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Abstract
This paper presents a method for parallelising nested loopswith affine dependences. The data
dependences of a program are represented exactly using a dependence matrix rather than an
imprecise dependence abstraction. By a careful analysis ofthe eigenvectors and eigenvalues of
the dependence matrix, we detect the parallelism inherent in the program, partition the iteration
space of the program into sequential and parallel regions and generate parallel code to execute
these regions. For a class of programs considered in the paper, the proposed method can expose
more coarse-grain and fine-grain parallelism than a hyperplane-based loop transformation.

1 Introduction

Over the past two decades, researchers have developed a variety of loop transformations to optimise

loop-oriented programs [14]. However, the
��� ��

parallelisation for nested loops with affine de-

pendences remains difficult. The unimodular approach [2, 13, 14] can generate both coarse-grain

and fine-grain
��� ��

parallelism, but in its full generality, it is limited mainly to nested loops with

constant (i.e., uniform) dependences [16]. In the case of nested loops with affine dependences, two

approaches can be identified. The first approach [16] approximates the dependences of a program

with constant dependences by means of a dependence cone — with artificial dependences added

implicitly — and then generates
��� ��

parallelism using the unimodular approach. The sec-

ond approach [3, 5, 9, 11, 12, 17] usesexplicitly artificial (constant) dependences to uniformise a

program so that the uniformised program can be expressed as aset of loops with constant depen-

dences. In both approaches, the artificial dependences introduced often span the entire iteration

space of the program, making it only possible to generate Lamport-style hyperplane-based coarse-

grain
��� ��

parallelism [6], where the parallel code consists of one sequential loop with unity

stride followed by a sequence of� � �
��� ��

loops (� being the dimension of the iteration space).

This paper is concerned with parallelising nested loops with a special form of affine depen-

dences. We shall restrict ourselves to doubly nested loops,although our method generalises to

�-dimensional nested loops. Our method is centered around the concepts of eigenvalues and eigen-

vectors that are derived from the dependence structures of the program. For the class of programs

considered in this paper, our method has two major advantages over the previous work discussed

above. First, our method dispenses with an expensive uniformisation process and contains a pro-

cedure for generating parallel code with
��� ��

parallelism. Second, our method can find more

parallelism than any existing method that first uniformisesthe dependences in the program and

then executes the uniformed program by applying a hyperplane-based unimodular approach.
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An example is used below to illustrate our method and compareit with the two methods pre-

sented in [11, 12].

Example 1 Consider the following double loop from [11] where� was set to 5:�� � �� � �
� � � � 	 � � � � 
 
���� �� � � 
 � � � 	 � � � � 
 
�� ��� � � �� � � � � � � �� � � � � �

Figure 1 shows the iteration space along with all data dependences between every pair of dependent

points. In [12], this program is first uniformised and then parallelised using hyperplane-based

loop transformations. The uniformised program has the sameiteration space with two constant

dependence vectors
�
�
� 
�

and
�
 �

�
�
. The scheduling vector for optimal

��� ��
parallelism is

(1,1), requiring
�� � � steps. This corresponds to wavefronting the iteration space along

�
�
�
�
�
.

If the two dependence vectors
�� � ��

and
�� � 
�

are used instead as suggested in [11], the optimal

scheduling vector is
�� � 
�

, reducing the run time to�� ��� steps. This corresponds to wavefronting

the iteration space along the direction
�� � 
�

, with two consecutive “waves” being executed in

parallel.

Using the method of this paper, we build a matrix� from the array subscripts:

� � � � 

 � �
� has one eigenvalue 3 with two associated eigenvectors

�
� � 
� and

�
 � ��. In the iteration space,

all points in a vertical line parallel to the eigenvector
�
 � �� are independent. Thus, the outer loop

can be made a
��� ��

loop immediately. But our method can detect more parallelism and produce

the following parallel code:�� � �� � � � � 	 � � � � ������� �� �� �� � � � � �� 	 ��� ��� � � � � � � � �� 
 
����� �� �� �� � 
 � � �� 	 � � � �� 
 
�� ��� �� � �� �� � � � � � �� �� � � �� �
As depicted in Figure 1, we execute in parallel, the two lines

� �� � � and
� �� � �

, then the lines� �� � �
to

� �� �  
, then the lines

� �� � !
to

� �� � �"
, and so on. In general, we execute in parallel at

step
� � #

all lines from
� �� � �$%�

to
� �� � �$

� �. The number of lines executed at one iteration of

loop
�
triples at the next iteration. Thus, the scheduling latencyof our parallel code is&'()* � + 
 �.

(End of Example)

The rest of this paper is organised as follows. Section 2 describes the program model and our

formalism for characterising the data dependences in a program. Section 3 presents our method

for parallelising loops with affine dependences and also states the major limitations of our method.

Section 4 discusses the related work. Section 5 concludes the paper.
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Figure 1: Eigenvectors-based parallel execution of Example 1 (� � � ).

2 Program Model
��

and� denote the set of integers and rationals, respectively. We use � and � to represent

the lexicographic order operators “larger than” and “less than”, respectively.� denotes the identity

matrix.

The following lemma states some useful facts about eigenvalues and eigenvectors.

Lemma 1 Let
� 	 �
 �
 . Let � 	 �
 �
 be nonsingular.� �� %�

and
�

have the same set of

eigenvalues. If
 is an eigenvector of
�

associated with the eigenvalue�, then� 
 is an eigenvector

of � �� %�
corresponding to the same eigenvalue�.

This paper considers doubly nested loops of the following form:�� � �� � � � � � � � 	 � � � � � 
 
���� �� � � �� � � � 	 � � � � � 
 
�� �� �� �� � � �� �� �� �� � � � ��
In the loop body,

� � �� � � � � �
is a point in theiteration space, which is the set of points satisfying� � �� � 	 � � 	 � � � � � 	 � � 	 � � �

and
�

and
�

are affine functions of loop variables:
� �� � � � � 
 �
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� �� � � � � 
 

where

� � � 	 ����� are nonsingular and
� � 
 	 ���

are two-dimensional integer vectors.

The two array references in the program can access the same element of
�

at two different

iterations. Thus, there is a dependence between point
�

and point� �� � (if such a point is in the

iteration space) such that� �� � � � %� �� �� ��
. Thus, we have the followingdependence function:

� �� � � � � � �� �
�� �� � � � � %�� � 
 � %� ��

�
� � � �� 
 �

where� is called thedependence matrix. Since
�

and
�

are nonsingular,� is nonsingular. The

following relative dependence functiondescribes both the distance and direction of the depen-

dences between the two points
�

and� �� �:
� �� � � � � � �� �

�� �� � � � � �� � � � � �� � � �� 
 �

Let us relate our dependence abstraction with the traditional dependence vector abstraction

[14]: � �� � is a flow or true dependenceoriginating at
�

and sinking at� �� � if � �� � � 

and an

anti-dependenceoriginating at� �� � and sinking at
�

if � �� � � 

. If � �� � � 


, � �� � is said todepend

on
�

and this dependence is characterised by the dependence vector � �� �. If � �� � � 

,
�

is said

to (anti-) dependon � �� � and this dependence is characterised by the dependence vector �� �� �.
When dependences are drawn in the iteration space, a flow dependence is drawn with a solid arrow

and an anti-dependence with a dashed arrow. In both cases, the point at the arrow head always

depends on the point at the arrow tail. Thus, all dependence vectors drawn in the iteration space

are lexicographically positive.

According to the lexicographic sign of� �� �, the iteration space can be divided into the follow-

ing three regions (each of which may be empty):
�� � � � � �� � � 
 � � � �� � �� � � 
 � � � �� � � 
 � �� �� � � 
�
� � � � � �� � � 
 � � � �� � �� � � 
 � � � �� � � 
 � �� �� � � 
�
� � � � � � �� � � 
 � � � � � �� � � 
 � �� �� � � 


The following lemma identifies the nature of dependences between the three regions
��

,
�

and
� �

and provides an ordering to schedule them for parallel execution.

Lemma 2 The following properties about
��

,
�

and
� �

can be observed:

(a) Every dependence vector contained in
��

is a flow dependence.

(b) Every dependence vector contained in
�

is an anti-dependence.

(c) Every dependence vector (flow or anti) that connects
��

and
�

originates from
��

and

sink at
�

.
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(d) All points of
� �

are independent of each other and of the points in
��

and
�

.

Proof. The first two properties follow directly from the definitionsof
��

and
�

, respectively.

The third property follows from the definitions of
��

,
�

and the dependence vectors introduced

previously. For every
� 	 ��

, we have� �� ��� � 

. This dependence originates from

��
and must

sink at
�

if it spans the two regions. For every
� 	 �

, we have� �� � � � � 

. This dependence

sinks at
�

and must originate from
��

if it spans the two regions. For the fourth property, let

us prove that
� �

is self-dependent. It is obvious that� �� � � � � �
since for all

� 	 � �
we have

� �� � � �
. Moreover for

� 	 �
such that� �� � 	 � �

, we have� �� �� �� � 

, which is equivalent to�� � � � ��� 
 � � 
 � � � ��

� �� 
 � �
�
� 
 � � � ��

� �� 
 � � � 

. Since� is nonsingular,

we obtain��
�

� 
 � � �� � � �� 
 � � � �� � � 

. Hence,

� 	 � �
, which implies� %� �� � � � � �

.

Adding this result to the fact that, by construction, a pointof
� �

is only dependent on itself, the

fourth property has thus been established.

In fact,
� �

contains all fixed points to the equation� �� � � 

. If � � � is nonsingular,

� �
contains the singleton

� � �� � � �%�� if
� 	 �

and is empty otherwise. If� � � is singular,

there are three cases. If� � � ,
� � � �

if
� � 


and is empty otherwise. If� �� � and
�

is

linearly dependent on the two columns of� � � , then
� �

contains all ponts on the line� � �� � � 

(or equivalently,�� �� � � 


). Otherwise,
� �

is empty.

Let us use an example to illustrate the concepts introduced so far. This example will also be

used for illustrations in the remaining part of the paper.

Example 2 Consider a double loop:�� � �� � � �� � � � 	 � � � � 
 
���� �� � � �� � � � 	 � � � � 
 
�� ��� � 
 �� � � � � � � 
 �� � � � � � � �� � 
 � � � � � 
 ��
The array subscript functions

�
and

�
are:

� �� � � � � 
 � � � � �
�

� � � 
 � �
�
 �

� �� � � � � 
 
 � � � �
 � � � 
 � 

� �

The dependence function� is:� �� � � �� 	 
 � � � 

 � � � 	 � ���
 �
The eigenvalues of� are 2 and 4, corresponding to the eigenvectors

�
� � ��� and (1,1), respectively.

The relative dependence function� is:

� �� � � �� � � �� 
 � � � � �
� � � � 
 � ��

�� �
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� �

� �
��
�

� � � � � �
�
� 
��

� � �� � � 


�� �� � � 


�

Figure 2: The iteration space of Example 2 (� � �
).

The two lines� � �� � � 

and �� �� � � 


separate the iteration space into the three non-empty

regions
��

,
�

and
� �

, as depicted in Figure 2.
� � � � �� � 
��, and

��
has both flow dependences

and anti-dependences originating from it and terminating at
�

. (End of Example)

3 Eigenvectors-Based��� �� Parallelisation

First of all, we state the two major limitations of our method.

1. � must have rational (non-real) eigenvalues, ensuring that the corresponding eigenvectors

are integer vectors and can be used to generate
��� ��

parallelism.

2. � must be nonsingular, implying that both
�

and
�

are nonsingular. In this case, every array

element is read (or written) at most once. Thus, the dependence function� �� � � �� 
 �
captures all dependences involving both

� �� �� ��
and

� �� �� ��
.

Next, we provide an outline of our method and highlight one difference between our method

and the unimodular approach. Anexecution ordering� is a partial order on the iteration space�
, where� � 	 means that iteration� is executed before iteration	 . An execution ordering for a

program islegal if it preserves the data dependences of the program. In otherwords, any ordering

6



that does not schedule an iteration before all its dependentiterations have been executed is legal.

In our formalism, this idea translates into the following definition.

Definition 1 (Legality of Execution Ordering) An execution ordering� on
�

is legal if � � 	
�� � � � � �� � and� � 	 � � � �� � � �

.

To generate
��� ��

parallelism from a program, we proceed as follows.

1. We apply a unimodular transformation to the iteration space (Section 3.1):
� � �

�� � � � ����� � � � � �
such that in thetransformed space

� �
, the dependence function becomes:

� � �� � � � � �� � 
 � �
where� �

is lower triangular. Unlike the unimodular approach,
�

usually does not preserve

the data dependences of the program in the traditional sense[14, p. 345]. In other words,� � �� � (�
� � �� �) for a dependence vector� �� � (�� �� �) such that

� 	 ��
(
� 	 �

) can be

either lexicographically positive or negative.

2. We analyse the data dependences in the transformed space and detect the parallelism inherent

in the original program (Section 3.2).

3. We generate the parallel code of the form (Section 3.3):

PAR
code(� ��

)
SEQ

code(� ��
)

code(� �
)

(1)

where the two constructs	� 
 and ��
 are borrowed fromOccam [10]. The order for

executing the three regions follows from Lemma 2. The pointsof
� �

are independent, so

code(
� � �

will not be discussed any further. In Section 3.3, we describe how to construct

code(
� ��

) andcode(
� �

) with explicit
��� ��

parallelism while preserving the data depen-

dences of the original program.

Theorem 1 The execution ordering� induced by the code in (1) is legal if� � � 	 � �� � � � � � � �� � �
and� � � 	 � � � � � �� � � � � �

.

Proof. Follows from the fact that
�

is nonsingular and Definition 1.

Example 3 Consider Example 1 again.� is already lower triangular. With
� � � ,

� �� � �� �
�

,
� � � � � �

and
� �� � � � � �

. By Theorem 1, any execution ordering on
� ��

is legal as long

as every iteration
� � � �

is executed before� � �� � � � � �� �. The parallel code in Example 1 can be

generated using the method to be described in Section 3.3.1. (End of Example)
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3.1 Loop Transformation: Triangularisation

In this section, we present the technique used to transform the iteration space in order to have a

lower triangular dependence matrix.

Let
�

be a unimodular transformation from the original iterationspace to the transformed

space. Thus the point
� �

in the transformed space is
� � � � �

. The new array subscript functions
� �

and
� �

are:

� � �� � � � � �� %�� � �
� � �� � � � � �� %�� � �

Thus the new dependence function is:

� � �� � � � � �% � �� � �� � �� � � �� %� �� �� %�� � ��� � � �� �� %�� � ��
In the case of affine dependencies, we have:

� � �� � � � � �� � 
 � � � � � � %�� � 
 � �

and the relative dependence function becomes:

� � �� � � � �� �
� � �� � 
 � � � �� � � %�

� � �� � 
 � �

In the transformed space, the two lines separating it into the three regions
� ��

,
� �

and
� �

of

different lexicographic signs become:

� � �� %�� � � � 

�� �� %�� � � � 


Based on the eigenvalues and eigenvectors of� , we provide a constructive approach to finding

a unimodular transformation
�

such that� � � � � � %�
is a lower triangular matrix.

Let us recall the following result from linear algebra on which our method is based.

Theorem 2 Let � � and �� be the two rational eigenvalues of� , and 
 � and 
� be the two cor-

responding integer eigenvectors. Let� � )�� �
� �� � 
� �� �. Let
� %� � � � 
� ����� 
� �� �� � such that

��� �� � � ��
� �� � �
� �� ��� � � �. Then� � � � � � %� � � � � 
# �� �.

The eigenvector
� in this theorem is called theparallelising eigenvector. Our intention is to ex-

ecute in the iteration space concurrently all points in a line parallel to
�. In the transformed space,


� becomes
� 
� � �
 � ��. Therefore, we are essentially attempting to execute in thetransformed

space all points in a vertical line in parallel. This corresponds to wavefronting the transformed

space along the directions
� �

� � 
�.
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�

�

�

�

�

�

� � �� %�� � � � 


�� �� %�� � � � 


� ��

� ��
� �� � �� �� �� �
� � � �� � � � � �

�� �� � � �
�
� 
��

� � �� %�� � � � �� �� 
 � �� � � � 

�� �� %�� � � � � �� � � �� � �

� 


�

Figure 3: Transformed space of Figure 2 (� � �
). The division of the transformed space into six
regions

� �� �� �� � � and
�

as highlighted will be explained in Section 3.3.1.

Example 4 Continuing from Example 2, we choose
�
� � ��� as the parallelising eigenvector:

� � � %� � � � �
 ��
� (2)

The new dependence function is calculated to be as follows:

� � �� � � � � � 

�� � � � � 
 � �

�
�

� (3)

The new relative dependence function becomes:

� � �� � � � � � 

�� �

� � � 
 � �
�
�

� (4)

Figure 3 depicts the transformed space of the original iteration space in Figure 2. Unlike the

traditional unimodular approach, some dependences in the transformed space are lexicographically

positive and some can be negative. (End of Example)

3.2 Parallelism Detection

In this section, we analyze the cross-iteration dependencies in the transformed space and detect the

parallelism inherent in the program. We shall make use of thedependence function and relative
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dependence function in the transformed space:

� � �� � � � � � �� �� � �
� �� �� � � � � � � � 
# �� � � � 
 � � ��

� �� �
� � �� � � � � � �� �� � �

� �� �� � � � � � � � � �

# �� � �

� � � 
 � � ��
� �� �

Theorem 3 Let � �
be a line parallel to an eigenvector
 of � �

. The set of points depending on any

point of� �
is on a line,� �

, parallel to � �
.

Proof. Let � and	 be two points of the line� �
. Let the corresponding dependent points� � �� � �� �� 
 � �

and� � �	 � � � �	 
 � �
be on a line� �

. Let � �
be parallel to the eigenvector
 of � �

, with

eigenvalue�. Thus we have:� � 	 � �
 , where� 	 � , and� � �� � � � � �	 � � � � �� � 	 � � � ��
 �
��
 , implying that� �

and� �
are parallel.

This theorem suggests the following parallelization of thetransformed space. All points on a

line parallel to an eigenvector are executed concurrently,then all points on the next line parallel to

the same eigenvector are executed concurrently, and so on. This eigenvector is referred to as the

parallelising eigenvector in Section 3.1. By using the
�

in Theorem 2 to transform the iteration

space, we have implicitly assumed to use
� in that theorem as the parallelising eigenvector. In

the transformed space.
� becomes
� 
� � �
 � ��. Thus, our intention is to execute all points in a

vertical line in parallel.

A vertical line is called aself-dependent(vertical) line if all points on the line depend only on

the points on the same line.

The following theorem characterises all self-dependent vertical lines in the transformed space.

This is a special case of Theorem 3 when� �
and� �

are co-linear (i.e., happen to represent the

same vertical line).

Theorem 4 Consider the transformed space. If� � �� �, � �� � �
���� �%� is the only self-dependent

vertical line. If � � � �, all vertical lines are (not) self-dependent when
� �� � 


(
� �� �� 


).

Proof. Follows from the fact that the first component of every dependence vector is� �� �� � � ��� � � ��� �� 
 � �� in
� ��

and is�� �� �� � � � �
��� � � ��� �� 
 � �� � in

� �
.

When� � �� �, there is only one self-dependent vertical line
� �� � �

���� �%� . For the two dependent

points
� �

and � �� � � that are not on the self-dependent line, the sign of� � determines whether the

two points are simultaneously on the same side of the self-dependent line and the magnitude of
�� � � determines which of the two points is further away from the self-dependent line. These two

facts, summarised in Theorem 5, can be deduced from the following tautology:�� �� �� 
 � �� � 
 � ��
� � � �

� � � �� �� 
 � ��
� � � �

�
(5)
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where the left-hand side represents the distance from� � �� � � � � �� �� 
 � ��
to the self-dependent line� �� �

�
���� �%� and the right-hand side represents the distance from

� ��
to the same self-dependent

line.

Theorem 5 Assume� � �� �. Let
� �

be a point in the transformed space not on the self-dependent

line
� �� �

�
���� �%� . The following two statements are true:

1.
� �

and � � �� � � are on the same side of the line
� �� �

�
���� �%� if � � � 


and on the opposite side

of the line
� �� �

�
���� �%� if � � � 


.

2. � �� � � is further away from the self-dependent line
� �� �

�
���� �%� than

� �
if and only if

�� � � � �.

We do not consider the case when� � � 

because it implies� is singular. In this case, all

dependences originating at one side of the line
� �� �

�
���� �%� sink on the line.

3.3 Loop Transformation: Parallelisation

In the previous section we introduced parallelism detection techniques to identify sets (or lines)

of independent iterations. In this section we use these techniques to generate code with explicit
��� ��

parallelism to execute the transformed space. Specifically, we discuss how to construct
���� �� �� �

and���� �� � �
as given in the parallel code template (1).

Our objective in
��� ��

parallelisation is to execute in the transformed space as many vertical

lines in a single step as possible. Based on Theorem 5, we distinguish a total of six cases: (1)

� � � �, (2)

 � � � � �, (3) � � � �, (4) � � � ��, (5) �� � � � � 


, and (6)� � � ��. The

sign of� � determines how the transformed iteration space is partitioned and the magnitude of
�� � �

determines the order in which the vertical lines in a partition are executed.

3.3.1 � � � �

An example is used to illustrate the basic idea only. Consider the transformed space depicted in

Figure 3 from Example 4. The dependence function in the transformed space is given in (3). When

� � � �, Theorem 4 suggests that there is only one self-dependent line among all vertical lines. In

the current example, the self-dependent line is
� �� � �. Depending on whether a point is in the half

space
� �� � �, on the line

� �� � �, or in the half space
� �� � �, we divide

� ��
(
� �

) into the three

regions
�

,
�

and
�

(
�

, � and
�

), as illustrated in Figure 3.

By Theorem 5(a), the three regions
�

,
�

and
�

that partition
� ��

are mutually independent.

By Theorem 5(b), all (flow) dependences are pointing away from the self-dependent line. In our

formalism, for every
� �

in
�

(
�

), the corresponding dependent� � �� � � is farther away from the self-

dependent line. This suggests the following parallelisation scheme. We execute
�

by running in

parallel, first lines from
� �� � � � � �

up to but excluding
� �� � � � � � � � � �� � � � �

�
� � �� � �

, then

11



lines from
� �� � �� � �

up to but excluding
� �� � �� � � � � � �� � � � �

�
� �

��, and so on. Similarly,

we execute
�

by running in parallel, first lines from
� �� � 


up to but excluding
� �� � 
 � �

�
� �

�
�
,

then lines from
� �� �

�
�

up to but excluding
� �� �

�
� � �

�
� �

��
�
, and so on. The idea of

parallelising 2-D spaces
�

and
�

generalises to 1-D spaces such as
�

. We execute
�

by running

in parallel, first point
�
�
�
�
�
, then points

�
�
� ��

and
�
�
� ��

, and so on.

���� �� �� �
: �� ����� �� � 	 
�� �� � � 
 � � �� 
 � � �� � ��
� �� �� �� �� � � 
 � �� � � �� ��� � � � �� � 
 � �� 		�


��� �� �� �� � ��� ���� �� 	 � � �� � 
 � �� � �� �� 	 � 
 � �� 		�
� ��� �� � � � � �� � �� �� � � � � � �� �� � �� �� 	 
����� �� � 	 
�� �� � � 
 � � �*%�� � 
 � � �� � ��
� �� �� �� �� � � 
 � �� � ��� ��� � � � �*%�� � � 
 � �� ���

��� �� �� �� � ��� �� 	 � 
 � �� � � 
 � �� 		�
� ��� �� � � � � �� � �� �� � � � � � �� �� � �� �� 	 
����� � � 	 
�� �� � 
 
 � � � 
 � � ��� /� � �� � 
 �/
� �� �� �� �� � � 
 � �� � � �� ��� � 
 � � � 
 � �� 		�

� �
 � 
 � �� �� � � � � � �
 � �� �� 	 
�
The step size of loop

�
is � �� ��� in both���� �� �

and���� �� �
, and� �� ��� in ���� �� �

.� �
is parallelised in the same way as

� ��
, except that in the regions

�
and� , the vertical lines

farther away from the self-dependent line
� �� � � are executed earlier, and in

�
, the points farther

away from
�
� � 
� are executed earlier.

���� �� � � 	 �� ����� �! � 	 
� � �� � "� � �� # 
 � � � 
 � � "$�*% # �
� �� �� �� �� � � 
 � �� � ��� � "$�*% # 	 
 � �� 
 � �� ���

��� �� �� �� � �� 
 � �� � 
 � �� �� 
 � �� 		�
� ��� �� � � � � �� � �� �� � � � � � �� �� � �� �� 	 
����� �� � 	 
� � �� � ��� 
 � � � 
 � � �$�*% � �
� �� �� �� �� � � 
 � �� � � �� � �$�*% � � 
 � � � 
 � �� 		�

��� �� �� �� � �� ���� 
 � �� � � �� ���� ��	 � � � � 
 � �� 		�
� ��� �� � � � � �� � �� �� � � � � � �� �� � �� �� 	 
����� �& � 	 
� � �� � �� 
 � � �
 
 � � � $� � � /� � �� � 
 �/
� �� �� �� �� � � 
 � �� � � �� � � $� � � 
 � �
� 
 � �� 		�

� �
 � 
 � �� �� � � � � � �
 � �� �� 	 
�
The step size of loop

�
is � �% �� ���

in both���� �� �
and���� �� �

, and� �% �� ���
in ���� �� �

.

Unlike the existing unimodular approach [6, 13, 14], our eigenvector-based method schedules

far more hyperplanes of iterations of loop
� ��

for concurrent execution.

3.3.2

 � � � � �

This is the opposite of the case when� � � � in the sense that, by Theorem 5(b), all flow depen-

dences in
� ��

are pointing toward the self-dependent line
� �� � �

���� �%� while all anti-dependences

12



in
� �

are pointing away from this line. Thus,
� ��

(
� �

) in this case can be parallelised in the same

way as
� �

(
� ��

) in the case when� � � �.
Consider a double loop derived from Example 1 with the two references swapped. The depen-

dence function is the inverse of the one in Example 1:

� �� � � �� 
 � � � ��� 


��� � � 
 � 

 �

� has one eigenvalue��� with two associated eigenvectors
�
�
� 
�

and
�
 �

�
�
. We can calculate that�� � �

,
� � �

and
� � � �

. With
� � � ,

� � � � � � �
. The parallelisation of

� �
in this case

is the same as
� ��

in the case when� � � � as discussed in Example 1. For this particular example,

the same code as in Example 1 is produced.

As a second example, consider a double loop derived from Example 2 with the two references

swapped. The dependence function is the inverse of the one inExample 2:

� �� � � �� 
 � � � �� ��� 
��� �� � � 
 � �� 

�� �
� has the eigenvalues

�� and
�� , corresponding to the eigenvectors

�
� � �� and

�
� � ���, respec-

tively. With the same
�

as in Example 4, we obtain the dependence function:

� � �� � � � � �� � 
 � � � � �� 

�� �� � � � 
 � "� 

��� �
in the transformed space as in Figure 3. So���� �� �� �

(�
��� �� � �

) in this case is the same as the
���� �� �� �

(�
��� �� � �

) for Example 2 but with loop
�

reversed and loop
� ��

modified accordingly.

3.3.3 � � � �

We have� �� �� � � � �� � � ��� �� 
 � �� � � ��
. We distinguish two cases by generating outer

��� ��

parallelism if
� �� � 


and inner
��� ��

parallelism if
� �� �� 


.

The analysis of both cases are based on Theorem 4. If
� �� � 


, all dependences in the trans-

formed space are of the form
�
 � ��

. Thus, all vertical lines in
� ��

(
� �

) can be executed indepen-

dently of each other. A vertical line can be further parallelised just like how
�

and
�

in Figure 3

are parallelised.

If
� �� �� 


, all (flow) dependences in
� ��

have the form
�� �� � ��

while all (anti) dependences in� �
have the form

�
�� �� � ��

. We can generate inner
��� ��

parallelism by wavefronting
� ��

(
� �

)

along direction
�� �� � 
�

(
�
�� �� � 
�

) with
�� �� �

consecutive lines (or waves) being executed in parallel.

Example 5 Consider the following example from [12], where� was set to 1000:�� � �� � � � � � � 	 � � � � 
 
���� �� � � � � � � 	 � � � � 
 
�� �� � 
 � � � �� � 
 � � 
 �� � � � � �� � 
 � � 
 � � � � 
 �� � 
 � �
13



��
�
� � � �

� � �� � � ��� �	� � � 
� �

� �

� �

Figure 4: The iteration space of Example 5.

The dependence function is:

� �� � � � �� �� 
 � � 
 � ��
 �
The two eigenvalues of� are � and ��

, corresponding to the eigenvectors
�
� � ��� and

�
� � ��,

respectively. Since� � � is singular and
���� �� � � � �� � �

, we have
� � � �

. As shown in

Figure 4,
��

contains all iterations in the half space� � �� � � ��� � 
 � � � � � 

, and

�
contains

all iterations in the opposite half space� � �� � � ��� � 
 � � � � 	 

(Figure 4).

With
�
� � ��� chosen as the parallelising eigenvector, we apply the

�
given in (2) to transform

the iteration space. The dependence function in the transformed space as shown Figure 5 is:

� � �� � � � � � 

�� �� � � � 
 � ��
 �

We parallelise
� ��

and
� �

by wavefronting them along
�
�� � 
� and

�
� � 
�, respectively:

���� �� �� � 	 
� � �� �� � "*� %�� # 
 � �� � � 
 � �� ���

��� �� �� �� � ��� �
 � � �� � �� � 
 � �� � "%��%�* # 
 � �� 		�
� �� �� � �� �� 	 �� �� 	 �� � � � � �� �� 	 
 � � �� � � �� 	 � �

���� �� � � 	 
� � �� �� � � 
 � �� � �� 
 � �� 		�

��� �� �� �� � ��� �
 � � �� � �%�� ��%�* � � �� � 
 � �� � � �� �� 
 � � � � �� � 
 � �� 		�
� �� �� � �� �� 	 �� �� 	 �� � � � � �� �� 	 
 � � �� � � �� 	 � �

(End of Example)

3.3.4 � � � ��

By Theorem 4,
� �� � �

���� �%� is the only self-dependent vertical line. Let
� �� � � be the vertical line

closest to
� �� � �

���� �%� such that
�� �

���� �%� �
is an integer.
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��
�
� � � �

� � �� %�� � � � ��� ����� �� � 
� � � ��

�
� ��

Figure 5: The transformed space of Figure 4 using (2).

To parallelise
� ��

, we divide it into two regions:
�

contains the points on
� �� �

�
���� �%� and

�
contains the points not on

� �� �
�

���� �%� . By Theorem 4,
�

and
�

are independent. By Theo-

rem 5(a), all dependences in
�

cross the self-dependent line
� �� � �

���� �%� . By Theorem 5(b), all

(flow) dependences are pointing away from the self-dependent line. The parallelisation of
�

is the

following. At any single step we execute in parallel two strips of vertical lines that are symmetrical

with the line
� �� � �

���� �%� :
Step 1:

��� � � ���� �%� � �� �
���� �%� � �� �

���� �%� � ��� � � ���� �%� �
Step 2:

�
���

�� � ���� �%� � �� � � ���� �%� � ���� � � ���� �%� � ���� � ���� �%� �
Step 3:

���*� � ���� �%� � ���
�� � ���� �%� � ���

�� � ���� �%� � ���
*� � ���� �%� �� � �

where
�� � �� (

�� � ��) denote all vertical lines
� �� � �

such that
�

is an integer within the range.

To understand this, consider an example where� � � �
�

and
� �� � 


. The self-dependent line

is
� �� � 


. We shall parallelise
�

by executing in parallel, first lines
� �� � �� � �� � � � �, then lines� �� � � � � � �

,�
� � � � � � � �  

, and so on.� �
is parallelised in the same way except that the order for executing the above strips is re-

versed.

Example 6 Consider Example 5 again. We can execute the program in threesteps if (�
� ��

is

selected as the the parallelising eigenvector. The matrix
�

is:

� � � �� �
� 
 � � � %� � � 
 �

� � � (6)

The dependence function in the transformed space as shown inFigure 6 is:

� � �� � � � � �� 

� �

� � � 
 � �
��

�
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��
�
� � � �� ��

� ��
� � �� %�� � � � � ��� 
� �

The self-dependent line
� �� � ���

Figure 6: The transformed space of Figure 4 using (6).

The self-dependent line is
� �� � ���, which does not contain any iterations.� ��

is contained in the half space
� �� � ���. All its points are independent, since any dependent

points on
� ��

must be on the opposite half space
� �� � ��� by Theorem 5(a). The self-dependent

line
� �� � ��� divides

� �
into two regions: the points on the line

� �� � � and the remaining points

of
� �

. We can execute
� �

in two steps, with those not on the line
� �� � � executed in the first step

and those on the line in the second step.

In the original iteration space (Figure 4), this corresponds to executing the points in the half

space�
�� 
 � � � � 


in the first step, the points in the opposite half space��� 
 � � � � 

in

the second step, and the points on the line��� 
 � � � � 

in the third step. This is considerably

better than the scheme suggested in [12]. (End of Example)

3.3.5 �� � � � � 

This is opposite of the case when� � � �� in the sense of Theorem 5(b). So

� ��
(
� �

) in this case

can be parallelised in the same way as
� �

(
� ��

) in the case when� � � ��.

3.3.6 � � � ��

By Theorem 4, the only self-dependent line is
� �� � � ����. Every line

� �� � � is inter-dependent

only on the line
� �� � � �� � � symmetric about the line

� �� � � ���� (a corollary of Theorem 5(a) when

� � � ��). We can generate outer
��� ��

parallelism by executing every such a pair in sequence

and all these pairs in parallel.
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4 Related Work

There has been a great deal of research on applying loop transformations to optimise loop-oriented

programs to expose parallelisim or otherwise improve data locality. These programs typically

spend a considerable amount of time operating on arrays in loop nests. Unimodular loop trans-

formations [1, 6, 14] can be used to transform a loop nest suchthat the transformed program

consists of a sequential loop nest followed by a sequence ofDOALL loops. In its full general-

ity, the unimodular approach works only if all dependences in the loop nest are constant (i.e.,� � � � � � � in the notations of this paper) [13, 16]. In the case of affine dependences, there

are two parallelisation strategies. One approximates the affine dependences with constant depen-

dences and then applies the unimodular approach [16]. The other introduces constant dependences

to uniformise a loop nest so that the uniformised program canbe further parallelised [9, 11, 12]. In

both cases, the artificial dependences introduced may constrain the amount of parallelism inherent

in the original program.

The problem of transforming affine dependences into constant dependences has been the sub-

ject of study for many years in the systolic array community [8, 9, 15]. However, the focus there is

to find a time schedule and a processor allocation so that the final transformed program represents

a systolic array. This transformed program consists of essentially a sequential loop followed by a

sequence ofDOALL loops [4, 7].

The problem of parallelising the class of programs considered in this paper has been studied

by several researchers [3, 5, 11, 12, 17]. Tzen and Ni [12] propose a dependence uniformisation

technique and an index sychronisation scheme to reduce the synchronisation overhead. How-

ever, the artificial dependences they introduce can constrain the amount of parallelism inherent in

the original program. For example, our parallelised program shown in Figure 6 for Example 5

runs in three steps while theirs requires index synchronisations to be executed inside the outer

DOACROSS loop. Chen and Yew [3] later improve the dependence uniformisation technique so

that more parallelism can be extracted. However, the artificial dependences they introduce still

reduce the extractable parallelism in the original program. Shang, Hodzic and Chen [11] first uni-

formise the program and then find an optimal time scheduling for the uniformised program. In

comparison with the unimodular approach, they can use more than one wavefront to parallelise the

uniformised program. Zaafrani and Ito [17] divide the iteration space into two parallel regions and

one sequential region according to the dependences of the program. The amount of parallelism

exposed is limited by the sequential region. All these methods except [11] characterise the depen-

dences of the program by their convex hull and attempt to extract as much parallelism as possible

from the program. Finally, Ju and Chaudhary improve all these methods by identifying more paral-

lel regions based on a more precise charaterisation of the data dependences. Unlike these previous

methods, our method is centered around the concepts of eigenvectors and eigenvalues. For the
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class of programs considered in the paper, we can discover more parallelism than these previous

methods in such a way that progressively more wavefronts canbe executed in parallel.

5 Conclusion

In this paper, we studied how to detect and exploit the parallelism inherent in nested loops with

affine dependencies. We showed how to generate coarse-grainand fine-grain parallelism based

on the concepts of eigenvalues and eigenvectors derived from the dependence matrix� of the

program. If� has an eigenvalue
�
�, the outer

��� ��
parallelisation is possible, making this

technique appropriate for MIMD machines. If� does not have an eigenvalue
�
�, the inner loop

can always be a
��� ��

loop. Thus this technique is appropriate for VLIW or superscalar ma-

chines. In general, our method discovers far more parallelism than any existing hyperplane-based

unimodular approach.

The methodology outlined in this paper generalises directly to �-dimensional nested loops.

One future work is to extend our method to handle the case withseveral pairs of references. An-

other future work is to take into account architecture-dependent details such as communication and

synchronisation costs when parallelising a program.
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