithm 1 captures only such implicit dependences. If the
actual faulty statement is `8 or `9, it can be captured when
we mutate `9 and infer from it, even if it is missed when we
mutate `13. As explained earlier, we have exploited predicate
switching [57] to improve SBFL by increasing the chances for
the predicate in `9 to be selected within a given time budget.

2) Inferring from Uncritical Predicates: For any uncritical
predicate p ∈ Pu that is executed only once, we apply
Algorithm 2 to collect a set of statements Sp that only affect
the value of p and regarded them as being less suspicious.

We use UncriticalSlicer to compute intraprocedu-
rally a slice Sp starting from `p, where the uncritical predicate
p resides. First, we compute ex, the set of statements executed
by all the failed test cases, in lines 2-4. As in the case of critical
predicates, we consider only data dependences in computing
the slice in lines 10-16. From Sp, we remove iteratively the

Algorithm 2: Inferring from uncritical predicates
Input: a statement `p
Output: a set of statements Sp

1 Function UncriticalSlicer(`p)
2 Let ex be an empty set;
3 foreach t ∈ TF do
4 Add statements executed by t to ex;
5 Let mtd be the method containing `p;
6 Let cfg be the control flow graph of mtd;
7 Let Sp be an empty set;
8 Let workList be an empty stack;
9 workList.push(`p);

10 while workList is not empty do
11 ` = workList.pop();
12 if ` ∈ Sp then continue;
13 Sp.add(`);
14 foreach `′ in cfg do
15 if `′ ∈ ex and `′

data−−−→ ` then
16 workList.push(`′);
17 do
18 Let rm be an empty set;
19 others = ex− Sp;
20 foreach ` ∈ Sp do
21 foreach `′ in cfg do
22 if `′ ∈ others and `

data−−−→ `′ then
23 rm.add(`); break;
24 Sp.removeAll(rm);
25 while rm 6= ∅;
26 return Sp;

1 a = x + y;
2 b = x - y;
3 if(a < b)
4 c = b;
5 else
6 c = -b;
7 return c;

1

238

857

876 879

2

3

4 6

7

(a) The example code (b) The data dependence graph

Fig. 6. An example of mutation inference from uncritical predicates.

statements that are dependent on by any executed statement
outside Sp in lines 17-25, until a fixed point has been achieved.

Example 2. Figure 6 gives an example for illustrating how
Algorithm 2 works. Figure 6(a) gives the code and Figure 6(b)
depicts the corresponding data dependence graph.

The candidate predicate p appears in `3. After mutation
testing, p is marked as uncritical. Then we conduct a backward
slicing from p, collecting the statements that `3 depends on
(`1 and `2). However, we keep `1 but remove `2:
• Since `1 affects only the value of p, `1 is more likely to

be correct. Otherwise, switching p would have removed
the effects of the faulty `1, causing p to be critical.

• The above inference does not apply to `2 because `2



affects not only p but also `4 and `6, and switching p
cannot guarantee that the effects of `2 will be removed.

C. Reranking with the Enhanced Program Spectra

To integrate two information sources, we can think of
mutation inferences as also a process of discovering program
coverage so that we can obtain a joint program spectra,
together with SBFL, as motivated in Section II. Inspired
by [32, 34], we focus on how to assign different weights to
the mutation inferences from two different types of predicates
in order to maximize the effectiveness of our overall FL
approach. We use wc(p) (wu(p)) to represent the weight of the
mutation inference from a critical (an uncritical) predicate p
and integrate them into the original program spectra as follows:

N ∗F = NF +
∑
p∈Pc

wc(p) N ∗F (`) = NF (`) +
∑
p∈Pc

wc(p) · 1Sp (`)

N ∗P = NP +
∑
p∈Pu

wu(p) N ∗P (`) = NP (`) +
∑
p∈Pu

wu(p) · 1Sp (`)

where X∗ is used to replace the corresponding symbol X in
each SBFL formula in Figure 1. 1Sp

is an indicator function
that indicates whether the statement ` exists in the slice Sp

(1Sp
(`) = 1 if ` ∈ Sp and 1Sp

(`) = 0 otherwise).
We propose to calculate an adaptive weight wc by:

wc(p) =
NF
|Pc|

· e
NF̃ (p)

NF (1)

where NF represents the number of failed test cases for the
original program, |Pc| is the number of its critical predicates
found, NF̃ (p) is the number of test cases that have changed
from failed to passed on the mutant mp.

Let us understand the two components in Equation 1. Let us
consider NF/|Pc| first. We use this component to balance the
contributions made by SBFL and mutation inferences in the
enhanced program spectra. Essentially, wc(p) is proportional
to NF except that it is scaled by a factor |Pc|. We have also
included a second component eNF̃ (p)/NF to measure the con-
fidence of the mutation inference according to the percentage
of failed test cases that are overturned after mutation. The
more test cases that the mutant turns over, the higher weight
we assign to the corresponding mutation inference.

For wu, we adopt a fixed value, i.e., wu(p) = 1 for every
uncritical predicate p ∈ Pu. For the mutation inferences from
uncritical predicates, we treat them equally as the statements
executed by passed test cases since their corresponding mu-
tants fail to overturn any failed test case.

IV. EXPERIMENTAL SETUP

Since FLIP is designed as a practical FL tool, we evaluate
it on real-world faults and compare its effectiveness and
overhead with state-of-the-art SBFL techniques. To investigate
the contribution of each component in FLIP, we evaluate FLIP
with several configurations and take a further study on the
complementarity of mutation inferences to the information
obtained by SBFL and predicate switching. In summary, our
evaluation aims to answer the following research questions:

TABLE I
DEFECTS4J (VERSION 1.5.0). KLOC IS THE AVERAGE NUMBER OF LINES

OF SOURCE CODE FOR EACH BUGGY PROGRAM.

Project Description KLOC #Faults
Chart Chart Library 85.1 26

Closure Javascript Compiler 85.6 176
Lang Java Utility 18.5 65
Math Mathematics Library 50.6 106

Mockito Mocking Framework 8.9 38
Time Calendar System 27.3 27
Total - 438

• RQ1: Does FLIP outperform SBFL on real-world faults?
• RQ2: How does FLIP behave in terms of its effectiveness

under different configurations?
• RQ3: Does FLIP provide complementary information to

improve SBFL and predicate switching?
• RQ4: What is the overhead of FLIP?

A. Implementation
We have implemented FLIP in SOOT [41] on its Jimple IR

by also using its CFGs and call graphs provided. For each
fault, we first run its test suite and use GZoltar [8] to collect
the corresponding program coverage. Following Figure 1,
seven SBFL techniques have been implemented to generate
the suspiciousness score for each statement. Then, we use
SOOT to transform the selected predicates in bytecode and
make mutation inferences (as described in Section III).

Our experiments were done on a machine with an Intel Core
i5 3.20 GHz CPU and 8GB memory, running Ubuntu 18.04
operating system with JDK 1.6.0 45 with the maximum heap
size of JVM set as 4 GB. The time budget is 1 minute for a
single test case and 10 minutes for the whole test suite (the
default setting in GZoltar) and the test cases running over the
time budget will not be added into the program spectra.

B. Dataset
For benchmarks, we use Defects4j [19] (version 1.5.0),

containing 438 real-world faults from six open-source projects
(Table I), to evaluate FLIP. Defects4j is one of the most
popular datasets for APR [17, 52, 54]. In recent years, re-
searchers [27, 36, 61] also use Defects4j to evaluate the
effectiveness of FL techniques on real-world faults.

To measure the effectiveness of FL techniques, we first
determine the faulty statements for each fault by referring to
the report in [39] and manual analysis. The modified or deleted
statements are marked as being faulty. For the code insertion,
we follow [36] and mark the statement immediately following
the inserted code as being faulty. The faults incompatible with
the statement-level FL (e.g., those requiring new methods or
classes to be inserted in a patch) are not considered.

C. Metrics
1) Expected First Rank: Following [61], we use Efirst,

the expected rank of the first faulty element, to measure the
effectiveness of an FL technique as follows:

Efirst = Rstart +

T −TF∑
k=1

k

(T −k−1
TF−1

)( T
TF

) (2)



This metric can handle real-world faults with multiple faulty
statements and tied ranks. In a ranking list, suppose that the
first faulty statement appears in T statements with the same
tied rank from the position Rstart to the position (Rstart +
T − 1), with TF faulty statements among the T statements.
We measure the expected rank of the first faulty statement
by calculating the summation of the probability for the first
faulty statement appearing in every k-th location after Rstart.( T
TF

)
is the number of combinations of all T tied statements

containing TF faulty statements and
(T −k−1
TF−1

)
is the number

of combinations of the remaining tied statements after the first
faulty statement with the remaining TF − 1 faulty statements.

According to Equation 2, Efirst is equal to Rstart when
all the t tied statements are faulty (TF = T ) and will thus
reduce to the average rank if TF = 1 [7, 27]:

Efirst = Rstart +
T − 1

2
(3)

We use Equation 2 instead of Equation 3 to handle multiple
faulty statements and tied statements because Equation 3 may
unnecessarily lower their ranks [61]. For example, if all the
first 3 statements in the list are faulty and tied, we will obtain
rank 1 by Equation 2 but rank 2 by Equation 3. However, the
first statement that we check must be faulty.

Top-N: We use the number of faults reported in Top-N
according to Efirst to measure the effectiveness of an FL
technique, where N ∈ {1, 3, 5}. In practice, Top-N can be
quite important because (1) only a few elements are manually
checked during debugging (e.g., over 70% developers only
check the top-5 elements [22]) and (2) an FL technique with
the higher Top-N value will improve both the efficiency and
correctness of APR tools, since a plausible patch may be found
from a few repair operations [6].

MEF: We adopt MEF, the mean value of Efirst for all
faults, as another metric. The smaller MEF is, the more
effective the corresponding FL technique will be.

2) Mean Average Rank: If multiple faulty statements exist,
Efirst will be unable to precisely measure the distribution
of each faulty statement. We use Raverage to calculate the
average rank of all faulty statements as follows:

Raverage =

F∑
i=1

Ri
start +Ri

end

2F
(4)

where Ri
start and Ri

end are the ranks of the first and the last
statements in the list with the same suspiciousness score to
the i-th faulty statement and F is the total number of faulty
statements in the program considered.

MAR: We adopt MAR, the mean value of all Raverage for
all faults, as another metric. Again, the smaller MAR is, the
more effective the corresponding FL technique will be.

V. RESULTS AND ANALYSIS

A. RQ1: Overall Effectiveness Comparison

We compare the effectiveness of seven SBFL techniques in
Figure 1 with and without FLIP. For each SBFL technique,

TABLE II
COMPARING FLIP WITH SBFL IN SEVEN STATE-OF-THE-ART RANKING

FORMULAE ON DEFECTS4J . @N REPRESENTS THE NUMBER OF FAULTS
FALLING INTO TOP-N ACCORDING TO Efirst RANKING.

Technique Efirst MAR@1 @3 @5 MEF
Ochiai 32 112 158 22.22 30.27

FLIP-Ochiai 46 134 166 20.96 29.47
Tarantula 28 110 156 19.90 27.80

FLIP-Tarantula 34 133 167 18.67 26.90
Jaccard 29 109 155 19.79 27.75

FLIP-Jaccard 37 130 166 18.63 26.97
Kulczynski2 28 108 155 22.37 30.89

FLIP-Kulczynski2 41 128 161 21.20 30.06
DStar2 31 107 149 22.58 30.72

FLIP-DStar2 41 126 161 21.71 30.34
Zoltar 28 108 153 22.18 29.86

FLIP-Zoltar 41 128 159 21.23 28.89
Goodman 31 109 157 19.54 27.41

FLIP-Goodman 44 132 165 18.39 26.65

we apply mutation inferences to the top 10 predicates in the
original ranking list. After mutation inferences, we rerank the
statements with the enhanced program spectra using the same
formula. We present the results in Table II, where its columns
represent all the metrics used and its rows the seven SBFL
formulae. For each formula, the first and the second rows give
the results without and with FLIP, respectively.

Overall, FLIP outperforms all the seven SBFL techniques in
all the metrics. In terms of the Top-N metric, FLIP outperforms
seven SBFL techniques by 21.4% – 46.4% for Top-1, 17.8% –
21.1% for Top-3, and 3.9% – 7.1% for Top-5. Once enhanced
with mutation inferences, Ochiai, which is the best performer
in terms of the Top-N metric among these seven techniques,
has been improved by 43.8%, 19.6%, and 5.1% for Top-1,
Top-3 and Top-5, respectively. Besides, FLIP outperforms these
SBFL techniques by 3.9% – 6.2% for MEF and 1.2% – 3.3%
for MAR. Goodman, which is the best performer in terms of
MEF and MAR, is further improved by 5.9% for MEF and
2.8% for MAR with our FLIP. The improvements made by
FLIP in terms of the average-based metrics, MEF and MAR,
are less than Top-N. This is because not all the faults benefit
from FLIP, which will be discussed in Section V-E.

Since Ochiai is one of the most commonly used techniques
for FL [36, 61] and APR [20, 23, 24, 46, 54], we will it as
the main formula to evaluate FLIP further below.

B. RQ2: Impacts of Configurations

In this section, we evaluate the impacts of different config-
urations on FLIP’s effectiveness in terms of Top-N. We focus
on two factors, the number of mutated predicates (K) and the
weights of mutation inferences for critical (wc) and uncritical
(wu) predicates. We will use the default setting (Ochiai, K=10,
wc and wu), as described in Section III-C).

1) Number of Mutated Predicates: Figure 7(a) presents
the impacts of mutating different numbers of highly ranked
predicates (K ∈ {0, 1, 2, 4, 8, 10, 15}) in the original ranking
list. Overall, Top-N initially increases and then becomes flat
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Fig. 7. Analyzing impacts of different configurations on the effectiveness of
FLIP. K denotes the number of mutated predicates. FLIP’s default settings
are displayed in bold. \ represents the baseline, SBFL without mutation
inferences. ∼ denotes the adaptive weight computed according to Equation 1.

when more predicates are selected. For K ∈ {1, 2}, however,
FLIP is the most impressive. For example, Top-1 increases by
15.6% for K = 1 and 13.5% for K = 2. When K > 2, Top-N
gradually stabilizes, though. These results indicate that SBFL
techniques can be used to select predicates to be mutated and
the predicates with relatively high suspiciousness scores are
more likely to help improve the effectiveness of FL.

2) Weights of Mutation Inferences: Now we separately
investigate the impacts of weights of mutation inferences from
critical predicates (wc) and uncritical predicates (wu).

To evaluate the impacts of wc, we set wu = 1 and com-
pare our adaptive approach for computing wc in Equation 1,
which varies from 0.3 to 30 for different faults, with a naive
approach for picking a set of fixed wc’s in different orders
of magnitude (wc ∈ {0, 10−1, 1, 101, 102}). Figure 7(b)
gives FLIP’s effectiveness for Top-N. Overall, the Top-N value
first increases and then drops, indicating that both program
coverage and mutation inference are effective and should
be combined with balanced weights. Our adaptive approach
outperforms the naive approach. For example, we obtain 46
faults but the naive approach finds at most 44 with wc = 10
for Top-1. Note that when wc = 0, FLIP still outperforms the
baseline. For example, the Top-1 value increases by 12.5%,
indicating that mutation inferences from uncritical predicates
make considerable contributions to the overall effectiveness.

Similarly, we compare the impacts of wu when wu ranges
over {0, 10−1, 1, 101, 102, 103}). Figure 7(c) gives the results.
When wu increases from 0 to 10−1, all the Top-1, Top-3 and
Top-5 values increase. However, increasing wu any further
has little effectiveness impact. This is because the mutation
inference from an uncritical predicate only discovers less
suspicious statements, and continuously lowering their ranks
hardly affects the statements at the top of the list.

In summary, FLIP benefits from mutation inferences for both
critical and uncritical predicates and computing wc adaptively
is more effective than using some fixed values.

C. RQ3: Complementarity with SBFL and Predicate Switching

We have designed two experiments to show that FLIP pro-
vides complementary information to improve the effectiveness
of SBFL and predicate switching.

We first build an oracle model combining Ochiai and pred-
icate switching (PS). When PS has successfully identified all

TABLE III
ANALYZING THE COMPLEMENTARITY BETWEEN FLIP AND THE ORACLE

MODEL COMBINING SBFL AND PREDICATE SWITCHING.

Technique Efirst MAR@1 @3 @5 MEF
Ochiai 32 112 158 22.22 30.27

ORACLE (Ochiai+PS) 41 125 171 21.62 29.67
FLIP-Ochiai 46 134 166 20.96 29.47

ORACLE (SBFL) 37 118 166 17.03 25.04
ORACLE (SBFL+PS) 46 131 179 16.44 24.45

ORACLE (FLIP) 52 148 185 15.59 24.05

the faulty statements and obtained a better result than Ochiai
for Efirst, the oracle model will use PS. Otherwise, the oracle
will use Ochiai instead. We present the results in the top half of
Table III. For Top-1, Top-3, MEF and MAR, FLIP outperforms
the oracle model, since FLIP can find the root cause of a fault
with a joint inference from program coverage and mutation
inferences. Besides, the enhanced program spectra with an
adaptive wc is quite effective for information integration. It
is not surprising that FLIP fails to beat oracle in Top-N for
some N (e.g., Top-5) because FLIP considers both information
sources in a heuristics-based manner but the oracle model
always chooses the technique with a better effectiveness.

Second, we build three oracle models, ORACLE (SBFL)
combining seven SBFL techniques, ORACLE (SBFL+PS)
combining seven SBFL techniques and PS, and ORACLE
(FLIP) combining seven SBFL techniques equipped with FLIP,
respectively. Similarly, each oracle model opts to use the
technique with the best effectiveness among all its supported
techniques. For ORACLE (FLIP), we run FLIP with different
SBFL technique independently before combining their results
with an oracle. We present the results in the bottom half
of Table III. Overall, ORACLE (FLIP) outperforms the other
two models in all the metrics. For example, compared with
ORACLE (SBFL), ORACLE (FLIP)’s effectiveness is 40.5%,
25.4% and 11.4% higher in Top-1, Top-3, and Top-5, respec-
tively. ORACLE (FLIP) achieves this by leveraging mutation
inferences for both critical and uncritical predicates, which
is complementary information to program coverage, while
SBFL techniques, even assisted by many different formulae,
obtain highly correlated information. Besides, ORACLE (FLIP)
outperforms ORACLE (SBFL+PS). For example, ORACLE
(FLIP)’s effectiveness is 13% higher for Top-1, indicating that
the mutation inferences are also complementary to PS.

D. RQ4: Overhead

On average, FLIP takes 85 seconds to handle each fault.
Table IV presents the overheads in different projects with
a different number of test cases. FLIP spends 128 and 106
seconds on Closure-1 and Mockito-1, respectively, since
both have a lot of failed test cases executed multiple times
during mutation testing. Closure-1, a fault in the compiler
application, costs more time in mutation inferences due to
its relatively complex dependence graphs. Time-1 has a low



TABLE IV
ANALYZING FLIP’S OVERHEAD.

Fault #Test #Fail B-T S-T D-T T-T

Chart-1 436 1 1m 59s 39s 8s 47s
Lang-1 173 1 41s 13s 23s 36s
Math-1 313 2 1m 13s 15s 41s 56s
Time-1 1126 1 7m 56s 15s 23s 38s

Closure-1 374 8 2m 13s 57s 1m 11s 2m 8s
Mockito-1 969 26 7m 28s 14s 1m 32s 1m 46s

B-T is the baseline time with only SBFL. S-T is the time of static
analysis, including mutating predicates and mutation inferences. D-T is
the time of dynamic testing of mutants. T-T is the total overhead time.

overhead (38 seconds), since there is only one failed test case
in the test suite with over one thousand test cases.

Compared with SBFL techniques, FLIP spends more time
on rerunning failed test cases for each mutant and applying
static analysis for mutation inferences. While MBFL generates
a tremendous number of mutants [27, 36, 52], FLIP is quite
efficient because only predicates are mutated, resulting in a
limited number of mutants. Although this constraint makes
it difficult for FLIP to directly locate faulty statements that
are irrelevant to the values of predicates, FLIP still has the
opportunity to raise their rankings by mutation inferences,
which can be applied to both critical and uncritical predicates.
As shown in Section V-B2, FLIP still outperforms SBFL even
in the absence of critical predicates in the program.

E. Discussion

Although FLIP outperforms SBFL in all the metrics, we find
that there are some faults that cannot benefit from our mutation
inferences. We have manually analyzed most of them and will
discuss below the main reasons and some possible solutions.

Figure 8 presents the percentages of faults that have caused
Efirst to increase, stay unchanged and decrease with mutation
inferences. Figure 8(a) shows the overall percentages of rank-
ing changes, with 46.9% up, 37.1% unchanged, and 16.0%
down. Figure 8(b) gives the changes in different projects.

When the faulty statement is already in the top of the
ranking list or no predicate has been executed by a failed
test case, FLIP fails to further improve the FL effectiveness.
Besides, we present other three main reasons why a fault
cannot benefit from FLIP and their possible solutions.

1) FL with Insufficient Granularity: In this paper, our FL
technique operates at the statement level, which is fine-grained
for manual inspection and commonly used in repair tools.
However, it may still be too coarse-grained in some cases.

Figure 9 presents the fault Lang-8 in Defects4j and its
corresponding patch. This fault is due to the code omission,
missing a statement before `1134. To measure the FL effec-
tiveness, we follow [36] and mark the immediately following
statement `1134 as the faulty statement. However, FLIP marks
`1134 as an uncritical predicate and lowers its ranking by
mutation testing and inferences. FLIP has indeed succeeded in
obtaining the correct information about `1134 but its statement-
level abstraction is too coarse to model the missed code.
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Fig. 8. Analyzing the changes of Efirst with FLIP.

One possible solution is to distinguish the omitted and
faulty statements (by, e.g., reporting locations between two
statements instead of only existing statements). This will
enable FLIP to guide APR tools better in, e.g., selecting repair
operators (e.g., replacement or insertion).
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learning-to-rank technique because Flip can bring extra informa-
tion instead of correlated information for each SBFL technique.

5.4 RQ4: Overhead
On average, Flip takes 85 seconds overhead for each fault. Table 5
presents the overheads in different projects with a different number
of test cases. The baseline (B-T) is the time consumed by the SBFL
technique. G-T represents the time of generating ghost test cases
(loading and analyzing time of SOOT). R-T represents the time
of rerun failed test cases to test each mutant program. T-T is the
total overhead. The overheads of different faults vary from the
number of failed test cases and the program size. Closure-1 and
Mockito-1 get 2m 8s and 1m 46s overheads, which are quite high
among them because they have more failed test case rerun and
Closure is compiler application, which takes more time in slicing.
Time-1 has low overhead (38s) because there is only one failed test
case in the test suite, which contains over one thousand test cases.

Table 5: Analyzing Flip’s overhead.

Project B-T #Test #Fail G-T R-T T-T
Chart-1 1m 59s 436 1 39s 8s 47s
Lang-1 41s 173 1 13s 23s 36s
Math-1 1m 13s 313 2 15s 41s 56s
Time-1 7m 56s 1126 1 15s 23s 38s

Closure-1 2m 13s 374 8 57s 1m 11s 2m 8s
Mockito-1 7m 28s 969 26 14s 1m 32s 1m 46s

To further analyze the overhead, we formalize the time complex-
ity of Flip and other FL techniques.

SBFL techniques first run the whole test suite and record the
coverage information of each statement. Assume that there are T
test cases in the test suite, we measure the time complexity of SBFL
by the following equation:

TCSBFL = O(T )
Compared with SBFL techniques, Flip spends more time on

rerunning failed test cases and slicing. Assume there are Tf failed
test cases (Tf << T , in practice) and top K predicates are selected,
we measure the time complexity of Flip by the following equation:

TCFlip = O(T + K ∗Tf ) +Osl ice (K)
However, mutation-based techniques [29, 31] mutate each state-

ment and rerun the test suite. Assuming there are N mutable state-
ments in the buggy program and each statement can be mutated
toM mutants on average (depends on the setting of operators), we
measure the time complexity of MBFL by the following equation:

TCMBFL = O(M ∗ N ∗T ) (5)

The time complexity of MBFL techniques is several orders of
magnitude larger than SBFL techniques[33]. They usually take
hours [24, 46] instead of minutes to localize the faulty statements
for one fault. Note that N can reduce to K if we firstly use SBFL
techniques and select top K statements [33] to generate mutants,
as discussion in Section 5.2.1 , indicating that MBFL techniques can
also benefit from our framework.
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Figure 8: Analyzing changes of Ef ir st with ghost test cases

5.5 Discussion
Although Flip outperforms traditional SBFL techniques in all the
metrics, we find that not every individual fault can benefit from
our ghost test cases. Figure 8 presents the rising, unchanged and
falling Ef ir st percentages of faults with ghost test cases.

Figure 8(a) presents the overall percentage of ranking changes.
46.9% faults rank up with ghost test cases, while 37.1% faults stay un-
changed and 16.0% faults rank down. Figure 8(b) shows the changes
in different projects. We manually analyze most of them especially
the faults that stay unchanged and rank down. A discussion about
how to further improve Flip is presented in this Section.

When the faulty statement is already in the top of the ranking
list or no predicate is executed by the failed test case, our ghost
test cases cannot affect its ranking. For the faults getting a worse
ranking with ghost test cases, we present its reasons and possible
solutions as following.

5.5.1 FL in a Fine-Grained Level. In this paper, we set the FL tech-
nique in the statement level, which is fine-grained for manual in-
spection and commonly-used in repair tools. However, it is still
coarse-grained in some cases.

1133 public void appendTo(...){
+ TimeZone zone = calendar.getTimeZone();

1134 if(zone.useDaylightTime()
&& calendar.get(...) != 0){

...}
1141 }

Figure 9: Patch in Lang-8

Figure 9 presents a patch in Lang-8, which inserts a statement
before ℓ1134. None of the statements in the buggy version is faulty
and we follow [33] and mark the immediately following statement
ℓ1134 as the faulty statement. However, Flip will put ℓ1134 into an
passed ghost test cases and lower its ranking because switching
the predicate in ℓ1134 cannot make any failed test case pass. It is a
fact that ℓ1134 is no wrong but it is marked as the faulty statement
to handle code omission.

If we distinguish omitted code and faulty code (e.g., reporting
locations between two statements instead of only existing state-
ments), Flip may provide richer information for program repair
tools to guide its selection of repair operation (e.g., choosing re-
placement or insertion).

5.5.2 Test Case Transformation. To make test code more readable,
developers usually merge several test cases (assertions) that test the

9

Fig. 9. The patch for the fault Lang-8 in Defects4j.
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1368 public void testLang300(){
1369 NumberUtils.createNumber("-1l");
1370 NumberUtils.createNumber("01l");
1371 NumberUtils.createNumber("1l");
1372 }

Figure 10: Failed test case in Lang-58

same function into one test case [8, 52]. However, test case merging
may affect the performance of FL techniques [24].

Figure 10 shows a failed test case in Lang-58. An exception
occurs when ℓ1371 is executed, resulting in testLang300() failing
to pass. Among the transformed predicates, there does exist one
that can pass the ℓ1371 but fail ℓ1369. If we split testLang300() to
three individual test case, the mutant program passes the failed test
case with ℓ1371 and a failed ghost test case will be generated. For
example, with the test case transformation, Ef ir st of Flip improves
from 24.5 to 2.5. SBFL techniques can also benefit from test case
transformation, e.g., Ef ir st of Ochiai improves from 14 to 13.5 since
the number of statements executed by failed test cases may reduce.

5.5.3 Complex Fault. When a fault is caused by multiple correlated
faulty statements, finding critical predicates may require switching
multiple predicates at the same time [50], which will dramatically
increase the search space. Search space explosion is a common
challenge for existing FL techniques. For example, SBFL techniques
will mistakenly raise the ranking of the convergence of branches if
faulty statements are located inmultiple branches.MBFL techniques
need to mutate multiple statements at the same time to affect the
test results.

5.6 Threats to Validity
Firstly, we are concerned about the extensibility of our framework.
In this paper, we only generate ghost test cases only by extending
predicate switching. Although we are confident that other tech-
niques, e.g., bug detecting techniques, can also be used to generate
ghost test cases, whether the information provided by different
techniques is correlated to each other and how to balance them still
need further research.

Secondly, we are concerned about whether the measurements
used in this paper reflect real-world situations. We mitigate this
threat to validity by using the expected ranking of the first faulty
statement (Ef ir st ) and the average ranking of all faulty statements
(Raveraдe ). However, as discussed in Section 5.5.1, how to model
some tricky situations, e.g., inserted code, does affect Flip’s perfor-
mance.

Thirdly, we are concerned about the quality of test suite in
Defects4j. Whether the test case provides fine-grained correct
information (pass or fail) affects the precision of the original pro-
gram spectra and our ghost test cases. As discussed in Section 5.5.2,
a complete and fine-grained test case can improve Flip’s perfor-
mance.

6 RELATEDWORK
6.1 Spectrum-based Fault Localization
Spectrum-based fault localization (SBFL) techniques usually use
program spectra, which are program traces generated by passed

and failed test cases. Jones et al. firstly proposed Tarantula [15] to
rank statements by distinguishing the executions of passed and
failed test cases. Abreu et al. then introduced Jaccard [1], Ochiai [2]
and Barinel [3]. Wong et al. [42] proposed DStar, one of the state-of-
the-art SBFL technique. These metrics make different assumptions
on programs, test cases, and their relationship with faults [26].
However, SBFL only focuses on the coverage information without
considering how individual statement affects test results [32].

6.2 Mutation-based Fault Localization
MBFL techniques likeMuse [29] andMetallaxis [31], which re-
peatedly transform the statements in the buggy program and rank
them by analyzing how the mutation affects the test results. In the-
ory, MBFL can precisely locate the faulty statement with adequate
mutation operators and finite time. However, the re-execution of
test cases are required for every single mutation, which results in
huge time overhead [24, 33, 53], as presented in Equation(5). There-
fore, most program repair tools employ SBFL instead of MBFL.

6.3 Predicate Switching
Zhang et al. [50] proposed predicate switching to localize critical
predicates. Since the outcome of a predicate is only true or false, the
search space of mutation has been dramatically reduced. However,
it only works for predicate-related faults and employed by repair
tools like ACS [45] to assist conditions synthesis. Though inspired
by [50], Flip can generate useful information through aggressive
or conservative slicing no matter how the predicate transformation
affects the test results. Besides, predicate switching can also be used
to forcibly trigger uncovered code for fuzzing [34] or vulnerability
detecting [25].

6.4 Learning to Rank
Xuan and Monperrus [48] proposed Multric, a model learning to
combine different formulae in SBFL, and it outperforms individual
formula. Le et al. [6] augmented SBFL with Daikon [9] invariants.
Sohn and Yoo proposed FLUCCS [37] which learns to rank by using
existing SBFL formulae and code and change metrics as features. Li
and Zhang [24] extend MBFL and learn to rank by transforming test
code and error messages. Zou et al. [53] found that FL techniques
from one family contain strongly correlated information and they
proposed CombineFL, combining FL techniques from different fam-
ilies (e.g., SBFL and MBFL) to achieve a better performance than
previous learning-to-rank techniques.

Our framework aims at fundamentally improving SBFL without
learning. The newly added test cases provide extra information that
is complementary to existing learning-to-rank techniques.

6.5 Program Repair
Program repair [22, 30] techniques aim at generating a patch auto-
matically to reduce the cost of software maintenance. FL techniques
are usually employed to firstly find the faulty statement. SBFL is
the most commonly used FL techniques in program repair due to
being lightweight. Ochiai, one of the most popular FL formula, is
used by [17, 20, 21, 41, 47].

The performance of FL directly affects the efficiency and cor-
rectness of repair tools [5, 22]. For example, Nguyen et al. [30] find

10

Fig. 10. A failed test case for Lang-58.

2) Test Case Merging: To make test code more readable
and maintainable, developers usually merge several test cases
or assertions with the same test goal into one [9, 60]. However,
such test case merging may affect the effectiveness of FL
techniques [27] since the failure of a sub-case will result in the
entire case marked as failed. Figure 10 presents a failed test
case with three sub-cases for Lang-58, in which an exception
occurs during the execution of `1371. In mutation testing, one
mutant passes the sub-case in `1371 but fails the one in `1369,
which ultimately leads to the test to remain failed.

One solution is to transform a test case before testing [27].
After we have manually split testLang300() into three
individual test cases, FLIP has successfully found a critical
predicate with its Efirst rising from 24.5 to 2.5. SBFL also
benefits from this due to the more fine-grained program spectra
used (e.g., with Efirst of Ochiai rising from 14 to 13.5).

3) Multiple Fault Locations: When a fault is caused by
multiple correlated faulty statements, finding critical predi-
cates may require switching multiple predicates at the same
time [57], which will dramatically increase the search space.
The search space explosion is a common challenge for existing
FL techniques. For example, SBFL will mistakenly raise the
ranking of the convergence of branches if faulty statements
reside in multiple branches. MBFL has to mutate multiple
statements at the same time to overturn test results. Locating
and fixing multiple faults may require heuristics (e.g., code
similarities [38]) or specific bug models [14].



F. Threats to Validity
First, we are concerned about whether the metrics used re-

flect real-world situations. We mitigate this threat to validity by
using the expected ranking of the first faulty statement (Efirst)
and the average ranking of all faulty statements (Raverage).
However, as discussed in Section V-E1, how to model some
tricky situations, e.g., code omission, needs further studies.

Second, we are concerned about the effects of configurations
on FLIP’s effectiveness. As discussed in Section V-B, an
inappropriate configuration will impair FLIP’s effectiveness.
To reduce this threat to validity, we have evaluated FLIP as
comprehensively possible under a range of configurations.

VI. RELATED WORK

A. Fault Localization with a Single Information Source
Spectrum-based fault localization (SBFL) techniques usu-

ally rely on program coverage, the execution traces generated
by passed and failed test cases. Jones et al. first proposed
Tarantula [18] to rank statements by distinguishing the execu-
tions of passed and failed test cases. Abreu et al. then intro-
duced Jaccard [1], Ochiai [2] and Barinel [3]. Wong et al. [47]
proposed DStar, one of the state-of-the-art SBFL techniques.
These techniques make different assumptions on programs,
test cases, and their relationships with faults [30]. However,
SBFL only focuses on the coverage information without con-
sidering how each statement affects test results [35]. Due to its
relative effectiveness and efficiency, FLIP adopts SBFL as the
basic information source and uses it to guide the selection of
candidate predicates, effectively as evaluated in Section V-B1.

Mutation-based fault localization (MBFL) techniques, such
as MUSE [32] and METALLAXIS [34], repeatedly transform
the statements in a buggy program and rank them by analyzing
how the mutation affects the test results. Given an unlimited
time budget and a sufficient number of mutation operators,
MBFL can precisely locate the faulty statement. However, in
reality, it needs to re-execute the test cases for every single
mutation, leading to an unaffordable time overhead [27, 36,
61]. Therefore, we did not use MBFL as the the basis in FLIP.

Zhang et al. [57] introduced predicate switching, which can
be regarded as a lightweight MBFL since the outcome of a
predicate is only true or false, to locate the fault that triggers a
wrong program execution. Wang and Roychoudhury [43] also
toggle the outcomes of some predicates to generate a success-
ful run from the failing run. Besides, predicate switching can
also be used to increase program coverage in vulnerability
detection [28, 37, 50]. However, predicate switching only
works for predicate-related faults in fault localization and
only repair tools that focus on condition synthesis (used, in
e.g., ACS [51]). While inspired by [57], FLIP distills useful
information through different mutation inferences no matter
how the predicate transformation affects the test results.

Dynamic slicing [4, 13, 42, 44, 58] can assist software
debugging by reducing the number of suspicious statements.
We usually use the statements that trigger the assertion vi-
olations or crashes as the slicing criterion. Although sliced-
based FL techniques can effectively reduce the number of

suspicious statements but fail to further rank them. To improve
its precision and make it compatible with repair tools, slicing
is usually integrated with other FL techniques. FLIP uses
two slicing algorithms (modified for our purposes) to assist
mutation inferences for critical and uncritical predicates.

B. Fault Localization with Multiple Information Sources

Xuan and Monperrus [55] proposed MULTRIC, a model
learning to combine different formulae in SBFL in order
to outperform individual formula. Le et al. [7] augmented
SBFL with Daikon [10] invariants. Sohn and Yoo proposed
FLUCCS [40] that learns to rank by using multiple SBFL for-
mulae and code change metrics as features. Li and Zhang [27]
extended MBFL and learn to rank by transforming test code
and error messages. Zou et al. [61] observed that the FL tech-
niques from one family contain strongly correlated information
and proposed COMBINEFL to improve the effectiveness of
previous learning-to-rank techniques by combining the FL
techniques from different families (e.g., SBFL and MBFL).

FLIP is inspired by prior work with multiple information
sources but does not require a learning process. Besides,
FLIP makes mutation inferences, providing complementary
information to SBFL and predicate switching (Section V-C).

C. Program Repair

APR [25, 33] aims at generating a patch automatically to
reduce the cost of software maintenance. FL techniques are
usually employed to first find the faulty statement. SBFL is
the most commonly used FL technique in APR due to its
lightweightness. Ochiai, one of the most popular FL formulae,
is used widely in the APR literature [20, 23, 24, 46, 54].

The effectiveness of FL directly affects the efficiency and
correctness of APR tools [6, 25, 53]. For example, Nguyen
et al. [33] find that when using Ochiai instead of Tarantula,
SEMFIX fixes two more faults in one project and one less in
another. SBFL has also been extended to meet their needs, by
assisting semantic code search [21] and combining SBFL and
predicate switching to locate faulty predicates [51].

FLIP is compatible with most of the APR tools because it is
lightweight, fine-grained, and designed for general faults (i.e.,
requiring neither a specification nor a bug model).

VII. CONCLUSION

We have presented an effective and efficient FL approach,
FLIP, to improve SBFL by applying mutation inferences
on critical and uncritical predicates in the program. FLIP
outperforms seven state-of-the-art SBFL techniques in terms
of their effectiveness in locating faults with small performance
overheads. In future work, we plan to deploy FLIP in APR
tools to provide richer information about fault locations and
guide their selection about repair operators used.
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