Factorization of singular integer matrices

Patrick Lenders *
School of Mathematics, Statistics and Computer Science, University of New England, Armidale, NSW 2351, Australia
Jingling Xue
School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

It is well known that a singular integer matrix can be factorized into a product of integer idempotent matrices. In this paper, we prove that every $n \times n(n>2)$ singular integer matrix can be written as a product of $3 n+1$ integer idempotent matrices. This theorem has some application in the field of synthesizing VLSI arrays and systolic arrays.

Key words: Factorization of matrices, Integer matrices, Idempotent matrices 1991 MSC: 15A36, 15A23

1 Introduction

In [1], it was proved that a singular rational matrix can be factorized into a product of rational idempotent matrices. In particular, every 2×2 rational matrix can be written as a product of two rational idempotent matrices. This is no longer possible for integer matrices. For example, $\left(\begin{array}{cc}8 & 11 \\ 0 & 0\end{array}\right)$ cannot be written as a product of two integer idempotent matrices. In [3], Laffey proved that every singular $n \times n(n>2)$ integer matrix is the product of $36 n+217$ idempotent matrices with integer entries. In the present paper, we improve

[^0]Laffey's result, and prove that every $n \times n(n>2)$ singular integer matrix can be written as a product of $3 n+1$ integer idempotent matrices.

This theorem has some application in the field of synthesizing VLSI arrays and systolic arrays. Indeed the algorithm to be synthesized is generally given as a set of recurrent equations, with data dependencies expressed as the product of an integer matrix and a vector. The physical constraints on the arrays are such that only unit or idempotent matrices are easily implementable [6]. Thus our theorem demonstrates that any data dependency whose matrix is singular can be implemented on a systolic array through a set of idempotent matrices.

This paper is organized as follows. We first present some definitions and theorems. The next section proves the main theorem (Any singular integer $n \times n$ ($n>2$) matrix can be factorized into a product of $3 n+1$ integer idempotent matrices). The proof is followed by an example that illustrates the methodology. The final section shows how to implement a data dependency whose matrix is singular through a set of integer idempotent matrices.

2 Definitions and theorems

Let I_{m} be the $m \times m$ unit matrix. If A is a square matrix, $b(A)$ denotes its bottom row (with $b_{i}(A)$ as its i-th element), and $C_{i j}(A)$ denotes the cofactor of its element in row i and column j.

Definition 1 An $m \times n$ integer matrix of full row rank is said to be in Hermite normal form if it has the form ($D 0$), where D is non-singular, lower triangular, non-negative, in which each row has a unique maximum entry located on the diagonal.

Theorem 2 An $m \times n$ integer matrix B of full row rank can be written as $B=$ ($D 0$) U where $\left(\begin{array}{ll}D & 0\end{array}\right)$ is the Hermite normal form of B and U is unimodular.

For a proof of this theorem, see [7, page 45].
Definition 3 An $m \times n$ integer matrix B of full row rank is said to be extended unimodular if and only if one of the following equivalent conditions is met:
(1) The g.c.d of the sub-determinants of B of order m is 1 ;
(2) The system $B x=b$ has an integer solution x, for each integer vector b;
(3) For each vector y, if $y B$ is integer, then y is integer.

For a proof of the equivalence of these conditions, see [7, page 47].
Definition $4 A n n \times n$ integer matrix A of rank m is said to be pseudo uni-
modular if it can be written: $A=\binom{B_{0}}{0}$ where B_{0} is an extended unimodular matrix of rank m.

Theorem 5 An $m \times n$ integer matrix B of full row rank is extended unimodular if and only if another $m \times n$ integer matrix B_{1} can be found such that $B B_{1}^{T}=I_{m}$.

Proof:

- Sufficient condition: This can be proved by applying Condition 2 of Definition 3.
- Necessary condition: Assume that we have found an integer matrix B_{1} such that $B B_{1}^{T}=I_{m}$. We have to prove that B is extended unimodular. The matrix B can be written (using the Hermite normal form) $B=\left(\begin{array}{ll}H & 0\end{array}\right) U$, where U is unimodular. Thus, by hypothesis, we have $B B_{1}^{T}=\left(\begin{array}{ll}H & 0\end{array}\right) B_{1}^{T}=$ $(H 0) C=I_{m}$. It can be verified that $H=I_{m}$, which proves that B is extended unimodular.

QED

Definition 6 Let $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ be a vector. We define a column operation matrix (denoted $C_{k}(r)$) with elements:

$$
e_{i, j}= \begin{cases}1 & j \neq k, i=j \\ 0 & j \neq k, i \neq j \\ r_{i} & j=k\end{cases}
$$

For example, the column operation matrix $C_{2}(2,0,1)$ is the matrix:

$$
\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Note that any elementary column operation matrix (see for example [7, page 45]) can be factorized into a product of our column operation matrices.

Theorem 7 Any lower triangular matrix A of order n can be factorized into a product of n column operation matrices.

Proof:

$$
D=\left(r_{1}, r_{2}, \ldots, r_{n}\right)=C_{1}\left(r_{1}\right) \times C_{2}\left(r_{2}\right) \times \cdots \times C_{n}\left(r_{n}\right)
$$

QED
Theorem 8 A column operation matrix $C_{j}(r)$ is idempotent if $r_{j}=0$.
Theorem 9 Let $A=\left(\begin{array}{cc}0 & 0 \\ 0 & C_{j}(r)\end{array}\right)$ be an $n \times n$ integer matrix, where C is a $(n-1) \times(n-1)$ column operation matrix. Then A can be factorized into a product of 2 integer idempotent matrices.

Proof:

$$
A=\left(\begin{array}{cc}
0 & 0 \\
0 & C_{j}(r)
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
P & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
0 & Q \\
0 & I_{n-1}
\end{array}\right)
$$

where the elements of the $(n-1) \times 1$ matrix P are defined as:

$$
p_{i}= \begin{cases}r_{i} & i \neq j \\ r_{i}-1 & i=j\end{cases}
$$

and the elements of the $1 \times(n-1)$ matrix Q are defined as:

$$
q_{i}= \begin{cases}1 & i=j \\ 0 & \text { otherwise }\end{cases}
$$

QED

3 Factorization theorem

In this section, we first prove that any pseudo unimodular matrix can be factorized into a product of idempotent matrices. The general theorem will follow easily.

Lemma 10 Let $A=\left(\begin{array}{ll}B & 0 \\ 0 & 0\end{array}\right)$ be an $n \times n(n>2)$ integer matrix, where B is $a(n-1) \times(n-1)$ matrix. Then A can be factorized into a product of $3 n-2$ integer idempotent matrices.

Proof: We use an integral similarity to transform B into D with $d_{i j}=0$ if $j>i+1$ (cf. for example [5]).

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
B & 0 \\
0 & 0
\end{array}\right)=U\left(\begin{array}{cccccc}
d_{1,1} & d_{1,2} & 0 & \cdots & 0 & 0 \\
d_{2,1} & d_{2,2} & d_{2,3} & \cdots & 0 & 0 \\
\cdots & & & & & \\
d_{n-1,1} & d_{n-1,2} & d_{n-1,3} & \cdots & d_{n-1, n-1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) U^{-1} \\
&=U\left(\begin{array}{llllll}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\cdots & & & & \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
d_{1,1} & d_{1,2} & 0 & \cdots & 0 & 0 \\
d_{2,1} & d_{2,2} & d_{2,3} & \cdots & 0 & 0 \\
\cdots & & & & & \\
d_{n-1,1} & d_{n-1,2} & d_{n-1,3} & \cdots & d_{n-1, n-1} & 0
\end{array}\right) U^{-1} \\
&=U\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
\cdots & & & & \\
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cccccc}
d_{1,1} & d_{1,2} & 0 & \cdots & 0 & 0 \\
d_{2,1} & d_{2,2} & d_{2,3} & \cdots & 0 & 0 \\
\cdots & & & & \\
d_{n-1,1} & d_{n-1,2} & d_{n-1,3} & \cdots & d_{n-1, n-1} & 0
\end{array}\right)
\end{aligned}
$$

The two matrices are upper triangular, and thus can be factorized into a product of column operation matrices (cf. theorem 7). We can apply theorem 8 to all the column operation matrices related to the first upper triangular matrix. We can apply theorem 8 to two column operation matrices related to the second upper triangular matrix. Theorem 9 applies to the rest of the column operation matrices. Thus we can factorize the matrix A into a product of $3 n-2$ idempotent matrices.

QED

Theorem 11 Any $n \times n(n>2)$ pseudo unimodular matrix A can be factorized into the product $E P_{3} P_{2} P_{1}$ where E is a pseudo unimodular matrix with all zeros in its last column and P_{i} are idempotent matrices.

Proof: To factorize a pseudo unimodular matrix $A=\binom{B}{0}$ (with B extended unimodular), we build iteratively the product $P=A_{2 p} \cdots A_{3}^{T} A_{2} A_{1}^{T} A_{0}$ such that P is equal to A_{0}, and is also equal to the desired product $\left(E P_{3} P_{2} P_{1}\right)$.

We start with A_{0} chosen as follows. Let m be the rank of A. We have:

$$
A=\binom{B}{0}=\left(\begin{array}{cc}
I_{m} & 0 \\
0 & 0
\end{array}\right) U
$$

where U is an $n \times n$ unimodular matrix. We choose $A_{0}=\left(\begin{array}{cc}I_{n-1} & 0 \\ 0 & 0\end{array}\right) U$. Thus A_{0} is pseudo unimodular, with the first m rows from the matrix A, the next $n-m-1$ rows from the matrix U, and all zeros in the last row. We choose A_{1} such that $A_{1} A_{0}^{T}=\left(\begin{array}{cr}I_{n-1} & 0 \\ 0 & 0\end{array}\right)$. According to theorem 5, this is possible because A_{0} is pseudo unimodular. The same theorem also implies that A_{1} is pseudo unimodular. At each step, we choose A_{i+1} such that

$$
A_{i+1} A_{i}^{T}=\left(\begin{array}{cc}
I_{n-1} & 0 \tag{1}\\
0 & 0
\end{array}\right)
$$

Thus all the matrices A_{i} are pseudo unimodular, and we can write:

$$
A_{i}=\binom{B_{i}}{0}
$$

where B_{i} is an $(n-1) \times n$ extended unimodular matrix. We will prove that we can choose the A_{i} such that (for some $\left.p \geq 0\right) B_{2 p}=\left(B^{\prime} 0\right)$.

Since B_{i} is extended unimodular, we have:

$$
\begin{equation*}
B_{i}=\left(I_{n-1} 0\right) U_{i} \tag{2}
\end{equation*}
$$

where U_{i} is an $n \times n$ unimodular matrix. The iteration on B_{i} is given by:

$$
B_{i+1} B_{i}^{T}=I_{n-1}=\left(\begin{array}{ll}
I_{n-1} & 0
\end{array}\right) U_{i+1} U_{i}^{T}\binom{I_{n-1}}{0}
$$

which implies that the top $n-1$ rows of U_{i+1} and U_{i}^{-T} can be the same, and that the only constraint on the bottom row of U_{i+1} is $\operatorname{det}\left(U_{i+1}\right)= \pm 1$.

We replace the iteration on A_{i} by an iteration on U_{i}, with Equation (2) giving the corresponding B_{i}. We start with $A_{0}=\binom{B_{0}}{0}$. We calculate U_{0} from Equation (2). Then at every step of the iteration, we calculate U_{i+1} from U_{i} until the last row is $b\left(U_{2 p}\right)=(0,0, \cdots, 0,1)$. At every step, U_{i+1} is chosen such that $\operatorname{det}\left(U_{i+1}\right)= \pm 1$.

$$
\begin{aligned}
A_{0} \Rightarrow B_{0} \Rightarrow U_{0} \Rightarrow U_{1} \Rightarrow U_{2} \Rightarrow \cdots \Rightarrow & U_{2 p} \\
\Downarrow & \Downarrow \\
& \Downarrow \\
B_{1} & B_{2}
\end{aligned} B_{2 p}=\left(\begin{array}{ll}
B & 0
\end{array}\right)
$$

The top $n-1$ rows of the new U_{i+1} are simply the top $n-1$ rows of the transpose of the inverse of the previous U_{i}. At every step i, we have $U_{i}^{-T}=\left(C_{k l}\left(U_{i}\right)\right)$, and thus:

$$
\begin{equation*}
b_{k}\left(U_{i}^{-T}\right)=C_{n k}\left(U_{i}\right) \tag{3}
\end{equation*}
$$

Similarly, $U_{i}=\left(C_{k l}\left(U_{i}^{-T}\right)\right)$, and thus

$$
\begin{equation*}
b_{k}\left(U_{i}\right)=C_{n k}\left(U_{i}^{-T}\right) \tag{4}
\end{equation*}
$$

The cofactors of the last row of the two matrices U_{i}^{-T} and U_{i+1} are the same, and we have (with Equations (3) and (4)):

$$
\begin{equation*}
C_{n k}\left(U_{i+1}\right)=C_{n k}\left(U_{i}^{-T}\right)=b_{k}\left(U_{i}\right)=b_{k}\left(U_{i+1}^{-T}\right) \tag{5}
\end{equation*}
$$

The bottom row of the new U_{i+1} is chosen so that it converges toward the vector $b\left(U_{2 p}\right)=(0,0, \cdots, 0,1)$, with the constraint $\sum_{j} b_{j}\left(U_{i+1}\right) C_{n j}\left(U_{i+1}\right)=1$
(U_{i+1} being unimodular), or (with Equation (5)):

$$
\begin{equation*}
\sum_{j} b_{j}\left(U_{i+1}\right) b_{j}\left(U_{i}\right)=1 \tag{6}
\end{equation*}
$$

In Equation (6), the vector $b\left(U_{i+1}\right)$ is unknown, and the coefficients $b_{j}\left(U_{i}\right)$ are known from the previous iteration.

We study in details the six iterations which produce A_{6} such that $B_{6}=\left(B^{\prime} 0\right)$ when $n>2$. The case where any $b_{j}\left(U_{0}\right)$ is zero being trivial, we assume that all the coefficients $b_{j}\left(U_{0}\right)$ are non zero and different. Notice that if $n=2$, the number of iterations is only bounded by the size of the elements of the matrix A (cf. [3]).

- U_{1} For the first iteration, $i=0$ and Equation (6) can be written (cf. Equation (5)):

$$
\begin{equation*}
\sum_{j} b_{j}\left(U_{0}^{-T}\right) b_{j}\left(U_{0}\right)=1 \tag{7}
\end{equation*}
$$

which shows that the vector $b\left(U_{0}^{-T}\right)$ is a solution. Thus we can choose the new vector $b\left(U_{1}\right)$ such that:

$$
\left\{\begin{array}{l}
b_{1}\left(U_{1}\right)=b_{1}\left(U_{0}^{-T}\right)+\sum_{j=2}^{j=n} t_{j} b_{j}\left(U_{0}\right) \tag{8}\\
b_{k}\left(U_{1}\right)=b_{k}\left(U_{0}^{-T}\right)-t_{k} b_{1}\left(U_{0}\right) \quad \forall k \neq 1
\end{array}\right.
$$

for some integers t_{j}. We will calculate t_{j} such that $b_{1}\left(U_{1}\right)$ is prime. Notice that $b_{1}\left(U_{0}^{-T}\right), b_{2}\left(U_{0}\right), b_{3}\left(U_{0}\right), \cdots, b_{n}\left(U_{0}\right)$ are coprime (cf. Equation (7)).

We first choose t_{2} such that $b_{1}\left(U_{0}^{-T}\right)+t_{2} b_{2}\left(U_{0}\right)=a_{2}\left(b_{1}^{\prime}\left(U_{0}^{-T}\right)+t_{2} b_{2}^{\prime}\left(U_{0}\right)\right)=$ $a_{2} p_{2}$ (with a_{2} such that $b_{1}^{\prime}\left(U_{0}^{-T}\right)$ and $b_{2}^{\prime}\left(U_{0}\right)$ are coprime). Dirichlet proved that Given an arithmetic progression of terms $a n+b$, for $n=1,2, \ldots$, the series contains an infinite number of primes if a and b are coprime. Thus we can choose t_{2} such that p_{2} is a prime number not factor of $b_{3}\left(U_{0}\right)$. We proceed likewise until all the terms of the sum in Equation (8) have been used. Thus $b_{1}\left(U_{1}\right)=a_{n} p_{n}$, and $b_{1}\left(U_{1}\right)$ is prime because $a_{n}=1$. We choose t_{n} such that $b_{1}\left(U_{1}\right)$ is not a factor of $b_{2}\left(U_{1}\right)$. Thus $b_{1}\left(U_{1}\right)$ and $b_{2}\left(U_{1}\right)$ are coprime.

- U_{2} The second iteration will produce $b_{n}\left(U_{2}\right)=0$. As $b_{1}\left(U_{1}\right)$ and $b_{2}\left(U_{1}\right)$ are coprime, we can choose $b_{1}\left(U_{2}\right)$ and $b_{2}\left(U_{2}\right)$ such that $b_{1}\left(U_{2}\right) b_{1}\left(U_{1}\right)+$ $b_{2}\left(U_{2}\right) b_{2}\left(U_{1}\right)=1$ and $b_{i}\left(U_{2}\right)=0, \forall i \neq 1,2$.

Notice that this iteration requires that $n>2$.

- U_{3} The third iteration is very similar to the second one except that now we can choose $b_{n}\left(U_{3}\right)=1$ (because $\left.b_{n}\left(U_{2}\right)=0\right)$.
- U_{4} Now that $b_{n}\left(U_{3}\right)=1$, we can choose $b\left(U_{4}\right)=(0,0, \ldots, 0,1)$.
- U_{5} Finally the fifth iteration produces a matrix U_{5} with elements $u_{i j}=0$ (when $i, j=1,2, \ldots, n-1$). Thus, $A_{5}=\left(\begin{array}{rr}B^{\prime} & 0 \\ 0 & 0\end{array}\right)$, where $B^{\prime}(n-1 \times n-1)$ is unimodular (because A_{5} is pseudo unimodular).
- U_{6} For reasons which will be clarified shortly, we need an even number of matrices A_{i}. Thus we build an additional matrix U_{6} which is simply the transpose of the inverse of U_{5}.

In the product P, we replace A_{0} with $A: P=A_{6} A_{5}^{T} A_{4} A_{3}^{T} A_{2} A_{1}^{T} A$. We can pair the matrices $A_{2 i} A_{2 i-1}^{T}$. By application of Equation (1), we have $P=A$. Indeed:

$$
P=\left(A_{6} A_{5}^{T}\right)\left(A_{4} A_{3}^{T}\right)\left(A_{2} A_{1}^{T}\right) A=A
$$

On the other hand, we can pair the matrices $A_{2 i+1}^{T} A_{2 i}$:

$$
P=A_{6}\left(A_{5}^{T} A_{4}\right)\left(A_{3}^{T} A_{2}\right)\left(A_{1}^{T} A\right)
$$

where A_{6} is a pseudo unimodular matrix with all zeros in its last column. Moreover, it can be verified that all the products $A_{i+1}^{T} A_{i}$ are idempotent matrices. Thus A can be factorized into the product $E P_{3} P_{2} P_{1}$ where E is a pseudo unimodular matrix with all zeros in its last column and P_{i} are idempotent matrices.

QED
Applying lemma 10, we can deduce a bound for the number of idempotent matrices.

Theorem 12 Any $n \times n(n>2)$ pseudo unimodular matrix A can be factorized into a product of $3 n+1$ idempotent matrices.

The general case follows easily from theorem 11.
Theorem 13 Any $n \times n(n>2)$ singular integer matrix A can be factorized into a product of $3 n+1$ integer idempotent matrices.

Proof: Let m be the rank of A. We first put the matrix A in Smith normal form: $A=U\left(\begin{array}{ll}B & 0 \\ 0 & 0\end{array}\right) V$, where U and V are unimodular matrices, and B is a $m \times m$ diagonal matrix. We right multiply by $I_{n}=U U^{-1}$, and transform the unimodular matrix $V U$ into a pseudo unimodular matrix:

$$
A=U\left(\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
I_{m} & 0 \\
0 & 0
\end{array}\right) V U U^{-1}=U\left(\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right) E U^{-1}
$$

where E is the pseudo unimodular matrix obtained by replacing the last $n-m$ rows of the unimodular matrix $V U$ with all zeros rows. Applying theorem 11 on the pseudo unimodular matrix E, we have:

$$
A=U\left(\begin{array}{ll}
B & 0 \tag{9}\\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
C & 0 \\
0 & 0
\end{array}\right) P_{3} P_{2} P_{1} U^{-1}=U\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right) P_{3} P_{2} P_{1} U^{-1}
$$

where P_{i} are integer idempotent matrices.
Applying lemma 10 to the matrix $\left(\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right)$ we prove that the matrix A can be factorized into a product of $3 n+1$ idempotent matrices when $n>2$.

QED

4 Example

In this example we apply the algorithm described in the theorem 11 to factorize a pseudo unimodular matrix. The following matrix A is pseudo unimodular.

$$
A=\left(\begin{array}{lll}
3 & 3 & 8 \\
3 & 4 & 6 \\
0 & 0 & 0
\end{array}\right)
$$

We first build a unimodular matrix U_{0} from the pseudo unimodular matrix A :

$$
U_{0}=\left(\begin{array}{lll}
3 & 3 & 8 \\
3 & 4 & 6 \\
4 & 6 & 7
\end{array}\right) \quad U_{0}^{-T}=\left(\begin{array}{ccc}
-8 & 3 & 2 \\
27 & -11 & -6 \\
-14 & 6 & 3
\end{array}\right)
$$

The following matrices U_{i} correspond to the five steps of the algorithm described in the theorem 11.

$$
U_{1}=\left(\begin{array}{ccc}
-8 & 3 & 2 \\
27 & -11 & -6 \\
5 & -2 & -1
\end{array}\right) \quad U_{1}^{-T}=\left(\begin{array}{ccc}
-1 & -3 & 1 \\
-1 & -2 & -1 \\
4 & 6 & 7
\end{array}\right)
$$

$$
\begin{array}{ll}
U_{2}=\left(\begin{array}{ccc}
-1 & -3 & 1 \\
-1 & -2 & -1 \\
1 & 2 & 0
\end{array}\right) & U_{2}^{-T}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
2 & -1 & -1 \\
5 & -2 & -1
\end{array}\right) \\
U_{3}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
2 & -1 & -1 \\
5 & -2 & 1
\end{array}\right) & U_{3}^{-T}=\left(\begin{array}{ccc}
-3 & -7 & 1 \\
1 & 2 & -1 \\
1 & 2 & 0
\end{array}\right) \\
U_{4}=\left(\begin{array}{ccc}
-3 & -7 & 1 \\
1 & 2 & -1 \\
0 & 0 & 1
\end{array}\right) & U_{4}^{-T}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
7 & -3 & 0 \\
0 & 0 & 1
\end{array}\right) \\
U_{5}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
7 & -3 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}
$$

Thus the matrix A can be factorized as follows:

$$
\begin{aligned}
& A=A_{6}\left(A_{5}^{T} A_{4}\right)\left(A_{3}^{T} A_{2}\right)\left(A_{1}^{T} A\right) \\
& =\left(\begin{array}{ccc}
-3 & -7 & 0 \\
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
-4 & -10 & 0 \\
2 & 5 & 0 \\
1 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
57 & 84 & 98 \\
-24 & -35 & -42 \\
-12 & -18 & -20
\end{array}\right)
\end{aligned}
$$

The first matrix $\left(A_{6}\right)$ can be easily factorized into a product of idempotent matrices (cf. lemma 10), and the three last matrices are idempotent.

5 Application in systolic arrays

The growing demand for high speed real-time signal and image processing has led to many new architectures. Very Large Scale Integration (VLSI) processor arrays have many useful properties that make them ideally suited for this class of problems, for example regular short interconnections, extensible design and simple hardware tuned to the application at hand. The problem of synthesizing VLSI arrays from a set of affine recurrent equations (SARE) has been extensively studied (cf. for example [8]). The algorithm is generally
given as an SARE in an n dimensional index space. Each variable y_{i} may be defined by several equations (input, output and computation equations). A typical computation equation has the form:

$$
\begin{equation*}
y_{i}(p)=f_{i}\left(\ldots, y_{j}(A p), \cdots\right) \quad p \in D_{i} \tag{10}
\end{equation*}
$$

where $p \in \mathbb{Z}^{n}$ is an index point, $A \in \mathbb{Z}^{n \times n}$ is an integer matrix, D_{i} is the domain of the equation and f_{i} is a strict, single-valued function. In Equation (10) the variable y_{i} at location p depends on another variable y_{j} produced at location $A p$. A direct map of the problem space onto a systolic array would require a communication channel from location $A p$ to location p, which is technically unacceptable. Localization is a well-known technique [4] to transform the SARE describing the algorithm into an SARE which satisfies the locality constraints of systolic arrays. Intuitively, localization is a technique for moving the variable y_{j} from where it is produced $(A p)$ to where it is used (p). Thus we transform the SARE of the algorithm into another SARE which represents an acceptable systolic array.

If the matrix A is singular, the localization can be achieved by factoring A into a product of idempotent matrices $A=\prod_{i=1}^{m} B_{i}$. For example, assuming that we have only two variables y_{i} and y_{j}, Equation (10) becomes:

$$
y_{i}(p)=f\left(y_{j}\left(B_{1} B_{2} \ldots B_{m} p\right)\right) \quad p \in D_{i}
$$

We can expand the recurrent equation by introducing m new variables Y_{i} :

$$
\left\{\begin{array}{rlrl}
y_{i}(p) & =f\left(Y_{m}\left(B_{m} p\right)\right) & & p \in D_{i} \tag{11}\\
Y_{m}\left(B_{m} p\right) & =Y_{m-1}\left(B_{m-1} B_{m} p\right) & p \in D_{i} \\
\cdots & & \\
Y_{i+1}\left(B_{i+1} \cdots B_{m} p\right) & =Y_{i}\left(B_{i} \cdots B_{m} p\right) & & p \in D_{i} \\
\cdots & & \\
Y_{1}\left(B_{1} \cdots B_{m} p\right) & =y_{j}\left(B_{1} \cdots B_{m} p\right) & & p \in D_{i}
\end{array}\right.
$$

We execute the renaming transformation $B_{i} B_{i+1} \cdots B_{m}$ on the variable Y_{i} :

$$
\left\{\begin{array}{rlrl}
y_{i}(p) & =f\left(Y_{m}\left(B_{m} p\right)\right) & p \in D_{i} \tag{12}\\
& \cdots & \\
Y_{i+1}(p) & =Y_{i}\left(B_{i} p\right) & & p \in B_{i+1} \cdots B_{m} D_{i} \\
& \cdots & & \\
Y_{1}(p) & =y_{j}(p) & & p \in B_{1} \cdots B_{m} D_{i}
\end{array}\right.
$$

Remembering that B_{i} is an idempotent matrix, we have $B_{i} p=p$ if p belongs to the range space $R\left(B_{i}\right)$ of B_{i}, and:

$$
Y_{i+1}(p)=Y_{i}(p) \quad p \in R\left(B_{i}\right)
$$

Similarly, for all the points $p \pm N\left(B_{i}\right)$ (where $N\left(B_{i}\right)$ is a vector in the null space of B_{i}), we have:

$$
Y_{i+1}\left(p \pm N\left(B_{i}\right)\right)=Y_{i}(p)=Y_{i+1}(p) \quad p \in R\left(B_{i}\right)
$$

Thus the new variable $Y_{i+1}(p)$ is the variable $Y_{i}(p)$ pipelined along the direction of the null space of the matrix B_{i}. The SARE (12) can be written (assuming that B_{m} is the unit matrix):

$$
\left\{\begin{array}{rlrl}
y_{i}(p) & =f\left(Y_{m}(p)\right) & & p \in D_{i} \tag{13}\\
& \cdots & & \\
Y_{i+1}(p) & =Y_{i}(p) & & \left(p \in R\left(B_{i}\right)\right) \wedge\left(p \in B_{i+1} \cdots B_{m} D_{i}\right) \\
Y_{i+1}(p) & =Y_{i+1}\left(p \pm N\left(B_{i}\right)\right) & \left(p \notin R\left(B_{i}\right)\right) \wedge\left(p \in B_{i+1} \cdots B_{m} D_{i}\right) \\
& \cdots & & \\
Y_{1}(p) & =y_{j}(p) & & p \in B_{1} \cdots B_{m} D_{i}
\end{array}\right.
$$

The \pm sign means that the new variable Y_{i+1} can travel along the null space in two directions. The correct sign is such that the dependency points toward the corresponding range space $\left(R\left(B_{i}\right)\right)$.

6 Conclusion

In this paper, we have presented a proof that any $n \times n(n>2)$ singular integer matrix can be factorized into a product of $3 n+1$ integer idempotent matrices.

We have given an example demonstrating its application in the synthesis of systolic arrays.

Acknowledgments

We are grateful to the referee for very helpful comments. This work was supported in part by the Australian Academy of Science.

References

[1] J. A. Erdos, "On the product of idempotent matrices", Glasgow Mathematical Journal, Vol. 8, 1967.
[2] J. M. Howie, "The subsemigroup generated by the idempotents of a full transformation semigroup", Journal of the London Mathematical Society, Vol. 41, 1966.
[3] T. J. Laffey, "Factorizations of integer matrices as products of idempotents and nilpotents", Linear Algebra and its Applications, Vol 120, 1989.
[4] P. M. Lenders and S. Rajopadhye, "Multirate VLSI and their Synthesis", IEEE Transactions on Computers, May 1997.
[5] M. Newman, "Integral Matrices", Academic Press, 1972.
[6] S. Rajopadhye, "Synthesizing systolic arrays with controls signals from recurrence equations", Distributed Computing, May 1989.
[7] A. Schrijver, "Theory of Linear and Integer Programming", Wiley, 1998.
[8] V. Van Dongen and P. Quinton, "Uniformization of Linear Recurrence Equations: A step towards the automatic synthesis of systolic arrays", Proc. International Conference on Systolic Arrays, 1988.

[^0]: * Corresponding author.

 Email address: pat@turing.une.edu.au (Patrick Lenders).

