Eigenvectors-Based Parallelisation of Nested Loops withffine Dependences

Patrick Lenders Jingling Xue
School of Mathematical and Computer Sciences School of CeenBcience and Engineering
University of New England University of New South Wales
Armidale, NSW 2351, Australia Sydney, NSW 2052, Australia
Abstract

This paper presents a method for parallelising nested laithsaffine dependences. The data
dependences of a program are represented exactly usingeaddagre matrix rather than an
imprecise dependence abstraction. By a careful analy#ieeafigenvectors and eigenvalues of
the dependence matrix, we detect the parallelism inhengheiprogram, partition the iteration
space of the program into sequential and parallel regiodganerate parallel code to execute
these regions. For a class of programs considered in the, pap@roposed method can expose
more coarse-grain and fine-grain parallelism than a hyaeesbased loop transformation.

1 Introduction

Over the past two decades, researchers have developedty ehifoop transformations to optimise
loop-oriented programs [14]. However, tBOALL parallelisation for nested loops with affine de-
pendences remains difficult. The unimodular approach [214Bcan generate both coarse-grain
and fine-grairDOALL parallelism, but in its full generality, it is limited mainto nested loops with
constant (i.e., uniform) dependences [16]. In the casesibddoops with affine dependences, two
approaches can be identified. The first approach [16] apmateis the dependences of a program
with constant dependences by means of a dependence conehartifitial dependences added
implicitly — and then generatd30ALL parallelism using the unimodular approach. The sec-
ond approach [3, 5, 9, 11, 12, 17] useglicitly artificial (constant) dependences to uniformise a
program so that the uniformised program can be expressedetsohloops with constant depen-
dences. In both approaches, the artificial dependencexluted often span the entire iteration
space of the program, making it only possible to generatedoaitystyle hyperplane-based coarse-
grain DOALL parallelism [6], where the parallel code consists of onausatjal loop with unity
stride followed by a sequenceof 1 DOALL loops ¢ being the dimension of the iteration space).

This paper is concerned with parallelising nested loops wispecial form of affine depen-
dences. We shall restrict ourselves to doubly nested laapsyugh our method generalises to
n-dimensional nested loops. Our method is centered aroentbitncepts of eigenvalues and eigen-
vectors that are derived from the dependence structuré®girbgram. For the class of programs
considered in this paper, our method has two major advasitags the previous work discussed
above. First, our method dispenses with an expensive umigation process and contains a pro-
cedure for generating parallel code wWiOALL parallelism. Second, our method can find more
parallelism than any existing method that first uniformites dependences in the program and
then executes the uniformed program by applying a hypeept@ased unimodular approach.

1

An example is used below to illustrate our method and compavith the two methods pre-
sented in[11, 12].
Example 1 Consider the following double loop from [11] wheMewas set to 5:

for (ji=1; j1 < N; j1++)
for (jo = 0; jo < N; jo ++)
A(341,352) = 2 x A(j1, J2)

Figure 1 shows the iteration space along with all data degrerebs between every pair of dependent
points. In [12], this program is first uniformised and thengbelised using hyperplane-based
loop transformations. The uniformised program has the stenation space with two constant
dependence vectolg, 0) and (0,1). The scheduling vector for optim&lOALL parallelism is
(1,1), requiring2N — 1 steps. This corresponds to wavefronting the iterationepdang(1, 1).
If the two dependence vectof8, 2) and(2,0) are used instead as suggested in [11], the optimal
scheduling vector i€, 0), reducing the run time tpN/2] steps. This corresponds to wavefronting
the iteration space along the directi¢2 0), with two consecutive “waves” being executed in
parallel.

Using the method of this paper, we build a matkirom the array subscripts:

30
b= 0]
D has one eigenvalue 3 with two associated eigenve¢tofy and(0,1). In the iteration space,
all points in a vertical line parallel to the eigenvect0r1) are independent. Thus, the outer loop

can be made BOALL loop immediately. But our method can detect more paratteasd produce
the following parallel code:

for (t =1;t < N; t = 3t)
forall (j; = 1; j; < max(3t — 1, N); j; ++)
forall (j5 = 0; 74 < N; jh ++)
A(371,375) = 2 % A(41, J3)

As depicted in Figure 1, we execute in parallel, the two lifles= 1 andj{ = 2, then the lines

ji = 3toji = 8, then the lineg; = 9 to j; = 26, and so on. In general, we execute in parallel at

stept = call lines fromy; = 37! to j; = 3¢ — 1. The number of lines executed at one iteration of

loopt triples at the next iteration. Thus, the scheduling latesfayur parallel code i$log; N | +1.
(End of Example)

The rest of this paper is organised as follows. Section 2ritescthe program model and our
formalism for characterising the data dependences in a@mogSection 3 presents our method
for parallelising loops with affine dependences and algesthe major limitations of our method.
Section 4 discusses the related work. Section 5 concluégsaer.

2

» 71 (1)

N 7 N\ ~ A -~ o

Figure 1: Eigenvectors-based parallel execution of ExariflV = 18).

2 Program Model

Z and @ denote the set of integers and rationals, respectively. $&e>u and < to represent
the lexicographic order operators “larger than” and “Iéssit, respectivelyl denotes the identity
matrix.

The following lemma states some useful facts about eigapgadnd eigenvectors.

Lemmal LetA € Q**". LetP € Q" " be nonsingular.PAP~! and A have the same set of
eigenvalues. I is an eigenvector afl associated with the eigenvaliethenPv is an eigenvector
of PAP~! corresponding to the same eigenvalue

This paper considers doubly nested loops of the followimgfo
for (j1 = £1; j1 < wy; J1 ++)
for (jo = la; jo < ug; Jo ++)
A(u(5)) = f(A@(3)),)
In the loop body; = (41, j2) is a point in thateration spacewhich is the set of points satisfying
J = (4 < 51 < up Ay < jo < ug) andy andv are affine functions of loop variables:

p(i) = Uj+u

v(ij) = Vji+vw

whereU, V € Z*** are nonsingular and, v € Z* are two-dimensional integer vectors.

The two array references in the program can access the semerdl of A at two different
iterations. Thus, there is a dependence between pand pointé(j) (if such a point is in the
iteration space) such thé¢j) = v=!(u(j)). Thus, we have the followindependence function

5(j) = [01(9) } =V WUj+V (p—v)=Dj+d
d2(7)

whereD is called thedependence matrixSinceU andV are nonsingularD is nonsingular. The

following relative dependence functiatescribes both the distance and direction of the depen-

dences between the two pointandd(j):

o) = |20 = a5 = (D-Dj+a

Let us relate our dependence abstraction with the traditidependence vector abstraction
[14]: p(j) is aflow or true dependenceriginating atj and sinking av(j) if p(j) > 0 and an
anti-dependenceriginating aty(;) and sinking ay if p(j) < 0. If p(j) > 0, 6(j) is said todepend
on j and this dependence is characterised by the dependenae yeot If p(j) < 0, j is said
to (anti-) dependbn §(j) and this dependence is characterised by the dependence vec}).
When dependences are drawn in the iteration space, a flomdepee is drawn with a solid arrow
and an anti-dependence with a dashed arrow. In both cagepptht at the arrow head always
depends on the point at the arrow tail. Thus, all dependeec®rs drawn in the iteration space
are lexicographically positive.

According to the lexicographic sign of j), the iteration space can be divided into the follow-
ing three regions (each of which may be empty):

Je = TNAp(d) =0 =TA(pi(j) >0V pi(j) =0A pa(j) > 0)
J. = TAp(G) <0 = TA(p1(j) <0V pi(j) =0A p2(j) <0)
Jo = TNAp(j)=0= TN pi(j) =0Apa(j) =0

The following lemma identifies the nature of dependencewdsst the three regiong,, J_
and .7, and provides an ordering to schedule them for parallel ei@tu

Lemma 2 The following properties abouf, , 7_andJ, can be observed:
(a) Every dependence vector contained/inis a flow dependence.
(b) Every dependence vector contained/inis an anti-dependence.

(c) Every dependence vector (flow or anti) that conngttsand 7_ originates from/7, and
sink at.7 .

(d) All points of7, are independent of each other and of the pointginand 7 _.

Proof. The first two properties follow directly from the definition$.7, and.7_, respectively.
The third property follows from the definitions ¢f,, J_ and the dependence vectors introduced
previously. For every € 7., we havei(j)—j > 0. This dependence originates frgfih and must
sink at7_ if it spans the two regions. For evefye J_, we havej(j) — j < 0. This dependence
sinks atJ_ and must originate frony/, if it spans the two regions. For the fourth property, let
us prove that7, is self-dependent. It is obvious thét7;) C J, since for allj € J, we have
d(j) = j. Moreover forj € J such that(j) € Jy, we havep(d(j)) = 0, which is equivalent to
(D-I)(Dj+d)+d=D?j—Dj+Dd—d+d= D*j — Dj+ Dd = 0. SinceD is nonsingular,
we obtainDj — j+d = (D — I)j +d = p(j) = 0. Hencej € J,, which impliess— () € Jo.
Adding this result to the fact that, by construction, a paht7, is only dependent on itself, the
fourth property has thus been established.

In fact, J, contains all fixed points to the equatipiij) = 0. If D — I is nonsingular,7,
contains the singletop = (D — I)~'d if j € J and is empty otherwise. D — I is singular,
there are three cases. lf = I, J, = J if d = 0 and is empty otherwise. ID # I andd is
linearly dependent on the two columnsBf— I, thenJ, contains all ponts on the ling (j) = 0
(or equivalentlyp,(j) = 0). Otherwise,7, is empty.

Let us use an example to illustrate the concepts introduaddrs This example will also be
used for illustrations in the remaining part of the paper.

Example 2 Consider a double loop:

for (j1 = —N; j1 < N; ji ++)
for (jo = —N; jo < N; jo ++)
A(4j1 + 472 — 3,51 + 3j2) =2 % A(J1 + J2, Jo + 1)

R
-]

5(j)=Dj+d=[§’ ;]w[:?:

The array subscript functionsandv are:

W) = Uit = |

—— o

v(j) = Vi+v = [

)
L

The dependence functians:

The eigenvalues @b are 2 and 4, corresponding to the eigenvedtors-1) and (1,1), respectively.
The relative dependence functipns:
. -2
o=

2
1

[N

pi) = (D=Dj+d = |

5

p1(j) =0 J2

P>
Jo

o/o o oo
0000

°
] °
o\ °
SELAN ¢
o

7
oo/p@®oo
Y
@ o000

oo @ oflo oo
o ¢!
?/9

0= © =O= © =0=G

O 000 O0O/0O p OOO

o

o

(¢]

(¢]

o

®

> &
)]) O

\

o
Q 0goO0 Oy

\

Q ©
é\

\ \

O 0 Q@ O @
\

\

N
N

O

o ovo o

¢ o
00 o'a *tQ

N
&0 0 O Q\@

0Q000O0O0O0O0Q
oolQogoooo

o o oY o
oo q o

b odo

Figure 2: The iteration space of Example/2 & 10).

The two linesp;(j) = 0 and p,(j) = 0 separate the iteration space into the three non-empty
regions7,, J_andJ,, as depicted in Figure 27, = {(1,0)}, andJ, has both flow dependences
and anti-dependences originating from it and terminating a (End of Example)

3 Eigenvectors-Base®OALL Parallelisation

First of all, we state the two major limitations of our method

1. D must have rational (non-real) eigenvaluensuring that the corresponding eigenvectors
are integer vectors and can be used to gen®@iklLL parallelism.

2. D must be nonsingulaimplying that bothJ andV” are nonsingular. In this case, every array
element is read (or written) at most once. Thus, the depeedemctiond(j) = Dj + d
captures all dependences involving betfu(j)) andA(v(35)).

Next, we provide an outline of our method and highlight orféedence between our method
and the unimodular approach. Asxecution orderingz is a partial order on the iteration space
J, wherep < ¢ means that iteratiop is executed before iteratian An execution ordering for a
program idegal if it preserves the data dependences of the program. In wthels, any ordering

6

that does not schedule an iteration before all its depentirations have been executed is legal.
In our formalism, this idea translates into the followindidiion.

Definition 1 (Legality of Execution Ordering) An execution orderings on 7 is legal if V j €
Jy:j<d(j)andVje J :6(j) <.
To generat®OALL parallelism from a program, we proceed as follows.
1. We apply a unimodular transformation to the iterationrcep@ection 3.1):
T:J — J', wherej =Tj
such that in théransformed spacg’’, the dependence function becomes:
o) = D +d
whereD' is lower triangular. Unlike the unimodular approahysually does not preserve
the data dependences of the program in the traditional §éds@. 345]. In other words,

Tp(j) (=Tp(y)) for a dependence vectpfj) (—p(j)) such thatj € J, (j € J.) can be
either lexicographically positive or negative.

2. We analyse the data dependences in the transformed suhdetact the parallelism inherent
in the original program (Section 3.2).

3. We generate the parallel code of the form (Section 3.3):

PAR
code(Jp)
SEQ (1)

code(7})
code(J")

where the two constructBAR and SEQ are borrowed fronOccam [10]. The order for
executing the three regions follows from Lemma 2. The panfitg, are independent, so
code(Jo) will not be discussed any further. In Section 3.3, we deschibw to construct
code(J1) andcode(J') with explicit DOALL parallelism while preserving the data depen-
dences of the original program.

Theorem 1 The execution ordering induced by the code in (1) is legal ¥ j' € 71 : j' < '(5')
andV j' € J':46'(5') < 4.

Proof. Follows from the fact thal” is nonsingular and Definition 4.

Example 3 Consider Example 1 agairD is already lower triangular. With" = I, J| = J, =
J,J =J =0andJ; = J, = 0. By Theorem 1, any execution ordering gf is legal as long

as every iteration’ = j is executed beforé (') = §(j). The parallel code in Example 1 can be
generated using the method to be described in Section 3.3.1. (End of Example)

7

3.1 Loop Transformation: Triangularisation

In this section, we present the technique used to transfoenitération space in order to have a
lower triangular dependence matrix.

Let T" be a unimodular transformation from the original iteratspace to the transformed
space. Thus the pointin the transformed space j$= T'j. The new array subscript functiops
and/ are:

O = VTG = T WTY) = TETY)
In the case of affine dependencies, we have:
§'(j) = D'j'+d = TDT 'j +Td
and the relative dependence function becomes:
PG = (D=-Dj+d = (ITDT'-1)j+Td

In the transformed space, the two lines separating it intotkinee regions7;, J' and J, of
different lexicographic signs become:

pi(TY) = 0
p2(TY") = 0

Based on the eigenvalues and eigenvector3,afre provide a constructive approach to finding
a unimodular transformatidfi such thatD’ = TDT~! is a lower triangular matrix.
Let us recall the following result from linear algebra on ahhbur method is based.

Theorem 2 Let \; and)\, be the two rational eigenvalues &f, andv; and v, be the two cor-

responding integer eigenvectors. Let= ged(ve1,v00). LetT™! = [Z 22’1%} such that
2,2
AL 0}

C)\2

The eigenvectow, in this theorem is called thgarallelising eigenvectorOur intention is to ex-
ecute in the iteration space concurrently all points in a parallel tov,. In the transformed space,
vo becomed'v, = (0, 1). Therefore, we are essentially attempting to execute inréresformed
space all points in a vertical line in parallel. This corm@sgs to wavefronting the transformed
space along the directioas(1, 0).

det(T) = (avgp — bvyy)/g = +1. ThenD' =TDT ! = [

0.0.0.0.0-G0 0 00000 Sy et . o
&30003\0\0&000 pl(T])_2.71+.72_2_0
SN & Q 0 D ONQ 0 pQ(T—lj') =j—j4—1=0
0 0 ®Y o0 o:o.\o\s
TN 07 ={AX,B
0 oo~ e IV T4 {4, X, B}
p 07! ={C,Y,D}
00G6QoOY® -
00 oo~ * 7' = {(1
0 0% X = {(01,0)

=~ \$;$;;§ !

Figure 3: Transformed space of Figure/2 & 10). The division of the transformed space into six
regionsA, B, X, C, D andY as highlighted will be explained in Section 3.3.1.

Example 4 Continuing from Example 2, we choosk —1) as the parallelising eigenvector:

o 1o
r-r = [y] @
The new dependence function is calculated to be as follows:
v 4 01 , -3
The new relative dependence function becomes:
N 301, -3

Figure 3 depicts the transformed space of the originaltitavaspace in Figure 2. Unlike the
traditional unimodular approach, some dependences imghsformed space are lexicographically
positive and some can be negative. (End of Example)

3.2 Parallelism Detection

In this section, we analyze the cross-iteration dependsricithe transformed space and detect the
parallelism inherent in the program. We shall make use ofittgendence function and relative

9

dependence function in the transformed space:
. 5’(;")} [,\1 0]_, [d’]
5/ ! — 1 g — ,1
" = |40 ¢]’
)] _[M-1 0 L[d
IS ¢ nmo1 |7 T

Theorem 3 Let L be a line parallel to an eigenvectorof D'. The set of points depending on any
point of L, is on a line,L,, parallel to L.

Proof. Let p andg be two points of the lind,;. Let the corresponding dependent poifi{p) =
D'p+ d" andé’(¢) = D'q + d’' be on alinel,. Let L, be parallel to the eigenvectorof D', with
eigenvalue\. Thus we havep — ¢ = av, wherea € Q, andd’(p) — 0'(¢) = D'(p — q¢) = D'av =
Aav, implying thatL; and L, are parallela

This theorem suggests the following parallelization of tfa@sformed space. All points on a
line parallel to an eigenvector are executed concurrethidy) all points on the next line parallel to
the same eigenvector are executed concurrently, and solos .eifjenvector is referred to as the
parallelising eigenvector in Section 3.1. By using hén Theorem 2 to transform the iteration
space, we have implicitly assumed to usen that theorem as the parallelising eigenvector. In
the transformed space, becomes'v, = (0,1). Thus, our intention is to execute all points in a
vertical line in parallel.

A vertical line is called aself-depender(wvertical) line if all points on the line depend only on
the points on the same line.

The following theorem characterises all self-dependertica lines in the transformed space.
This is a special case of Theorem 3 whiepand L, are co-linear (i.e., happen to represent the
same vertical line).

Theorem 4 Consider the transformed space. Mf # 1, ji = —/\flil is the only self-dependent

vertical line. If\; = 1, all vertical lines are (not) self-dependent whén= 0 (d} # 0).

Proof. Follows from the fact that the first component of every degewe vector i (j') =
(M = 1)1 +dyinJp andis—p) (5') = =((A = 1)j1 +dy) In T .

When); # 1, there is only one self-dependent vertical lje= —%. For the two dependent
pointsj’ andd(j') that are not on the self-dependent line, the signofletermines whether the
two points are simultaneously on the same side of the spugent line and the magnitude of
|A\1| determines which of the two points is further away from thie-dependent line. These two
facts, summarised in Theorem 5, can be deduced from thenvioliptautology:

dy
A —1

dy
M1

(Mjy +dy) + = M+ (5)

10

where the left-hand side represents the distance #i@pi) = 7] + d} to the self-dependent line
Jji = —/\f”il and the right-hand side represents the distance fioto the same self-dependent

line.

Theorem 5 Assume\; # 1. Letj’ be a point in the transformed space not on the self-dependent

line 5} = —/\fl_l. The following two statements are true:

& 7 if Ay > 0 and on the opposite side

1. j/andd’(j') are on the same side of the lipg= —~1

of the linej} = — ;%5 if Ay < 0.

dy

2. 6(4') is further away from the self-dependent lijje= — 15

thanj’ if and only if|\;| > 1.

We do not consider the case whén = 0 because it implie® is singular. In this case, all

dependences originating at one side of the jine- —Afl'il sink on the line.

3.3 Loop Transformation: Parallelisation

In the previous section we introduced parallelism detectexhniques to identify sets (or lines)
of independent iterations. In this section we use thesentqubs to generate code with explicit
DOALL parallelism to execute the transformed space. Specifioatydiscuss how to construct
code(J}) andcode(J') as given in the parallel code template (1).

Our objective inDOALL parallelisation is to execute in the transformed space ay mettical
lines in a single step as possible. Based on Theorem 5, wiegligth a total of six cases: (1)
M>1L,20< M <,B®NM=1,@NN<-1,5-1< X <0,and (6)\; = —1. The
sign of \; determines how the transformed iteration space is parétiand the magnitude 0X; |
determines the order in which the vertical lines in a panitre executed.

3.3.1)\1 >1

An example is used to illustrate the basic idea only. Comgiake transformed space depicted in
Figure 3 from Example 4. The dependence function in the toamed space is given in (3). When
A1 > 1, Theorem 4 suggests that there is only one self-dependenainong all vertical lines. In
the current example, the self-dependent ling is- 1. Depending on whether a point is in the half
spacej; > 1, on the lingj; = 1, or in the half spacg; < 1, we divide 7. (J') into the three
regionsA, B andX (C, D andY), as illustrated in Figure 3.

By Theorem 5(a), the three regiods B and X that partition7; are mutually independent.
By Theorem 5(b), all (flow) dependences are pointing awamftioe self-dependent line. In our
formalism, for everyj’ in A (B), the corresponding dependéfit;’) is farther away from the self-
dependent line. This suggests the following parallelsaicheme. We execut by running in
parallel, first lines frony; =, =2 up to but excluding] = t; * A\; —d| =2+ 4—-3=t,=5, then

11

lines fromj| =t, =5 up to but excluding] =ty x A\; —d} = 5x4 — 3 =17, and so on. Similarly,
we execute3 by running in parallel, first lines fron = 0 up to but excluding] =0 % 4—3=—3,
then lines fromj; = —3 up to but excludingi; = —3 x4 — 3 = —15, and so on. The idea of
parallelising 2-D spaced and B generalises to 1-D spaces such¥asWe executeX by running
in parallel, first point(1, 1), then pointq1, 2) and(1, 3), and so on.

code(J}): PAR
code(A): for(t=2; t <2N; t =4t —3)
forall (j1 = t; j1 < min(4¢ — 4,2N);]1 —I——l-)
forall (j5 = max(—2j1 +2,—N); jp < —ji + N; jj ++)
A(477 — 3,51 — 245) = 2% A(j1, —js + 1)
code(B): for(t=0;t> 3’2N]; t=4t—3)
forall (j1 = #; ji > max(4t —2,[235%]); ji ——)
forall (jy = —2j1 + 3; j5 < N; jy ++)
A(477 — 3,51 — 245) = 2% A(j1, —js + 1)
code(X): for(t=1;t<N;t=2t) /xj=1x/
forall (54 = t; j4 < min(2t — 1, N); 55 ++)
A(l, 1-— 2]2) = 2% A(l —j2 + 1)

The step size of loopis ¢} (t) in bothcode(A) andcode(B), anddy(t) in code(X).

J' is parallelised in the same way &%, except that in the regiors and D, the vertical lines
farther away from the self-dependent liffe= 1 are executed earlier, and ¥, the points farther
away from(1,0) are executed earlier.

code(J') : PAR

code(C) : for (t = L%J, t>2 t= L%J)
forall (41 ='t; 1 > max([2] +1,2); 7 —-)
forall (jb = —N3 j < 1 2413 7} +4)

N

A(4jy — 3,51 — 243) =
code(D) : for (t = —2N; t < 0; t = [H3]
forall (51 = t;]1 < min(T3'| 1,0); j1 ++)
forall(jéz 71— N3 jg < min(— 2J1+2 N); jg ++)
A(441 - 3,11 2]2) =2xA(j1,—Jj3 +1)
code(Y): for(t=—-N;t<—1;t=1[L]) /4 =1%
forall (j4 = t; j, < min([4] —1,-1); j} ++)
A(1,1 —255) =2 A(1,—j5+ 1)

2
*A(jla .72 + 1)
)

OJ

The step size of loopis 6, *(¢) in bothcode(C) andcode(D), ands,, *(¢) in code(Y).
Unlike the existing unimodular approach [6, 13, 14], ouregigector-based method schedules
far more hyperplanes of iterations of logjpfor concurrent execution.

332 0<)\ <1

This is the opposite of the case wh&n> 1 in the sense that, by Theorem 5(b), all flow depen-
dences in7. are pointing toward the self-dependent lij}

12

in J' are pointing away from this line. Thug} (') in this case can be parallelised in the same
way asJ’ (J}) in the case when; > 1.

Consider a double loop derived from Example 1 with the tweneices swapped. The depen-
dence function is the inverse of the one in Example 1:

5(j) = Dj+d = [1(/)3 193}34[8}
D has one eigenvalui/3 with two associated eigenvectdps 0) and(0, 1). We can calculate that
Jr=0,J =JandJ, = 0. WithT = I, J' = J' = J. The parallelisation of/’ in this case
is the same ag} in the case when,; > 1 as discussed in Example 1. For this particular example,
the same code as in Example 1 is produced.
As a second example, consider a double loop derived from Bkahwith the two references
swapped. The dependence function is the inverse of the daeample 2:

5(j) = Dj+d = [_i’g —éég]ﬁ[?g}

D has the eigenvaluey/8 and4/8, corresponding to the eigenvectdis1) and(1, —1), respec-
tively. With the saméd” as in Example 4, we obtain the dependence function:
oo owaoa[2/8 07, 6/8
o) = pied = [e |+ S
in the transformed space as in Figure 3. &B8de(J) (code(J’)) in this case is the same as the
code(J}) (code(J")) for Example 2 but with loop reversed and loog modified accordingly.

333 A =1

We havep|(j') = (A — 1)j1 + d} = d}. We distinguish two cases by generating olREALL
parallelism ifd; = 0 and inneOALL parallelism ifd} # 0.

The analysis of both cases are based on Theoremd. # 0, all dependences in the trans-
formed space are of the for(0,). Thus, all vertical lines in7; (J') can be executed indepen-
dently of each other. A vertical line can be further parakd just like howX andY in Figure 3
are parallelised.

If d} # 0, all (flow) dependences iff} have the form(d’, +) while all (anti) dependences in
J' have the form(—d}, x). We can generate inn®OALL parallelism by wavefronting7; (J”)
along direction(d}, 0) ((—d}, 0)) with |d} | consecutive lines (or waves) being executed in parallel.

Example 5 Consider the following example from [12], wheMwas set to 1000:

for (i =1; j1 < N; j1 ++)
for (jo =1; jo < N; jo ++)
A(j1+ j2, 31+ J2+3) =2% A(j1 + jo + 1, j1 + 252 + 4)

13

p1(j) = —2j1+jo—1=0

‘72\ O 0 O
O 0 O ®
O 0 O
0 O 0 O © 7
o 0 O Jo=10
O 0 O0O0O0O0
J1

Figure 4: The iteration space of Example 5.

The dependence function is:

. -1 1. -1
O R PR

The two eigenvalues ab are 1 and —2, corresponding to the eigenvectdrs —1) and (1, 2),
respectively. Sincé — [is singular andank(D — I,d] = 2, we haveJ, = (). As shown in
Figure 4,7, contains all iterations in the half spaggj) = —2j; + j» — 1 > 0, andJ_ contains
all iterations in the opposite half spaggj) = —2j; + j» — 1 < 0 (Figure 4).

With (1, —1) chosen as the parallelising eigenvector, we applyltigdven in (2) to transform
the iteration space. The dependence function in the tremsfi space as shown Figure 5 is:

- [3 8][4

We parallelise7| andJ' by wavefronting them along-1,0) and(1, 0), respectively:

code(J}): for (ji = [252]; 41 > 55 jf ——) ,
forall (j, = max(1 — j{,—N); jb < [=2=2]; j) ++)
A3, 351 + 25 +3) = 2% A(jl + 1,54 — jb +4)
code(J') = for (1 = 2; ji > 2N; 51 ++)
forall (j5 = max(1 — ji, Fz’é’lh —N); jy < min(—=1,N — j1); j5 ++)
A3, 351 + 25 +3) = 2% A(jl + L, 44 — j5 +4)

(End of Example)

By Theorem 4] = —% is the only self-dependent vertical line. Lgt= a be the vertical line
closest tgj] = —Af”il such thata — Al‘i'11| is an integer.

14

p1(T7Y5") = =24, —3j5—1=0

7
® 7
C 7
Jo=10
O

Figure 5: The transformed space of Figure 4 using (2).

To parallelise7;, we divide it into two regions:A contains the points off = —

B contains the points not off = —Afil. By Theorem 4,A and B are independent. By Theo-
rem 5(a), all dependences I cross the self-dependent ligk = —/\fil. By Theorem 5(b), all
(flow) dependences are pointing away from the self-depérishen The parallelisation oB is the
following. At any single step we execute in parallel twossrof vertical lines that are symmetrical
with the linej| = — %

A1—1°

. _d’
Step 1: (G,Al)\1 1 —a —)\1,_1 [(J/ -)\111, _G/Al A — 1)
Step 2: (—aA] — 25,0\ — ,\1;1 [—aM _d’ QAT — 1,1 i)
Step 3: (a\} — —GAQ nog) [ed — 5, —aAd - . 1)

where(a, b] ([, b)) denote all vertical lineg; = x such that: is an integer within the range.

To understand this, consider an example where- —3 andd’; = 0. The self-dependent line
is j; = 0. We shall parallelisé3 by executing in parallel, first lineg = —2,—1,1,2, then lines
ji=-8,--,-3,3,---,8,and so on.

J' is parallelised in the same way except that the order forgkeg the above strips is re-
versed.

Example 6 Consider Example 5 again. We can execute the program in tteps if (,2) is
selected as the the parallelising eigenvector. The matis

e[2] - 0]

The dependence function in the transformed space as shdvigure 6 is:
te ot _ -2 0 . 2
- [2 8]+

15

pU(TLf') = i —1=0

|
O 00O OO0 |
O 00 0O i
o o | ® 7
:1 C
)Q‘\\ Jo=10

|
The self-dependent ling =2/3 i

Figure 6: The transformed space of Figure 4 using (6).

The self-dependent line j§ = 2/3, which does not contain any iterations.

J. is contained in the half spagé > 2/3. All its points are independent, since any dependent
points onJ| must be on the opposite half spage< 2/3 by Theorem 5(a). The self-dependent
line j; = 2/3 divides.J' into two regions: the points on the liné = 1 and the remaining points
of J'. We can executg’ in two steps, with those not on the lig= 1 executed in the first step
and those on the line in the second step.

In the original iteration space (Figure 4), this correspotalexecuting the points in the half
space—2i + 7 — 1 > 0 in the first step, the points in the opposite half spa@eé+ j —1 < 0in
the second step, and the points on the 2 + j — 1 = 0 in the third step. This is considerably
better than the scheme suggested in [12]. End of Example)

335 -1 <A <0

This is opposite of the case whan < —1 in the sense of Theorem 5(b). 3@ (J') in this case
can be parallelised in the same way#Ag(7) in the case when; < —1.

336 A\ =-1

By Theorem 4, the only self-dependent lingjjs= d|/2. Every lineji = a is inter-dependent
only on the lingj{ = d} —a symmetric about the lingd = d; /2 (a corollary of Theorem 5(a) when

A1 = —1). We can generate outBXOALL parallelism by executing every such a pair in sequence
and all these pairs in parallel.

16

4 Related Work

There has been a great deal of research on applying loopdraraions to optimise loop-oriented
programs to expose parallelisim or otherwise improve datality. These programs typically
spend a considerable amount of time operating on arrayom hnests. Unimodular loop trans-
formations [1, 6, 14] can be used to transform a loop nest sighthe transformed program
consists of a sequential loop nest followed by a sequend&QOALL loops. In its full general-
ity, the unimodular approach works only if all dependengeshie loop nest are constant (i.e.,
D = U =V = I in the notations of this paper) [13, 16]. In the case of affiapahdences, there
are two parallelisation strategies. One approximatesftirealependences with constant depen-
dences and then applies the unimodular approach [16]. e mitroduces constant dependences
to uniformise a loop nest so that the uniformised progranmbesfurther parallelised [9, 11, 12]. In
both cases, the artificial dependences introduced mayraamgte amount of parallelism inherent
in the original program.

The problem of transforming affine dependences into cohgigpendences has been the sub-
ject of study for many years in the systolic array commurtyd, 15]. However, the focus there is
to find a time schedule and a processor allocation so thatrtaktfansformed program represents
a systolic array. This transformed program consists ofré&gdly a sequential loop followed by a
sequence dDOALL loops [4, 7].

The problem of parallelising the class of programs considén this paper has been studied
by several researchers [3, 5, 11, 12, 17]. Tzen and Ni [12)gse a dependence uniformisation
technique and an index sychronisation scheme to reduceytiehr®nisation overhead. How-
ever, the artificial dependences they introduce can cangtra amount of parallelism inherent in
the original program. For example, our parallelised progsbown in Figure 6 for Example 5
runs in three steps while theirs requires index synchrtinissito be executed inside the outer
DOACROSS loop. Chen and Yew [3] later improve the dependence unifeation technique so
that more parallelism can be extracted. However, the adlifdependences they introduce still
reduce the extractable parallelism in the original progr&mang, Hodzic and Chen [11] first uni-
formise the program and then find an optimal time schedulongte uniformised program. In
comparison with the unimodular approach, they can use rharedne wavefront to parallelise the
uniformised program. Zaafrani and Ito [17] divide the iteya space into two parallel regions and
one sequential region according to the dependences of tigggmn. The amount of parallelism
exposed is limited by the sequential region. All these mashexcept [11] characterise the depen-
dences of the program by their convex hull and attempt taekars much parallelism as possible
from the program. Finally, Ju and Chaudhary improve all¢frasthods by identifying more paral-
lel regions based on a more precise charaterisation of thedeépendences. Unlike these previous
methods, our method is centered around the concepts ofveigens and eigenvalues. For the

17

class of programs considered in the paper, we can discovex pavallelism than these previous
methods in such a way that progressively more wavefrontbeaxecuted in parallel.

5 Conclusion

In this paper, we studied how to detect and exploit the parsth inherent in nested loops with
affine dependencies. We showed how to generate coarseagrdifine-grain parallelism based
on the concepts of eigenvalues and eigenvectors derived tihhe dependence matri® of the
program. If D has an eigenvalug:-1, the outerDOALL parallelisation is possible, making this
technique appropriate for MIMD machines. Ilif does not have an eigenvaldd, the inner loop
can always be ®0ALL loop. Thus this technique is appropriate for VLIW or supatac ma-
chines. In general, our method discovers far more parsthethan any existing hyperplane-based
unimodular approach.

The methodology outlined in this paper generalises dyectin-dimensional nested loops.
One future work is to extend our method to handle the case seiiral pairs of references. An-
other future work is to take into account architecture-aelemt details such as communication and
synchronisation costs when parallelising a program.

6 Acknowledgements

Thanks to the referees for their constructive commentss Wairk is supported by an Australian
Research Council Grant A10007149.

References

[1] U. Banerjee.Loop Transformations for Restructuring Compilers: The idation Kluwer
Academic Publishers, 1993.

[2] U. Banerjee.Loop Parallelization Kluwer Academic Publishers, 1994.

[3] D.-K. Chen and P.-C. Yew. On effective execution of nanform DOACROSS loopslEEE
Trans. on Parallel and Distributed Systeni$5):463—476, 1996.

[4] P. Feautrier. Automatic parallelization in the polyeomodel. In G. R. Perrin and A. Darte,
editors, The Data Parallel Programming Modelecture Notes in Computer Science 1132,
pages 79-103. Springer Verlag, 1996.

[5] J. Ju and V. Chaudhary. Unique sets oriented paraltsbzaf loops with non-uniform de-
pendencesThe Computer Journa#t0(6):322—-338, 1997.

18

[6] L. Lamport. The parallel execution of DO loopS8omm. ACM17(2):83-93, Feb. 1974.

[7] C. Lengauer. Loop parallelization in the polytope modkl E. Best, editorCONCUR’93
Lecture Notes in Computer Science 715, pages 398-416.depnferlag, 1993.

[8] G. M. Megson and L. Rapanotti. Uniformization technigder reducible integral recurrence
equations. IrAlgorithms & Parallel VLSI Architectures lllpages 283—-296. Elsevier Science
Publishers B. V., 1995.

[9] P. Quinton and V. van Dongen. The mapping of linear resure equations on regular arrays.
J. VLSI Signal Processing(2):95-113, Oct. 1989.

[10] A. W. Roscoe and C. A. R. Hoare. The lawsoaicam programming.Theoretical Computer
Science60(2):1771ff., 1988.

[11] W. Shang, E. Hodzic, and Z. Chen. On uniformization dhafdependence algorithm&EE
Trans. on Computergl5(7):827-839, Jul. 1996.

[12] Ten H. Tzen and Lionel M. Ni. Dependence uniformizatiérioop parallelization technique.
IEEE Trans. on Parallel and Distributed Systemé5):547-558, May 1993.

[13] M. E. Wolf and M. S. Lam. A loop transformation theory aad algorithm to maximize
parallelism.IEEE Trans. on Parallel and Distributed Systergét):452—-471, Oct. 1991.

[14] M. J. Wolfe. High Performance Compilers for Parallel Computingddison-Wesley, 1996.

[15] Y. Wong and J. M. Delosme. Transformation of broadces{gropagations in systolic algo-
rithms. J. Parallel and Distributed Computing 4(2):121-145, Feb. 1992.

[16] Y. Q. Yang, C. Ancourt, and F. Irigoin. Minimal data dewence abstractions for loop
transformations. Irvth Workshop on Languages and Compilers for Parallel Comgut
Ithaca, Aug 1994.

[17] A. Zaafrani and M. Ito. Parallel region execution of psowith irregular dependences. Iht.
Conference on Parallel Processingages 11-19, 1994.

19

