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ABSTRACT
Energy-aware compilers are becoming increasingly impor-
tant for embedded systems due to the need to meet conflict-
ing constraints on time, code size and power consumption.
We introduce a trace-based, offline compiler framework on
binaries and demonstrate its benefits in supporting energy
optimisations. The key innovation lies in identifying fre-
quently executed paths in a binary program and duplicating
them as single-entry traces. Separating frequently from in-
frequently executed paths enables the compiler to focus both
performance and energy optimisations on the hot traces.

Traces constructed at the level of binaries are inherently
inter-procedural, spanning both application and library code.
Such a framework allows an embedded application developer
to exploit optimisation opportunities made possible due to
the information that is available only at link time.

We describe the implementation of our trace-based frame-
work in alto, a link-time optimiser for the Alpha architec-
ture. We present a new algorithm for constructing the hot
traces from binaries. This algorithm is both effective (since
the execution cycles are mostly spent on traces) and prac-
tical (due to small code size increases caused). We have
developed and implemented a new optimisation to reduce
the functional unit leakage energy. We show how the traces
facilitate the development of such an optimisation, which
results in significant leakage energy savings for benchmark
programs at the cost of small performance penalties.
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1. INTRODUCTION
Power consumption is becoming a major concern in to-

day’s microprocessor industry. According to scaling theory
[2], power delivery and dissipation will be the primary lim-
iters to designing future microprocessors in deep submicron
technologies. The widespread use of battery-driven embed-
ded devices and the continuing quest for more powerful,
portable chipsets to cope with increasingly more complex
applications have also exacerbated the power problem.

Researchers have begun to address the energy consump-
tion issue at all phases of system design, from circuit technol-
ogy, micro-architecture design to software solutions. Over
the years, significant progress has been made in the area of
low-power circuit and system design [5]. But the software
work has not enjoyed a similar level of success. One of the
areas in much need of work is energy-aware compilers.

There has been a great deal of work on applying compiler
optimisations to reduce power and energy consumption [12,
14, 19, 20, 26]. Most of these works investigate the effects of
individual optimisations on power and energy usage. There
has been relatively little work in the design and implemen-
tation of energy-aware compilers [10, 13, 24, 27].

A critical issue to develop an energy-aware compiler is to
maximise both performance and energy benefits subject to
some performance and energy constraints. Given that many
embedded application programmers are willing to spend time
tuning a program, we should provide tools for the program-
mer to exploit the optimisation opportunities that manifest
themselves at various levels of abstractions, from the source
code (if it is available) to its binary code.

Therefore, we envision a static (i.e., offline) binary trans-
lation framework as sketched in Figure 1 for embedded sys-
tems. A binary file, i.e., machine executable code file is
read in, and an intermediate representation (IR) is con-
structed. A suite of analyses and optimisations are then
applied to the IR subject to some performance and resource
constraints. Guided by some execution profiling information
of the program, the hot traces, i.e., the frequently executed
paths across all functions in the application code and li-
braries are identified. These hot traces are then optimised
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Figure 1: High-level structure of a static binary
compilation framework for embedded systems.

subject again to the performance and resource constraints.
Finally, the binary code is generated from the optimised IR.

We believe that the optimisations applied in such a binary
translation system are complementary to those carried out
by a compiler for the program initially written in a high-
level language. The compiler can significantly improve the
performance and energy usage of a program. However, the
compiler typically compiles functions individually, and in
addition, the inter-procedural optimisations that most com-
pilers support are often limited in their extent and scope.
Moreover, the compiler cannot optimise library calls at com-
pile time when it has no access to the source code for the
libraries. The problem is further aggravated for two rea-
sons. First, some library routines in embedded applications
often contain hand-written assembly code, which cannot be
processed by the compiler. Second, embedded applications
may include increasingly more components written in mul-
tiple languages with reusability in mind. As a result, the
source code for some third-party libraries may not be avail-
able, and the hot traces can spread across the functions in
both application and library code. All these problems can
be addressed by carrying out link-time (or post-link-time)
optimisations on binaries, by propagating information avail-
able only at link time across all the functions. Previous work
on binary translation has demonstrated performance bene-
fits even on highly optimised code [1, 6, 18]. This work
demonstrates its benefits in reducing energy consumption.

In this paper, we report our preliminary experience on
designing and implementing an instance of Figure 1 on top
of alto, a link-time optimiser for the Compaq Alpha archi-
tecture [18]. The key innovation of this work lies in con-
structing and adopting hot traces as compilation units to
support both performance and energy optimisations on bi-
naries for embedded systems. Many recent techniques focus
on adapting the configuration of processor resources in con-
sonance with the changing application requirements [12, 19,
26]. In this direction, we see three important advantages
with a trace-based binary translation framework:

Traces are the hot spots across the whole program.
By performing inter-procedural analysis on binaries,
the traces can represent quite accurately the hot spots
across the procedural boundaries in both application
and library code. The traces are flexible in accommo-
dating a variety of control flow structures.

Traces can help the compiler explore energy-efficient
architectural features to make tradeoffs between
performance and energy consumption when re-
quired. The emphasis on processors with low power
and high performance has resulted in the incorpora-
tion of energy-efficient hardware features into proces-
sor designs, such as dynamic voltage and frequency
scaling (DVS) and power-aware instructions for turn-
ing on/off hardware components. We observe that the
compiler techniques for exploiting these hardware fea-
tures such as DVS [20, 25] and power-aware instruc-
tions for turning on/off cache lines [26] and functional
units [19] share the following common pattern. The
frequent switching on/off or voltage scaling activities
can consume both CPU cycles and significant dynamic
energy. To achieve power savings without jeopardising
performance, the code regions in which the energy con-
sumption is optimised (called idle regions) along with
the suitable program points for inserting power-aware
instructions must be judiciously identified. Traces fa-
cilitate these choices: traces can be used to form idle
regions and the entries to and exits from these idle
regions are candidates for insertion points.

Traces facilitate simultaneous optimisations on both
performance and energy. An energy-aware com-
piler should manage the interactions between tradi-
tional performance-oriented optimisations and energy-
oriented optimisations. How this can be done is still
a research topic. Traces represent the hot spots where
the most execution time and energy are spent. We
believe that a trace-based framework will allow per-
formance and energy optimisations to be carried out
in concert by favouring the frequently executed paths
while penalising the insignificant ones (if necessary).

In summary, the contributions of this paper include:

• a trace-based binary translation framework that is well
suited for both performance and energy optimisations,

• an implementation of such a framework in alto for the
Compaq Alpha architecture,

• a simple yet effective algorithm for separating frequently
from infrequently executed paths in a binary program
and duplicating the frequently executed paths as hot
traces,

• a new algorithm for reducing the functional unit leak-
age energy in our trace-based framework, and

• experimental results demonstrating the benefits of our
framework in supporting energy-oriented optimisations.

The rest of this paper is organised as follows. Section 2
introduces our trace-based methodology. Section 3 describes
our algorithm for identifying and constructing the traces in
a program. Section 4 describes our algorithm for reduc-
ing the functional unit leakage energy consumption in our
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Figure 2: A traced-based binary compilation frame-
work implemented in alto for the Alpha architec-
ture.
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Figure 3: Unknown indirect jumps.

trace-based framework. Section 5 evaluates this work using
benchmarks. Section 6 reviews the related work. Section 7
concludes the paper by discussing some future work.

2. TRACE-BASED METHODOLOGY
Figure 2 depicts the high-level structure of our trace-based

framework for energy-aware computing on binaries. We have
implemented our framework in alto, a link-time optimiser
for the Alpha architecture [18]. So far we have added the
two components indicated by the two boxes in gray.

Initially, a binary file is read in, and one single inter-
procedural CFG (as the IR) is constructed from the binary
code. At the level of binaries, it is sometimes difficult to ex-
tract precisely the control flow information about the pro-
gram. For example, the targets of an indirect jump may
not be resolvable. In this case, alto resorts to the reloca-
tion information from the linker. One single pseudo block is
created. A control flow edge is added from every unknown
indirect jump to the pseudo block, which has an outgoing
edge to every block that can be potentially the target of the
jump. The pseudo block serves merely as a boundary for all
optimisations and is ignored in code generation.

Once the CFG is built, alto performs a suite of so-called
base optimisations iteratively on the CFG. These include

constant propagation, copy propagation, move elimination
and value-based code specialisation. Then some one-time
optimisations such as inlining and stack merging are applied
only once to the CFG (to avoid undesirable side effects).
To benefit from the opportunities created by the one-time
optimisations, the base optimisations are repeated.

The “analyses” component is responsible primarily for
performing data dependence analysis and control flow struc-
ture analysis (e.g., finding a loop and its header).

In alto, execution profiles are gathered by code instru-
mentation. The profiling information has been used to guide
inlining, value-based code specialisation and code layout.

Once all the alto optimisations have been applied, our
two components (in gray) will be in action. In Section 3, we
describe our trace generation algorithm. In Section 4, we
introduce our approach to reducing static power dissipation
by functional units in our trace-based framework.

The code generation module carries out profile-guided code
layout, code alignment and instruction scheduling.

Our framework supports only static binary optimisations,
which are intended to be complementary to those carried
out by the compiler. Applications that use shared or run-
time libraries cannot be handled. In addition, static binary
translators such as alto [18] rely on the reallocation infor-
mation from the linker to reconstruct a CFG from binaries.
This requires that all relocatable addresses be identifiable.

3. STATIC TRACE GENERATION
Based on edge profiling information, the frequently ex-

ecuted paths in the CFG are identified and duplicated as
single-entry traces with the required control flow edges du-
plicated accordingly. This approach allows energy-oriented
optimisations to be applied to the duplicated traces only. As
we shall see in Section 5, the execution time of a program is
mostly spent on the hot traces, which result in relatively a
small increase in code size.

Definition 1. A trace is a sequence of basic blocks (cre-
ated by our trace generation algorithm), n1-n2-...-nk, where
(ni, nj) is a flow edge iff j = i + 1. The trace represents a
frequently executed path in the program (or a copy of such a
path in the original CFG to be precise). In addition, n1, is
the only entry to the trace and is called the trace header.

Thus, trace t1 can only branch into trace t2 via the header of
t2. As we shall see in Section 4, avoiding side entrances into
a trace simplifies energy-oriented optimisations on traces.

A trace can cross the boundaries of functions in both ap-
plication and library code. In our current implementation,
the execution frequency of a path is measured using an edge
profile gathered by code instrumentation.

Figure 4 gives our algorithm for constructing the hot traces
from the CFG of a binary file. Our example is given in Fig-
ure 5. In a block identified by nf , n is its block number
and f its execution frequency. The number alongside an
edge (x, y) represents its execution frequency; the number
is omitted if the edge is the only outgoing edge of x. In
Figure 5, the edge (6,7) introduced by alto facilitates the
inlining of the call made in block 6. The edges of this kind
are ignored in during trace generation. Running our algo-
rithm over Figure 5 produces the CFG shown in Figure 6.
There are two traces highlighted in gray boxes, where the
trace D6-D8′-D9′-D11′-D7-D1 crosses function boundaries.
More details will be explained in Section 3.2.
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Figure 5: An example CFG
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Figure 6: The CFG from Figure 5 with traces.

3.1 Algorithm
Some notations and terminologies are in order. If x is a

basic block or an edge, then x.count denotes its execution
frequency. If e is an edge, then e.source (e.sink) represents
the block at the source (sink) of e. At any time, curtrace

denotes the trace being constructed, with its first block, i.e.,
trace header denoted by curtrace.head and last block by
curtrace.tail. As a trace grows, a block that joins the trace
is always added to the trace as the currently last block. A
block in a trace is called a trace exit if it has at least two
successor blocks (i.e., at least one not in this trace).

Our algorithm, GenTrace, performs three major tasks:

Starting a Trace. In line 2, headerlist is initialised with
all potential trace headers b such that Hotness(b) >

HOT BB MIN, which is a tunable parameter cur-
rently set to 1000. As is clear from line 5, we al-
ways pick the trace header from headerlist that is the
hottest. According to the function Hotness, we in-
crease the hotness value of a block that is a successor
of a trace exit by 2% and of a loop header by 1%. These
increases are cumulative if a block plays the dual roles.
This strategy increases the chances for obtaining well-
connected traces and prefers to start a trace from a
loop header over a function entry block if both have
the same execution frequency.

Once a trace has been created, UpdateHeaderList is
called in line 12 to do two things. First, some blocks

that are no longer hot are removed from headerlist

(line 24). This can happen since part of its execution
frequency may have been allocated to its duplicate in
a hot trace. Second, every block that is a successor
of a trace exit of curtrace but that does not already
appear in a trace is added to headerlist.

Growing a Trace. In line 5, header is the header of a new
trace to be constructed. The basic idea is to find a
frequently executed path starting from header and du-
plicate it as a trace in the CFG. Separating this trace
from the rest of the CFG requires the control flow
edges directed into and out of the traces to be added
appropriately. The call to DupHeaderInEdges in line
6 simply makes a copy of header and moves its incom-
ing edges to the copy (except those directing out of
the pseudo block). In line 7, hottestedge represents
the first edge to grow the trace. In our current imple-
mentation, hottestedge is simply chosen as the most
frequently executed outgoing edge of header with a tie
being broken randomly. The remaining part of the
task is accomplished mainly in the while loop begin-
ning in line 8 in an iterative manner. This entire task
will be illustrated using an example in Section 3.2.

If hottestedge represents a call edge (e.g., (6, 8) in Fig-
ure 5), we will rely on the procedure InlineCritical-
Paths available in alto [18] to inline a frequently exe-
cuted subgraph rooted at the entry block of the callee.
Afterwards, our algorithm will continue to grow the
trace on the inlined subgraph as usual.

Terminating a Trace. In line 8, TraceEnd is called to de-
termine if we should stop growing curtrace from its
last block curtrace.tail along hottestedge. One of the
four termination conditions applies: (1) the frequency
of curtrace.tail has dropped below HOT BB PROB
(a tunable parameter set to 50% in our implementa-
tion) of the frequency of curtrace.head, (2) hottestedge

represents an unknown indirect jump into the pseudo
block, (3) hottestedge.sink is the header of an already
generated trace, and (4) hottestedge.sink is the exit
block of the CFG for the program.

Techniques such as value profiling [4] can help resolve
some jump targets in our current implementation. How-
ever, we have decided not to do so for two reasons.
First, the traces that end with some unknown indirect
jumps represent only less than 1% of the total number
of traces in a program on average. Second, these traces
are often less frequently executed than the others.

3.2 Example
Let us illustrate our algorithm using the example given in

Figure 5. In line 2, headerlist is initialised with the three po-
tential trace headers: blocks 1, 2 and 8. In line 5, header = 2
is removed from headerlist so that headerlist = {1, 8} after-
wards. We are ready to build a trace, denoted curtrace (line
4), with block 2 as its header. Figure 7(a) depicts the ef-
fect of calling DupHeaderInEdges in line 6. Note that the
incoming edge from the pseudo block to block 2 is not re-
allocated to the duplicated block D2 (in gray). In line 7,
hottestedge = (2, 3), highlighted in Figure 7(a), is chosen
(which is more frequently executed than the other branch).

In line 9, GrowingTrace is called to grow the trace along
hottestedge=(2,3). The result of this call is illustrated in



1 PROCEDURE GenTrace()
2 Initialise headerlist with loop headers or function entry

blocks b such that Hotness(b) > HOT BB MIN

3 while headerlist is not empty
4 curtrace = newtrace()

5 header = block b with the largest
Hotness(b) removed from headerlist

6 DupHeaderInEdges(curtrace, header)

7 hottestedge = HottesttOutEdge(header)
8 while !TraceEnd(curtrace, hottestedge)
9 GrowingTrace(curtrace, hottestedge)

10 hottestedge = HottestOutEdge(hottestedge.sink)

11 DupTailOutEdges(curtrace, hottestedge.source)

12 UpdateHeaderList(headerlist)

13 PROCEDURE DupHeaderInEdges(curtrace, header)
14 dupheader = a copy of header

15 Remove all incoming edges e1, . . . , en of header

that are not directing out of the pseudo block, and attach
them to dupheader as its incoming edges (Figure 3)

16 dupheader.count = e1.count + · · · + en.count

17 AppendtoTrace(curtrace, dupheader)

18 PROCEDURE DupTailOutEdges(curtrace, tail)
19 if the only successor of tail is the pseudo block
20 Add an edge from curtrace.tail to the pseudo block
21 return
22 DupOutEdges(curtrace.tail, tail, NULL)

23 PROCEDURE UpdateHeaderList(curtrace, headerlist)
24 Remove every block b from headerlist such that

Hotness(b) < HOT BB MIN

25 for every successor block b of every trace exit in curtrace

26 if b is neither a block in curtrace nor a trace header
27 Add b to headerlist if Hotness(b) > HOT BB MIN

28 PROCEDURE GrowingTrace(curtrace, hottestedge)
29 if hottestedge represents a call edge
30 InlineCriticalPaths()
31 return
32 current = curtrace.tail
33 dupblock = a copy of hottestedge.sink

34 Add an edge h from current to dupblock

35 h.count = current.count ∗ hottestedge.count

hottestedge.source.count

36 dupblock.count = h.count

37 DupOutEdges(current,hottestedge.source,hottestedge)
38 AppendtoTrace(curtrace, dupblock)

39 PROCEDURE DupOutEdges(current, original,
hottestedge) // current is the duplicate of original in curtrace

40 for every outgoing edge e of original

41 hot fractione = current.count ∗ e.count
original.count

42 if e 6= hottestedge

43 Add an edge e′ from current to e.sink
44 e′.count = hot fractione

45 e.count −= hot fractione

46 original.count −= current.count

47 FUNCTION TraceEnd(curtrace, hottestedge)

48 if
curtrace.tail.count
curtrace.head.count

< HOT BB PROB

49 return TRUE
50 elif hottestedge.sink is the pseudo block, a trace header

or the exit block of the CFG
51 return TRUE
52 else

53 return FALSE

54 FUNCTION Hotness(block)
55 hot value = block.count

56 if block is a successor of a trace exit
57 hot value += 0.02 ∗ HOT BB MIN

58 if IsLoopHeader(block)
59 hot value += 0.01 ∗ HOT BB MIN

60 return hot value

Figure 4: A static trace generation algorithm.
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Figure 7: An illustration of GenTrace using the example CFG from Figure 5.



Figure 7(b). In addition, hottestedge = (3, 5) chosen in
line 10 is also highlighted. In the second iteration of the
while loop beginning in line 8, the trace grows as shown
in Figure 7(c). The direction to grow the trace next is
hottestedge = (5, D2). But D2 is a trace header. So TraceEnd
will return true in the third iteration of the while loop be-
ginning in line 8. In line 11, we call DupTailOutEdges to
get Figure 7(d), which evolves from Figure 7(c) with the two
outgoing edges from block 5 being duplicated for block D5.
The first trace D2-D3-D5 has been created.

In line 12, UpdateHeaderList is called with headerlist =
{1, 8}. Line 26 has no effect on headerlist. In lines 25 –
27, we note that there is one trace already constructed (Fig-
ure 7(d)). This trace has two exits, D2 and D5. D2 has
one successor 4 outside the trace but Hotness(4) = 500 +
0.02 ∗ HOT BB MIN = 520 < HOT BB MIN. D5 also
has one successor 6 outside the trace. Since Hotness(6) =
1000 + 0.02 ∗HOT BB MIN = 1020 > 1000, block 6 is in-
cluded in headerlist in line 27, making headerlist = {1, 8, 6}.

We now proceed to build the second trace. In line 5,
header = 6. Calling DupHeaderInEdges in line 6 yields what
is shown in Figure 7(e). In line 7, hottestedge = (6, 8). In
line 9, we call GrowingTrace to grow the trace starting from
block 6 along (6,8). The result of this call is given in Fig-
ure 7(f). Let us look at this call to GrowingTrace closely.
Since (6, 8) is a call edge, InlineCriticalPaths is called in
line 30. A frequently executed subgraph rooted at the en-
try block of the callee is found and inlined. This subgraph
happens to be the path 8-9-11, which will be inlined, i.e.,
duplicated as the path 8′-9′-11′ in the caller’s context. Note
that the “Call” and “Ret” blocks are inserted (by alto) to
switch between the two different contexts.

Once inlining is completed, the call to GrowingTrace re-
turns. In line 10, hottestedge = (6, 8′), which is a control
flow edge and highlighted in Figure 7(f). Then the similar
steps as above are repeated so that we eventually obtain the
second trace D6-D8′-D9′-D11′-D7-D1 shown in Figure 6.

In line 12, UpdateHeaderList is called with headerlist =
{1, 8}. Both blocks will be removed from the list in line 24
since their frequencies have dropped to 0. Our algorithm
terminates since headerlist is now empty .

We observe from Figure 6 that blocks 6, 8′, 9′ and 11′ are
dead code, which can be removed by dead code elimination.

4. TRACE-BASED OPTIMISATIONS
The goal of this work is to study the effectiveness of a

trace-based binary compilation system in supporting energy-
oriented optimisations. We have designed and implemented
a new optimisation for reducing the functional unit leakage
energy for a superscalar architecture, by shutting down un-
used or infrequently used functional units. We have added
this optimisation to the “Traced-based Optimisations” mod-
ule depicted in Figure 2. We describe this optimisation be-
low.

In current architectures, most of energy consumption is
due to switching activity (when hardware components are
exercised). However, static power dissipation is projected
to be the dominant part of the chip power budget beyond
the 0.1 micron feature sizes [5]. The function units, due to
its logic circuits used and its high-performance requirement,
contribute to a sizeable fraction of the total system leakage
power consumption. Therefore, it is beneficial to minimise
the static power dissipation by functional units.

while (1) {
n = read(0,abuf,NSAMPLES/2);
if ( n == 0) break;
adpcm decoder(abuf,sbuf,n*2,state);
write(1,sbuf,n*4);

}

Figure 8: Code from rawcaudio in Mediabench.

The compiler can identify the program regions in which
a functional unit is unused or infrequently used (called the
idle regions) and communicate this information to the hard-
ware by issuing instructions for turning the unit off at entry
points of the idle regions and turning them back on at ex-
its of these regions. The frequent turning on/off activities
can consume both significant dynamic energy and execution
cycles. To maximise power savings while minimising any ad-
verse impact on performance, it is important to ensure that
the idle regions are frequently executed and the insertion
points for on/off instructions are infrequently executed.

There are two existing compile-time optimisations for re-
ducing functional unit leakage consumption. Rele et al. [19]
find the idle regions at the granularity of so-called power
blocks for a superscalar architecture while Kim el al. [12]
choose the idle regions at the granularity of loops for a VLIW
architecture. In this paper, we present a traced-based ap-
proach for reducing the functional unit leakage consumption.
Traces are frequently executed paths, which are inherently
inter-procedural and span both user and library functions.
In addition, traces are flexible enough to accommodate a
variety of flow structures such as recursive calls.

Figure 8 shows a kernel loop extracted from rawdaudio

in Mediabench. This loop contains the calls to the library
functions read and write. In the absence of any information
about the library functions, the two existing techniques [12,
19] assume conservatively that all functional units are re-
quired in the library routines. In our link-time compilation
framework, the traces can cross these library calls. There-
fore, we are capable of deciding if certain functional units
are needed or not in the calls to these library routines.

Section 4.1 describes some minimal architectural support
required. Section 4.2 presents our trace-based solution, which
is illustrated by an example in Section 4.3.

4.1 Architecture support
Techniques such as input vector control (IVC) and sup-

ply gating (SG) can be used for runtime leakage control of
functional units [5]. Based on such architectural support,
we can turn off an unused functional unit to reduce static
power dissipation and turn it back on before it will be used.

We assume the availability of on and off instructions in the
instruction set architecture (ISA) of the underlying hard-
ware. An on/off instruction always indicates the type of the
functional unit that is to be turned on/off. The execution
of an on (off) instruction causes the hardware to select a
functional unit of the specified type to be turned on (off).
The latencies and dynamic energy overheads of on/off in-
structions depend on the functional unit type and the exact
implementation mechanism.

4.2 Trace-based Leakage Optimisation
Once the hot traces for a program have been created, the
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Figure 9: The trace flow graph of Figure 6.

idle regions and their associated insertion points for placing
on and off instructions can be easily identified. Informally,
an idle region is made up of traces that are connected directly
by flow edges. Its associated on and off instructions are
inserted only at its boundaries. The granularity of an idle
region is tunable, ranging from a graph with a single trace
to a graph consisting of all possibly connected traces.

Like [12, 19], a functional unit stays either on or off exclu-
sively inside an idle region. In addition, a functional unit is
turned off in an idle region only if the amount of instruction
level parallelism (ILP) within the region is not adversely af-
fected. This means that all functional units of a given type
will be left on in an idle region even if there is sufficient ILP
to keep all busy only at a small part of the region. As a con-
sequence, varying the granularity of idle regions allows us
to make tradeoffs between energy savings and performance.
In general, using smaller idle regions allows more functional
units to be turned off even for a shorter period of time, which
results in better leakage energy savings in absolute terms.
However, increasingly more on and off instructions used will
consume more dynamic energy and execution cycles. There-
fore, an effective optimisation should ensure that the leakage
energy saved exceeds the dynamic energy consumed.

We give a leakage energy optimisation algorithm for a set
of fnum identical functional units of type ftype. Its develop-
ment relies on a so-called trace flow graph, which is defined
below and illustrated in Figure 9 using our running example.

Definition 2. An edge (x, y) is called (1) a trace entry
edge if x is not in a trace and y is a trace header, (2) a
trace exit edge if x is in a trace but y is not, and (3) a
trace link edge if both x and y are in traces (which may
be identical) and y is a trace header.

Definition 3. A trace flow graph is the graph con-
sisting of (1) all the hot traces (including the blocks in these
traces and the edges connecting these blocks), and (2) all
trace entry, exit and link edges and their incident blocks.

The trace flow graph of Figure 6 is shown in Figure 9,
where (1, D2), (5, D2) and (5, D6) are trace entry edges,
(D2, 4) and (D8, Call) are trace exit edges, and (D1, D2),
(D5, D2) and (D5, D6) are trace link edges. Note that
(D5, D2) is a trace link edge for the same trace, i.e., T1.

Figure 10 gives our algorithm for reducing leakage energy
by fnum functional units of type ftype. Once the trace flow

1 PROCEDURE LeakageOpt(ftype, fnum)
2 Build the trace flow graph TFG (Definition 3)
3 for every trace t in TFG

4 t.ILP = GetMaxILPinTrace(t, ftype, fnum)
5 SetofRegions = FindIdleRegions(TFG)
6 for every r in SetofRegions

7 r.ILP = GetMaxILPinRegion(r)
8 InsertOnOffInsts
9 FUNCTION GetMaxILPinTrace(t, ftype, fnum)

10 Let the sequence of instructions in trace t be I1, . . . , Im

11 ILP = 0
12 for i = 1 to m
13 num = maximum number of instructions in

{Ii, . . . , Imin(i+WIN SIZE−1,m)} that can
execute on ftype in parallel

14 ILP = max(ILP, num)
15 return min(ILP, fnum)
16 FUNCTION GetMaxILPinRegion(r)
17 Let t1 . . . , tp be all p traces in r
18 return max(t1.ILP, . . . , tp.ILP)
19 PROCEDURE FindIdleRegions(TFG)
20 Let L be the set of all trace link edges e

such that e.count < ( 1
AFFINITY

− 1) ∗HOT BB MIN
21 TFG′ = TFG with all edges in L removed
22 return set of all connected subgraphs in TFG′

23 PROCEDURE InsertOnOffInsts
24 Insert fnum “on instructions” for ftype at entry to main
25 for every trace entry edge (x, y) in the program
26 Insert fnum − y.region.ILP off instructions on (x, y)
27 for every trace exit edge (x, y) in the program
28 Insert fnum − x.region.ILP on instructions on (x, y)
27 for every trace link edge (x, y) in the program
28 n = x.region.ILP − y.region.ILP

28 if n < 0
39 Insert |n| on instructions on (x, y)
30 elif n > 0
31 Insert n off instructions on (x, y)

Figure 10: A leakage optimisation algorithm.

graph is built (line 2), we call GetMaxILPinTrace to anal-
yse each trace t individually to obtain the maximum number
of instructions or operations, t.ILP, in the trace t that can
execute in parallel on this functional unit type (lines 3 –
4). We can obtain a more accurate estimate of t.ILP if we
extract the resource usage information from the instruction
scheduling pass in the compiler. In our current implemen-
tation targeting out-of-order superscalar architectures, we
estimate t.ILP as in lines 9 – 15, where WIN SIZE is the
size of the instruction scheduling window. The dependences
among instructions falling into a window size are examined
to estimate t.ILP.

In line 5, all idle regions are found by calling FindIdleRe-
gions. Essentially, an idle region consists of multiple traces
that are connected by trace link edges. However, some trace
link edges may be infrequently executed. Such edges are ig-
nored (lines 20 – 22) so that we can tune the granularity
of idle regions formed. AFFINITY is a tunable parame-
ter in the range [0, 1]. If it is set to 0, then all idle regions
are singleton traces. Such a setting is the most aggressive
in turning off unused or infrequently used functional units.
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Figure 11: An illustration of LeakageOpt.

If it is set to 1, then every idle region is the largest pos-
sible with the largest number of directly connected traces.
Such a setting aims at reducing the execution cycles and dy-
namic energy consumed by the inserted on and off instruc-
tions. Varying the value of AFFINITY allows tradeoffs to
be made between energy savings and performance.

Once idle regions are formed, the resource requirement in
each region r is computed based on those of its constituent
traces (lines 6 – 7 and 16 – 18). In fact, the number of func-
tional units required by r, denoted r.ILP, is simply taken to
be the maximum of ILP’s among all its traces.

Finally, in line 8, we call InsertOnOffInsts to introduce
all required on and off instructions at trace entry, exit and
link edges, which are infrequently executed since they are
not inside traces. In line 24, we assume that all functional
units are on outside traces, since the power savings should
really come from the idle regions. In lines 25 – 26, we turn
off unused functional units by inserting the specified number
of off instructions on the trace entry edges and turn them
back on at the trace exit edges (lines 27 – 28). The treat-
ment for trace link edges are self-explanatory if we note that
such an edge always connects two idle regions (which can be
identical). In this procedure, x.region and y.region denote
the idle regions in which the two incident blocks belong to,
respectively (when they are applicable).

4.3 Example
Let us continue to assume that HOT BB MIN=1000

and HOT BB PROB=50%. In LeakageOpt, let us as-
sume that AFFINITY = 0.5. The value of the other pa-
rameter WIN SIZE is irrelevant here. For the running
example given in Figure 6, there will be just one idle region
consisting of both traces. So we have decided to illustrate
LeakageOpt using a different example given in Figure 11.

Suppose that the trace flow graph obtained in line 2 is
shown in Figure 11(a). Suppose that there are fnum = 2
functional units of a particular type under consideration.
There are four traces, T1, . . . , T4 with their ILP values as
shown. The frequencies of all six trace link edges are given.
In line 5, FindIdleRegions is called. L = {(D4, D10} in
line 20 since (D4, D10) is infrequently executed. By remov-
ing this edge from the trace flow graph (lines 21 – 22), we
will be left with three connected subgraphs. As a result,
the three idle regions, R1, . . . , R3 are found, which are in-
dicated by the dotted boxes in Figure 11, where R1.ILP =

Configuration HOT BB MIN HOT BB PROB

DEFAULT 1000 50%
CONFIG1 100 50%
CONFIG2 1000 25%
CONFIG3 5000 50%
CONFIG4 10000 25%

Table 1: Five settings for HOT BB MIN and
HOT BB PROB used in evaluating GenTrace.

max(T1.ILP, T2.ILP) = 1, R2.ILP = T3.ILP

= 0 and R3.ILP = T4.ILP = 0. The on and off instructions
are inserted as shown in Figure 11(b), where the irrelevant
edges in the trace flow graph are suppressed for clarity.

5. EXPERIMENTAL RESULTS
In our experiments, we evaluate the effectiveness of our

trace generation algorithm in identifying the hot traces and
the effectiveness of our leakage optimisation algorithm in
reducing the functional unit leakage energy.

We use seven benchmarks from Mediabench [17]. All the
benchmarks are compiled using gcc at the optimisation level
“O2”. The profiling information is obtained using the so-
called “second data set” in [17]. All the benchmarks are
executed using the data set that comes with the benchmarks.

We consider a superscalar out-of-order architecture con-
sisting of 2 integer multipliers, 4 integer ALUs for non-
multiplication integer operations, 1 floating point multiplier
and 4 floating point adders. We use simoutorder, an out-of-
order cycle-level simulator from SimpleScalar [21].

5.1 Trace Generation: GenTrace
The two metrics are used: (1) the percentage of the execu-

tion time (in cycles) spent on executing the instructions in
the traces and (2) the percentage (static) instruction count
increase due to the duplication of the traces.

GenTrace has two tunable parameters: HOT BB MIN
and HOT BB PROB. The traces it generates can vary
depending on the values used for the two parameters. We
evaluate GenTrace below using the five configurations listed
in Table 1, where DEFAULT is the default setting.

Figure 12 demonstrates the quality of the traces gener-



ated. These results indicate that GenTrace is capable of
capturing the majority of the hot traces in these bench-
marks. In Figure 13, we observe that duplicating the hot
traces in a program has resulted in only a small increase in
the total number of instructions generated (from both ap-
plication and library code) for all the benchmarks except
toast. This happens because the most computations in an
embedded application tend to concentrate on small hot por-
tions of the application.
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Figure 12: Percentage of cycles spent on hot traces.
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Figure 13: Instruction count increases.

Overall, our default configuration for the two parame-
ters HOT BB MIN and HOT BB PROB is a reason-
able choice in terms of the two metrics used, at least for the
benchmarks used in our experiments.

5.2 Leakage Optimisation: LeakageOpt
We evaluate LeakageOpt by applying it to the 2 integer

multipliers only since it is equally applicable to any other
functional unit type in the architecture. We assume that
supply (or power) gating (SG) is used to turn off a functional
unit. According to [3], the leakage energy saving for SG
is 100% and several cycles are sufficient to turn on/off a

functional unit. In our experiments, the latency for an on
or off instruction is assumed to be 10 cycles.

Following [12], the percentage leakage energy reduction on
the 2 integer multipliers is quantified by M1+M2

2∗C
∗LS RATIO,

where Mk is the total number of cycles that the k-th unit is
off, C is the total number of execution cycles in the program
and LS RATIO is the percentage leakage energy saving per
cycle when a functional unit is off. LS RATIO is set to
100% since SG is used. Mk is computed conservatively such
that it does not include the on-to-off or off-to-on transition
cycles elapsed in a functional unit. Finally, the architec-
ture we consider supports control flow speculation through
branch prediction. Some instructions that are enclosed be-
tween a pair of off and on instructions may be speculatively
executed before the off instruction. If the speculation turned
out to be correct, the cycles spent on speculatively execut-
ing these instructions are not included in Mk (since they are
no longer in the idle region in the dynamic sense).

In evaluating LeakageOpt, we use the default configura-
tion for GenTrace, i.e., we set HOT BB MIN = 1000 and
HOT BB PROB = 50%. LeakageOpt has two parame-
ters: WIN SIZE and AFFINITY. For the architecture
we consider, WIN SIZE = 16. The tunable parameter
AFFINITY takes three different values: 0, 1/1.5 and 1.

Figure 14 shows that we can achieve significant leakage
energy savings for the benchmarks used. The leakage energy
improvement for a benchmark with a particular AFFINITY
value is given by M1+M2

2∗C
∗ 100%, where M1 + M2 is the to-

tal number of cycles that the two multipliers are off and C
is the total number of execution cycles for the benchmark
(added with traces). The three bars for a benchmark dis-
played from left to right are associated with 0, 1/1.5 and 1,
respectively. As AFFINITY increases, some idle regions
that are not connected previously may become connected.
This implies that the on and off instructions required can
only be reduced. As a result, when AFFINITY increases,
both C and M1 + M2 in M1+M2

2∗C
∗ 100% tend to decrease,

which may cause M1+M2

2∗C
∗ 100% to fluctuate. In Figure 14,

there are small variations associated with the three bars for
almost every benchmark. The main reason is that a number
of idle regions in these benchmarks do not have multiplica-
tions. If an idle region contains no multiplications, breaking
it into smaller idle regions will not cause any extra on and
off instructions to be introduced by LeakageOpt.

Figure 15 shows the performance degradations due to the
introduction of the on/off instructions. Table 2 gives the av-
erage duration for which a multiplier is off. The performance
degradations are small for all the benchmarks. As is clear
from Figure 15, each benchmark runs increasingly no slower
as AFFINITY increases from 0 to 1/1.5 to 1. In the case of
toast, the off duration when AFFINITY = 0 is less than
half of the off duration when AFFINITY = 1/1.5 or 1. The
performance degradation is the worst when AFFINITY =
0. A similar pattern can be observed in cjpeg and djpeg.
The benchmark untoast enjoys 57.97% leakage energy re-
duction under the three different AFFINITY values. But
it runs 1.31% slower when AFFINITY = 0 and only 0.97%
slower when AFFINITY = 1/1.5 or 1. This implies that
while the two multipliers are shut down more frequently
when AFFINITY = 0, the total execution time of the pro-
gram becomes longer due to the more on and off instructions
used. Overall, the relative leakage energy savings in all the
three cases are about the same. Finally, each of the remain-



ing three benchmarks, rawcaudio, rawdaudio and unepic,
suffers the same performance penalty under the three differ-
ent AFFINITY values.

As shown in Table 2, the off durations are quite long for
most benchmarks. It is projected that in future micropro-
cessors static power consumption will dominate the total
power consumption [5]. The large off durations will reduce
the dynamic energy consumed in the turning on/off activi-
ties, leading to overall energy savings for these benchmarks.
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Our experimental results suggest that AFFINITY = 1
appears to be a good choice for the purposes of reducing
leakage energy consumption on the two multipliers for these
benchmarks. In comparison with the other two AFFINITY
values, the leakage energy savings obtained are about the
same but the performance slowdowns are the smallest.

6. RELATED WORK
There has been some recent work on exploring suitable

compiler infrastructures for embedded systems. Kulkarni et

al. [13] emphasise the importance of an interactive environ-
ment that allows the user to tune the sequence of optimisa-
tion phases to meet her/his design goals. They demonstrate
how iteratively applying optimisation phases can have a sig-
nificant impact on static and dynamic instruction counts for
the SPARC architecture. Zhao et al. [27] describe a frame-
work for tackling the phrase-ordering problem based on pre-
dicting the impact of an optimisations on performance and
resource usage. They present an instance of this framework
and demonstrate the performance benefits of selectively ap-
plying loop transformations based on estimating the im-
pact of an optimisation on cache misses. Kadayif et al. [10]
present a framework for estimating analytically the energy
consumption of a high-level code segment in order to guide
high-level code optimisations. While these frameworks fo-
cus on high-level optimisations, ours permits complementary
optimisations to be carried out on binaries at link time.

There are a number of binary translation systems around
[1, 6, 22]. These systems aim at improving performance or
otherwise achieving portability while ours is designed with
both performance and energy consumption in mind.

Traces are not new. Trace scheduling [7] is a well-known
technique for increasing the amount of ILP by scheduling a
sequence of basic blocks together, which typically represents
a frequently executed path in the program. Traces have a
number of extensions such as hyperblocks [16] and regions
[9]. In Dynamo [1], the frequently executed paths are iden-
tified at run time so as to improve the program performance
transparently. These previous works show that a trace-based
approach is effective in supporting performance-oriented op-
timisations. To the best of our knowledge, this work is the
first to demonstrate that the hot traces represent a suitable
framework to support energy-oriented optimisations as well.

Our trace generation algorithm identifies the hot traces
across procedural boundaries at link time based on an inter-
procedural CFG constructed from a binary file. This CFG is
imprecise since the targets of some jumps may be unknown
or even illegal since a branching instruction in one function
may jump to the middle of another function. These prob-
lems do not exist when the traces are constructed at compile
time [7, 9, 16] or cause less trouble when the traces are con-
structed at run time [1].

Reducing energy consumption is important for embedded
devices. Compiler optimisations can play an important role
due to the need to meet conflicting constraints on time, code
size and energy consumption. In the absence of architectural
support, compiler techniques can improve the dynamic en-
ergy behaviour of a program in many phases of the compila-
tion process, such as instruction selection [15], register allo-
cation [8] and instruction scheduling [14]. Many high-level
code transformations such as loop tiling reduce the cache
misses in the program, and consequently, the dynamic en-
ergy spent on cache [11].

By exploiting available architectural support in an em-
bedded system, the compiler can generate code to dynam-
ically reconfigure the processor resources to make tradeoffs
between performance and energy usage. For example, Sa-
putra el al. [20] explore DVS as a means of improving the
dynamic energy consumption of a program without increas-
ing its execution time. Xie et al. [25] analyse and evaluate
the opportunities and limits of compile-time DVS schedul-
ing. To reduce static power dissipation, the compiler can
generate instructions to turn off unused or infrequently used



Benchmark AFFINITY = 0 AFFINITY = 1/1.5 AFFINITY = 1

RAWCAUDIO 3064 3064 3064
RAWDAUDIO 22070 22070 22070
TOAST 523 1115 1166
UNTOAST 553 549 549
CJPEG 1007 1105 1107
DJPEG 2468 2773 3076
UNEPIC 1169 1169 1169

Table 2: Average “off duration” (in cycles).

components. Zhang et al. [26] reduce data cache leakage en-
ergy by turning off cache lines when they are not used and
turning them on just before they are accessed later. Rele et
al. [19] reduce the leakage energy spent on functional units
by turning off unused or infrequently used functional units
for a superscalar architecture. The greedy nature of this ap-
proach may introduce many off-on instruction pairs that are
too close together. These spurious off-on pairs are expected
to be nullified dynamically by the hardware to avoid the
dynamic energy that might otherwise be consumed during
the off-to-on transitions. Kim et al. [12] study the same op-
timisation problem for a VLIW architecture. In this work,
we provide a trace-based approach for reducing static power
dissipation by functional units at link time.

7. CONCLUSION
In this paper, we present a trace-based binary compila-

tion framework for energy-aware computing. We have im-
plemented one such a framework in alto, a link-time opti-
miser for the Alpha architecture. Two components we have
added to alto are a trace generator and a trace-based opti-
miser. Our trace generation algorithm works by identifying
frequently executed paths in a CFG and duplicating them
as the (hot) traces in the CFG. Separating traces from non-
traces has one important benefit. Traces have simple struc-
tures: every trace has only a single entry point. This makes
it easy to implement many optimisations in our trace-based
framework. Our algorithm in identifying traces is both ef-
fective and practical. Our experimental results over bench-
marks indicate that the most execution cycles are spent on
the traces, which cause only small code size increases.

In our binary compilation framework, the traces are in-
herently inter-procedural and span functions in both appli-
cation and library code. In addition, the traces naturally ac-
commodate various kinds of control flow structures such as
recursive calls. To evaluate the effectiveness of using traces
to support energy-oriented optimisations, we have developed
a new leakage optimisation for functional units on traces.
Our algorithm is simple since traces allow the idle regions
and on/off insertion points to be identified easily. It is also
effective since significant leakage energy reductions can be
obtained for benchmarks at small performance penalties.

Our trace-based algorithm can be generalised to deal with
a number of compiler-directed optimisation problems in em-
bedded applications. Two more examples are the problem
for reducing cache leakage energy [26] and the problem for
employing cache locking to improve WCET estimates [23].
These problems share the same solution pattern as the prob-
lem of reducing functional unit leakage: the compiler identi-
fies the regions in which an optimisation is done and inserts
power-aware instructions at some suitable points to instruct

the architecture to turn on/off the specified hardware fea-
ture. All these tasks can be done similarly in our framework.
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