
Scratchpad Allocation for Data Aggregates in Superperfect
Graphs

Lian Li∗† Quan Hoang Nguyen∗ Jingling Xue∗†

Programming Languages and Compilers Group, School of Computer Science and Engineering, UNSW, Australia∗

National ICT Australia†

{lianli,quanhn,jingling}@cse.unsw.edu.au

Abstract
Existing methods place data or code in scratchpad memory, i.e.,
SPM by either relying on heuristics or resorting to integer program-
ming or mapping it to a graph coloring problem.

In this work, the SPM allocation problem is formulated as an
interval coloring problem. The key observation is that in many em-
bedded applications, arrays (including structs as a special case) are
often related in the following way: For any two arrays, theirlive
ranges are often such that one is either disjoint from or contains the
other. As a result, array interference graphs are often superperfect
graphs and optimal interval colorings for such array interference
graphs are possible. This has led to the development of two new
SPM allocation algorithms. While differing in whether liverange
splits and spills are done sequentially or together, both algorithms
place arrays in SPM based on examining the cliques in an interfer-
ence graph. In both cases, we guarantee optimally that all arrays in
an interference graph can be placed in SPM if its size is no smaller
than the clique number of the graph. In the case that the SPM isnot
large enough, we rely on heuristics to split or spill a live range un-
til the graph is colorable. Our experiment results using embedded
benchmarks show that our algorithms can outperform graph col-
oring when their interference graphs are superperfect or nearly so
although graph coloring is admittedly more general and may also
be effective to applications with arbitrary interference graphs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers optimization; B.3.2 [Memory
Structures]: Design Styles—Primary memory

General Terms Algorithms, Performance

Keywords Scratchpad memory, SPM, graph coloring, interval
coloring, superperfect graph, SPM allocation

1. Introduction
The effectiveness of memory hierarchy is critical to the perfor-
mance of a computer system. To overcome the ever-widening
gap between the processor speed and memory speed, fast on-chip
SRAMs are used. An on-chip SRAM is usually configured as a
hardware-managed cache, which works by relying on hardwareto

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’07 June 13–16, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-632-5/07/0006. . . $5.00

dynamically map data or instructions from off-chip memory.In
embedded processors, the on-chip SRAM is frequently configured
as a scratchpad memory (i.e., SPM).

The main difference between SPM and cache is that SPM does
not have the complex tag-decoding logic that cache uses to support
the dynamic mapping of data or instructions from off-chip memory.
Therefore, it becomes more energy and cost efficient [3]. In addi-
tion, SPM is managed by software, which can often provide better
time predictability, an important requirement in real-time systems.
Given these advantages, SPM is widely used in embedded systems.
In some high-end embedded processors such as ARM10E, Cold-
Fire MCF5 and Analog Devices ADSP-TS201S, a portion of the
on-chip SRAM is used as an SPM. In some low-end embedded pro-
cessors such as RM7TDMI and TI TMS370CX7X, SPM has been
used as an alternative to cache.

Effective utilization of SPM is critical for an SPM-based sys-
tem. Research on automatic SPM allocation for data has focused
on how to place the data that are frequently used in a program in
SPM so as to maximize for both improved performance and energy
consumption in the program [17, 23, 24, 21, 15, 2].

In [17], we introduced a compiler approach, calledmemory col-
oring, to automatically placing static data aggregates such as arrays
and structs in SPM. Note that structs can be handled as a special
case of arrays. Memory coloring is a general-purpose compiler ap-
proach that solves the SPM allocation problem by mapping it to
a well-understood register allocation problem. The basic idea is to
partition a given SPM into a pseudo register file, which consists of
register classes for holding data aggregates of different sizes and
then apply an existing graph coloring algorithm to color thedata
aggregates. To allow arrays to be dynamically swapped into and
out of SPM, live range splitting is applied to some arrays to gener-
ate the data transfer statements required between SPM and off-chip
memory. Like graph coloring register allocation, memory coloring
is performed on the array interference graph of a program, which is
built based on the liveness information for arrays. This liveness in-
formation is obtained by extending the liveness analysis for scalars
to deal with the fact that an array may be live across function
boundaries and accessed via aliased pointers. The effectiveness of
graph coloring algorithms in register allocation and theirscalability
in handling large-scale programs make this approach promising.

By studying the array interference graphs of some embedded
applications, we find that our general-purpose memory coloring ap-
proach can be further improved for a quite large class of embedded
applications. The key observation is that in some embedded ap-
plications, two interfering arrays (i.e., two arrays connected by an
edge in an interference graph) are often related in such a waythat
the live range of one array contains the live range of the other. An
array live rangeA is said tocontainan array live rangeB if A is
live at every program point whereB is live. In this case, two arrays
are said to becontaining-related.

Based on this observation, we propose a new approach that
formulates the SPM allocation problem as aninterval coloring
problem. The interval coloring problem [12] is a generalization of
the graph coloring problem to node weighted graphs.

Definition 1. Given a node weighted graphG = (V, E) and
positive-integral vertex weightsw = V → N , the interval coloring
problem seeks to find an assignment of an intervalIu to each vertex
u ∈ V such that two constraints are satisfied: (1) for every vertex
u ∈ V , |Iu| = wu and (2) for every pair of adjacent vertices u and
v, Iu ∩ Iv = ∅.

The goal of interval coloring is to minimize the span of intervals
|
S

v
Iv| required in a valid coloring. Note that when every node

in the graph has a unity weight, the interval coloring problem
degenerates into the traditional graph coloring problem.

Let us recall below some standard definitions for a node
weighted graphG:

• A cliquein G is a complete subgraph ofG. A clique is amaximal
clique if it is not contained in any other cliques inG. Theorder
of a clique is the sum of the weights of all nodes in the clique.

• The chromatic numberof G is the minimal span of intervals
needed to colorG.

• Theclique numberof G is the order of a largest maximal clique
in G.

In general, the chromatic number of a node weighted graph is equal
to or greater than its clique number. In the special case whenthe
chromatic number of a graph is equal to its clique number, thegraph
is known as asuperperfectgraph. (A superperfect graph is known
as aperfect graphif all its nodes have unity weights.)

The SPM allocation problem can be naturally abstracted as an
interval-coloring problem as follows. Each node, i.e., array object
in an array interference graph is weighted with its corresponding
size. Allocating SPM spaces to array live ranges is represented by
the assignment of intervals to vertices of the graph. Minimizing the
span of intervals amounts to minimizing the required SPM size.

Interval coloring is an NP problem and how to recognize and
color a superperfect graph remains to be an open problem [12]. In
this paper, however, we show that an array interference graph is a
superperfect graph if any pair of array live ranges in the graph are
either disjoint or containing-related. Furthermore, we will present
two algorithms that each can find an optimal allocation for such
an array interference graph in polynomial time when the sizeof a
given SPM is equal to the clique number of the graph. If the SPM
is not large enough, both algorithms use heuristics to splitor spill
some arrays until an optimal SPM allocation for the resulting in-
terference graph is possible. The two algorithms differ in their live
range splitting strategies used. One performs live range splitting be-
fore spilling while the other performs live range splittingtogether
with spilling. In both algorithms, we use a simple cost modelto
evaluate the colorability of an array interference graph and guide
spilling and splitting decisions. Our experimental results using a
set of benchmarks from MediaBench and EEMBC show that our
algorithms are effective for these embedded applications and can
outperform the memory coloring approach in most benchmarks.

In summary, this paper makes the following contributions:

• We uncover and study some salient properties about array live
ranges in embedded applications.

• We propose a new methodology for solving the SPM allocation
problem by formulating it as an interval coloring problem.

• We present a new cost model to guide splitting and spilling and
two interval-coloring algorithms for placing arrays in SPM.

• We have implemented this work in SUIF and MachSUIF and
evaluated its effectiveness using a set of embedded benchmarks.

The rest of the paper is organized as follows. Section 2 introduces
some definitions about array live ranges and discuss a live range
splitting heuristic used in this paper. In Section 3, we uncover and
study some salient properties about array live ranges in embedded
applications. Sections 4 and 5 present our two interval-coloring
algorithms. We evaluate their effectiveness in Section 6. Section 7
reviews some related work and Section 8 summarizes this paper.

2. Preliminary: Array Live Ranges
The live range of an array in a program is the union of all the
program points in the control flow graph of the program that link
the different definitions of this particular array to their uses. An
array is said to belive at a program point if this point belongs to its
live range. As for scalars,live range splittingcan also be applied
to arrays by inserting array copy statements so that an arraycan be
split into several arrays with smaller live ranges.

2.1 Live Range Splitting

This is generally useful since arrays often have long live ranges
and may be frequently accessed only in parts of their live ranges.
By splitting an array so that its frequently accessed parts become
distinct new arrays with shorter live ranges, we can increase the
chances for the shorter live ranges to be placed in SPM.

In this paper, we use the same live range splitting strategy
described in [17] to split arrays at hot loops (including call sites as
a special kind of loops) since most array accesses come from inside
loops. We have improved our earlier strategy by allowing an array
to be split even if it may be accessed indirectly by a pointer that may
also point to other arrays. This is implemented by using runtime
method tests that are often used for devirtualizing or inlining virtual
function calls in object-oriented programs [6].

As in [17], a simple cost mode is used to decide if the live range
of an arrayA in a loopL should be split into a new arrayA′ based
on the (optimistic) assumption thatA′ will end up being kept in
SPM if the splitting is performed. Due to live range splitting, an
array copy statementA′ = A is introduced at the pre-header ofL
andA = A′ at an exit ofL if A may be modified inside and live
at the exit. All accesses toA (including those accessed indirectly
by pointers) inL will be replaced by those toA′. So the cost of
splitting A at L is (Cs + Ct × A.size) × numcopies, where
Cs is the startup cost,Ct is the transfer cost per byte,A.size is
the size ofA (in bytes) andnumcopies is 1 or 2 depending on
whetherA = A′ is executed or not. The benefit for the splitting is
A.freq×(Mmem−Mspm), whereA.freq is the access frequency
of A in L, Mmem is the memory access latency (in cycles) and
Mspm is the SPM access latency (in cycles).

If the benefit is larger than the cost for a particular split, the split
will be performed. Every array that is accessed in a loop nestwill be
split at most once in one of its loops when its loops are processed
outside in. All new arrays introduced inside loops are called hot
arrays; these loops are calledhot loops. All the arrays that appear
originally in the program are callednonsplit arrays.

2.2 Liveness Analysis

The liveness information for the arrays in a program is required
in order for us to build the interference graph for these arrays.
Two arrays areinterferingwith each other if the live range of one
array contains a definition of the other array. The interfering arrays
cannot be kept in overlapping SPM spaces.

Liveness analysis is performed after live range splitting has
been done. Our approach to the SPM allocation problem is inter-
procedural in the sense that all arrays in a program are considered
for SPM allocation at the same time. Many embedded applications
are free of recursion. So a caller/callee save and restore mechanism
may be dispensed with. As a result, we use the same liveness analy-
sis for arrays described in [17] to compute the liveness information

for all arrays in a program inter-procedurally. In particular, an array
is considered to be live on entry to a call site if it is live on entry to
a callee function that may be invoked from the call site. Thisis nec-
essary when the array is global and used in the callee function or
when the array (global or local) is passed by reference to thecallee
function and accessed indirectly in the callee function. Inaddition,
due to the absence of a caller-callee save mechanism for arrays, an
array that is live at the exit of of a call site is assumed to be live on
entry of every function that may be invoked from the call site.

3. Superperfectness
In this section, we provide evidence to show that in many embedded
applications, two arrays are often containing-related whenever they
interfere. We will show further that an interference graph is a
superperfect graph if any pair of arrays in the interferencegraph
are either disjoint or containing-related. Finally, we discuss briefly
the basic idea about coloring such a superperfect graph.

3.1 Containment

As illustrated in Figure 1, two array live ranges can be related in
one of the three ways. Figure 1(a) gives an example of containing-
related arrays. In Figure 1(b), the two arrays are disjoint and thus
not interfering. In Figure 1(c), the two arrays interfere with each
other but neither live range contains the other. However, inalmost
all embedded applications we have studied, the situation inFig-
ure 1(c) happens rarely. Frequently, Property 1 holds for two arrays.

 A

B

 A

B

 A

B

(a) Containing-related (b) Disjoint (c) Interfering

Figure 1. Containing-related, disjoint and interfering arrays.

Property 1. If two arrays in a program interfere, then the live
range of one array contains that of the other.

As a result, any two arrays in a program are either disjoint or
containing-related. We draw this conclusion based on the observa-
tion from a number of representative embedded benchmarks.

In this paper, adefinition blockis referred to a scope, e.g., a
compound statement in C, where arrays are declared. All nonsplit
arrays in a program are conservatively assumed to be defined only
once at their respective definition blocks. All global arrays are
treated as a special case; they are considered to be defined inthe
outermost scope in a pseudo function that is the only caller of the
main function of a program. A hot array is assumed to be definedat
the entry of its associated hot loop even though it its initialization
statement appears in the pre-header of the loop.

In this work, we will consider to place hot and nonsplit arrays
in SPM as follows. If an array live rangeA is split into several
hot arrays, say,A1, A2, . . . , An, then only one of the following
two scenarios will occur. In one scenario, all these hot arrays are
considered for SPM allocation and the remaining no-hot portions
of the live range are ignored. These non-hot pieces will reside
in off-chip memory since they are infrequently accessed. This is
reasonable since the majority of array accesses toA will be from
those to the hot parts of its live range,A1, A2, . . . , An. In the other
scenario,A is considered for SPM allocation and all its hot live
ranges represented by the hot arraysA1, A2, . . . , An are ignored
(as if no live range splitting forA has ever taken place).

To ensure that Property 1 holds for a program, the following
three assumptions about the live ranges of the hot and nonsplit
arrays in the program are made.

Assumption 1If an array is live on entry to a definition block, then
it is live in the entire scope of the definition block.

Assumption 2If an array is live on entry to a call site, then it is live
at the exit of the call site.

Assumption 3For two arrays defined in the same definition block,
every last use of one array must be post-dominated by at least
one last use of the other array.

We have studied the array live range behavior in a set of rep-
resentative embedded applications from MediaBench and EEMBC
benchmark suites (cf. Table 1). Only four arrays inpegwitencode
andpegwitdecode do not satisfy these three assumptions.

Property 1 holds for a program if these three assumptions areall
satisfied. Below we present further explanations.

Let us first examine Assumption 1, which is relevant to the
arrays defined in different scopes. We assume that scopes areeither
nested or disjoint as in C. According to this assumption, every
live range in a scope must contain all live ranges inside its nested
scopes. This assumption seems to be restrictive. But there does not
appear to be a need to relax it since the local arrays in a function are
usually declared in its outermost scope in embedded applications.

Assumption 2 takes care of arrays defined in different functions.
For two arrays defined in two different functions, the array defined
in the caller function must be live on entry to the callee function
if they interfere with each other. According to this assumption, the
array in the caller is also live at the exit of the call site. Therefore,
it is live through the callee function and contains the live ranges of
all arrays defined in the callee function.

Finally, let us examine Assumption 3, which is applicable to
all arrays defined in a common definition block. Consider two such
arrays,A andB. Initially, both are regarded conservatively as being
defined only once at the beginning of the block. According to this
assumption,A containsB if every last use ofB is post-dominated
by some last use ofA. Similarly, the converse is true.

3.2 Superperfect Graphs

We show that if Property 1 holds for every pair of interferingarrays
in an interference graph, then all arrays in the graph can be colored
if the size of a given SPM is equal to the clique number of the graph.
This implies that the interference graph under consideration is a
superperfect graph. Thus an optimal interval coloring is achieved.

Theorem 1. If Property 1 is true for all arrays in a program, then
the interference graph for the program is a superperfect graph.

The proof of this theorem follows from two lemmas stated
below. Let acontainment non-decreasing orderbe a total order
that is defined on the set of all live ranges in a program as follows.
SupposeA and B are two arbitrary live ranges. IfA andB are
disjoint or identical (i.e., contain each other), then eitherA precedes
B or A succeedsB. Otherwise,A and B must be containing-
related. Then the contained live range precedes the containing one.

Let G be an interference graph such that Property 1 holds for
all live ranges inG. Let all arrays inG be colored in any given
containment non-decreasing order. SupposeAn is an arbitrary but
fixed array inG. Let GAn

be a subgraph ofG including all arrays
that are colored beforeAn. Let CAn

= {A0, A1, . . . , An−1} be
a clique inGAn

with the largest order such that all arrays inCAn

interfere withAn and are colored fromA0 to An−1 in the given
containment non-decreasing order. We say thatAn is perfectly
placedin SPM if it is placed in SPM immediately afterAn−1 from
the lowest to highest address in the SPM. By convention,A0 is
placed at the offset 0 in SPM, in which caseCA0

= ∅.

Lemma 1. An array A can be perfectly placed in SPM with an
infinite size if all live ranges inGA are perfectly placed.

Proof. We will prove this case by contradiction. SupposeAn

cannot be placed in SPM immediately afterAn−1. Then there
must exist an arrayZm in GAn

that interferes withAn. Further-
more, sinceZm has been perfectly placed, it is always possible
to chooseZm so that the order of the clique{Zm} ∪ CZm

=
{Z0, Z1, . . . , Zm−1, Zm} is larger than that ofCAn

. This is pos-
sible since otherwiseAn can already be perfectly placed. This
contradicts the fact thatCAn

has the largest order forAn.

Lemma 2. G can be colored with an SPM size larger than or equal
to its clique number if all live ranges inG are perfectly placed.

Proof. By Lemma 1, every arrayAn in G can be kept in SPM if
the SPM is larger than or equal to the order of{An} ∪ CAn

=
{A0, A1, . . . , An−1, An}. Furthermore, the order of{An} ∪ CAn

for someAn must be the clique number of the graph.

3.3 Methodology

As discussed earlier, we will allocate SPM spaces only to thehot
and nonsplit arrays in a program. Property 1 holds for most ofthese
arrays in the embedded benchmarks that we have studied. Conse-
quently, their interference graphs are often superperfectgraphs.

For a given program, we will start with an interference graph
including only its hot and nonsplit arrays. Such an interference
graph is very likely to be superperfect. If it is not, we will extend
the live ranges of some interfering arrays so that any two interfering
arrays are either disjoint or containing-related. This a safe and
conservative approximation of the liveness information for arrays
in a program. For the set of 10 embedded applications we have
studied (cf. Table 1), only four live ranges in the two benchmarks,
pegwitencode andpegwitdecode, need to be extended.

According to Theorem 1, the resulting interference graph for a
program is superperfect and can thus be optimally colored ifthe
size of a given SPM is no smaller than the clique number of the
graph. If the SPM is smaller (which may often be the case in prac-
tice), some heuristics are applied to split or spill some live ranges
until the resulting interference graph becomes optimally colorable.
In this case, all live ranges that remain in the interferencegraph
can be optimally placed in SPM. Two different implementations of
this methodology are developed and presented below. They differ
in whether live range splitting and spilling are done sequentially
(aggressive splitting) or together (on-demand splitting).

When each algorithm is presented,G consistently denotes the
interference graph being processed by the algorithm.

3.4 An Example

Our illustrating example is given in Figure 2(a). The hot loopsBB2,
BB3, BB6 andBB7 are highlighted in grey. The program has four
arraysA, B, C andD. Their sizes are 80, 240, 80 and 80 bytes,
respectively.A andB are defined in the main function and are live
through the whole program.C andD are defined in functionsg and
f, respectively. Functionf is a callee function invoked at a call site
in functiong. As a result,A andB contain each other. BothA and
B containC andD. D is contained by the other three arrays.

The live ranges of all arrays after live range splitting has been
performed are illustrated graphically in Figure 2(b). The hot arrays
A1, B1, C1 andD1 are introduced in the hot loops (and call sites)
as highlighted. Their live ranges are contained by the live ranges
of the nonsplit, i.e., original arraysA andB. The live ranges ofA1
andB1 are disjoint.A1 is live inside the functionsg and f. Thus,
the live range ofA1 contains all live ranges defined ing and f,
including the nonsplit arraysC andD as well as the hot arraysC1
andD1. Similarly,B1 containsD andD1.

A[] = . . .

B[] = . . .

call g(A);

. . .

int main()

char A[80] , B[240];

char *P;

call f(B);

void f(char *P)

char D[80] ;

BB1

BB2 BB3

BB4

D[i] = *P;

BB7

void g(char *P)

char C[80] ;

 char * Q;

BB5

BB6

Q = P or C;

call f(Q);

A[] = . . .

B[] = . . .

. . .

int main()

char A[80] , B[240];

char *P;

void f(char *P)

char D[80] ;

BB1

BB2 BB3

BB4

BB7

A1 B1

A1 C1

C1A1 B1 D1

void g(char *P)

char C[80] ;

 char * Q;

BB5

BB6

A1

(a) Program (b) Split live ranges

B1

D1

A1

C1 B

A

C

B1

D1 D

A1

C1

(c) The interference graph (d) The interference graph
for hot arrays for hot and nonsplit arrays

Figure 2. A motivating example for aggressive splitting.

4. Aggressive Splitting
Figure 3 gives the phase ordering of our aggressive splitting frame-
work. It starts with an interference graph including only the hot ar-
rays in a program. When the interference graph becomes colorable,
the nonsplit arrays in the program are gradually included aslong as
the resulting interference graph is still colorable.

Split Build Spill UnSpill Allocation

Figure 3. Aggressive splitting.

4.1 Build

Two tasks are performed for a program. First, an interference
graph including only the hot arrays in the program is built. Sec-

ond, all nonsplit arrays in the program are pushed into a so-called
unspill queue where they will be examined in the Unspill phase.

For the motivating example, the interference graph for the hot
arrays is depicted in Figure 2(c). Theunspill queue is initialized
to contain the four original arraysA, B, C andD in the example.

Algorithm 1 An algorithm for finding all maximal cliques in an
array interference graphG for a program.

1: procedure FIND ALL CLIQUES
// Find all maximal cliques in the interference graphG

2: for every functionf in the call graph of the program in
reverse topological orderdo

3: Find FuncCliques(f)
4: end for
5: end procedure

6: procedure FIND FUNC CLIQUES(f)
// Find maximal cliques of functionf , denotedf.cliqueset

7: Let S be the set of arrays in the given interference graphG
8: f.S = {f ’s local arrays}

T

S
9: for every program pointP in f do

10: localclique = {l | l ∈ live(P) ∧ l ∈ f.S}
11: if P is an entry point to a call sitethen
12: Let gset be the set of all callee functions that may

be invoked at the call site
13: for everyg ∈ gset such thatg.cliqueset 6= ∅ do
14: Add to localcliqueset the set of cliques formed

by combininglocalclique with every clique ing.cliqueset
15: end for
16: else
17: localcliqueset = {localclique}
18: end if
19: f.cliqueset

S

= localcliqueset
20: end for
21: end procedure

The procedure FindAll Cliques given in Algorithm 1 is applied
to find all maximal cliques in an array interference graph fora pro-
gram. The algorithm works in a bottom-up manner by traversing
the call graph of the program in reverse topological order (line 2).
For simplicity, every definition block where some arrays arede-
fined is regarded as a special inlined function called from its im-
mediately enclosing outer scope. In addition, a pseudo function is
introduced to represent the outermost scope where all global arrays
are defined. In the call graph for a program, this pseudo function is
the only caller function for the main function in the program. When
visiting a functionf , the procedure FindFunc Cliques is called to
update the set of cliques that is already identified by incorporating
the local arrays defined inf . The set of cliques afterf ’s local ar-
rays have been included is represented asf.cliqueset and will be
used when the caller functions off are processed.

In Find FuncCliques, every program pointP in f is visited
(line 9). The local arrays off that are live simultaneously atP
form a clique (line 10), denotedlocalclique. If an array is live at
a call site, then it interferes with every array defined in anycallee
function that may be invoked at the call site. Thus, on entry to each
call site, the set of cliques grows by including those obtained by
combininglocalclique with each clique in the clique set found in
every callee function invokeable at the call site (lines 11 -15).

After the pseudo function, where all the global arrays are con-
ceptually defined, has been visited, all arrays in the program will
have been processed. All maximal cliques in the given interference
graph for the program have thus been identified.

Consider the example program given in Figure 2(a). Since only
the hot arrays are considered,S = {A1,B1,C1,D1}. As the only leaf
function in the program,f is visited first and the clique that consists

of the singleton hot arrayD1 is included inf.cliqueset. Next, g
is visited. At BB6, localclique = {C1} is combined with each
clique inf.cliqueset. As a result,g.cliqueset = {{D1,C1}}. After
main has been processed, two maximal cliques{A1,C1,D1} and
{B1,D1} are identified finally. Due to the absence of global arrays,
the largest maximal clique in this interference graph is{B1,D1}
with an order of 320 bytes. So the clique number and chromatic
number of this interference graph are both 320 bytes.

4.2 Spill

This phase reduces the clique number of an uncolorable interfer-
ence graph by spilling some arrays. We spill an array by usinga new
cost model developed specifically for superperfect graphs.Spilling
an array means removing it from the interference graph. All arrays
remaining in the interference graph will verify Property 1.So this
phase preserves the perfectness of the interference graph.

4.2.1 The Cost Model

A term colorability is introduced to represent the number of array
accesses that can hit in SPM after SPM allocation. We use a simple
cost model to evaluate thecolorability of an interference graph.

For a cliqueC, all arrays inC can be colored if the order ofC is
no larger than the given SPM size. Then the colorability ofC is the
sum of the frequencies of all arrays inC. If C is not colorable, we
approximate the colorability ofC asα(C):

α(C) = SPM SIZE×
C.freq

C.order

whereSPM SIZE is the size of a given SPM,C.freq is the sum of
the frequencies of all arrays inC andC.order is the order ofC.

For an interference graphG, we estimate its colorability as the
sum of the colorability quantities of all its maximal cliques:

α(G) =
X

C is a maximal clique inG
α(C)

In our cost model, the larger the colorability is for an interfer-
ence graph, the better the allocation results will be.

4.2.2 The Algorithm

Algorithm 2 An algorithm for spilling arrays in aggressive split-
ting.

1: procedure SPILL
2: Let Cset be the set of maximal cliques with orders larger

thanSPM SIZE in the given interference graphG
3: while Cset 6= ∅ do
4: for every arrayA in a clique fromCset do
5: A.spillpenalty = A.freq × (Mmem − Mspm)
6: A.spillbenefit = (α(G−A)−α(G))×(Mmem−

Mspm)
7: A.spillcost = A.spillpenalty − A.spillbenefit
8: end for
9: Select an arrayA in a clique fromCset with the least

A.spillcost
10: PushA into unspill queue
11: RemoveA from G
12: for every cliqueC that includesA do
13: RemoveA from C
14: if C.order ≤ SPM SIZE then
15: Cset = Cset − C
16: end if
17: end for
18: end while
19: end procedure

Algorithm 2 explains this phase in details. The performance
loss of a single access from off-chip memory is estimated by
(Mmem − Mspm), where Mspm and Mmem denote the cycle
counts of one SPM access and one off-chip memory access, re-
spectively. Therefore, the penalty incurred for spilling an array
A (denotedA.spillpenalty) is estimated as a product of the ac-
cess frequency ofA and the performance loss of a single access
from off-chip memory (line 5). The benefit of spillingA (denoted
A.spillbenefit) is approximated according to the increased col-
orability of the interference graph afterA has been removed (line
6). The overall cost of spillingA (denotedA.spillcost) is equal to
the penaltyA.spillcost minus the benefitA.spillbenefit (line 7).

We always choose to spill an array with the minimal overall
spilling cost. The selected array, instead of being spilledimmedi-
ately, is pushed intounspill queue and will be examined in the
Unspill phase (line 10). The interference graph and its maximal
cliques are updated after an array has been spilled (lines 11- 17).
This phase terminates when the interference graph is colorable.

Let us be given an SPM of 320 bytes. For the program in
Figure 2(a), the interference graph including only the hot arrays
is given in Figure 2(c). Its clique number is exactly the sameas the
given SPM size. No spilling is required. So all the hot arrayscan
be placed in the SPM (as also suggested by Theorem 1).

4.3 Unspill

At this stage, the interference graph is optimally colorable. But the
SPM may be under-utilized. In addition, it may be more beneficial
to coalesce unnecessary splits introduced due to live rangesplit-
ting. So this phase is introduced to overcome these two problems
although its coalescing role is more significant one of the two.

All arrays inunspill queue, including both hot and nonsplit ar-
rays, are examined. An array will be unspilled if it can be included
in the interference graph without making it uncolorable. Unspilling
a nonsplit array means that the nonsplit array is included inthe
interference graph with all hot arrays that are split from itbeing
discarded. Then all the array copies introduced for splitting this ar-
ray can be eliminated. Since the interference graph contains either
a nonsplit array or its hot arrays split from it but not both, the result-
ing interference graph will remain to be superperfect (Theorem 1).

Algorithm 3 An algorithm for unspilling arrays
1: procedure UNSPILL
2: Let G be the given interference graph
3: for every arrayA ∈ unspill queue do
4: if A is a nonsplit array that has been splitthen
5: A.unspillfreq is the frequency ofA minus the

frequencies of all hot arrays inG that are split fromA
6: A.copycost = the copy cost for copying all hot

arrays inG between SPM and off-chip memory
7: A.unspillbenefit = A.unspillfreq×(Mmem−

Mspm) + A.copycost
8: else
9: A.unspillbenefit = A.freq× (Mmem −Mspm)

10: end if
11: end for
12: while unspill queue 6= ∅ do
13: Select A in unspill queue with the largest

A.unspillbenefit
14: if G remains colorable withA being includedthen
15: Add A into G
16: Update the maximal cliques inG
17: end if
18: RemoveA from unspill queue
19: end while
20: end procedure

The benefit of unspilling an array is computed according to the
increased SPM accesses and the number of eliminated array copies
by placing this array (rather than its split hot arrays) in SPM (lines 4
- 10). All arrays inunspill queue are examined in the order from
the largest to smallest unspilling benefit (line 13). If an array can be
colored (line 14), then it will be included in the interference graph
(line 15). Otherwise it will be accessed from off-chip memory.
After an array has been unspilled, the interference graph and its
maximal cliques are updated accordingly (lines 15 and 16).

For the example program, let us continue to assume an SPM
of 320 bytes.A andB cannot be unspilled since it will result in
the oversized cliques{A,B1,D1} and{A1,B,C1,D1}, respectively.
However,C andD will be unspilled in that order. In the resulting
interference graph, there are two cliques{A1,C,D} and{B1,D}.

4.4 Allocation

Algorithm 4 An algorithm for SPM allocation.
1: procedure COLOR CLIQUE

// Color all arrays remaining in the interference graph
2: Let L be the list of all arrays in the interference graphG
3: SortL in a containment non-decreasing order
4: while L 6= ∅ do
5: Remove the first arrayA from L
6: availaddr = 0
7: for every arrayB that has been coloreddo
8: if B interferes withA andB.address+ B.size >

availaddr then
9: availaddr = B.address + B.size

10: end if
11: end for
12: A.address = availaddr
13: end while
14: end procedure

Finally, all arrays remaining in the interference graph canbe
successfully placed in SPM. We present an algorithm that colors
these arrays in a containment non-decreasing order.

As shown in Algorithm 4, all arrays are colored in a containment
non-decreasing order (lines 2 and 3). An array will be placedin
SPM at the first available SPM address (lines 5 - 12), which canbe
obtained by examining all interfering arrays that are already placed
in SPM. By Theorem 1, all arrays can be successfully colored.

reservedf

main

reservedC

D

g

reserved A1

reserved B1

80

160

240

80

Figure 4. SPM allocation result for the example in Figure 2(a).

Consider the example in Figure 2(a). After Unspill, the inter-
ference graph contains four arrays:A1, B1, C and D. Figure 4
depicts the allocation result. There are two possible containment
non-decreasing orders: (1)D, C, A1 andB1 and (2)D, C, B1
andA1. Let us assume that the former order is used.D is colored
first and placed in SPM at the offset 0. ThenC is placed at the off-
set 80.A1 will be placed in SPM at the offset 160 since it interferes
with C andD. Finally, B1 can be placed in SPM at the offset 80.
For this example, the same allocation will result if the other con-
tainment non-decreasing order is used.

5. On-demand Splitting
Unlike aggressive splitting, on-demand splitting starts with a larger
interference graph that includes all nonsplit arrays, i.e., all origi-
nal arrays in a program. If the interference graph is uncolorable,
its clique number will be gradually reduced by splitting or spilling
some arrays. The motivation behind is that some frequently ac-
cessed arrays may not be split successfully. In aggressive splitting,
those arrays are considered only after all hot arrays can be col-
ored. Therefore, they may not have a chance to be placed in SPM.
This problem can be avoided in the on-demand splitting framework,
where nonsplit arrays are split into hot arrays in an on-demand
manner. The same cost model introduced in Section 4.2.1 is used
to estimate the costs incurred for splitting and spilling anarray.

Split Build SplitorSpill UnSpill AllocationCoalesce

Split

Spill

Figure 5. On-demand splitting.

Figure 5 depicts the phase ordering of the on-demand splitting
framework. The phases that are different from the aggressive split-
ting framework are highlighted in grey and described below.

5.1 Coalesce

All copy-related arrays are coalesced. We introduce a flagcoa-
lescedfor each array to denote whether it has been coalesced or
not. The flag is initialized to false for all arrays. After coalescing,
the flag is true for all hot arrays introduced in live range splitting.

5.2 Build

As in aggressive splitting, the same two tasks but with different
semantics are performed. First, the interference graph constructed
will include not only hot but also nonsplit arrays in the program.
Second,unspill queue will start being empty since all arrays for
SPM allocation have been included in the interference graph.

The same procedure (Algorithm 1) used in aggressive splitting
is applied to find the maximal cliques in the interference graph. The
maximal cliques found may consist of both hot and nonsplit arrays.
All arrays flagged ascoalescedare not counted in computing the
order of a clique. The reason in building an interference graph this
way is to enable us to update the interference graph and its maximal
cliques on the fly after an array has been split.

Figure 2(d) gives the interference graph for our motivatingex-
ample, where the four coalesced nodes,A1, B1, C1 andD1, are
highlighted. The two maximal cliques in this interference graph are
{A,A1,B,C,C1,D,D1} and{A,B,B1,D,D1}. Note that the hot ar-
raysA1, B1, C1 andD1 are flagged ascoalescedand they will not
be counted in computing the order and colorability of a clique.

5.3 SplitorSpill

When an interference graph is not colorable, we will split orspill
an array in the graph to reduce the clique number of the graph.
The cost and benefit of splitting and spilling an array are estimated
based on the same cost model used in aggressive splitting.

In Algorithm 5, we estimate the cost and benefit of spilling an
arrayA exactly as in aggressive splitting (lines 5 - 7).

Similarly, the overall cost of splittingA is the penalty incurred
for splitting A minus the benefit (line 11). AfterA has been split,
array copy statements are inserted. Only the hot arrays thatare split
from A are considered for coloring and those no-hot portions of the
live range ofA will be accessed from off-chip memory. Therefore,

Algorithm 5 An algorithm for splitting and spilling live ranges in
on-demand splitting.

1: procedure SPLITORSPILL
2: Let Cset be the set of maximal cliques with orders larger

thanSPM SIZE in the given interference graphG
3: while Cset 6= ∅ do
4: for every arrayA in a clique fromCset do
5: A.spillpenalty = A.freq × (Mmem − Mspm)
6: A.spillbenefit = (α(G−A)−α(G))×(Mmem−

Mspm)
7: A.spillcost = A.spillpenalty − A.spillbenefit
8: A.splitpenalty is the cost of splittingA
9: Let G′ be the modified interference graph after

splittingA
10: A.splitbenefit = (α(G′) − α(G)) × (Mmem −

Mspm)
11: A.splitcost = A.splitpenalty − A.splitbenefit
12: end for
13: Select A in a clique from Cset with the least

min(A.spillcost, A.splitcost)
14: PushA into unspill queue
15: RemoveA from G
16: if A.spillcost ≤ A.splitcost then
17: for every cliqueC that includesA do
18: RemoveA from C
19: if C.order ≤ SPM SIZE then
20: Cset = Cset − C
21: end if
22: end for
23: else
24: for every cliqueC that includesA do
25: RemoveA from C
26: Set the flagcoalesced to false for the live

ranges split fromA in C (if any)
27: if C.order ≤ SPM SIZE then
28: Cset = Cset − C
29: end if
30: end for
31: end if
32: end while
33: end procedure

the penalty incurred for splittingA is the copy cost for the inserted
copy statements plus the penalty incurred for accessing those no-
hot portions ofA’s live range from off-chip memory (line 8). The
benefit of splittingA is computed as the increased colorability of
the interference graph due to the splitting (lines 9 and 10).

When splitting or spillingA, A is removed from the interfer-
ence graph and pushed intounspill queue (lines 14 and 15). The
maximal cliques in the interference graph are updated accordingly
(lines 16 - 31). IfA is selected for splitting, the flagcoalescedis
set to false for every hot array that is split fromA (line 26).

Let us continue to study the interference graph given in Fig-
ure 2(d). As in aggressive splitting, the SPM size is 320 bytes. The
initial interference graph is not colorable. SoA is selected for split-
ting first. A is removed from the interference graph and the flag
coalescedis set to false forA1. Splitting A results in two cliques
{A1,B,C,C1,D,D1} and{B,B1,D,D1}. The interference graph is
still not colorable due to the oversized clique{A1,B,C,C1,D,D1}.
ThenB is then selected for splitting. The cliques after splittingB
are{A1,C,C1,D,D1} and{B1,D,D1}. Note thatC1 andD1 are
flagged ascoalescedand they are not counted in computing the or-
der and colorability of the cliques. Thus, no more oversizedcliques
are found. So the interference graph is now colorable.

5.4 Shared Phases with Aggressive Splitting

After SplitorSpill, the same Unspill phase used in aggressive split-
ting is applied. The nonsplit arraysA andB are examined in this
phase. NeitherA nor B can be successfully unspilled. So they will
not be included in the interference graph.

Finally, all the arrays that are flagged ascoalescedcan be
safely discarded. The same Allocation phase (Algorithm 4) used
in aggressive splitting is applied to color all arrays remaining in the
interference graph. For the example program in Figure 2(a),both
aggressive splitting and on-demand splitting give rise to the same
SPM allocation result depicted in Figure 4.

6. Experimental results
We have implemented our two interval-coloring algorithms in the
SUIF and MachSUIF compiler framework and evaluated both
against our memory coloring approach [17]. For memory coloring,
George and Appel’s iterative-coalescing framework [10] incorpo-
rated with the generalized heuristics from [22] for handling register
classes and aliases is used for coloring arrays. In all threecases, the
same live range splitting heuristic discussed in this paperis applied.

For convenience, all three algorithms compared are denoted
by two-letter acronyms. MC stands for memory coloring, AS for
aggressive splitting and OS for on-demand splitting.

Benchmark #Lines #Arrays Data Set Size (Bytes)

gsmtoast 6031 62 17.8K
gsmuntoast 6031 62 17.8K

adpcmencode 741 5 2.9K
adpcmdecode 741 5 2.9K
pegwitencode 7138 121 226.7K
pegwitdecode 7138 121 226.7K
mpeg2encode 8304 62 9.2K
mpeg2decode 9832 76 21.8K

fft00 1455 10 7.9K
autcor00 886 5 2.4K

Table 1. Benchmarks from MediaBench and EEMBC.

Table 1 gives the 10 embedded benchmarks used in our experi-
ments, wherefft00 andautcor00 are from EEMBC and the re-
maining eight programs are from MediaBench.

The profiling information is obtained using inputs that are
different from those used in performance evaluations. For Me-
diaBench, the so-called second data sets available in the Medi-
aBench website are used for profiling while the data sets that
come with their source files are used in experiments. For the two
EEMBC benchmarks,autocor00 data 3 andfft00 data 3 are
used to collect profiling information whileautocor00 data 1 and
fft00 data 1 are used for performance evaluations.

The arrays that are not accessed in a program are not considered
in SPM allocation. In addition, arrays with sizes being larger than
32K bytes are ignored since it is probably ineffective to keep
them entirely in SPM. One solution is to divide them into smaller
subarrays [14] and then apply our algorithms to to these subarrays.

6.1 Compile Times

Table 2 gives the average compile times (calculated across all
SPM sizes considered in this paper) for all three algorithmson a
2.66GHz Pentium 4 box with 2GB memory. As shown in Table 2,
all three algorithms are practically efficient. For most benchmarks,
AS compiles faster than OS. OS is more expensive because it starts
with a larger interference graph, as is evident from Table 3.

6.2 Interference Graphs

Table 3 compares AS and OS in terms of the initial interference
graphs, i.e., the ones that each starts with for the 10 benchmarks.

Benchmark MC AS OS

gsmtoast 0.491 0.385 0.457
gsmuntoast 0.410 0.339 0.424

adpcmencode 0.009 0.009 0.009
adpcmdecode 0.009 0.009 0.009
pegwitencode 2.591 2.359 4.875
pegwitdecode 2.471 2.188 3.971
mpeg2encode 0.620 0.587 0.553
mpeg2decode 1.259 1.510 1.410

fft00 0.074 0.075 0.082
autcor00 0.067 0.041 0.041

Table 2. Average compile times (in seconds) under memory color-
ing (MC), aggressive splitting (AS) and on-demand splitting (OS).

Recall that AS starts with an interference graph including only the
hot arrays in a program. On the other hand, OS starts with an
interference graph including both the hot and nonsplit arrays in
a program. As a result, the initial interference graph constructed
by OS for a program is usually larger and contains more maximal
cliques.

Aggressive Splitting (AS) On-demand Splitting (OS)
#Maximal Chromatic #Maximal ChromaticBenchmark
Cliques Number (Bytes) Cliques Number (Bytes)

gsmtoast 31 1672 39 2248
gsmuntoast 16 1568 19 1840

adpcmencode 1 2928 1 2936
adpcmdecode 1 2928 1 2936
pegwitencode 95 16624 267 21968
pegwitdecode 52 17056 141 26600
mpeg2encode 5 1096 15 6472
mpeg2decode 8 5768 12 11296

fft00 8 4096 10 7392
atucor00 4 308 4 2400

Table 3. Statistics on maximal cliques and chromatic numbers for
the initial interference graphs constructed by AS and OS.

By comparing Column 4 of Table 1 to Columns 3 and 5 in
Table 3, we find that the chromatic number, i.e., the minimal SPM
size required to hold all arrays in the initial interferencegraph of a
benchmark for either interval-coloring algorithm is much smaller
than the overall data set size of the benchmark. This indicates
clearly that the data set of a program can be successfully placed
in an SPM with a size that is much smaller than that of the data set.

From Columns 3 and 5 in Table 3, we can also compare AS
and OS in terms of the chromatic numbers of their initial interfer-
ence graphs. For each benchmark, the chromatic number for ASis
significantly smaller than that for OS. This suggests that the opti-
mal solutions can be more easily found for the initial interference
graphs that AS starts with. (However, this does not imply that AS
will yield better performance results than OS since both start with
two different interference graphs for a given program.)

6.3 Performance Evaluation

We have modified SimpleScalar to allow us to carry out perfor-
mance evaluations for this work. Recall that there are four parame-
ters involved in our cost model (Section 2.1). The cost of communi-
catingn bytes between SPM and off-chip memory is approximated
by Cs +Ct×n in cycles, whereCs is the startup cost andCt is the
cost per byte transfer. Two other parameters areMspm andMmem,
which represent the number of cycles required for one memoryac-
cess to SPM and off-chip memory, respectively. In our experiments,
we have usedCs = 100, Ct = 1, Mmem = 100 andMspm = 1.

We have evaluated the three algorithms, MC, AS and OS, for
all the 10 benchmarks using a number of different SPM config-

urations. The allocation results from the three algorithmsare the
same for three benchmarks:adpcmencode, adpcmdecode and
autcor00. In addition, there are only slight performance differences
for mpeg2encode andmpeg2decode. Forfft00, the allocation re-
sults are identical in almost every SPM configurations except when
the SPM size is set to 1K bytes. In this exceptional configuration,
both AS and OS have achieved a speedup of 18% over MC.

Below we present and analyze our experimental results for the
remaining four benchmarks: gsmtoast, gsmuntoast,
pegwitencode andpegwitdecode.

168.7 168.7

0

10

20

30

40

gs
m

to
as

t

gs
m

un
to

as
t

gs
m

to
as

t

gs
m

un
to

as
t

gs
m

to
as

t

gs
m

un
to

as
t

gs
m

to
as

t

gs
m

un
to

as
t

gs
m

to
as

t

gs
m

un
to

as
t

gs
m

to
as

t

gs
m

un
to

as
t

256 512 768 1k 1.5k 2k

SPM Size (Bytes)

S
pe

ed
up

s
C

om
pa

re
d

to
 M

C
 (

%
)

AS OS

-5

0

5

10

15

20

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

1K 2K 4K 8K 16K 32K

SPM Size (Bytes)

S
pe

ed
up

s
C

om
pa

re
d

to
 M

C
 (

%
)

AS OS

Figure 6. Speedups of aggressive splitting (AS) and on-demand
splitting (OS) over memory coloring (MC).

Figures 6 shows the speedups of AS and OS over MC. The
speedups for both interval-coloring algorithms are quite significant.
OS outperforms MC in every SPM configuration for all four bench-
marks. AS suffers a slight performance degradation inpegwiten-
code (1%) andpegwitdecode (0.12%) when the SPM size is 8K
bytes. This is because for these two benchmarks, some frequently
accessed arrays cannot be split successfully and are thus not in-
cluded in the initial interference graphs constructed by ASfor the
two benchmarks. For both AS and OS, the largest performance im-
provements are observed ingsmtoast when the SPM size is set to
768 bytes. In both cases, a speedup of 168.7% has been attained.
These performance advantages indicate that the colorability crite-
rion employed in AS and OS is more accurate than that used in MC
for the superperfect interference graphs considered in this work.

Let us compare OS and AS in terms of their performance results
for the four benchmarks given in Figure 6. OS achieves similar re-
sults forgsmtoast andgsmuntoast as AS but outperforms AS in
most of the SPM configurations used forpegwitencode andpeg-
witdecode. As mentioned above, some frequently accessed arrays
in pegwitencode andpegwitdecode are not split. Hence, OS has
delivered better results in most configurations. Forpegwitencode
when the SPM size is 4K bytes, OS suffers a slight performance
slowdown compared to AS. This is largely due to the inaccuracy of
our cost model in estimating splitting and spilling costs.

Figure 7 compares the three algorithms in terms of the SPM hit
rates for the same four benchmarks given in Figure 6. For each
algorithm, the hit rate for a program increases as the SPM size

0

20

40

60

80

100

gs
m

to
as

t

gs
m

un
to

as
t

gs
m

to
as

t

gs
m

un
to

as
t

gs
m

to
as

t

gs
m

un
to

as
t

gs
m

to
as

t

gs
m

un
to

as
t

gs
m

to
as

t

gs
m

un
to

as
t

gs
m

to
as

t

gs
m

un
to

as
t

256 512 768 1k 1.5k 2k

SPM Size (Bytes)

S
P

M
 H

it
R

at
es

 (
%

)

MC AS OS

0

20

40

60

80

100

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e

pe
gw

itd
ec

od
e

1K 2K 4K 8K 16K 32K

SPM Size (Bytes)

S
P

M
 H

it
R

at
es

 (
%

)

MC AS OS

Figure 7. SPM hit rates under memory coloring (MC), aggressive
splitting (AS) and on-demand splitting (OS).

increases until all the arrays in the corresponding interference graph
have been placed in SPM. In almost all SPM configurations, the
hit rates for OS and AS are higher than that for MC. This fact
correlates well with the performance advantages of OS and ASas
shown in Figure 6. When the SPM is large enough (> 2K bytes
for gsmtoast andgsmuntoast and> 32K bytes forpegwitencode
andpegwitdecode), all array accesses will hit in SPM. The SPM
hit rates become identical for all three algorithms.

7. Related Work
Existing SPM allocation methods are either static or dynamic,
depending on whether or not an array can be copied into and outof
SPM during program execution. A large number of early methods
are static. In particular, two static methods presented in [21, 2] are
based on integer linear programming (ILP), which can be expensive
if applied to a program with a large data set [20]

A dynamic method can often outperform an optimal static
method. To our knowledge, there are four dynamic methods [15,
23, 24, 17]. In [15], loop and data transformations are exploited but
the proposed technique is restricted to well-structured loop kernels.
In [24], Verma et al. give an ILP formulation. In [23], Udayaku-
maran and Barua present a set of heuristics and apply them to aset
of benchmarks. In [17], we map the SPM allocation problem into a
well-understood register allocation problem.

The interval coloring problem has a fairly long history dating
back, at least to 1970s [7, 8]. It has been proved that the interval
coloring problem is NP-complete [9]. Fabri [7] made the connec-
tion between interval coloring and compile-time memory alloca-
tion in 1979. Since then a few approximation algorithms havebeen
proposed [7, 16, 11], where a program is generally abstracted as a
straight-line program. As a result, the interference graphfor static
memory objects is an interval graph [12]. With this abstraction, the
interval coloring problem remains to be NP-complete [9] andthe
above approaches can thus provide approximate solutions. In this
paper, we introduce yet another dynamic method by formulating
the SPM allocation problem as an interval-coloring problem.

Interval coloring for an arbitrary graph is too complex. Recent
research has focused on developing efficient interval coloring algo-
rithms for some special graphs like chordal graphs [18, 4] and inter-
val graphs [25]. Independently, in the field of register allocation, re-
searchers have become increasingly more interested in abstracting
interference graphs as some special graphs. For example, Anders-
son [1] and Pereira and Palsberg [19] have tested a large number
of interference graphs and found that most interference graphs are
chordal graphs. In [13], Hack et al. demonstrated that the interfer-
ence graphs for programs in SSA-form [5] are chordal graphs.An
optimal graph coloring is thus possible.

8. Conclusion
To our knowledge, this paper applies interval coloring to solve the
SPM allocation problem for the first time. We recognize that the
array interference graphs in some embedded applications can be
abstracted as superperfect graphs. In a superperfect graph, its chro-
matic number is identical to its clique number. While the recogni-
tion of a superperfect graph is an open NP problem, we have devel-
oped two efficient and near-optimal algorithms to handle a special
class of array interference graphs in which every pair of interfering
arrays are containing-related. Our algorithms can achieveoptimal
results for such an interference graph when the size of a given SPM
is no smaller than the clique number of the graph. If the SPM is
not large enough, our algorithms use a new cost model to reduce
the clique number of the graph by splitting or spilling some arrays
from the graph until all arrays remaining in the graph can be op-
timally placed in SPM. Both algorithms have been implemented
in the SUIF and MachSUIF compiler framework and evaluated us-
ing MediaBench and EEMBC benchmarks. Experimental results
show that our interval-coloring approach can outperform our ear-
lier memory coloring approach for some embedded applications
even though memory coloring is admittedly more general and may
also be effective to programs with arbitrary interference graphs.

9. Acknowledgements
This work is supported by ARC grants DP0452623 and DP0665581.
The first and last authors are also supported in part by NICTA.

References
[1] Christian Andersson. Register allocation by optimal graph coloring.

In CC’03: Proceedings of the 12th International Conference on
Compiler Construction. Springer-Verlag, 2003.

[2] Oren Avissar, Rajeev Barua, and Dave Stewart. An optimalmemory
allocation scheme for scratch-pad-based embedded systems. ACM
Transactions on Embedded Computing Systems, 1(1):6–26, 2002.

[3] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan,
and Peter Marwedel. Scratchpad memory: design alternativefor
cache on-chip memory in embedded systems. InCODES’02: Pro-
ceedings of the 10th International Symposium on Hardware/Software
Codesign, pages 73–78, New York, NY, USA, 2002. ACM Press.

[4] Giuseppe Confessore, Paolo Dell’Olmo, and Stefano Giordani. An
approximation result for the interval coloring problem on claw-free
chordal graphs.Discrete Applied Mathematics, 120(1-3):73–90,
2002.

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. An efficient method of computing static single assignment
form. In POPL’89: Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 25–35,
New York, NY, USA, 1989. ACM Press.

[6] D. Detlefs and O. Agesen. Inlining of virtual methods. InECOOP’99:
Proceedings of the 13th European Conference on Object-Oriented
Programming, pages 258–278, 1999.

[7] Janet Fabri. Automatic storage optimization. InSIGPLAN’79:
Proceedings of the SIGPLAN Symposium on Compiler Construction,
pages 83–91, New York, NY, USA, 1979. ACM Press.

[8] M. R. Garey and D. S. Johnson. The complexity of near-optimal
graph coloring.Journal of the ACM, 23(1):43–49, 1976.

[9] Michael R. Garey and David S. Johnson.Computers and intractabil-
ity: a guide to the theory of NP-completeness. W. H. Freeman & Co.,
New York, NY, USA, 1979.

[10] Lal George and Andrew W. Appel. Iterated register coalescing. ACM
Transactions on Programming Languages and Systems, 18(3):300–
324, 1996.

[11] Jordan Gergov. Algorithms for compile-time memory optimization.
In SODA’99: Proceedings of the 10th annual ACM-SIAM Symposium
on Discrete algorithms, pages 907–908, Philadelphia, PA, USA,
1999. Society for Industrial and Applied Mathematics.

[12] Martin Charles Golumbic. Algorithmic graph theory andperfect
graphs.Annals of Discrete Mathematics, 2004.

[13] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation
for programs in ssa-form. InCC’06: Proceedings of the 15th
International Conference on Compiler Construction. Springer-Verlag,
2006.

[14] Qingguang Huang, Jingling Xue, and Xavier Vera. Code tiling for
improving the cache performance of PDE solvers. InInternational
Conference on Parallel Processing, pages 615–625, 2003.

[15] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan,I. Kadayif,
and A. Parikh. Dynamic management of scratch-pad memory
space. InDAC’01: Proceedings of the 38th Conference on Design
Automation, pages 690–695. ACM Press, 2001.

[16] H. A. Kierstead. A polynomial time approximation algorithm for
dynamic storage allocation.Discrete Mathematics, 87(2-3):231–237,
1991.

[17] Lian Li, Lin Gao, and Jingling Xue. Memory coloring: a compiler
approach for scratchpad memory management. InPACT’05: Proceed-
ings of the 14th International Conference on Parallel Architectures
and Compilation Techniques, pages 329–338, Washington, DC, USA,
2005. IEEE Computer Society.

[18] Sriram V. Pemmaraju, Sriram Penumatcha, and Rajiv Raman.
Approximating interval coloring and max-coloring in chordal graphs.
Journal of Experimental Algorithmics, 10:2.8, 2005.

[19] Fernando Magno Quintão Pereira and Jens Palsberg. Register
allocation via coloring of chordal graphs. InAPLAS’05: Proceedings
of the 3rd Asia Symposium on Programming Languages and Systems,
pages 315–329, 2005.

[20] Rajiv A. Ravindran, Pracheeti D. Nagarkar, Ganesh S. Dasika, Eric D.
Marsman, Robert M. Senger, Scott A. Mahlke, and Richard B. Brown.
Compiler managed dynamic instruction placement in a low-power
code cache. InCGO’05: Proceedings of the International Symposium
on Code Generation and Optimization, pages 179–190, Washington,
DC, USA, 2005. IEEE Computer Society.

[21] Jan Sjödin and Carl von Platen. Storage allocation forembedded pro-
cessors. InCASES’01: Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems,
pages 15–23. ACM Press, 2001.

[22] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A
generalized algorithm for graph-coloring register allocation. In
PLDI’04: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 277–
288. ACM Press, 2004.

[23] Sumesh Udayakumaran and Rajeev Barua. Compiler-decided
dynamic memory allocation for scratch-pad based embedded systems.
In CASES’03: Proceedings of the International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, pages
276–286. ACM Press, 2003.

[24] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic
overlay of scratchpad memory for energy minimization. In
CODES+ISSS’04: Proceedings of the 2nd IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System
Synthesis, pages 104–109, New York, NY, USA, 2004. ACM Press.

[25] Thomas Zeitlhofer and Bernhard Wess. List-coloring ofinterval
graphs with application to register assignment for heterogeneous
register-set architectures.ACM Signal Processing, 83(7):1411–1425,
2003.

