
International Journal of Computer Mathematics, 81(3/4), 2001

Space-Time Equations for Non-Unimodular Mappings

Jingling Xue
School of Computer Science and Engineering

The University of New South Wales
Sydney 2052 Australia

Patrick Lenders
School of Mathematics and Computer Sciences

University of New England
Armidale, NSW 2351, Australia

Abstract. The class of systems of uniform recurrence equations (UREs)is closed under uni-

modular transformations. As a result, every systolic arraydescribed by a unimodular mapping

can be specified by a system of space-time UREs, in which the time and space coordinates

are made explicit. As non-unimodular mappings are frequently used in systolic designs, this

paper presents a method that derives space-time equations for systolic arrays described by non-

unimodular mappings. The space-time equations for non-unimodular mappings are known else-

where as sparse UREs (SUREs) because the domains of their variables are sparse and their data

dependences are uniform. Our method is compositional in that space-time SUREs can be further

transformed by unimodular and non-unimodular mappings, allowing a straightforward imple-

mentation in systems like ALPHA. Specifying a systolic design by space-time equations has

two advantages. First, the space-time equations exhibit all useful properties about the design,

allowing the design to be formally verified. Second, depending on the application area and

performance requirement, the space-time equations can be realised as custom VLSI systems,

FPGAs, or programs to be run on a parallel computer.
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1 Introduction

The problem of synthesising systolic arrays from uniform recurrence equations

(UREs) [4] is well-understood and various design methodologies have been proposed for its

solution over the last two decades [11, 13, 14, 16, 20]. The main technique consists of finding a

non-singular mapping to transform the original index spaceto a space-time domain, i.e., assign-

ing a time and place to each point in the original index space.Such aspace-time mapping(or

mappingfor short) must satisfy several design constraints to be valid, including the causality

constraint ensuring that the original data dependences arerespected [10, 12].

The class of systems of UREs is closed under unimodular mappings. As a result, every

systolic array described by a unimodular mapping can be readily specified by a system of space-

time UREs, in which the time or space coordinates are explicit. Section 3 recalls how such
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a system of space-time equations can be obtained from the original program by applying a

so-called domain morphism in Crystal [3]. Applying this idea directly to a non-unimodular

mapping, however, does not yield a system of well-formed equations because the domains of

equations are sparse and cannot be specified by dense convex polyhedra.

This paper presents a method for deriving space-time equations for systolic arrays designed

by non-unimodular mappings. The basic idea is to decompose anon-unimodular mapping

into a unimodular domain morphism followed by a scaling transformation. Our method is

compositional in that space-time equations can be further transformed by unimodular and non-

unimodular mappings, allowing a straightforward implementation in transformational systems

like ALPHA [7]. In addition, our method handles unimodular mappings as a special case.

This work is useful for three reasons. First, non-unimodular mappings are frequently used

in the synthesis of systolic designs. For example, the mapping that describes Kung-Leiserson’s

array for matrix multiplication is non-unimodular. In addition, all multirate arrays as defined in

[16] are described by non-unimodular mappings. Our method can derive space-time equations

for all systolic arrays in the traditional sense [10, 12] andall multirate arrays as defined in [16].

Second, space-time equations provide a precise specification of systolic designs, allowing the

designs to be realised as custom VLSI systems, as FPGAs, or asprograms to be run on a general

purpose parallel architecture. In particular, since wavefront arrays are the asynchronous version

of multirate arrays according to S. Y. Kung [6, p. 244], the space-time equations for a multirate

array can also be translated to a program to be run in a wavefront array. Third, the space-time

equations for a design exhibit all useful properties about the design, allowing the design to be

formally verified and further transformed. Two important properties about a non-unimodular

design are theperiodof the array [16] and thephasein which a processor is active [8].

The objective of this work is to derive space-time equationsfor non-unimodular mappings.

It suffices to use the familiar matrix multiplication as an example for illustrations.

The rest of the paper is organised as follows. Section 2 introduces sparse UREs and Crys-

tal’s domain morphism. Section 3 reviews how to derive space-time equations for unimodular

mappings. Section 4 describes our method to deal with non-unimodular mappings. The space-

time equations for Kung-Leiserson’s array are given. Section 5 applies our method to derive

space-time equations for two multirate array realisationsof matrix multiplication. Section 6

describes the related work. Section 7 concludes the paper.
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2 SUREs, UREs and Domain Morphism

For a classification of various forms of recurrence equations used in systolic designs, we refer

to [8]. For the purposes of this paper, it suffices to considera generic system ofsparse UREs

(SUREs),
�����

, such that each variable� is defined by an input equation (IE), a computation

equation (CE) and an output equation (OE) as follows:
�����

: IE: � � � 	 
 � �� �  � � �� �� 
CE: � � �� 
 � �� �  � � �� � � � � �� � � � � � � � 
OE: � � �� 
 � �� ��  � � �� � 

(1)

where� � ��� is an index point, � � ��� �� is a non-singular integer matrix,�	, �� and�	
are thedomainsof the three equations, respectively,� � ��� is a constantdependence vector,� and� are functions from��� to ��� for some� and � is a strict, single-valued function. In

the computation equation,� is a variable not necessarily distinct from� and the dots “� � � ”
indicate the arguments of the same syntax. Theindex spaceof the entire system

�����
is defined

to be the union of the domains of all computation equations.

The domains of the three equations are (dense) convex polyhedra of the form:

�� �  � ! "� � # $� %� &'()( � �  * � + � , % (2)

The domain of variable� , i.e.,  � � ! � � �� %, is sparsewhen� is non-unimodular.�����
is sparsewhen the domains of some variables are sparse.

�����
becomes a system of

UREs when� is the identity matrix in all its equations. Then, we write
�����

as
����

:
����

: � � � 	 
 � ��  � � �� �� 
� � �� 
 � ��  � � �� � � � � �� � � � � � � 
� � �� 
 � �� ��  � � �� 

(3)

Crystal [3] is a functional language based on generalised systems of recurrence equations.

One of the basic transformations in Crystal is called a domain morphism. In this paper, it is

only necessary to consider the domain morphisms that are non-singular linear transformations

on systems of SUREs (including UREs as a special case).

Let - � ��� �� be a non-singular mapping from the original index space of
�����

to a new

index space. Letdom(- ,
�����

) be the equivalent system of SUREs obtained from applying the

domain morphism- to the original program
�����

. We have:

dom(- ,
�����

): � � - �� 	 
 � �- � - ./�  � � �� �- ./� 
� � - ���  
 � �- � - ./�  � � �� � �� � �- � - ./� �- �� � � � 
� � - �� �  
 � �� �- ./�  � � �- � - ./� 

where- ���  �  - � ! � � �� %, 0 � �  * � + � , %
(4)
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In the case of
����

, we have:

dom(- ,
����

): � � - �� 	 
 � ��  � � �� �- ./� 
� � - �� �  
 � ��  � � �� � �� � �� �- � � � � � 
� � - ���  
 � �� �- ./�  � � �� 

where- ���  �  - � ! � � �� %, 0 � �  * � + � , %
(5)

3 Unimodular Mappings

Before being mapped to systolic arrays, affine recurrence equations (AREs) must be first trans-

formed into UREs [13]. So we are only concerned with derivingspace-time equations for

systolic arrays synthesised from UREs.

The synthesis of a systolic array from a system of UREs consists of finding two separate

functions. Thetiming function� ��  � ��, where� � ��� , specifies that the index point� is

computed at the time step�� . Theallocation function, defined usually by aprojection direction� � �� / � � � � � ��  � ��� such that�+� �� / � � � � � ��  � �, specifies that two index points� and� �
are mapped to the same PE iff� � � � � ��, where� � ��� .

The two functions can be collectively specified as a single space-time mapping:

- �
	�
 � (6)

where

 � �� ��./�� has full-row rank and satisfies


 � � �.



, theallocation matrix, specifies

that the index point� is executed at the PE

 �. Two different allocation matrices



/ and


�
such that



/� � 
�� � � define the same array; they do not change the topology of the array

but only modify the processor coordinates (i.e., labels) assigned to the PEs.

- satisfies all data dependences of the program if�� � � for every dependence vector� in

the program. This assumes that evaluation of an index point takes one unit time. A relaxation

of this assumption will allow multirate arrays to be designed, as discussed in Section 5.- must

also satisfy the condition�(� �-  �� �, i.e., �� �� �, ensuring that two index points mapped to

the same time step are not mapped to the same PE.

A unimodular mapping- transforms the original program
����

to dom(- ,
����

). The do-

mains of equations in (5) are all convex polyhedra and can then be specified as follows:

- ���  �  � ! "�- ./� # $� % (7)

Thus, the space-time equations indom(- ,
����

) are well-formed. They are the space-time equa-

tions for the systolic array described by- .
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Fig. 1: The dependence graph for matrix multiplication (� � �).
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Fig. 2: S. Y. Kung’s systolic array�� � �.

Let us consider matrix multiplication defined by the following UREs:
� � � � � # � � � # � 
 " �� � � � �  � � �� � � � # � � � � � # � 
 " �� � � � �  � " �� � � � � � � � � � � � # � � � # � 
 � �� � � � �  � $ �� � � � # � � � � � # � 
 � �� � � � �  � � �� � � � � � � � � � � � # � � � # � 
 	 �� � � � �  � �� # � � � � � # � 
 	 �� � � � �  � 	 �� � � � � � � 
 " �� � � � � � � � �� � � � � � � � � � � � # � � � # � 
 � �� � �  � 	 �� � � � � 

The dependence graph of the UREs is depicted in Figure 1.

S. Y. Kung’s array shown in Figure 2 is described by the unimodular mapping:

- �
	�
 � �

�
�
� � �� � �� � �


� � -

�
�
�
�
�


� �

�
�
�
��

�

The processor structure is obtained by projecting the dependence graph along� � �� � � � �.
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The space-time equations for the array are obtained directly from (5) by substitutions:
� � � � � # � � � � � � � # � 
 " �� � � � �  � � �� � � � � � � � # � � � � � � � � � # � 
 " �� � � � �  � " �� � � � � � � � �
� � � � � # � � � � � � � # � 
 � �� � � � �  � $ �� � � � � � � � # � � � � � � � � � # � 
 � �� � � � �  � � �� � � � � � � � � � � � � � � � � � # � � � # � 
 	 �� � � � �  � �� # � � � � � � � � � # � 
 	 �� � � � �  � 	 ���� � � � � 
" ���� � � � ���� ���� � ��� � � � � � � � � � � � # � � � # � 
 � �� � �  � 	 �� � � � � 

where� is the time coordinate and� and� are space coordinates.

Many useful properties about the array can be extracted fromthese space-time equations.

For example, we find that the array consists of�
�

PEs and runs in��� � ���� � time, where

��� � is the length of the global clock.

4 Non-Unimodular Mappings

When- is non-unimodular, the space-time equations indom(- ,
����

) from (5) are not well-

formed if the domain of equations are defined as in (7). This isbecause- ���  is not dense, i.e.,

- ���  contains index points that do not correspond to any index points in the original index

space.

Our approach to deriving space-time equations for a non-unimodular mapping is to decom-

pose it into a unimodular domain morphism followed by a non-singular scaling transformation

that scales the domains of all variables while leaving the domains of all equations unchanged.

A scaling transformation� � ��� �� maps
�����

to the following program:

scale(� ,
����� : � � � 	 
 � ��� � � � �� �� 

� � �� 
 � ��� � � � �� � �� � ��� � ��� � � � � 
� � �� 
 � �� ��  � � ��� �

In the case of
����

, we have:

scale(� ,
���� : � � � 	 
 � �� �  � � �� �� 

� � �� 
 � �� �  � � �� � �� � �� � � �� � � � � 
� � �� 
 � �� ��  � � �� � 

In this section," ��./�� denotes the bottom�� � � � � submatrix of" � ��� �� .

For the purposes of this paper, the concept of Hermite normalform is defined as follows.

Definition 1 (Hermite normal form ) An integer matrix of full-row rank is said to be inHer-

mite normal formif it has the form�� �� �, where� is an upper triangular, nonnegative square

matrix, in which each row has a unique maximum entry, which islocated on its main diagonal.
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Theorem 1 [17, p. 45] Let" be an integer matrix of full-row rank. There always exists a

unimodular matrix� that will bring" to itsHermite normal form�� �� � such that"� � �� �� �.
Definition 2 (Extended-Unimodularity [17, p. 267]) An integer� �� matrix of full-row rank

is e-unimodular(the “e” for extended) if the gcd of the determinants of all its� �� submatrices

is 1. An e-unimodular matrix isunimodularif it is square.

The main result of this paper is summarised in the following theorem.

Theorem 2 Let - � � �� � be a space-time mapping of the form (6) defined in Section 3.

(a) It is always possible to decompose- such that- � � � , where� is a upper triangular,

nonnegative matrix with!�� ! as its top-left element and� is unimodular. In the special

case when



is e-unimodular,� has the following form:

� �
�
���

!�� ! �� � � � ���...�
�

. . . �

��� (8)0

0

(b) The space-time equations for the array are derived from
����

according to

�	
 �- � � ���  � �� �� �� � �	
 �� � � ���  (9)

by first applying� as a domain morphism and then� as a scaling transformation. We

obtain:

�� �� �� � �	
 �� � � ��� :
� � � �� 	  
 � �� �  � � �� �� ./� 
� � � �� �  
 � �� �  � � �� � � � � �� � �- � � � � � 
� � � ���  
 � �� �� ./�  � � �� � 

where� ���  �  � ! "�� ./� � $� %, 0 � �  * � + � , %

(10)

In the space-time equations, the first subscript function ofa variable represents time and

the remaining subscript functions, which aretime-invariant since� is upper triangular,

represent processor coordinates.

Proof. Let us prove (a).

 � �� ��./�� has full-row rank. By Theorem 1, there must exist

a unimodular matrix� ./ � ��� �� such that

 � ./ � �� �� �, where� � �� ��./���./ is a

non-singular upper triangular matrix. Hence, we have:

- �
	�
 � �

	�
 � � ./� �
	�� ./
 � ./� � �

	�� ./� � � � � � �
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To prove that the top-left element of� � ��� ��� � � is !�� !, it suffices to show that the first column

of � ./ is the projection vector��. Since

 � � �� �� �� � � �, where� is a non-singular

upper triangular square matrix, we must have� � � �� � � � � � � � � � and� ��./��� � �. That

is, � � � ./ �� � � � � � � � � �� . Hence, the first column of� ./ is ��.

Let us prove (b). In the proof of (a), we have already shown that � ��./��� � �. That

is, both- and� share the same projection vector�. Therefore,
�	
 �� � � ���  define exactly

the same processor space as
�	
 �- � � ��� . Finally, - � � � . By scaling

�	
 �� � ����  to

get �� �� �� � �	
 �� � � ��� , we ensure that the timing function is applied correctly in the final

space-time equations.

This theorem is also correct when- is unimodular, in which case� � - and � is the

identity matrix. Thus, both (5) and (10) are identical.

The space-time equations derived by our method exhibit all useful properties about a design.

In addition to those that are also relevant to a unimodular mapping, four properties particularly

pertinent to a non-unimodular mapping are discussed below.

Let the first subscript function in the variable� �� �  be written explicitly as:

!�� !� / 
 �� �� 
 � � � 
 �� �� (11)

where � !�� !� �� � � � � � ��  is the top row of� . Let �� 		 and ��
� be the time steps for the first

input and last output, respectively.

1. Theperiodof the array is!�� !, i.e., the coefficient of�/. That is, a PE is active every!�� !
clock cycles.

2. A PE at the location� ��./�� � is active in the following time steps:

 !�� !� 
 �� �� 
 � � � 
 �� �� ! � � � ��  �� 		 # !�� !�
 ����
 � � � 
 �� �� # ��
� %
3. The PEs in the array can be divided into!�� ! groups such that all PEs in the same group

can be simultaneously active. The
�
-th group�� , where� # � � !�� !, contains the

following PEs:

�� �  � ��./�� � ! ����� 
 � � � 
 �� ��  � !�� ! � � %
These groups are active periodically according to the order:

�� 
 � / 
 � � � 
 ��./
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We say that the array has!�� ! phasesand the PEs in�� are active in phase
�
.

4. The equivalence of all mappings that have the same� and� is obvious. Let a systolic array

be designed using� � �� � � � � and� � �� � � � �. Consider three equivalent mappings

and their decompositions:

- / �
�
�
� � �� � �� � �


� � � /� / �

�
�
� � �� � �� � �


�

�
�
� � �� � �� � �


�

- � �
�
�
� � �� � �� � �


� � ���� �

�
�
� � � �� � �� � �


�

�
�
� � �� � �� � �


�

- � �
�
�
� � �� � � �� � �


� � ���� �

�
�
� � �� � �� � �


�

�
�
� � �� � � �� � �


�

The same array is viewed differently from the perspective ofeach mapping. Let us use

the processor structure described by- / as a reference.- � changes its shape (but not its

topology) by applying a skewing transformation

	� �� ��, i.e., the bottom-left�� � � �
�� � � submatrix of��

to its processor space.- � also modifies the shape of the array

by applying

	� � �� � � �
	� � �� �� 	� �� �� 	� �� �� , i.e., the bottom-left�� � � � �� �� submatrix of��. This consists of applying the same skewing transformationas in

- � followed by interchanging the two processor axes and then reversing the first (new)

processor axis. The lower�� � � � �� � � submatrix of��, i.e.,

	� �� �� corresponds to

a relabeling of the processor coordinates.

Let us construct the space-time equations for Kung-Leiserson’s hexagonally mesh-connected

array [5], depicted in Figure 3. Unlike S. Y. Kung’s array, this array is designed using the fol-

lowing non-unimodular mapping:

- �
	�
 � �

�
�
� � �� � � �� � � �


�

The processor structure is obtained by projecting the dependence graph along� � �� � � � �.
Applying Theorem 2, we decompose- as follows:

- � � � �
�
�
� � �� � �� � �


�

�
�
� � �� � � �� � � �


�
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� � �

�

�

$
$
$

$
$

�

�

� � �

�
�

�� �  �� � �  ! �� 
 � � � � �%
� / �  �� � �  ! �� 
 � � � � �%
� � �  �� � �  ! �� 
 � � � � �%

Fig. 3: Kung-Leiserson’s systolic array for matrix multiplication �� � �.

To illustrate our method, we derive the space-time equations in two steps. In the first step,

we apply the following domain morphism:

� �
�
�
� � �� � � �� � � �


� � �

�
�
�
�
�


� �

�
�
�
��

�

to obtain the following equations:� 
 � � � � � # � 
 � � � # � 
 " �� � � � �  � � �� 
 � � �� # � 
 � � � 
 � � � # � 
 " �� � � � �  � " �� � � � � � �� 
 � � � � � # � 
 � � � # � 
 � �� � � � �  � $ �� � � 
 � � # � 
 � � � 
 � � � # � 
 � �� � � � �  � � �� � � � � � � � � � � � # � 
 � � � 
 � # � 
 	 �� � � � �  � �� # � 
 � � � 
 � � � # � 
 	 �� � � � �  � 	 ��� � � �
 � � � 
 �
" �� � � � � � �� �� � � � � � � � � � � � # � 
 � � � 
 � # � 
 � �� 
 � � � 
 �  � 	 �� � � � � 
In the second step, we apply� to scale the domains of three variables" , � and	 :� 
 � � � � � # � 
 � � � # � 
 " ��� 
 � 
 � � � � �  � � �� 
 � � �� # � 
 � � � 
 � � � # � 
 " ��� 
 � 
 � � � � �  � " ��� 
 � 
 � � � � � � � � �� 
 � � � � � # � 
 � � � # � 
 � ��� 
 � 
 � � � � �  � $ �� � � 
 � � # � 
 � � � 
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 � � � 
 � � � # � 
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 � 
 � � � � �  � 	 ��� 
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 �
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 � # � 
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 � 
 � � � � � 
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�

�
��� � � � �� 
 �

�� �� � �� � �

Fig. 4: The extended index space for Kung-Leiserson’s array(� � �).

From these equations, we can see clearly that the period of Kung-Leiserson’s array is!�� ! �
�. This means that the array operates in 3 phases. The PEs that can be simultaneously active

are shaded identically in Figure 3. The array consists of��
�
� �� 
 � PEs. If we assume

that all I/O are performed at border PEs, the latency of the array can be calculated as follows.

Following [16], the index space is extended to find out the point(s) mapped to the first time

step and the point(s) mapped to the last time step. By extending the index space as shown in

Figure 4, we find that�� � � � �� 
 � and �� �� � �� � � are mapped to the first and last time

steps, respectively. Thus,

�� 		 � �� � � � � �� � � � �� 
 � � �� 
 �

��
� � �� � � � � �� �� � �� � � � �� � �
The latency of the array is��� � ���� �. PE �� � �  is active in the time steps:

 �� 
 � 
 � ! � � � ��  �� 
 � # �� 
 � 
 � # �� � �%
Our method for deriving space-time equations is compositional in the sense that the space-

time equations for a mapping can be further transformed by applying unimodular and non-

unimodular mappings.

The following theorem describes how a non-singular mappingcan be applied to the space-

time equations given in (10).

Theorem 3 Let - / and - � be two non-singular mappings such that their decompositions are

- / � � /� / and - � � ����
. Let - �- � be decomposed into- �- / � � � . Let ����� / be

decomposed such that����� / � ����. Then,

�� �� �� � �	
 �� � � ���  � �� �� ������ .// � ./� � �	
 ��� � �� �� �� / �
�	
 �� / �

� ��� 
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Proof. From ����� / � ����, we have����� /� / � ����� /. By using further the fact that

- �- / � ����� /� / � � � , we establish that����� / � � � . Because� and�� are in Hermite

normal form as defined in Definition 1 and� /, �� and � are all unimodular, we must have

� � �� and� � ��� /. (Note that a diagonal element in�� (and� ) is the largest of the row

containing that element.) This leads to the equality of bothsides of the equation.

By this theorem, the space-time equations obtained by applying - �- / as one compound

mapping are the same as those obtained by applying- / and- � individually in that order.

5 Space-Time Equations for Multirate Arrays

In the synthesis of systolic arrays, the evaluation of everyequation (i.e., operation) is assumed

to take one unit time. As a result, the clock cycle has to be themaximum of these operation

times. A multirate array is a generalised systolic array, allowing different equations to take

different time units to complete by making use of a finer clockcycle. Some discussions about

multirate arrays can be found in [6, 16]. S. Y. Kung demonstrated by an example how to design

a multirate array using the retiming theorem [6, pp. 243–246]. Rao used integer programming

to search for multirate arrays with the maximal efficiency asdefined below [16, pp.156–166]:

�� +*(�+� � the maximum of the evaluation times for all computation equations��
In this section, we apply our method to derive space-time equations for a multirate array

once the corresponding mapping is known.

In the case of matrix multiplication, we assume that all PEs are implemented as serial

multiply-accumulators. We further assume that the computation equations for" and� take

one unit each and the computation equation for	 takes 16 time units. Then Rao formulated the

problem of finding efficiency-maximal multirate arrays as follows [16]:

Minimise ��
Subject to � �� � � � �� � �� �� � � � �� � �� �� � � � �� � ���� � ��

(12)

There are three dependence vectors in the program. The first three constraints ensure that all

three dependence vectors�� � � � �, �� � � � � and �� � � � � are respected. The last constraint en-

sures that the time interval for computing two consecutive index points in the same PE is at least

16 time units.
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In general, one of the constraints in designing multirate arrays is:�� � ��
�
where��
� is the maximum of the times for evaluating all operations. Thus, all mappings for

multirate arrays are non-unimodular.

Let us consider two multirate arrays, one designed using theprojection vector for S. Y. Kung’s

array and one using the projection vector for Kung-Leiserson’s array.

5.1 Projection Vector� � �� � � � ��

In this case,� � �� � � � �� is a solution to (12) that achieves 100% efficiency. The arraycan be

described by the mapping:

- �
�
�
� � ��� � �� � �


�

An application of Theorem 2 will decompose- to:

- � � � �
�
�
�� � �� � �� � �


�

�
�
� � �� � �� � �


�

The space-time equations can be derived as:
� � � � � # � � � # � 
 " ���� 
 � 
 � � � � �  � � �� � �� # � � � � � # � 
 " �� � � � �  � " ���� 
 � 
 � � � � � � � � �
� � � � � # � � � # � 
 � ���� 
 � 
 � � � � �  � $ �� � � � # � � � � � # � 
 � ���� 
 � 
 � � � � �  � � ���� 
 � 
 � � � � � � � � � � � � � � # � � � # � 
 	 ���� 
 � 
 � � � � �  � �� # � � � � � # � 
 	 ���� 
 � 
 � � � � �  � 	 ���� 
 � 
 � � �� � � � � 


" ����
 �
 � � � � � � � � �� ����
 �
 � � � � � � � � � � � � � � # � � � # � 
 � �� � �  � 	 ���� 
 � 
 � � � � � 
By extending the index space, we find that the latency of the array is ��� � � � ��

��� �� ��  � �� � � � � 
 ����� � � ��	� � ���� �, where��� � is the length of the array’s

clock. This array is much faster than S. Y. Kung’s array since���� � ����� �. This is because, by

allowing different operations to consume different time units, the computations of all elements

of 	 in the multirate array can begin as soon as the respective elements of" and� are available.

Due to the projection�� � � � � used, a PE is responsible for executing one vertical line of

the points in the dependence graph (Figure 1). The dependence vector for	 in the space-

time equations is��� � � � �. Since the computation equation for	 takes����� � time units to

evaluate, a PE is active in every clock cycle from the time when it begins to compute the first

point. Hence, the array has 100% efficiency.
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5.2 Projection Vector� � ��� �� ��

In this case, there are no multirate arrays achieving 100% efficiency. One solution is to choose

the same timing function� � �� � � � �� as before. This gives rise to the following equivalent

space-time mapping:

- �
�
�
� � ��� � � �� � � �


�

The efficiency of the array is/��� � � 	�� . Applying Theorem 2 decomposes- to:

- � � � �
�
�
�	 � �� � �� � �


�

�
�
� � �� � � �� � � �


�

Due to the similarities between this mapping and the one for Kung-Leiserson’s array, we obtain

the following space-time equations, which are the same as those for Kung-Leiserson’s array

except that the coefficient of� is 18 instead of 3:� 
 � � � � � # � 
 � � � # � 
 " ��	� 
 � 
 � � � � �  � � �� 
 � � �� # � 
 � � � 
 � � � # � 
 " ��	� 
 � 
 � � � � �  � " ��	� 
 � 
 � � � � � � � � �� 
 � � � � � # � 
 � � � # � 
 � ��	� 
 � 
 � � � � �  � $ �� � � 
 � � # � 
 � � � 
 � � � # � 
 � ��	� 
 � 
 � � � � �  � � ��	� 
 � 
 � � � � � � � � � � � � � � # � 
 � � � 
 � # � 
 	 ��	� 
 � 
 � � � � �  � �� # � 
 � � � 
 � � � # � 
 	 ��	� 
 � 
 � � � � �  � 	 ��	� 
 � 
 ���� � � 
 � � � 
 �

" ��	� 
 � 
 ��� � � � ���� ��	� 
 � 
 � � � � ��� � � � � � � � # � 
 � � � 
 � # � 
 � �� 
 � � � 
 �  � 	 ��	� 
 � 
 � � � � � 

Again by extending the index space, we find that the latency ofthis multirate array is

��� � � � �� ��� �� � �� � � � �� � � � �� 
 �
 ����� � � ��	� � �� ��� �, which is faster than

Kung-Leiserson’s array since��� � � ����� �.
However, it is well-known that we can maximise the throughput of Kung-Leiserson’s ar-

ray by interleaving the execution of multiple instances of matrix multiplication. The time for

executing three instances can be calculated to be��� � ���� �.
The pipelined execution of three instances in the multiratearray given above will take three

times longer than the execution of a single instance.

Therefore, the multirate version has a lower latency but Kung-Leiserson’s array can achieve

better throughput by interleaving the execution of multiple instances in the array.

Note that the first subscript function of the rhs	 in the computation equation is�	� 
 � 

� � ��. This means that a PE wastes two cycles when evaluating the computation equation for	
for two consecutive points allocated to the PE. Hence, the efficiency of the array is/�/�� � 	�� .
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6 Related Work

Loop transformation and systolic design are two closely related fields. In both fields, a matrix

transformation is sought that specifies precisely the parallel code to be generated or the systolic

array to be designed. The major focuses in loop transformations are on increasing parallelis-

m, improving data locality and reducing communication overheads. The emphases in systolic

design are on minimising the latency, throughput, and processor count of a design.

This work is related to the code generation problem arising in loop transformation, which

consists of producing the new loop code to execute the iterations in the original loop code

according to the order specified by a given loop transformation. If the loop transformation

is unimodular, the new index space is convex since the original index space is convex. The

code generation is simple. The new loop code can be generatedas described in [1, 18]. If

the loop transformation is non-unimodular, the new index space isnot convex. In this case,

the generation of the new loop code is solved in several papers [9, 15, 19]. The basic idea is

to obtain the Hermite normal form from the loop transformation matrix and derive from it the

new loop bounds and step sizes. The non-unity step sizes serve to skip theholesin the new

non-convex index space.

In systolic design, many researchers have focused on findingthe scheduling vector� and the

projection vector� to describe a systolic array [12, 13, 14, 16]. Although both� and� can be

collectively specified using a single non-singular matrix as in (6), the generation of new space-

time equations has been discussed only for unimodular mappings [2, 7, 12, 16]. To the best of

our knowledge, no systematic methods for deriving space-time equations under non-unimodular

mappings have been reported in the literature. This paper provides a systematic method for

solving this problem. Theorem 2 shows that the space-time equations can be obtained from the

original equations by first applying a unimodular domain morphism and then a non-unimodular

scaling transformation. Theorem 3 shows that our method is compositional so that the space-

time equations can be further transformed by unimodular andnon-unimodular mappings.

7 Conclusion

In this paper, we have presented a method for deriving space-time equations for systolic arrays

described by non-unimodular space-time mappings. Our method allows both unimodular and

non-unimodular mappings to be treated in a unified manner. The space-time equations provide a

precise specification of systolic designs, allowing them tobe formally manipulated. Depending
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on the application area and performance requirement, thesespace-time equations can be realised

in a variety of ways, as VLSI custom systems, as FPGAs and as programs to be run on general

purpose parallel computers.

In presenting our method, we have assumed all variables are scheduled by the same linear

timing function. In the general case, every variable� is scheduled by an affine timing function

of the form�� ��  � ��
 �
� . Since the effect of the affine constant�

� is to perform a translation

on the domain of variable� , our method applies in this case as well. For a similar reason, our

method also works in the case when the allocation matrix is affine.
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