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Abstract—Reuse distance analysis is a runtime approach
that has been widely used to accurately model the memory
system behavior of applications. However, traditional reuse
distance analysis algorithms use tree-based data structures and
are hard to parallelize, missing the tremendous computing
power of modern architectures such as the emerging GPUs.
This paper presents a highly-parallel reuse distance analysis
algorithm (HP-RDA) to speedup the process using the SPMD
execution model of GPUs. In particular, we propose a hybrid
data structure of hash table and local arrays to flatten
the traditional tree representation of memory access traces.
Further, we use a probabilistic model to correct any loss of
precision from a straightforward parallelization of the original
sequential algorithm. Our experimental results show that using
an NVIDIA GPU, our algorithm achieves a factor of 20 speedup
over the traditional sequential algorithm with less than 1% loss
in precision.

I. INTRODUCTION

On modern architectures, the performance of applications
critically depends on their memory access behavior, e.g.,
whether they demonstrate a degree of locality and whether
their patterns of data reuses can be adequately exploited
by the cache hierarchy of modern computers. To accurately
model the data reuse patterns of applications, existing re-
search has resorted to the concept of reuse distance (also
known as stack reuse distance), which is defined as the
number of distinct data items accessed between two suc-
cessive references to the same data [9], [2]. Reuse distance
analysis can be used to directly predict various aspects of
the memory system performance of an application, e.g. the
hit ratio when running on a fully-associative LRU cache [5],
the whole-program locality [9], the locality phases [25], and
the miss ratios across different program inputs [34]. It can
also be used to guide various optimizations, e.g. to generate
cache hints [6], to guide loop tiling [31], [30], and to reorder
code and data to improve locality [17].

To demonstrate the process of reuse distance analysis,

Figure 1 shows a small sequence of memory accesses
(also called a memory trace) which presumably can be
dynamically generated online while executing some user
application. In the example trace, the distance between the
two accesses of b is 5, as five distinct elements, c, g, e, f ,
and a, have been accessed in between. To analyze the whole
trace, the reuse distance between each pair of consecutive
accesses to the same data must be computed, therefore with
a worst-case complexity of O(N2), where N is the length
of the memory trace. The result of reuse distance analysis
is typically formulated as a histogram of the percentages of
memory accesses with reuse distances falling inside various
ranges between 0 and ∞.

Figure 1: Reuse distance example [9].

Computing a full reuse distance histogram is therefore
quite expensive [23]. One option is to perform the analysis
offline by collecting the sequence of all memory references
made by a user application and then analyzing the whole
trace afterwards. However, the space required for storing the
whole trace could be overwhelming for long-running appli-
cations. As a result, existing research mostly adopted online
analysis where fragments of memory traces are collected
and forwarded for analysis while running the application.
Existing research has exploited a number of tree-based
data structures,e.g., m-ary tree, AVL-tree [20], and splay
tree [26], to implement the algorithm efficiently. Ding et.
all [9] also leveraged approximate reuse distance analysis
to shorten the analysis period. However, even among the
most efficient implementations, analyzing every memory



reference of a program while evaluating the code slows
down the program execution by at least 1-2 orders of
magnitude [26].

The emerging massively parallel Graphics Processing
Units (GPUs) offer an opportunity to accelerate this process.
In particular, applications can be evaluated on a conventional
multi-core CPU while a separate GPU is dedicated to analyz-
ing the dynamically collected memory traces from running
the application. However, the traditional tree-based reuse
distance analysis algorithms are fundamentally sequential
and hard to parallelize on GPUs, as a global shared tree data
structure needs to be modified when analyzing each memory
reference in the trace (for more details, see Section II). To
parallelize such algorithms, a key challenge is to eliminate
artificial dependences introduced by the global shared tree
data structure. Further, to enable massive parallelism, the
conventional reuse distance analysis algorithm needs to be
reformulated so that thousands of sub-tasks can be used to
operate on different portions of a memory trace simultane-
ously.

This paper presents a new parallel reuse distance analysis
algorithm, the HP-RDA (Highly Parallel Reuse Distance
Analysis) algorithm, to overcome the above challenges
while using GPUs to dramatically promote the efficiency
of existing sequential algorithms. In particular, we propose
a hybrid data structure of hash table and local arrays to
flatten the traditional tree representation of memory access
traces. Then, we use a probabilistic model to correct any
loss of precision from a straightforward parallelization of
the original sequential algorithm. Out experimental results
show that using an NVIDIA GPU, our algorithm achieves a
factor of 20 speedup over the traditional sequential algorithm
with less than 1% loss in precision.

The rest of the paper is organized as follows. Section II
introduces the traditional sequential reuse analysis algorithm
proposed by Ding et al [9]. Section III presents our highly-
parallel algorithm, the hybrid data structure of hash table
and local arrays, and the probabilistic model to correct the
final results. Section IV discusses implementation details on
GPUs. Section V presents experimental results. Section VI
discusses related work, and Section VII concludes.

II. BACKGROUND

A reuse distance analysis algorithm takes as input a
sequence of memory addresses accessed during program
execution, measures the reuse distance between each pair of
consecutive accesses to the same address, and then reports
the collected data. The sequence of memory addresses is
typically called a memory trace, and a balanced tree, such
as the data structure shown in Figure 2, is often used to
dynamically organize the memory references for efficient
lookup of the access history. For example, consider the
balanced tree T in Figure 2, which is constructed after
processing the first 11 memory accesses in Figure 1. Here

each memory address that has been processed corresponds to
a unique tree node with three fields: the memory address x,
the time step t that x was last accessed, and the size (number
of nodes) w of the sub-tree beneath the current node. At time
step 12, the memory address b is accessed. The new reuse
distance for b can be computed as the number of existing
nodes (xj , tj , wj) ∈ T s.t. xj ̸= b and tj > tb, where tb =
4 is the latest access time of b in the existing balanced tree
in Figure 2. A hash table can be used to dynamically map
each memory address to its latest access time in T .

(x, t, w)

Figure 2: Balanced tree representation of the first 11 memory
references shown in Figure 1. Each node corresponds to a
distinct memory address x with t being its latest access time
and with w number of nodes in the subtree underneath [9]
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Figure 3: Sequential reuse distance analysis algorithm [9]

Figure 3 shows the sequential reuse distance analysis



algorithm introduced by Ding et al [9]. A similar algorithm
was also used by Almasi et al [2]. Here, the routine
Reuse Analysis traverses an existing balanced tree ptree in
pre-order and computes the reuse distance for each memory
reference v in three steps.

1) Find the time step that v was last accessed by looking
up a global hash table. Save it to variable tv .

2) Compute the reuse distance of v as the number of
nodes that have later access time than tv in ptree.
Erase the previous access to address v in ptree using
tv as a key.

3) Insert a new access to address v into ptree under the
current time step. Rotate the tree if necessary to keep
it balanced.

Note that since significant modifications are made to ptree
when processing each memory access, the algorithm is
fundamentally sequential and difficult to parallelize.

III. THE HP-RDA ALGORITHM

The goal of our Highly-Parallel Reuse Distance Analysis
algorithm is to reformulate the sequential algorithm so
that massive parallelism can be exploited using the SPMD
execution model on GPUs. The key insight is the use of
a hybrid data structure of hash table and local arrays to
flatten the traditional tree representation of memory access
traces, and the use of a probabilistic model to correct any
loss of precision from a straightforward parallelization of
the original sequential algorithm. Section III-F discusses the
accuracy of the computed results and the generality of our
approach.

A. The Overall Algorithm

The overall HP-RDA algorithm adopts a divide-and-
conquer approach. First, to support massive parallelism, we
divide the input memory trace into a large number of disjoint
smaller traces to be analyzed simultaneously by multiple
threads. Then, the results of analyzing the thread-local traces
are combined to compute a solution for the original input.
Since processing disjoint fragments of the original memory
trace in parallel may violate dependence constraints between
memory references in the original input trace, a merging step
tries to correct such violations by recovering the lost reuse
distance information from a set of statistics pre-computed
for each thread-local trace. Finally, we use a probabilistic
model, presented in Section III-E, to adjust the final solution
and reduce error rates.

Figure 4 gives a skeleton of our algorithm, which includes
the following four steps.

1) Preprocessing the input: To reduce the required global
memory space and to distribute balanced workload among
the CUDA threads, this step modifies the input trace so that
when a single memory address is repeated by a sequence
of neighboring references, all the repetitive references are
removed (e.g., a sequence of aaaa would be replaced

Figure 4: HP-RDA algorithm.

with a single a). In particular, since the reuse distance of
these continuously repeated elements is always zero, the
information is easily computed on-the-fly during the trace
transformation. Note that this step can also be applied in
the sequential algorithm to reduce tree insertion operations.

2) Dividing up the input trace: This step divides an input
trace with N memory references equally across n threads,
with each thread-level trace containing N/n references. In
Figure 4, the local trace to be processed by each thread i is
saved in local trace[i].

3) Analyzing thread-local traces in parallel: This step is
evaluated by a large number of CUDA threads concurrently,
with each thread analyzing it’s own thread-local trace to
compute relevant reuse distances and summarize various
statistics of the trace for later processing. Section III-C
presents details of this step.

4) Merging thread-local results: This step is evaluated
after all the threads have finished evaluating the previous
step, so that the thread-local results in local result are now
ready to be combined into reuse distances for the original
input. Note that this step is also parallelized, where reuse
distances for different memory addresses are merged concur-
rently. Because concurrent thread-level analyses may have
violated a set of dependence constraints among memory
references in the original input, the reuse distances for some
memory references may have to be approximated in the
merging process. Section III-D presents details of this step
and how to further adjust the final results to reduce the loss
of precision based on a probabilistic model.

B. Revising Data Structures

The sequential reuse distance analysis algorithm in Sec-
tion II uses a balanced tree to dynamically store the latest
access time of memory addresses processed so far. The tree
needs to be modified and rotated when processing each
memory reference. Since each tree rotation may operate on
a large number of branches, a GPU algorithm operating
on such a tree data structure could easily result in all
threads being sequentialized waiting to operate on the shared



branches. To overcome this difficulty, we designed a hybrid
data structure of a hash table and a set of local arrays to
support massive parallelism by a large number of CUDA
threads.

1) The Hash Table: We use a global hash table to map
each memory address (key) in the original input trace to a list
summarizing how the address has been accessed within vari-
ous thread-local traces. In Figure 5(a), access info illustrates
the data structure used to summarize the access information
of a memory address v within a thread-local trace. Here,
the tid field remembers the index of the tread-local trace
(i.e., the thread id used to analyze the trace), first stores
the number of distinct memory references within the trace
before encountering the first access of v, latest stores the
number of distinct memory references after processing the
last access of v in the trace, and the next pointer is used
to organize multiple access info objects (computed from
different thread-local traces) into a list.

The sequential algorithm in Section II also uses a hash
table to remember the previous access time of each memory
address. Our hash table is different in that it contains more
information and is used to summarize the statistics com-
puted from a large number of concurrent threads analyzing
different portions of the original input trace.

2) Local Arrays: To support concurrent thread-level anal-
ysis, we associate with each thread a private array of N
entries, where N is the length of the thread-local trace, to
keep track of the latest reference of each memory address
within the trace. Initially the entire thread-local trace is
copied into the private array. While processing each entry
j = 1, ..., N of the trace, ∀i = 1, ..., j − 1, the ith entry
within the trace is the latest reference to a memory address
if and only if local array[i] ̸= 0, where local array[i] is
ith entry of the private array.

Figure 5(b) illustrates the content of a local array when
processing the 13th entry a thread-local trace. In particular,
when index = 13, the memory address a is encountered.
Since local array[2] = a, the previous latest access of
a was encountered when processing the 2nd entry of the
trace. Since the local array contains 5 non-zero entries, e,
g, c, b, and d, between its 2nd and the 13th entries, the
resulting reuse distance for a is 5. After recording the reuse
distance, we modify local array[13] with value a since
entry 13 has now become the latest access to a. Then, we
reset local array[2] to zero before proceeding to process
the next address in the local trace.

C. Thread-Level Analysis

Figure 5(c) summarizes the steps performed by each
CUDA thread spawned by our algorithm. The algorithm
takes a single input, the local trace to be analyzed by the
thread, and compute two sets of information: the reuse
distances of the local trace, and the statistics of how each

address is accessed within the local trace. The reuse dis-
tances are returned as result of the thread-level analysis,
and the thread-local statistics are stored inside the global
hash table as a set of access info objects (see Figure 5(a)),
one for each address referenced inside the local trace. The
evaluation includes the following three steps.

1) Step 1: Initialize the local array from the input trace.
2) Step 2: For each index i of the local array and the

corresponding memory access v stored in local array[i],
query the lash table to find out the time step tv that v
was last accessed. Then, set the reuse distance of v to be
the number of non-zero elements between tv and i with
local array. Finally, after saving the reuse distance for v,
reset local array[tv] to zero, and enter the additional access
information into the hash table,

3) Step 3: Count the number of distinct memory ad-
dresses inside the local trace.

Figure 6 illustrates the output of the algorithm after
analyzing a trace of 16 memory references. As example, the
memory address b appears in all three thread-local traces. In
the 2nd thread-local trace, three distinct memory addresses,
e, f and a, are accessed before the first access of b, and
one distinct memory address, a, has been accessed after the
latest access of b.

 count            5        4        3

Figure 6: Summary information for thread-local traces
(count contains the number of distinct memory addresses
in each thread-local trace. For each memory address v in
the hash table, the first column lists the number of other
memory addresses accessed before the first access of v
in each thread-local trace, and the latest column lists the
number of addresses accessed after the latest access of v.

D. Merging Thread-Local Results

Figure 7 shows our algorithm for merging reuse distances
computed by different threads. The algorithm takes a single
input, the collection of reuse distances computed so far, and



struct hashnode {

    int64 addr;

    access_info *tinfo;

    hashnode *next;

}

struct access_info {

    int32 tid;

    int32    first;

    int32 latest;

    access_info *next;

}

(a) Hash table shared by multiple threads

0 a 0 0 0 e g 0 c b d

c   a   b   c   d   e  d  g  b   c   b   d   a

0

(b) Thread-private local array. It is dynamically 

updated as the trace being traversed. Above 

example shows the array status before the pointed 

a is processed. When we traverse to trace[i], the j-

th (0<j<i) array element is defined as:

   0: not the latest access to trace[j] by now

 trace[j]: the latest access to trace[j] by now

algorithm Thread_Analysis (trace) 

//Global hash table, and global array count holding number of 

//distinct elements for each thread

global hash, count[];

1.  //Initialize local_array from the input trace

    local_array = Copy_To_Local(trace);        

2.  //process each memory access in sequential order

for each index i of local_array do

        v = local_array[i];

        tv = Get_Last_Access(hash, threadID, v);

       //Compute reuse distance for v

        dist = Compute_Reuse_Distance(local_array, tv, i);

        local_results = Store_Result(dist, v);

        //Reset v's previous access in the local array 

if (tv != 0)           local_array[tv] = 0;

        //Update v's access_info

        Record_Access_Info(hash, threadID, v, i);

end for

    //Count the number of distinct elements in the trace

3.  count[threadID] = Count_Distinct_Elements(local_array);

     return local_result;

end algorithm

(c) Algorithm for thread-level analysis 

trace

local array

1   2 3   4   5   6  7   8  9  10 11 12 13index

Figure 5: Hybrid hash table and local arrays, together with the algorithm for thread-level analysis.

extends the collection by considering situations where a pair
of references to the same memory address span across mul-
tiple thread-local traces. Such information is recovered from
the set of access info objects stored in the global hash table,
illustrated in Figure 5(a) and discussed in Section III-B1.

In particular, for each memory address v stored in the
hash table, the algorithm traverses the access info objects
of v in increasing order of their thread ids (i.e., in the
original ordering of the corresponding thread-local traces). If
consecutive access info objects are created by two distinct
threads with ids i and j respectively, where i < j, the reuse
distance between the last reference of v in the ith local trace
and the first reference of v in the jth local trace can be
computed as:

dist(v) = Get Access Info(v, i).last+
j−1

Σ
k=i+1

(count[k]) +Get Access Info(v, j).first
(1)

where Get Access Info(v, i) returns the access info ob-
ject of memory address v created by thread i, and count[k]
contains the number of distinct memory addresses processed
by thread k. Figure 8 shows an example of merging the
thread-level results.

While Formula 1 can be used to extensively recover reuse
distances omitted by thread-level analysis, the result could
still remain imprecise and thus require the invocation of
another routine, Adjust Distance in Figure 7, to further
recover dependence constraints that may have been violated
by the thread-level analysis. Details of the adjustment is
discussed in Section III-E.

dist

Figure 7: Algorithm for merging thread-level results.

E. A Probabilistic Model For Adjusting Solutions

Figure 8 shows an example where using the algorithm
steps so far, an incorrect reuse distance value, 6, would be
returned for a memory reference, g, instead of its correct
reuse distance which should be 4. The loss of precision
comes from missing the overlap of distinct memory ad-
dresses inside the 2nd and 3rd thread-local traces (a and
b exist in both thread-local traces). Since a straightforward



Figure 8: Example for merging thread-level results.

merging step ignores such overlap, the reuse distance (dist)
computed from Formula 1 could be larger than the actual
value (distreal). We correct the result using the following
formula:

distreal = dist ∗ ef if dist > M (2)

where M is the number of distinct memory addresses in
the entire original trace t, and ef is called as an effective
factor of t. Intuitively, for an input trace t, ef represents the
probability that there is no overlap between two arbitrary
thread-local traces taken from t. Below, we discuss how to
compute ef .

Given a trace t of N references to M memory addresses,
assume t has been equally divided into n thread-level traces,
t1, ..., tn, each with a set of local memory references S1,
S2, ... Sn, respectively. We define the effective factor ef of
t as:

ef =
M

Σn
i=1 count[i]

(3)

where count[i] is the number of distinct memory ad-
dresses in Si. Note that the number of distinct memory
addresses in (

∪n
i=1 Si) is M. Hence the effective factor (ef )

of t is computed as the inverse of the average number of
times that an arbitrary memory address may appear simul-
taneously across different thread-local traces. (i.e., inverse
of the likelihood that two arbitrary thread-local traces may
overlap). The value of ef ranges from 0 to 1. Its upper bound
(efmax=1) can be found when ∀(i, j), Si∩Sj = ∅; i.e., there
is no overlap among the thread local traces. Its lower bound
( lim
n→∞

efmin = 0) can be found when there is a thread-local
trace Sk that subsumes all the other local traces; i.e.,

efmin =
count[k]

Σn
i=1 count[i]

when ∃k ∈ (1..n), s.t. ∀j ̸= k, Sj ⊂ Sk

(4)

F. Correctness And Generality

Some of the reuse distances computed by our HP-RDA
algorithm could be slightly different from those computed
by the sequential algorithm in Section II. However, after
applying the probabilistic model in Section III-E, the loss of

precision is negligible in a majority of practical situations,
as confirmed by our experimental results.

While our algorithm applies only to the reuse distance
analysis algorithm, the overall approach, including the re-
design of the data structures and the adjustment of solutions
based on a probabilistic model, can be leveraged for other
trace analysis problems, e.g., pattern seeking in a given trace
(used in biological areas for protein analysis) [22], trace-
based cache/memory bank simulator [29], [19], etc.

IV. ALGORITHM IMPLEMENTATION ON GPU

We have specialized our implementation of the HP-RDA
algorithm for the NVIDIA GPGPU architecture by accom-
modating varying architectural features such as the two layer
thread block and thread level parallelism, the hierarchical
memory system, among others.

A. Two-levels Of Parallelization

CUDA supports parallelism at two levels, the thread block
level and the thread level. Accordingly, we first divide the
input trace into multiple thread-block-level traces and then
divide each thread-block-level trace into many thread-level
traces. Figure 9 illustrates the distribution of tasks among the
threads. Note that the workload being distributed include not
only the analysis of thread-local traces but also the merging
of local results at both the thread and thread-block levels.
Further, the workload assigned to each thread varies at
different algorithmic steps. At the thread-level analysis step,
each thread processes a thread-local trace. At the thread-
level merging step, each thread processes a group of distinct
elements from the hash table of its parent thread block.
Finally, at the thread-block-level merging step, each thread
processes a group of distinct elements across all the hash
tables from different thread blocks.

B. Pool-Based Dynamic Memory Allocation

Our HP-RDA algorithm needs to dynamically allocate
memory to store a large amount of data, e.g., the hash table
nodes and the summary information of thread-local threads.
However, CUDA does not support malloc. To resolve this
issue, we implemented a lightweight pool-based dynamic
memory allocator on GPU and provided support for efficient
lock-free concurrent insertions to the hash table using the
approach by Hong et. al [11]. Our implementation allocates
a large block of global memory, which acts as two memory
pools, for each thread block. Each memory pool uses a free-
space-ptr pointer to keep track of the free spaces. Every
time malloc is invoked from a CUDA kernel, the free-
space-ptr is atomically incremented using the atomicAdd()
operation provided by GPU. One of the memory pools is
dedicated to hold hash nodes, enabling us to directly count
the number of distinct memory addresses in each thread-
block-local trace from the memory pool. The other pool is
used for other miscellaneous data, including the access info
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Workload of thread block 2, thread 1

Workload of thread block 2, thread 2

Workload of thread block 2, thread 3

1: access_info for a thread, 2: access_info for a thread block

Figure 9: Workload distribution for HP-RDA. Each color represents the workload for a thread, varying with steps. And the
grey horizontal strips represent synchronization operations.

for each memory reference, the next pointer used to link the
access information together (as shown in Figure 5(a)), and
some other temporary variables. The memory pools are be
released until the reuse distance analysis for the whole input
trace has been completed.

C. Memory Utilization

Inside the NVIDIA GPU, each CUDA thread can access a
private local memory, a shared memory owned by all threads
of the same thread block, and a global memory shared by all
threads running on the same GPU [1]. Our implementation
allocates the dynamic memory pools on the global memory
(GM). Therefore the hash table, together with the summary
information of all thread-local threads, are all located on the
GM. The frequently used free-space-ptr variables, the total
count of distinct elements for each thread-local trace, and
the histograms holding the analysis result of each thread-
local trace, are all allocated on the shared memory for fast
access. The thread local arrays and temporary variables are
placed in the thread-local memory.

V. PERFORMANCE EVALUATION

Through experimental evaluation, we compare our HP-
RDA algorithm with the sequential reuse distance analysis
algorithm by Ding et. al [9] and seek to confirm two
conclusions: (1) our HP-RDA algorithm offers significant
performance advantages over the conventional sequential
reuse distance analysis approach, and (2) the potential loss
of precision using our parallel algorithm on GPUs is minor
and likely negligible.

A. Experimental Methodology

Binary Instrumentation. Both the sequential reuse dis-
tance analysis algorithm and our HP-RDA algorithm [9]
are implemented as plugins for the PIN binary instrumen-
tation system [16]. The instrumented application collects
all the memory addresses referenced, combines them into
fragments of memory traces, and then feed these fragments
of traces to its plugin for processing.

Platform. We ran our experiments on a Intel 2.13GHz
quad-core Xeon E5506 with 32KB L1 DCache, 32KB
ICache, and 4MB L2 cache. The machine comes with a
NVIDIA Fermi Tesla C2050 GPGPU from NVIDIA. The
GPGPU has a 3GB global memory and 14 Streaming
Multi-processors(SMs), each containing 32 Streaming Pro-
cessors(SPs). Each SM has 32768 registers and a 48KB local
scratchpad memory shared by all active threads of the SM.
We evaluated the sequential reuse distance analysis algo-
rithm on the host CPU and evaluated our HP-RDA algorithm
on the GPGPU. Additionally, to isolate the algorithmic ad-
vantage of our HP-RDA algorithm from the extra degrees of
parallelism offered by GPUs, we also evaluated an OpenMP
implementation of our divide-and-conquer algorithm on the
host CPU. The instrumented application and the collection
of memory traces were always evaluated on the host CPU.

Workloads. We evaluated both the sequential reuse dis-
tance analysis and our HP-HDA algorithms using selected
programs from a set of CPU SPEC2000 benchmarks, using
the test inputs of the benchmarks.

B. Algorithm Efficiency

Figure 10 presents the speedup that our HP-RDA algo-
rithm achieved over the sequential reuse distance analy-



sis algorithm, using both a GPU implementation and an
OpenMP implementation on CPUs. Here the performance
statistics include the time spent analyzing the traces using
both algorithms but omit the cost of instrumentation and
trace collection. From Figure 10, when running on a GPU
platform, our HP-RDA algorithm can achieve up to a factor
of 33 speedup, with a factor of 19.6 speedup in average.
When implemented using OpenMP on the host CPU, our
algorithm shows a factor of 3 speedup in average.

Figure 11 presents speedups of evaluating the whole in-
strumented application when using our HP-RDA over using
the sequential algorithm. Here the performance statistics
include both the time spent analyzing the traces and the
cost of instrumentation and trace collection. As shown in the
figure, even when amortized over the cost of instrumenting
and evaluating the user application, our HP-RDA algorithm
can achieve up to a factor of 22 speedup, with a factor
of 15.1 speedup in average, when evaluated on the GPU.
Essentially, our GPU parallelized HP-RDA algorithm can
reduce the time required for reuse distance analysis from
hours to minutes, significantly reducing the wait time for
such analysis and thus improving the productivity of devel-
opers. The speedup of its OpenMP implementation on the
host CPU is 1.85 in average when 4 threads are used.
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Figure 10: Normalized speedup of HP-RDA over the sequen-
tial algorithm. Performance statistics include data transfer
between CPU and GPU but omit time spent in instrumenta-
tion and trace collection.

C. Accuracy Of Results

To estimate the accuracy of results computed by our HP-
RDA algorithm, Figure 12 shows the resulting histograms
generated by our HP-RDA (with and without the result
correction step) and the sequential algorithms for 6 float-
ing point SPEC benchmarks. Figure 13 shows the same
comparison for 6 integer SPEC benchmarks. In Figure 12,
three benchmarks, 168.wupwise, 173.applu, and 178.galgel,
show visible differences in the results computed by our
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Figure 11: Normalized speedup of evaluating the whole
instrumented application with HP-RDA over using sequen-
tial algorithm. Performance statistics include data transfer
between CPU and GPU and the cost of instrumentation and
trace collection.

HP-RDA algorithm when the final solution adjustment step
(see Figure 4) is omitted. However, when including the
adjustment step, the difference is reduced to a negligible
degree. Similar behavior can be observed for the three
integer benchmarks, 181.mcf, 197.parser, and 255.vortex, in
Figure 13.

To quantify the degree of differences between the results
computed by our HP-RDA and the sequential algorithms, we
use H bins to divide each of the three histograms computed
by the varying algorithms. For each i = 0, ...,H , if the
sequential algorithm places ai values inside the ith bin of
its histogram, and our HP-RDA algorithm places bi values
to the corresponding bin, we compute an average error rate
e as:
e = ΣH

k=1(hk)/H hk =| ak − bk |
Figure 14 shows the average error rates of HP-RDA with

and without the final solution adjustment step. In particular,
the adjustment step was able to reduce the average error rate
from 1.2% to 0.37% in average and under 1% in all cases.

Note that even without the probabilistic model based
solution adjustment step, the error rate is relatively small.
Therefore, we provide an extra option –disable-adjusting to
turn off the adjustment step to further reduce the runtime
overhead of our algorithm when desired by developers.

D. Performance Breakdown

Figure 15 breaks down the performance statistics of our
HP-RDA algorithm into four components based on the
time spent in local thread-level analysis, merging thread-
level results, merging thread-block-level results, and final
adjustment of solutions. Here for most benchmarks, thread-
level local analysis is the most time-consuming. This is not
surprising, since each thread needs to create the hash table,
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Figure 12: Reuse distance histograms computed for 6 benchmarks in CFP2000 by sequential algorithm and HP-RDA with
and without the final adjustment step. X axis is reuse distance, Y axis is the fraction of references with reuse distance less
than or equal to x.

maintain the hash nodes, scan the local array, and compute
reuse distances inside its local trace. All these operations
incur frequent global memory references and thus are among

the most significant sources of execution time. A single
exception is the 171.swim benchmark, which references a
large number of memory accesses without much reuse inside
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Figure 13: Reuse distance histograms computed for 6 benchmarks in CINT2000 by sequential algorithm and HP-RDA with
and without the final adjustment step. X axis is reuse distance, Y axis is the fraction of references with reuse distance less
than or equal to x.

thread-level local traces (shown in Figure 13).

E. Tuning Parameters

Our HP-RDA algorithm is parameterized by the following
architecture-specific parameters which we manually tuned to
achieve satisfactory performance on GPUs.

• trace size, denoted as N, is the size of memory traces
to be transfered from CPU to GPU one at a time;
i.e., the size of the memory trace that the instrumented
application each time uses to invoke the reuse distance
analysis plugins. This parameter is constrained by the
global memory size of GPU. We determined its value
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under the constraint 36 ∗ N < 3GB and set its value
to be 0x4000000 for convenience.

• Hash table size, denoted as HS. To efficiently hash
the memory addresses from the input trace, we set the
hash table size to be 2*N, where N is the size of the
input memory trace.

• Memory pool size, denoted as MS. Our algorithm
implementation on the GPU uses two memory pools
for dynamic objects allocation. Distinct elements are
allocated in the memory pool for hash nodes, and their
repeated appearances in the other pool. We allocate the
total memory pool to hold N elements, and the memory
consumption is estimated as 20*N bytes, where N is
the size of the input memory trace.

• Size of thread-level trace, denoted as ST. This param-
eter determines the workload of each CUDA thread.
When ST is too small, the accuracy of the algorithm
could be reduced. We determined the value of this
parameter together with the CUDA threads organiza-
tion. Suppose the number of CUDA thread blocks is
NTB, and the number of threads per block as NB, the

constraint NTB ∗NB ∗ ST = N is enforced. Further,
we fixed NB to be 64, as a larger value could cause the
GPU shared memory to be exhausted. This parameter is
sensitive only to the underlying GPU architecture and
is independent of the user application being analyzed.

Figures 16 and 17 show the accuracy and execution time
under different configurations. It can be observed that the
accuracy of results decreases when ST becomes smaller.
In particular, when ST = 16384, the analysis result is
very close to that of the sequential algorithm. Combining
Figures 16 and 17, we can set ST to be 2048, which was
the configuration used for our evaluation.

0.75

0.8

0.85

0.9

0.95

1

A
cc
u
m
u
la
te
d

 P
e
rc
e
n
ta
g
e

Reuse Distance

sequential algorithm ST=16384

ST=2048 ST=256

Figure 16: Accuracy varying with ST .

0

5

10

15

20

25

30

35

40

16384 8192 4096 2048 1024 512 256

A
n
a
ly
si
s 
T
im

e
 (
S
e
cs
)

Figure 17: Analysis time varying with ST.

VI. RELATED WORK

A. Reuse Distance Analysis Algorithms

Reuse distance analysis was originally introduced by
Mattson Et. al [18] under the name stack distance, and has
been widely-used to model the reuse of data in caches on
modern architectures [8], [9] and to understand the memory
system behavior of applications. Ding et. al used reuse
distance to predict whole-program locality of applications
by revealing their global reuse patterns [9]. Shen et. al used
the analysis to identify program locality phases [25]. Zhong,



Shen, and Ding then further developed locality analysis to
generate a parameterized model to predict cache miss rates
across different program inputs [34].

Compiler researchers also leveraged reuse distance anal-
ysis to guide memory-aware optimizations. Beyls et. al
used reuse distances to generate cache hints for load/store
instructions [6]. Li et. al used reuse distances to evaluate the
potential benefits of register allocation for array elements on
scalar processors [15]. Marin et. al used reuse distances to
identify significant memory access patterns causing cache
misses and to provide insight for improving data reuse [17].
Zhong et. al defined a k-distance analysis to guide array
regrouping and structure splitting [35].

As computer architectures evolving towards multicores,
Ding and Chilimbi focused on statistical modeling of mul-
tithreaded reuse distances by combining data sharing and
thread interleaving information with per-thread reuse dis-
tance analysis [7]. Schuff et. al used the sampling method
to go beyond statistical modeling and to track interactions
between threads [23]. For multi-processor programs, existing
research has focused on modeling destructive interferences
among separate processes contending for limited cache
resources [14], [28].

B. Accelerating Reuse Distance Analysis

Researchers have used a number of data structures, includ-
ing m-ary tree [4], blocked hashing [4], AVL-tree [20], and
splay tree [26], to promote the efficiency of reuse distance
analysis. Ding et. al also leveraged approximate reuse dis-
tance analysis to reduce the analysis cost [9]. However, even
under the best implementations, analyzing every memory
reference of a program slows down its evaluation by at least
1-2 orders of magnitude [26].

A common approach to accelerating reuse distance analy-
sis is through sampling, which randomly selects a number of
instructions and a trigger to control the start of the analysis.
Zhong and Chang [33] presented a sampling-based method
which organizes data accesses into a tree and then separates
the analysis into a “sampling period” and a “hibernation pe-
riod”. The tree is modified only during sampling period and
is read to compute reuse distances only during hibernation.
Schuff et. al used sampling in their multicore reuse distance
analysis algorithm [23]. While sampling accelerates reuse
distance analysis by controlling the trace generation, our
focus is on parallelizing the trace analysis to take advantage
of the massive number of parallel processing nodes in GPUs.

C. Using GPU to Accelerate Irregular Applications

Most irregular applications require customized optimiza-
tion when porting to GPUs. Prabhu et. al [21] presented a
linear-algebraic encoding approach for higher-order control-
flow analysis. Solomon and Thulasiraman [27] analyzed the
performance of porting two irregular applications, matrix
parenthesization and breadth first search, to GPUs. Joseph

et. al [13] presented a parallel implementation of the Particle
in cell (PIC) algorithm on GPUs.

While hash tables are widely-used on traditional CPUs,
their implementations on GPUs are not straightforward.
Hong et. al [11] presented a hash table implementation
on GPU together with a lightweight memory allocator.
Zhang et. al [32] presented a hash table implementation
on GPU both with and without atomic operations sup-
ported. Amossen and Pagh [3] introduced a new data layout,
BATMAP, to accelerate item set mining for set intersections.

Many researchers have parallelized tree searching or
traversal algorithms, e.g., the k-D tree traversal algo-
rithm [12], decision trees and forests [24], and B+ tree
search [10], on GPUs. However, we are not aware of any
other existing algorithm for implementing balanced tree
creation and rotations on GPUs.

VII. CONCLUSION

This paper presents a highly-parallel reuse distance analy-
sis algorithm (HP-RDA), which reformulates the sequential
algorithm so that massive parallelism can be exploited using
the SPMD execution model on GPUs. We have used a
hybrid data structure of hash table and local arrays to
flatten the traditional tree representation of memory access
traces, and have used a probabilistic model to correct any
loss of precision from a straightforward parallelization of
the original sequential algorithm. The HP-RDA algorithm
is evaluated on a Fermi platform, and our experimental
results show that up to a factor of 20 speedup can be
achieved comparing with a sequential implementation of the
algorithm, with less than 1% average error.
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