Scratchpad Allocation for Data Aggregates in Superperfect
Graphs

Lian Li*t

Quan Hoang Nguyen Jingling Xue '

Programming Languages and Compilers Group, School of Ctanfeience and Engineering, UNSW, Australia
National ICT Australi&

{lianli,quanhn jingling}@cse.unsw.edu.au

Abstract

Existing methods place data or code in scratchpad memery, i.
SPM by either relying on heuristics or resorting to integegoam-
ming or mapping it to a graph coloring problem.

In this work, the SPM allocation problem is formulated as an
interval coloring problem. The key observation is that immam-
bedded applications, arrays (including structs as a Spease) are
often related in the following way: For any two arrays, tHaie
ranges are often such that one is either disjoint from orainathe
other. As a result, array interference graphs are oftenrpefect
graphs and optimal interval colorings for such array irgeshce
graphs are possible. This has led to the development of two ne
SPM allocation algorithms. While differing in whether livange
splits and spills are done sequentially or together, baibrithms
place arrays in SPM based on examining the cliques in arfénter
ence graph. In both cases, we guarantee optimally thatraifam
an interference graph can be placed in SPM if its size is ndlsma
than the clique number of the graph. In the case that the SiRbtis
large enough, we rely on heuristics to split or spill a livege un-
til the graph is colorable. Our experiment results using esadled
benchmarks show that our algorithms can outperform graph co
oring when their interference graphs are superperfect aryso
although graph coloring is admittedly more general and nisy a
be effective to applications with arbitrary interferencaghs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage¥ Processors—compilers optimization; B.3.Mdmory
Structure§ Design Styles—Primary memory

General Terms Algorithms, Performance
Keywords Scratchpad memory, SPM, graph coloring, interval
coloring, superperfect graph, SPM allocation

1. Introduction
The effectiveness of memory hierarchy is critical to thefqer

dynamically map data or instructions from off-chip memadry.
embedded processors, the on-chip SRAM is frequently comfityu
as a scratchpad memory (i.e., SPM).

The main difference between SPM and cache is that SPM does
not have the complex tag-decoding logic that cache usesgpmosu
the dynamic mapping of data or instructions from off-chipmaegy.
Therefore, it becomes more energy and cost efficient [3]dbfi-a
tion, SPM is managed by software, which can often provideebet
time predictability, an important requirement in real-¢isystems.
Given these advantages, SPM is widely used in embeddedrsyste
In some high-end embedded processors such as ARM10E, Cold-
Fire MCF5 and Analog Devices ADSP-TS201S, a portion of the
on-chip SRAM is used as an SPM. In some low-end embedded pro-
cessors such as RM7TDMI and Tl TMS370CX7X, SPM has been
used as an alternative to cache.

Effective utilization of SPM is critical for an SPM-basedssy
tem. Research on automatic SPM allocation for data has édcus
on how to place the data that are frequently used in a prognam i
SPM so as to maximize for both improved performance and gnerg
consumption in the program [17, 23, 24, 21, 15, 2].

In [17], we introduced a compiler approach, caliedmory col-
oring, to automatically placing static data aggregates suchragsar
and structs in SPM. Note that structs can be handled as aaspeci
case of arrays. Memory coloring is a general-purpose cemap-
proach that solves the SPM allocation problem by mapping it t
a well-understood register allocation problem. The baigaiis to
partition a given SPM into a pseudo register file, which cetssbf
register classes for holding data aggregates of differesssand
then apply an existing graph coloring algorithm to color tizga
aggregates. To allow arrays to be dynamically swapped intb a
out of SPM, live range splitting is applied to some arraysdneg-
ate the data transfer statements required between SPM facioipf
memory. Like graph coloring register allocation, memoriocog
is performed on the array interference graph of a progranciwh
built based on the liveness information for arrays. Thisrigss in-
formation is obtained by extending the liveness analysisdalars
to deal with the fact that an array may be live across function

mance of a computer system. To overcome the ever-widening poundaries and accessed via aliased pointers. The eéfeetig of
gap between the processor speed and memory speed, fasipon-ch graph coloring algorithms in register allocation and tisealability
SRAMs are used. An on-chip SRAM is usually configured as a i, handling large-scale programs make this approach pingiis

hardware-managed cache, which works by relying on hardtware

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES'07 June 13-16, 2007, San Diego, California, USA.
Copyright(© 2007 ACM 978-1-59593-632-5/07/0006 . $5.00

By studying the array interference graphs of some embedded
applications, we find that our general-purpose memory twap-
proach can be further improved for a quite large class of elaibe:
applications. The key observation is that in some embedged a
plications, two interfering arrays (i.e., two arrays coctee by an
edge in an interference graph) are often related in such ahedy
the live range of one array contains the live range of therotkre
array live ranged is said tocontainan array live range3 if A is
live at every program point whetB is live. In this case, two arrays
are said to beontaining-related

Based on this observation, we propose a new approach thatThe rest of the paper is organized as follows. Section 2 dires

formulates the SPM allocation problem as iaterval coloring
problem The interval coloring problem [12] is a generalization of
the graph coloring problem to node weighted graphs.

Definition 1. Given a node weighted grapi = (V, E) and
positive-integral vertex weights = V' — N, the interval coloring
problem seeks to find an assignment of an intefyab each vertex

u € V such that two constraints are satisfied: (1) for every vertex
u € V,|I.] = w, and (2) for every pair of adjacent vertices u and
v, .NI, =0

The goal of interval coloring is to minimize the span of ineds
|U, I.| required in a valid coloring. Note that when every node
in the graph has a unity weight, the interval coloring prable
degenerates into the traditional graph coloring problem.

Let us recall below some standard definitions for a node
weighted graply:

¢ Acliquein G is a complete subgraph Gf A clique is amaximal
cliqueif it is not contained in any other cliques ¢h Theorder
of a clique is the sum of the weights of all nodes in the clique.

e The chromatic numbeiof G is the minimal span of intervals
needed to colog.

¢ Theclique numbeof G is the order of a largest maximal clique
ing.

In general, the chromatic number of a node weighted grapdiale
to or greater than its clique number. In the special case winen
chromatic number of a graph is equal to its clique numbegtaph

is known as asuperperfecgraph. (A superperfect graph is known
as aperfect graphf all its nodes have unity weights.)

some definitions about array live ranges and discuss a livgera
splitting heuristic used in this paper. In Section 3, we wec@and
study some salient properties about array live ranges iredosd
applications. Sections 4 and 5 present our two intervaraug
algorithms. We evaluate their effectiveness in Sectionegtisn 7
reviews some related work and Section 8 summarizes thig.pape

2. Preliminary: Array Live Ranges

The live range of an array in a program is the union of all the
program points in the control flow graph of the program thalk li
the different definitions of this particular array to theses. An
array is said to béve at a program point if this point belongs to its
live range. As for scalardive range splittingcan also be applied
to arrays by inserting array copy statements so that an aaape
split into several arrays with smaller live ranges.

2.1 Live Range Splitting

This is generally useful since arrays often have long liveges
and may be frequently accessed only in parts of their livgean
By splitting an array so that its frequently accessed patoine
distinct new arrays with shorter live ranges, we can in@dae
chances for the shorter live ranges to be placed in SPM.

In this paper, we use the same live range splitting strategy
described in [17] to split arrays at hot loops (includind séks as
a special kind of loops) since most array accesses come frsidei
loops. We have improved our earlier strategy by allowing maya
to be split even if it may be accessed indirectly by a poiritat inay
also point to other arrays. This is implemented by usinginuat
method tests that are often used for devirtualizing or in§jrvirtual

The SPM allocation problem can be naturally abstracted as an function calls in object-oriented programs [6].

interval-coloring problem as follows. Each node, i.e.agrobject
in an array interference graph is weighted with its corresirg
size. Allocating SPM spaces to array live ranges is repteddny
the assignment of intervals to vertices of the graph. Miming the
span of intervals amounts to minimizing the required SPM.siz
Interval coloring is an NP problem and how to recognize and
color a superperfect graph remains to be an open problemIfi2]
this paper, however, we show that an array interferencehgsap
superperfect graph if any pair of array live ranges in the@rare
either disjoint or containing-related. Furthermore, wéd piesent
two algorithms that each can find an optimal allocation fazhsu
an array interference graph in polynomial time when the siza
given SPM is equal to the cligue number of the graph. If the SPM
is not large enough, both algorithms use heuristics to eplépill
some arrays until an optimal SPM allocation for the resgliim
terference graph is possible. The two algorithms diffehigirtlive
range splitting strategies used. One performs live ranliftiisg be-
fore spilling while the other performs live range splittitagether
with spilling. In both algorithms, we use a simple cost mottel
evaluate the colorability of an array interference grapth gnide
spilling and splitting decisions. Our experimental reswlsing a
set of benchmarks from MediaBench and EEMBC show that our
algorithms are effective for these embedded applicationscan
outperform the memory coloring approach in most benchmarks
In summary, this paper makes the following contributions:

¢ We uncover and study some salient properties about array liv
ranges in embedded applications.

¢ We propose a new methodology for solving the SPM allocation
problem by formulating it as an interval coloring problem.

o We present a new cost model to guide splitting and spilliray an
two interval-coloring algorithms for placing arrays in SPM

¢ We have implemented this work in SUIF and MachSUIF and
evaluated its effectiveness using a set of embedded bemnktima

As in [17], a simple cost mode is used to decide if the live eang
of an arrayA in a loop L should be split into a new array’ based
on the (optimistic) assumption that’ will end up being kept in
SPM if the splitting is performed. Due to live range spligtiran
array copy statememt’ = A is introduced at the pre-header bf
andA = A’ at an exit of L if A may be modified inside and live
at the exit. All accesses td (including those accessed indirectly
by pointers) inL will be replaced by those tel’. So the cost of
splitting A at L is (Cs + Cy x A.size) X numcopies, where
C; is the startup cost; is the transfer cost per bytel.size is
the size ofA (in bytes) andnumcopies is 1 or 2 depending on
whetherA = A’ is executed or not. The benefit for the splitting is
A.freqgx (Mmem —Mspm), WhereA. freq is the access frequency
of Ain L, Mu.n IS the memory access latency (in cycles) and
Mpm is the SPM access latency (in cycles).

If the benefit is larger than the cost for a particular sptig, split
will be performed. Every array that is accessed in a loopwiidie
split at most once in one of its loops when its loops are piseEs
outside in. All new arrays introduced inside loops are chhet
arrays these loops are calldubt loops All the arrays that appear
originally in the program are callatbnsplit arrays

2.2 Liveness Analysis

The liveness information for the arrays in a program is nesgli
in order for us to build the interference graph for these yarra
Two arrays arenterferingwith each other if the live range of one
array contains a definition of the other array. The intenig@arrays
cannot be kept in overlapping SPM spaces.

Liveness analysis is performed after live range splittirag h
been done. Our approach to the SPM allocation problem igs-inte
procedural in the sense that all arrays in a program are aeres
for SPM allocation at the same time. Many embedded appbicsti
are free of recursion. So a caller/callee save and restotbanesm
may be dispensed with. As a result, we use the same livenals an
sis for arrays described in [17] to compute the livenesgimédion

for all arrays in a program inter-procedurally. In partelan array
is considered to be live on entry to a call site if it is live ortrg to
a callee function that may be invoked from the call site. Thisec-
essary when the array is global and used in the callee funotio
when the array (global or local) is passed by reference todliee
function and accessed indirectly in the callee functioraddition,
due to the absence of a caller-callee save mechanism fgsaea
array that is live at the exit of of a call site is assumed toNadn
entry of every function that may be invoked from the call site

3. Superperfectness

In this section, we provide evidence to show that in many efdee
applications, two arrays are often containing-relatednelier they
interfere. We will show further that an interference graghai
superperfect graph if any pair of arrays in the interferegiamh
are either disjoint or containing-related. Finally, weatiss briefly
the basic idea about coloring such a superperfect graph.

3.1 Containment

As illustrated in Figure 1, two array live ranges can be ezlah
one of the three ways. Figure 1(a) gives an example of cantgin
related arrays. In Figure 1(b), the two arrays are disjairt #hus
not interfering. In Figure 1(c), the two arrays interferehweach
other but neither live range contains the other. HoweveaJrimost
all embedded applications we have studied, the situatioRign
ure 1(c) happens rarely. Frequently, Property 1 holds foraways.

A A A

(a) Containing-related (b) Disjoint (c) Interfering

Figure 1. Containing-related, disjoint and interfering arrays.

Property 1. If two arrays in a program interfere, then the live
range of one array contains that of the other.

As a result, any two arrays in a program are either disjoint or
containing-related. We draw this conclusion based on tiseva-
tion from a number of representative embedded benchmarks.

In this paper, aefinition blockis referred to a scope, e.g., a
compound statement in C, where arrays are declared. Allphions
arrays in a program are conservatively assumed to be defirigd o
once at their respective definition blocks. All global asagre
treated as a special case; they are considered to be defitieel in
outermost scope in a pseudo function that is the only cafléne
main function of a program. A hot array is assumed to be defined
the entry of its associated hot loop even though it its iliftédion
statement appears in the pre-header of the loop.

In this work, we will consider to place hot and nonsplit agay
in SPM as follows. If an array live rangd is split into several
hot arrays, sayAi, Az, ..., A,, then only one of the following
two scenarios will occur. In one scenario, all these hotyarare
considered for SPM allocation and the remaining no-hotiqast
of the live range are ignored. These non-hot pieces willdeesi
in off-chip memory since they are infrequently accesseds T
reasonable since the majority of array accesse$ tall be from
those to the hot parts of its live rangé;, As, ..., A,. In the other
scenario,A is considered for SPM allocation and all its hot live
ranges represented by the hot arralis Ao, ..., A, are ignored
(as if no live range splitting forl has ever taken place).

To ensure that Property 1 holds for a program, the following
three assumptions about the live ranges of the hot and ribnspl
arrays in the program are made.

Assumption 1f an array is live on entry to a definition block, then
itis live in the entire scope of the definition block.

Assumption 2f an array is live on entry to a call site, then itis live
at the exit of the call site.

Assumption For two arrays defined in the same definition block,
every last use of one array must be post-dominated by at least
one last use of the other array.

We have studied the array live range behavior in a set of rep-
resentative embedded applications from MediaBench andEREM
benchmark suites (cf. Table 1). Only four arrayp#gwitencode
andpegwitdecode do not satisfy these three assumptions.

Property 1 holds for a program if these three assumptionallre
satisfied. Below we present further explanations.

Let us first examine Assumption 1, which is relevant to the
arrays defined in different scopes. We assume that scopeglze
nested or disjoint as in C. According to this assumptionneve
live range in a scope must contain all live ranges insideettad
scopes. This assumption seems to be restrictive. But tloae bt
appear to be a need to relax it since the local arrays in aitmate
usually declared in its outermost scope in embedded apiplicsa

Assumption 2 takes care of arrays defined in different fomsti
For two arrays defined in two different functions, the arrafired
in the caller function must be live on entry to the callee fiorc
if they interfere with each other. According to this assumptthe
array in the caller is also live at the exit of the call siteeféfore,
it is live through the callee function and contains the ligages of
all arrays defined in the callee function.

Finally, let us examine Assumption 3, which is applicable to
all arrays defined in a common definition block. Consider tuchs
arrays,A andB. Initially, both are regarded conservatively as being
defined only once at the beginning of the block. Accordinghie t
assumptionA containsB if every last use ofB is post-dominated
by some last use ol. Similarly, the converse is true.

3.2 Superperfect Graphs

We show that if Property 1 holds for every pair of interferargays
in an interference graph, then all arrays in the graph camloeed
if the size of a given SPM is equal to the cligue number of ttapr
This implies that the interference graph under considamais a
superperfect graph. Thus an optimal interval coloring liexed.

Theorem 1. If Property 1 is true for all arrays in a program, then
the interference graph for the program is a superperfecpra

The proof of this theorem follows from two lemmas stated
below. Let acontainment non-decreasing ordee a total order
that is defined on the set of all live ranges in a program aeval!
Supposed and B are two arbitrary live ranges. IA and B are
disjoint or identical (i.e., contain each other), theneith precedes
B or A succeedsB. Otherwise,A and B must be containing-
related. Then the contained live range precedes the camgaone.

Let G be an interference graph such that Property 1 holds for
all live ranges inG. Let all arrays inG be colored in any given
containment non-decreasing order. Suppdsds an arbitrary but
fixed array inG. Let G4,, be a subgraph of including all arrays
that are colored beford,,. LetCa,, = {Ao, A1,...,An_1} be
a clique inG4,, with the largest order such that all arraysda,,
interfere with A,, and are colored fromi, to A, —1 in the given
containment non-decreasing order. We say tHhatis perfectly
placedin SPM ifitis placed in SPM immediately aftet,,_; from
the lowest to highest address in the SPM. By conventibn,is
placed at the offset 0 in SPM, in which cageg, = 0.

Lemma 1. An array A can be perfectly placed in SPM with an
infinite size if all live ranges G 4 are perfectly placed.

Proof. We will prove this case by contradiction. Supposds,
cannot be placed in SPM immediately aftdr,_;. Then there
must exist an array,, in G4, that interferes withA,,. Further-
more, sinceZ,, has been perfectly placed, it is always possible
to chooseZ,, so that the order of the cliquéZ,.} U Cz,,
{Zo,Zr,...,Zm-1,Zm} is larger than that of 4,,. This is pos-
sible since otherwised,, can already be perfectly placed. This
contradicts the fact thata,, has the largest order fof,,. a

Lemma 2. G can be colored with an SPM size larger than or equal
to its clique number if all live ranges iéi are perfectly placed.

Proof. By Lemma 1, every arrayl,, in G can be kept in SPM if
the SPM is larger than or equal to the order{of,} U Ca,,
{Ao, A1,...,An_1, Ay }. Furthermore, the order ¢f4,,} U Ca,,
for someA,, must be the clique number of the graph. |

3.3 Methodology

As discussed earlier, we will allocate SPM spaces only tchtite
and nonsplit arrays in a program. Property 1 holds for mostede
arrays in the embedded benchmarks that we have studiedeCons
quently, their interference graphs are often superpedieqihs.

For a given program, we will start with an interference graph
including only its hot and nonsplit arrays. Such an intenfee
graph is very likely to be superperfect. If it is not, we wiktend
the live ranges of some interfering arrays so that any twarfiating
arrays are either disjoint or containing-related. This e snd
conservative approximation of the liveness informationdoays
in a program. For the set of 10 embedded applications we have
studied (cf. Table 1), only four live ranges in the two beneaks,
pegwitencode andpegwitdecode, need to be extended.

According to Theorem 1, the resulting interference graptafo
program is superperfect and can thus be optimally coloreheif
size of a given SPM is no smaller than the clique number of the
graph. If the SPM is smaller (which may often be the case in-pra
tice), some heuristics are applied to split or spill some lianges
until the resulting interference graph becomes optimailp@ble.

In this case, all live ranges that remain in the interferegiaph
can be optimally placed in SPM. Two different implementasiof
this methodology are developed and presented below. Thiky di
in whether live range splitting and spilling are done sedjaéin
(aggressive splittingor together §n-demand splitting

When each algorithm is presentedl,consistently denotes the
interference graph being processed by the algorithm.

3.4 An Example

Our illustrating example is given in Figure 2(a). The hotdeB8B2,
BB3, BB6 andBB?7 are highlighted in grey. The program has four
arraysA, B, C andD. Their sizes are 80, 240, 80 and 80 bytes,
respectivelyA andB are defined in the main function and are live
through the whole progran€ andD are defined in functiong and

f, respectively. Functiofiis a callee function invoked at a call site
in functiong. As a resultA andB contain each other. Both and

B containC andD. D is contained by the other three arrays.

The live ranges of all arrays after live range splitting haerb
performed are illustrated graphically in Figure 2(b). Tlo¢ &rrays
Al, B1, C1 andD1 are introduced in the hot loops (and call sites)
as highlighted. Their live ranges are contained by the lamges
of the nonsplit, i.e., original arrays andB. The live ranges oAl
andB1 are disjoint.A1 is live inside the functiong andf. Thus,
the live range ofAl contains all live ranges defined mandf,
including the nonsplit array€ andD as well as the hot arraysl
andD1. Similarly, B1 containsD andD1.

int main() int main()
char A[80] , B[240]; char A[80] , B[240];
char *P; char *P;
¥ BB1 ¥ BB1
All=... All=...
B[]=... B[]=...
BB2 /\ BB3 BB2 /\ BB3
A1 1B1
call g(A); call f(B); I 1
[]
BB4 BB4

void g(char *P) void g(char *P)

char C[80] ; char C[80] ;
char * Q; char * Q;

BB5 Y BBS ¥

A1

Q=PorC; I

BB6+ BBG+

A1

call f(Q); I Em
void f(char *P) void f(char *P)
char D[80] ; char D[80] ;
BB7 BB7

A11B1
1
[

I EC1§D1

(b) Split live ranges

DIl = *P;

(a) Program

(c) The interference graph
for hot arrays

(d) The interference graph
for hot and nonsplit arrays

Figure 2. A motivating example for aggressive splitting.

4. Aggressive Splitting

Figure 3 gives the phase ordering of our aggressive spjiftame-

work. It starts with an interference graph including onlg tiot ar-

rays in a program. When the interference graph becomesatxiégr
the nonsplit arrays in the program are gradually includddrag as

the resulting interference graph is still colorable.

——[Split ’——[Build]——[Sm Unm{Allocation]—»

Figure 3. Aggressive splitting.

4.1 Build

Two tasks are performed for a program. First, an interfexenc
graph including only the hot arrays in the program is buikcS

ond, all nonsplit arrays in the program are pushed into aafled

unspill _queue where they will be examined in the Unspill phase.
For the motivating example, the interference graph for the h

arrays is depicted in Figure 2(c). Thespill_queue is initialized
to contain the four original arrayd4, B, C andD in the example.

Algorithm 1 An algorithm for finding all maximal cliques in an

array interference graph for a program.

1: procedure FIND_ALL _CLIQUES
// Find all maximal cliques in the interference gragh

2: for every functionf in the call graph of the program in

reverse topological ordefo
3: Find.FuncCliques(f)
4: end for
5. end procedure

6: procedure FIND_FUNC_CLIQUES(f)
// Find maximal cliques of functiofi, denotedf.cliqueset

Let S be the set of arrays in the given interference gréph

7:
8: f.S ={f'slocal array3 S
9: for every program poinP in f do

10: localclique = {l | | € live(P) ANl € f.S}

11 if P is an entry point to a call sitdhen

12: Let gset be the set of all callee functions that may
be invoked at the call site

13: for everyg € gset such thay.cliqueset # () do

14: Add tolocalcliqueset the set of cliques formed

by combininglocalclique with every clique ing.cliqueset
15: end for

16: else

17: localcliqueset = {localclique}
18: end if

19: f.cliqueset | J= localcliqueset
20: end for

21: end procedure

The procedure Find\ll _Cliques given in Algorithm 1 is applied

to find all maximal cliques in an array interference graphef@ro-

gram. The algorithm works in a bottom-up manner by traversin

the call graph of the program in reverse topological ordee(R).
For simplicity, every definition block where some arrays dee
fined is regarded as a special inlined function called fraint-
mediately enclosing outer scope. In addition, a pseudatifumés
introduced to represent the outermost scope where all igholay's
are defined. In the call graph for a program, this pseudo iomés
the only caller function for the main function in the progranthen
visiting a functionf, the procedure Finffunc Cliques is called to
update the set of cliques that is already identified by inc@iing
the local arrays defined ifi. The set of cliques aftef’s local ar-
rays have been included is represented.agqueset and will be
used when the caller functions ffare processed.

In Find_.FuncCliques, every program poin® in f is visited
(line 9). The local arrays of that are live simultaneously &
form a clique (line 10), denotelbcalclique. If an array is live at
a call site, then it interferes with every array defined in aaljee
function that may be invoked at the call site. Thus, on ertrgech
call site, the set of cliques grows by including those olediby

combininglocalclique with each clique in the clique set found in

every callee function invokeable at the call site (lines 15).

After the pseudo function, where all the global arrays ame co

ceptually defined, has been visited, all arrays in the pragnall
have been processed. All maximal cliques in the given iaterfce
graph for the program have thus been identified.

Consider the example program given in Figure 2(a). Sincg onl

the hot arrays are consideretiz {A1,B1,C1,D1}. As the only leaf

function in the progrant, is visited first and the clique that consists

of the singleton hot arrafp1 is included inf.cliqueset. Next, g

is visited. AtBB6, localclique = {C1} is combined with each
clique inf.cliqueset. As aresultg.cliqueset = {{D1,C1}}. After
main has been processed, two maximal cligyéd,C1,D1} and
{B1,D1} are identified finally. Due to the absence of global arrays,
the largest maximal clique in this interference grapHB4,D1}

with an order of 320 bytes. So the cligue number and chromatic
number of this interference graph are both 320 bytes.

4.2 spil

This phase reduces the clique number of an uncolorablefenter
ence graph by spilling some arrays. We spill an array by usimew
cost model developed specifically for superperfect graghaling
an array means removing it from the interference graph. idlys
remaining in the interference graph will verify PropertySh this
phase preserves the perfectness of the interference graph.

4.2.1 The Cost Model

A term colorability is introduced to represent the number of array
accesses that can hitin SPM after SPM allocation. We use@esim
cost model to evaluate ttomlorability of an interference graph.

For a cliqueC, all arrays inC can be colored if the order dfis
no larger than the given SPM size. Then the colorability & the
sum of the frequencies of all arraysd@n If C is not colorable, we
approximate the colorability @& asa/(C):

C.freq
C.order

whereSPM_SIZE is the size of a given SPN. freq is the sum of
the frequencies of all arrays thandC.order is the order of’.

For an interference graph, we estimate its colorability as the
sum of the colorability quantities of all its maximal clicgie

a(G) = > a(C)

¢ is a maximal clique inx

a(C) = SPM_SIZE x

In our cost model, the larger the colorability is for an ifeer
ence graph, the better the allocation results will be.

4.2.2 The Algorithm

Algorithm 2 An algorithm for spilling arrays in aggressive split-
ting.
1: procedure SPILL
2: Let C'set be the set of maximal cliques with orders larger
thanSPM_SIZE in the given interference gragh
3 while Cset # () do
4: for every arrayA in a clique fromC'set do
5
6

A.spillpenalty = A.freq X (Mmem — Mopm)
A.spillbenefit = (a(G—A)—a(G)) X (Mmem —

Mspm)
7: A.spillcost = A.spillpenalty — A.spillbenefit
8: end for
9: Select an array in a clique fromC'set with the least
A.spillcost
10: PushA into unspill_queue
11: RemoveA from G
12: for every cliqueC that includesA do
13: RemoveA from C
14: if C.order < SPM_SIZE then
15: Cset = Cset — C
16: end if
17: end for

18: end while
19: end procedure

Algorithm 2 explains this phase in details. The performance

The benefit of unspilling an array is computed according o th

loss of a single access from off-chip memory is estimated by increased SPM accesses and the number of eliminated ap&sco

(Mmem — Mspm), where Mgp,, and M., denote the cycle

by placing this array (rather than its split hot arrays) ilVSfines 4

counts of one SPM access and one off-chip memory access, re— 10). All arrays inunspill_queue are examined in the order from

spectively. Therefore, the penalty incurred for spilling array

A (denotedA.spillpenalty) is estimated as a product of the ac-
cess frequency off and the performance loss of a single access
from off-chip memory (line 5). The benefit of spilling (denoted
A.spillbene fit) is approximated according to the increased col-
orability of the interference graph after has been removed (line
6). The overall cost of spillingl (denotedA.spillcost) is equal to
the penaltyA.spillcost minus the benefitl. spillbene fit (line 7).

We always choose to spill an array with the minimal overall
spilling cost. The selected array, instead of being spilkechedi-
ately, is pushed intanspill_queue and will be examined in the
Unspill phase (line 10). The interference graph and its maki
cligues are updated after an array has been spilled (lineslTL
This phase terminates when the interference graph is diéora

Let us be given an SPM of 320 bytes. For the program in
Figure 2(a), the interference graph including only the hoays
is given in Figure 2(c). Its cligue number is exactly the sas¢he
given SPM size. No spilling is required. So all the hot arrega
be placed in the SPM (as also suggested by Theorem 1).

4.3 Unspill

At this stage, the interference graph is optimally cologaBlut the
SPM may be under-utilized. In addition, it may be more beradfic
to coalesce unnecessary splits introduced due to live raplie
ting. So this phase is introduced to overcome these two @nabl
although its coalescing role is more significant one of the tw

All arrays inunspill_queue, including both hot and nonsplit ar-
rays, are examined. An array will be unspilled if it can bduded
in the interference graph without making it uncolorableshiling
a nonsplit array means that the nonsplit array is includethén
interference graph with all hot arrays that are split fronbeing
discarded. Then all the array copies introduced for sptjtthis ar-
ray can be eliminated. Since the interference graph cather
a nonsplit array or its hot arrays split from it but not botte tesult-
ing interference graph will remain to be superperfect (Tapol).

Algorithm 3 An algorithm for unspilling arrays

1: procedure UNSPILL

2 Let G be the given interference graph

3 for every arrayA € unspill_queue do

4: if A is a nonsplit array that has been sgtien

5: A.unspill freq is the frequency ofA minus the
frequencies of all hot arrays i that are split fromA

6: A.copycost = the copy cost for copying all hot
arrays ing between SPM and off-chip memory
7: A.unspillbene fit = Aunspill freq X (Mmem —
Mspm) + A.copycost
8: else
o: A.unspillbenefit = A. freq X (Mmem — Mopm)
10: end if
11: end for
12: while unspill_queue # () do

Select A
A.unspillbene fit

13: in unspill_queue with the largest

14: if G remains colorable witkl being includedhen
15: Add Ainto G

16: Update the maximal cliques i

17: end if

18: RemoveA from unspill _queue

19: end while

20: end procedure

the largest to smallest unspilling benefit (line 13). If aragrcan be

colored (line 14), then it will be included in the interfecengraph

(line 15). Otherwise it will be accessed from off-chip mesor
After an array has been unspilled, the interference graghitan

maximal cliques are updated accordingly (lines 15 and 16).

For the example program, let us continue to assume an SPM
of 320 bytes.A and B cannot be unspilled since it will result in
the oversized clique§A,B1,D1} and{A1,B,C1,D1}, respectively.
However,C andD will be unspilled in that order. In the resulting
interference graph, there are two cligyesl,C,D} and{B1,D}.

4.4 Allocation

Algorithm 4 An algorithm for SPM allocation.

1: procedure COLOR_CLIQUE
// Color all arrays remaining in the interference graph

2: Let L be the list of all arrays in the interference graph
3: SortL in a containment non-decreasing order
4: while L #0do
5: Remove the first arrayl from L
6: avatladdr =0
7 for every arrayB that has been coloratb
8: if B interferes withA andB.address+ B.size >
availaddr then
9: avatladdr = B.address + B.size
10: end if
11: end for
12: A.address = availaddr
13: end while

14: end procedure

Finally, all arrays remaining in the interference graph ban
successfully placed in SPM. We present an algorithm thairsol
these arrays in a containment non-decreasing order.

As shown in Algorithm 4, all arrays are colored in a containie
non-decreasing order (lines 2 and 3). An array will be plaiced
SPM at the first available SPM address (lines 5 - 12), whichbean
obtained by examining all interfering arrays that are alygalaced
in SPM. By Theorem 1, all arrays can be successfully colored.

80

main

Figure 4. SPM allocation result for the example in Figure 2(a).

Consider the example in Figure 2(a). After Unspill, the inte
ference graph contains four arraysl, B1, C andD. Figure 4
depicts the allocation result. There are two possible ¢omtant
non-decreasing orders: (1), C, A1 and B1 and (2)D, C, B1
and Al. Let us assume that the former order is udeds colored
first and placed in SPM at the offset 0. Théns placed at the off-
set 80.A1 will be placed in SPM at the offset 160 since it interferes
with C andD. Finally, B1 can be placed in SPM at the offset 80.
For this example, the same allocation will result if the otben-
tainment non-decreasing order is used.

5. On-demand Splitting Algorithm 5 An algorithm for splitting and spilling live ranges in

Unlike aggressive splitting, on-demand splitting stariténa larger on-demand splitting.
interference graph that includes all nonsplit arrays, a#.origi- 1: procedure SPLITORSPILL
nal arrays in a program. If the interference graph is unedille, 2: Let C'set be the set of maximal cliques with orders larger
its clique number will be gradually reduced by splitting pilling thanSPM_SIZE in the given interference gragh
some arrays. The motivation behind is that some frequerttly a 3: while C'set # () do
cessed arrays may not be split successfully. In aggressiiens, 4: for every arrayA in a clique fromC'set do
those arrays are considered only after all hot arrays cambe ¢ 5 A.spillpenalty = A.freq X (Mmem — Mspm,)
ored. Therefore, they may not have a chance to be placed in SPM ¢ A.spillbenefit = (a(G—A)—a(G)) X (Mmem —
This problem can be avoided in the on-demand splitting fraonke, Mapm)
where nonsplit arrays are split into hot arrays in an on-dema 7: A.spillcost = A.spillpenalty — A.spillbene fit
manner. The same cost model introduced in Section 4.2.1eid us g A.splitpenalty is the cost of splittingd
to estimate the costs incurred for splitting and spillingaaray. 9 Let ¢’ be the modified interference graph after
splitting A
10: A.splitbenefit = (a(G") — a(G)) X (Mmem —
q Mipm)
Split (| Coalesce [+ Build || SplitorSpill UnSpill [-8-»{ Allocation |- 1L A.splitcost = A.splitpenalty — A.splitbene fit
_.[’ H H H i ’] 12: end for
13: Select A in a cligue from Cset with the least
min(A.spillcost, A.splitcost)
14: PushA into unspill_queue
Figure 5. On-demand splitting. 15: RemoveA from G
16: if A.spillcost < A.splitcost then
Figure 5 depicts the phase ordering of the on-demand sgfitti 17 for every cliqueC that includesA do
framework. The phases that are different from the aggresgilit- 18. RemoveA from C
ting framework are highlighted in grey and described below. 19: if C.order < SPM_SIZE then
20: Cset = Cset —C
5.1 Coalesce 21: end if
All cov-rel : 22: end for
py-related arrays are coalesced. We introduce a ¢laar 73 else
lescedfor each array to denote whether it has been coalesced or_™" . .
not. The flag is initialized to false for all arrays. After ¢escing, gg: for g\:aen?:)\(;giuf?grtnhgt includesA do
the flag is true for all hot arrays introduced in live rangettpb. 2. Set the flageoalesced to false for the live
5.2 Build ranges split fromd in C (if any)
As in aggressive splitting, the same two tasks but with ckifié 2; i CSZZ:LSCSS?E'EICZ £ then
semantics are performed. First, the interference graphtaaied 292 end if
will include not only hot but also nonsplit arrays in the prag. 0: end for
Secondunspill _queue will start being empty since all arrays for 31j end if

SPM allocation have been included in the interference graph
The same procedure (Algorithm 1) used in aggressive spitti
is applied to find the maximal cliques in the interferenceprd he
maximal cliques found may consist of both hot and nonspléyes.
All arrays flagged asoalescedare not counted in computing the

32 end while
33: end procedure

order of a clique. The reason in building an interferencelrais the penalty incurred for splitting is the copy cost for the inserted
way is to enable us to update the interference graph and itsmaa copy statements plus the penalty incurred for accessirggtho-
cliques on the fly after an array has been split. L hot portions ofA’s live range from off-chip memory (line 8). The
Figure 2(d) gives the interference graph for our motivatng benefit of splittingA is computed as the increased colorability of

ample, where the four coalesced nod&s, B1, C1 andD1, are the interference graph due to the splitting (lines 9 and 10).
highlighted. The two maximal cliques in this interferencegh are When splitting or spilling4, A is removed from the interfer-
{AA1B,C,C1D,D1} and{AB,B1,D,D1}. Note that the hotar- ence graph and pushed int@spill_queue (lines 14 and 15). The
raysAl, B1, C1andD1 are flagged asoalescedand they will not maximal cliques in the interference graph are updated diugly

be counted in computing the order and colorability of a aiqu (lines 16 - 31). IfA is selected for splitting, the flagpalesceds

set to false for every hot array that is split frofn(line 26).

5.3 SplitorSpill Let us continue to study the interference graph given in Fig-
When an interference graph is not colorable, we will splispil ure 2(d). As in aggressive splitting, the SPM size is 320 ytde
an array in the graph to reduce the clique number of the graph. initial interference graph is not colorable. 8as selected for split-
The cost and benefit of splitting and spilling an array arereded ting first. A is removed from the interference graph and the flag
based on the same cost model used in aggressive splitting. coalesceds set to false foA1l. Splitting A results in two cliques

In Algorithm 5, we estimate the cost and benefit of spilling an {A1,B,C,C1,D,D1} and{B,B1,D,D1}. The interference graph is
array A exactly as in aggressive splitting (lines 5 - 7). still not colorable due to the oversized clig@&1,B,C,C1,D,D1}.

Similarly, the overall cost of splitting! is the penalty incurred ThenB is then selected for splitting. The cliques after splittBig
for splitting A minus the benefit (line 11). Afted has been split, are {A1,C,C1,D,D1} and{B1,D,D1}. Note thatCl andD1 are
array copy statements are inserted. Only the hot arrayatbaplit flagged azoalescedand they are not counted in computing the or-
from A are considered for coloring and those no-hot portions of the der and colorability of the cliques. Thus, no more oversidapies
live range ofA will be accessed from off-chip memory. Therefore, are found. So the interference graph is now colorable.

5.4 Shared Phases with Aggressive Splitting

After SplitorSpill, the same Unspill phase used in aggressplit-
ting is applied. The nonsplit arrays and B are examined in this
phase. NeitheA nor B can be successfully unspilled. So they will
not be included in the interference graph.

Finally, all the arrays that are flagged asalescedcan be
safely discarded. The same Allocation phase (Algorithm gBdu
in aggressive splitting is applied to color all arrays remia in the
interference graph. For the example program in Figure ®@th
aggressive splitting and on-demand splitting give riseheosame
SPM allocation result depicted in Figure 4.

6. Experimental results

We have implemented our two interval-coloring algorithmghe
SUIF and MachSUIF compiler framework and evaluated both
against our memory coloring approach [17]. For memory ¢opr
George and Appel’s iterative-coalescing framework [1@Joimo-
rated with the generalized heuristics from [22] for hangliiagister
classes and aliases is used for coloring arrays. In all tases, the
same live range splitting heuristic discussed in this papapplied.

For convenience, all three algorithms compared are denoted
by two-letter acronyms. MC stands for memory coloring, A8 fo
aggressive splitting and OS for on-demand splitting.

[Benchmark [#Lines | #Arrays | Data Set Size (Bytes)

gsmtoast 6031 62 17.8K
gsmuntoast 6031 62 17.8K
adpcmencode| 741 5 2.9K
adpcmdecode| 741 5 2.9K
pegwitencode| 7138 121 226.7K
pegwitdecode| 7138 121 226.7K
mpeg2encode| 8304 62 9.2K
mpeg2decode| 9832 76 21.8K
fft00 1455 10 7.9K
autcor00 886 5 2.4K

Table 1. Benchmarks from MediaBench and EEMBC.

Table 1 gives the 10 embedded benchmarks used in our experi-

ments, where£t00 andautcor00 are from EEMBC and the re-
maining eight programs are from MediaBench.

The profiling information is obtained using inputs that are
different from those used in performance evaluations. Fe- M
diaBench, the so-called second data sets available in tidi-Me
aBench website are used for profiling while the data sets that
come with their source files are used in experiments. Forvioe t
EEMBC benchmarksgutocor00_data_3 andfft00_data_3 are
used to collect profiling information whilkeutocor00_data_1 and
f£ft00_data_1 are used for performance evaluations.

The arrays that are not accessed in a program are not cogsider
in SPM allocation. In addition, arrays with sizes being &rthan
32K bytes are ignored since it is probably ineffective tokee
them entirely in SPM. One solution is to divide them into deral
subarrays [14] and then apply our algorithms to to thesersaym

6.1 Compile Times

Table 2 gives the average compile times (calculated acribss a
SPM sizes considered in this paper) for all three algoritoms
2.66GHz Pentium 4 box with 2GB memory. As shown in Table 2,
all three algorithms are practically efficient. For mostdiemarks,

AS compiles faster than OS. OS is more expensive becausetd st
with a larger interference graph, as is evident from Table 3.

6.2

Table 3 compares AS and OS in terms of the initial interfeeenc
graphs, i.e., the ones that each starts with for the 10 begdtsm

Interference Graphs

[Benchmark [MC | AS | OS |
gsmtoast 0.491 | 0.385 | 0.457
gsmuntoast | 0.410 | 0.339 | 0.424

adpcmencode| 0.009 | 0.009 | 0.009
adpcmdecodel 0.009 | 0.009 | 0.009
pegwitencode| 2.591 | 2.359 | 4.875
pegwitdecode| 2.471 | 2.188 | 3.971
mpeg2encode 0.620 | 0.587 | 0.553
mpeg2decodel 1.259 | 1.510 | 1.410

fft00 0.074 | 0.075| 0.082

autcor00 0.067 | 0.041 | 0.041

Table 2. Average compile times (in seconds) under memory color-
ing (MC), aggressive splitting (AS) and on-demand split{®S).

Recall that AS starts with an interference graph includinty the

hot arrays in a program. On the other hand, OS starts with an
interference graph including both the hot and nonsplityerria

a program. As a result, the initial interference graph aoieséd

by OS for a program is usually larger and contains more maxima
cliques.

Aggressive Splitting (AS)] On-demand Splitting (OS
Benchmark |#Maximal] Chromatic J#Mammal‘ Chromatic
Cligues | Number (Bytes] Cliques | Number (Bytes)
gsmtoast 31 1672 39 2248
gsmuntoast 16 1568 19 1840
adpcmencode 1 2928 1 2936
adpcmdecode 1 2928 1 2936
pegwitencod¢ 95 16624 267 21968
pegwitdecode¢ 52 17056 141 26600
mpeg2encode 5 1096 15 6472
mpeg2decode 8 5768 12 11296
fft00 8 4096 10 7392
atucor00 4 308 4 2400

Table 3. Statistics on maximal cliques and chromatic numbers for
the initial interference graphs constructed by AS and OS.

By comparing Column 4 of Table 1 to Columns 3 and 5 in
Table 3, we find that the chromatic number, i.e., the mininkRS
size required to hold all arrays in the initial interferemgraph of a
benchmark for either interval-coloring algorithm is muchadler
than the overall data set size of the benchmark. This ineficat
clearly that the data set of a program can be successfulbegla
in an SPM with a size that is much smaller than that of the datta s

From Columns 3 and 5 in Table 3, we can also compare AS
and OS in terms of the chromatic numbers of their initial rifete
ence graphs. For each benchmark, the chromatic number fig AS
significantly smaller than that for OS. This suggests thatdpti-
mal solutions can be more easily found for the initial irteehce
graphs that AS starts with. (However, this does not imply A&
will yield better performance results than OS since botht stith
two different interference graphs for a given program.)

6.3 Performance Evaluation

We have modified SimpleScalar to allow us to carry out perfor-
mance evaluations for this work. Recall that there are faname-
ters involved in our cost model (Section 2.1). The cost of wmmi-
catingn bytes between SPM and off-chip memory is approximated
by Cs + C; x nin cycles, where”; is the startup cost and; is the
cost per byte transfer. Two other parametersidig,, and M,em,
which represent the number of cycles required for one memory
cess to SPM and off-chip memory, respectively. In our expenits,
we have used’s = 100, C¢ = 1, Mypem = 100 and Mspy, = 1.

We have evaluated the three algorithms, MC, AS and OS, for
all the 10 benchmarks using a number of different SPM config-

urations. The allocation results from the three algorittare the 100 M€ mAs Bos
same for three benchmarksdpcmencode, adpcmdecode and
autcor00. In addition, there are only slight performance difference
for mpeg2encode andmpeg2decode. For fft00, the allocation re-
sults are identical in almost every SPM configurations eadyen
the SPM size is set to 1K bytes. In this exceptional configomat
both AS and OS have achieved a speedup of 18% over MC.

Below we present and analyze our experimental results ¢or tt
remaining four benchmarks: gsmtoast, gsmuntoast,
pegwitencode andpegwitdecode.

80 |
60 |
40 N

20 A

SPM Hit Rates (%)

gsmtoast

gsmtoast

gsmtoast

gsmtoast

gsmuntoast |
gsmuntoast
gsmuntoast
gsmuntoast [
gsmuntoast
gsmuntoast

HAS oos
40 SPM Size (Bytes)
EMC BAS oos
g 30} 100
g 8 |
E 20 .
g 60 [§
8 \
§ wor L a0 [N §
g < \
o 4 N \
9 e T e T T T T T n T T w = 2 T 20 §
3 E £ | E £ £ £ £ £ £ £ E | E I olb \ \ \ \ N
& 1 &%/ 5|°| 8% &|°|5|°%|% z glelgle|lele|le gle g lsls
& & & 5 & 5 » S8 8| 8|8 |88 |8|¢8|8|¢8]lc¢E
512 glc|eg|ls|eg|s|e|ls|e ||z
was os gleg|glg glg glg|glg|gl¢g
20 32K
SPM Size (Bytes)
g 15
g 1 Figure 7. SPM hit rates under memory coloring (MC), aggressive
2 splitting (AS) and on-demand splitting (OS).
A 1]
g
2 °Teleslslalsls slele|ele increases until all the arrays in the corresponding interfee graph
Bs| 2|82 & £ 8 glelglslg have been placed in SPM. In almost all SPM configurations, the
2 |58 |/8|8|38|5|5|35|3|%8|¢% hit rates for OS and AS are higher than that for MC. This fact
R B w | S | T correlates well with the performance advantages of OS andAS

shown in Figure 6. When the SPM is large enough3K bytes
for gsmtoast andgsmuntoast and> 32K bytes forpegwitencode

. . o) and pegwitdecode), all array accesses will hit in SPM. The SPM
E;)gl]iltltriﬁg‘é(.ossp)eg\;ieurp; e%c?r%/géglsosrli\% ?IE/:Ig)mg (AS) and on-demand hit rates become identical for all three algorithms.

SPM Size (Bytes)

Figures 6 shows the speedups of AS and OS over MC. The 7. Related Work

speedups for both interval-coloring algorithms are qugaificant. Existing SPM allocation methods are either static or dymami
OS outperforms MC in every SPM configuration for all four benc ~ depending on whether or not an array can be copied into anof out
marks. AS suffers a slight performance degradatiopéegwiten- SPM during program execution. A large number of early meshod

code (1%) andpegwitdecode (0.12%) when the SPM size is 8K are static. In particular, two static methods presente@1n 2] are
bytes. This is because for these two benchmarks, some fidggue based on integer linear programming (ILP), which can be esige
accessed arrays cannot be split successfully and are thiis-no if applied to a program with a large data set [20]

cluded in the initial interference graphs constructed byfé&She A dynamic method can often outperform an optimal static
two benchmarks. For both AS and OS, the largest performance i method. To our knowledge, there are four dynamic methods [15
provements are observedgemtoast when the SPM size is setto 23, 24, 17]. In [15], loop and data transformations are etguidout
768 bytes. In both cases, a speedup of 168.7% has been dttaine the proposed technique is restricted to well-structureg kernels.

These performance advantages indicate that the coldyatiite- In [24], Verma et al. give an ILP formulation. In [23], Udayak

rion employed in AS and OS is more accurate than that used in MC maran and Barua present a set of heuristics and apply theseto a

for the superperfect interference graphs considered snxbrk. of benchmarks. In [17], we map the SPM allocation problera at
Let us compare OS and AS in terms of their performance results well-understood register allocation problem.

for the four benchmarks given in Figure 6. OS achieves simila The interval coloring problem has a fairly long history dati

sults forgsmtoast andgsmuntoast as AS but outperforms AS in back, at least to 1970s [7, 8]. It has been proved that thevaite

most of the SPM configurations used fagwitencode and peg- coloring problem is NP-complete [9]. Fabri [7] made the ostmn

witdecode. As mentioned above, some frequently accessed arraystion between interval coloring and compile-time memoryed-
in pegwitencode and pegwitdecode are not split. Hence, OS has tion in 1979. Since then a few approximation algorithms Hasen
delivered better results in most configurations. pegwitencode proposed [7, 16, 11], where a program is generally abstteatea
when the SPM size is 4K bytes, OS suffers a slight performance straight-line program. As a result, the interference graplstatic
slowdown compared to AS. This is largely due to the inacguaodic memory objects is an interval graph [12]. With this abstmagtthe
our cost model in estimating splitting and spilling costs. interval coloring problem remains to be NP-complete [9] &mel
Figure 7 compares the three algorithms in terms of the SPM hit above approaches can thus provide approximate solutiorikid
rates for the same four benchmarks given in Figure 6. For each paper, we introduce yet another dynamic method by forrmgdati
algorithm, the hit rate for a program increases as the SP¥I siz the SPM allocation problem as an interval-coloring problem

Interval coloring for an arbitrary graph is too complex. Bet
research has focused on developing efficient interval caalgo-
rithms for some special graphs like chordal graphs [18, d]iater-
val graphs [25]. Independently, in the field of register edition, re-
searchers have become increasingly more interested iraatdsg
interference graphs as some special graphs. For exampliergan
son [1] and Pereira and Palsberg [19] have tested a largearumb
of interference graphs and found that most interferencehgrare
chordal graphs. In [13], Hack et al. demonstrated that ttexfier-
ence graphs for programs in SSA-form [5] are chordal graphs.
optimal graph coloring is thus possible.

8. Conclusion

To our knowledge, this paper applies interval coloring tlvesthe
SPM allocation problem for the first time. We recognize thnet t
array interference graphs in some embedded applicatiombea
abstracted as superperfect graphs. In a superperfect, gigphro-
matic number is identical to its clique number. While theogsa-

tion of a superperfect graph is an open NP problem, we hawa-dev
oped two efficient and near-optimal algorithms to handleexisp
class of array interference graphs in which every pair @frfiering
arrays are containing-related. Our algorithms can achigtienal
results for such an interference graph when the size of a@®rM

is no smaller than the clique number of the graph. If the SPM is
not large enough, our algorithms use a new cost model to eeduc
the clique number of the graph by splitting or spilling somegs
from the graph until all arrays remaining in the graph can pe o
timally placed in SPM. Both algorithms have been impleménte
in the SUIF and MachSUIF compiler framework and evaluated us
ing MediaBench and EEMBC benchmarks. Experimental results
show that our interval-coloring approach can outperform ear-

lier memory coloring approach for some embedded applinatio
even though memory coloring is admittedly more general aag m
also be effective to programs with arbitrary interferengps.

9. Acknowledgements

This work is supported by ARC grants DP0452623 and DP0665581

The first and last authors are also supported in part by NICTA.

References

[1] Christian Andersson. Register allocation by optimaipr coloring.
In CC'03: Proceedings of the 12th International Conference on
Compiler ConstructionSpringer-Verlag, 2003.

[2] Oren Avissar, Rajeev Barua, and Dave Stewart. An optimainory

allocation scheme for scratch-pad-based embedded sys#@id

Transactions on Embedded Computing Systéifiy:6—26, 2002.

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Badhinan,

and Peter Marwedel. Scratchpad memory: design alternfdive

cache on-chip memory in embedded systemsCO@DES’'02: Pro-
ceedings of the 10th International Symposium on Hardwafei@re

Codesignpages 73-78, New York, NY, USA, 2002. ACM Press.

Giuseppe Confessore, Paolo Dell'Olmo, and Stefano daior. An

approximation result for the interval coloring problem dave-free

chordal graphs.Discrete Applied Mathematics20(1-3):73-90,

2002.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.

Zadeck. An efficient method of computing static single assignt

form. In POPL’'89: Proceedings of the 16th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languageges 25-35,

New York, NY, USA, 1989. ACM Press.

D. Detlefs and O. Agesen. Inlining of virtual methods HEOOP’99:

Proceedings of the 13th European Conference on Objectr@mie

Programming pages 258-278, 1999.

Janet Fabri. Automatic storage optimization. $IGPLAN'79:

Proceedings of the SIGPLAN Symposium on Compiler Congtrn,ct

pages 83-91, New York, NY, USA, 1979. ACM Press.

3

—

[4

fla.aer

[5

—

[6

—

[7

—

[8] M. R. Garey and D. S. Johnson. The complexity of nearroati
graph coloring.Journal of the ACM23(1):43-49, 1976.

[9] Michael R. Garey and David S. Johnsdomputers and intractabil-
ity: a guide to the theory of NP-completene¥g. H. Freeman & Co.,
New York, NY, USA, 1979.

[10] Lal George and Andrew W. Appel. lterated register cseileg. ACM
Transactions on Programming Languages and Systé8(8):300—
324, 1996.

[11] Jordan Gergov. Algorithms for compile-time memoryioptation.

In SODA'99: Proceedings of the 10th annual ACM-SIAM Symposium
on Discrete algorithmspages 907-908, Philadelphia, PA, USA,
1999. Society for Industrial and Applied Mathematics.

[12] Martin Charles Golumbic. Algorithmic graph theory apdrfect
graphs.Annals of Discrete Mathematic2004.

[13] Sebastian Hack, Daniel Grund, and Gerhard Goos. Regilibcation
for programs in ssa-form. I€C'06: Proceedings of the 15th
International Conference on Compiler Constructi@pringer-Verlag,
2006.

[14] Qingguang Huang, Jingling Xue, and Xavier Vera. Cotlegifor
improving the cache performance of PDE solvers.Initernational
Conference on Parallel Processingages 615-625, 2003.

[15] M. Kandemir, J. Ramanujam, J. Irwin, N. VijaykrishndnKadayif,
and A. Parikh. Dynamic management of scratch-pad memory
space. INDAC’'01: Proceedings of the 38th Conference on Design
Automation pages 690-695. ACM Press, 2001.

[16] H. A. Kierstead. A polynomial time approximation algbm for
dynamic storage allocatioiscrete Mathematics87(2-3):231-237,
1991.

[17] Lian Li, Lin Gao, and Jingling Xue. Memory coloring: aropiler
approach for scratchpad memory managemerRABT'05: Proceed-
ings of the 14th International Conference on Parallel Atebtures
and Compilation Techniquepages 329-338, Washington, DC, USA,
2005. IEEE Computer Society.

[18] Sriram V. Pemmaraju, Sriram Penumatcha, and Rajiv Rama
Approximating interval coloring and max-coloring in chaf@raphs.
Journal of Experimental Algorithmig4.0:2.8, 2005.

[19] Fernando Magno Quintao Pereira and Jens Palsberg.istBeg
allocation via coloring of chordal graphs. APLAS’05: Proceedings
of the 3rd Asia Symposium on Programming Languages andr8yste
pages 315-329, 2005.

[20] Rajiv A. Ravindran, Pracheeti D. Nagarkar, Ganesh SikzaEric D.
Marsman, Robert M. Senger, Scott A. Mahlke, and Richard BwBr
Compiler managed dynamic instruction placement in a lowgyo
code cache. IRGO’05: Proceedings of the International Symposium
on Code Generation and Optimizatiopages 179-190, Washington,
DC, USA, 2005. IEEE Computer Society.

[21] Jan Sjodin and Carl von Platen. Storage allocatiorefobedded pro-

cessors. ICASES’01: Proceedings of the International Conference

on Compilers, Architecture, and Synthesis for Embeddete®gs

pages 15-23. ACM Press, 2001.

Michael D. Smith, Norman Ramsey, and Glenn Holloway. A

generalized algorithm for graph-coloring register altama In

PLDI'04: Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementatipages 277—

288. ACM Press, 2004.

Sumesh Udayakumaran and Rajeev Barua. Compiler-eecid

dynamic memory allocation for scratch-pad based embeddseras.

In CASES'03: Proceedings of the International Conference on

Compilers, Architecture and Synthesis for Embedded SgspEges

276-286. ACM Press, 2003.

Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dyoam

overlay of scratchpad memory for energy minimization. In

CODES+ISSS'04: Proceedings of the 2nd IEEE/ACM/IFIP Inter

national Conference on Hardware/Software Codesign ande8ys

Synthesispages 104-109, New York, NY, USA, 2004. ACM Press.

[25] Thomas Zeitlhofer and Bernhard Wess. List-coloringirgérval
graphs with application to register assignment for hetenegus
register-set architecture&CM Signal Processing3(7):1411-1425,
2003.

[22]

(23]

[24]

