Exploiting Loop-Dependent Stream Reuse for Stream
Processors

Xuejun Yang, Ying Zhang, Jingling Xuet, lan Rogers:, Gen Li and Guibin Wang
School of Computer, National University of Defence Technology, ChangSha, China
1The University of New South Wales, Sydney, Australia
1The University of Manchester, Manchester, UK

{xjy, zhangying, genli, gbw}@nudt.edu.cn

jingling@cse.unsw.edu.au

ABSTRACT

The memory access limits the performance of stream proces-
sors. By exploiting the reuse of data held in the Stream Reg-
ister File (SRF), an on-chip storage, the number of memory
accesses can be reduced. In current stream compilers reuse
is only attempted for simple stream references, those whose
start and end are known. Compiler analysis from outside of
stream processors does not directly enable the consideration
of other complex stream references. In this paper we propose
a transformation to automatically optimize stream programs
to exploit the reuse supplied by loop-dependent stream ref-
erences. The transformation is based on three results: al-
gorithms to recognize the reuse supplied by stream refer-
ences, a new abstract expression called the Stream Reuse
Graph (SRG) to depict the reuse and the optimization of the
SRG for the transformation. Both the reuse between whole
sequences accessed by stream references and that between
partial sequences are exploited in the paper. In particular,
the problem of exploiting partial stream reuse does not have
its parallel in the traditional data reuse exploitation setting
(for scalars and arrays). Finally, we have implemented our
techniques using the StreamC/KernelC compiler for Imag-
ine. Experimental results show a resultant speedup of 1.14
to 2.54 times using a range of typical stream processing ap-
plication kernels.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors, Compilers;
D.3.2 [Programming Languages|: Language Classifica-
tions, Specialized application languages

General Terms

Algorithms, Design, Management, Performance, Experimen-
tation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PACT’08, October 25-29, 2008, Toronto, Ontario, Canada.

Copyright 2008 ACM 978-1-60558-282-5/08/10 ...$5.00.

ian.rogers@manchester.ac.uk

Keywords

Stream Programming Model, Stream Professor, Stream Reg-
ister File, StreamC, Stream Reuse

1. INTRODUCTION

In the past with increasing clock frequencies, and now
with an increasing number of cores, processing power is dou-
bling every eighteen months. Memory access times have also
been increasing but at a slower rate, leading to what has be-
come to be known as the memory wall [28]. Architectural
and software techniques, including reusing data on-chip and
prefetching to hide long memory latency, have been applied
to relieve the memory wall. The research of advanced pro-
cessors now focuses on two ways: developing multi-core as
well as multi-thread processors of conventional architectural
models, and developing stream processors of novel architec-
tural models, such as Imagine [14], Merrimac [9], Cell Pro-
cessor [13], RAW [26] and FT64 [30]. Much research has
been into reusing data on-chip of a conventional architec-
tural model [3, 5, 18, 6, 24, 17, 29]; however, research into
reusing data on-chip of a stream processor is a less mature
research area.

1.1 Stream Processing

Strelam Network Interface
Controller

I ALU cluster 1 I
ALU cluster 2

ALU cluster N

Stream processor
(b) A stream processor

OWIA

0M}AU

X
ng)gn[o-mml

5

Stream Program
Z»>mIwn

A1

I3[[01U0))

(a) Programming model

Figure 1: Stream processing.

The stream programming model [25, 15, 14, 30, 4, 9],
shown in Fig. 1(a), divides an application into a stream-level
program and one or more kernels that define each processing
step. The stream-level program declares the streams and de-
fines the high-level control- and data-flow between kernels.
Each kernel is a function that consumes and produces ele-
ments from streams. A stream is a sequence of data records.

Popular languages implementing the stream programming
model include StreamC/KernelC [23, 19] for Imagine and
Merrimac processor [9], Brook [4] for GPU and SF95 [30]
for FT64 processor. These languages can also be used to
develop stream programs for Cell Processors [13]. All these
stream architectures have the characteristic of SIMD stream
coprocessors with a large local memory for stream buffer-
ing. Fig. 1(b) shows a simplified diagram of such a stream
processor. A stream-level program is run on the host while
kernels are run on the stream processor. A single kernel that
operates sequentially on records of streams is executed on
clusters of ALUs, in a SIMD fashion. Only data in the local
register files (LRFs), immediately adjacent to the arithmetic
units, can be used by the clusters. Data passed to the LRF's
is from the Stream Register File (SRF) that directly access
memory. Off-chip memory is used for application inputs,
outputs and for intermediate streams that cannot fit in the
SRF.

const int N = 256;
stream s (N* (N+2)),0 (N*N) ;//declare basic streams s and o
stream s0,sl,s2,s3,00; /ldeclare variable-bound stream references.

for(int 1 = 0; i<N; i++) {

sO0 = s (i *N, (1+1) *N) ;

sl = s((i+1)*N, (i+2)*N); /ldefine variable-bound stream

s2 = s((i+2)*N, (i+3)*N); /Ireferences. These statements

s3 = s ((i+2)*N, (i+3) *N-N/2) ;| //just define some pointers.

o0 = o(1 *N, (1+1) *N) ;

k(s3,s2,s1,s0,00); /lcall kernel.
}
Figure 2: Example 1, a stream program for
StreamC/KernelC.

StreamC/KernelC [19] is a popular language that can be
used to develop stream programs for Imagine [14], Merri-
mac [9], Cell Processor [13] and FT64 [30]. Additionally,
the Brook language [4] is an extension of StreamC/KernelC.

Fig. 2 shows a StreamC /KernelC program. Two basic streams,

s, o and five stream references so, s1, S2, 83,00 are defined.
Each stream reference accesses a subset of the basic stream
corresponding to its name. The stream reference is defined
by a start bound, end bound and an optional access mode.
The access mode defines which records between the start and
end are part of the stream. In Fig. 2, all stream reference ac-
cesses are sequential. Stream references with constant start
and end bounds are called constant-bound stream references;
all other stream references are called variable-bound stream
references. Among variable-bound stream references, the
most popular type of references whose start and end bounds
are functions of the index variables we call loop-dependent
stream references. For example, the stream reference sg is
a loop-dependent reference and accesses the Oth, 1st, ...,
(N — 1)th records of the stream s in the first iteration. In
this paper, we assume each kernel call only has a single out-
put stream (the last argument).

1.2 Reusing Streams

Memory access still dominates most stream programs’ per-
formance [1], especially for scientific stream programs [21].
The only way to reduce off-chip memory bandwidth require-
ment is to exploit the reuse of streams in the SRF. Only the
data defined by stream references is held sequentially in the
software-managed SRF. The SRF location and length of the
data are stored in a stream descriptor register (SDR). Stream

operations specify what values they operate on by referring
to appropriate SDR. Except stream transfers, all operations
require that the operands be taken from the SRF and all
results be assigned to the SRF.

For two stream references accessing the same values, the
second reference can reuse the values that the first refer-
ence generated in to the SRF. We call the scenario whole
reuse. For two stream references accessing the shared por-
tion of values, the second reference can reuse this part of
the values generated by the first reference in to the SRF.
We call the scenario partial reuse. For partial reuse, stream
compilers try to find the supersequence of the two stream
references, then allocates a SRF buffer for the supersequence
and allocates a SDR for each stream reference that defines
which part of the buffer is accessed by the reference. For
example, two input stream references ap = a(32,96) and
a1 = a(64,128) access the shared portion a(64,96), so par-
tial reuse exists between them. The compiler finds their
supersequence, i.e. a(32,128), allocates a SRF buffer for
the supersequence and allocates two SDRs for the two refer-
ences. One SDR describes that ag accesses from the 0th to
63th records of the supersequence; the second SDR, describes
that a1 accesses from the 32th to 95th records. During exe-
cution, only 96, instead of 128, words are loaded.

The stream compilers utilize all reuse supplied by constant-
bound stream references [19, 20]. However, when processing
a variable-bound stream reference, the stream compiler gen-
erates a stream load before each read and a stream save after
each write, without utilizing any reuse.

The problem addressed in this paper is to effect the reuse
supplied by loop-dependent stream references held in the
SRF. Some special consideration is required. Firstly, the
SRF is managed by software, which brings the opportunity
of partial reuse. Secondly, moving data within the SRF is
expensive. The SRF is divided into lanes so that each lane
supplies data to one cluster. If stream processors, such as
stream processors with indexed SRF [12] and Cell Proces-
sor [13] allow communication across SRF lanes, inter-lane
bandwidth is much lower than Lane-to-Cluster bandwidth;
if not, off-chip memory is used as a relay to avoid inter-lane
communication by generating SRF-to-memory and memory-
to-SRF data moves. Therefore, SRF-to-SRF data moves
should be avoided during the transformation. Finally, only
the reuse with respect to the innermost loop is useful, due
to the limited SRF capacity and the relatively large work
set of kernels.

1.3 Our Solution

We describe an algorithm to perform a source-to-source
transformation, called constant-bound stream replacement,
which replaces loop-dependent stream references with constant-
bound stream references to effect the reuse among loop-
dependent stream references. Our transformation is based
on three results: an algorithm recognizing reuse among stream
references, a new model called stream reuse graph (SRG) and
the optimization of the built SRG for the transformation.

Our stream reuse algorithm recognizes both whole and
partial reuse. Our algorithm first identifies the reuse of lo-
cations and then judges whether the values to be reused
will be unchanged before being reused. If the values are
unchanged, then reuse is possible.

The second result is a model, SRG, which describes the
whole reuse among stream references. During the SRG con-

struction, a Directed Acyclic Graph (DAG) is built first to
describe how kernels consume input streams and produce
output streams. Loop-independent reuse is also depicted by
the DAG. Then, a reuse graph (RG) is built based on the
DAG, by inserting a reuse edge with the value of d; ;(d;; >
0) from the stream node s; to s; if the values generated by
s; is used by s; after d; ; iterations.

Finally, the built SRG is optimized for the transformation
from the following two aspects. (1) A stream node in the
built SRG may have multiple reuse sources, we prune the
SRG so that every stream node has only one source for the
following transformation. The stream node chosen as reuse
source is called the generator. The concept is also used in [6].
(2) The SRG is expanded for partial reuse. The generator
is updated to be the stream node that other stream nodes
reuse part or whole of data generated by it before certain
iterations.

N2

s N S
i R) S 5
s S3
i+1 So S S8
s S3
i+2 So S S 1

Figure 3: Relationship of the access locations be-
tween sg, s1, s2 and ss.

We use Example 1 from Fig. 2 to describe our solution.
Fig. 3 shows the relationship of locations accessed by so,
s1, s2 and s3. The values generated by s3 are reused as
part of s3 in the same iteration; the values generated by s
in iteration ¢ are reused as s; after 1 iteration, reused as sg
after 2 iterations. However, current stream compilers cannot
recognize and utilize the reuse.

(a) SRG (b) Optimized SRG (c) Expanded SRG
Figure 4: Building the SRG for Example 1 from

Fig. 2.

Fig. 4 shows the graphs generated when building the SRG:
Fig. 4(a) shows the SRG that describes whole reuse of val-
ues; Fig. 4(b) shows the optimized SRG in which each stream
node has only one reuse source; Fig. 4(c) shows the expanded
SRG with partial reuse of values. In Fig. 4(c), g, accessing
the same sequence with s, is the generator; sz, s1 and sg
reuse the whole data generated by g before 0, 1 and 2 iter-
ation(s), respectively; s3 reuses partial data generated by g
in the same iteration.

We get code in Fig. 5(a) by introducing four constant-
bound streams, soo, So1, So2 and o0go, initializing sp2 and so1
before the loop, defining the generator g, loading the values
referred to by g to soo, replacing the references involved by
references to whole or part of the corresponding constant-
bound stream references, saving the output ogo to the loca-
tions defined by oo and moving the values of sp1 and soo to
so2 and sp1 at the end of the loop body. Since sz accesses
from the Oth to (N/2)th records of data generated by g, we
replace s3 with the reference sgo(0,N/2). So, the compiler
will recognize and utilize both whole and partial reuse of

Stream s(N*(N+2)), o(N*N);
Stream s0,s1,52,53,00,g;
Stream sO0(N), sO1(N),s02(N);
Stream 000(N);

//init stream s01 and 502
s02—s(0, N);
s01«s(N,2*N);

for(int i = 0; i<N; i++){

«++ declare streams s, o, ***
«+= init stream s01 and s02.

for(int i = 0; i<N-N%3; i++){

//the 1st unrolled loop
*++ define g,00

s00«—g;
k(s00(0,N/2), s00, s01, s02, 000);
00<—000;

g =s((i+2)*N, (i+3)*N); //the 2nd unrolled loop

00 =o0(l *N,(il+1)*N); - define g,00

s00—g; i=i+1;

k(' s00(0,N/2), s00, s01, s02, 000); s02g;

00—000; k(s02(0,N/2), 502, 500, s01, 000);
00—000;

//Move values among streams

$02s01; //the 3rd unrolled loop

s01«s00; -+ define g,00

} i=i+1;

s01—g;
k(s01(0,N/2), s01, s02, s00, 000);
00—000;

}

/1 epilogue loop
for(i = N-N%3; i<N;i++){
«++ original loop body

)
(a) Code with data copies (b)Unrolled code

Figure 5: Different stages of program transforma-
tion.

the transformed code. However, it does so at the expense of
introducing two expensive SRF-to-SRF data moves. Since
these moves implement a permutation of values in the SRF,
we can eliminate the need for moves by unrolling to the cy-
cle length of the permutation (equal to 3 for the example)
and permuting the stream references in each unrolled loop
bodies, and get the code shown in Fig. 5(b).

Fig. 6 graphically depicts the SRF allocation for the code
before (Fig. 6(a)) and after (Fig. 6(b)) transformation. In
original code, the stream compiler generates a stream load
for each input stream reference without utilizing any reuse;
in transformed code, the stream compiler generates only one
stream load for the stream reference g.

5 read [load store

S0 S
SRF - l}’ll 502 I S01 I
address space
o So g, glsy by | |
S|i-okEa To o | (KoTulo B |
gn Y
oo e o
i=1K] so [si [s [ssPON || (K[00 T 501 [s
REL /AP b
; - S1 So Yo =
I v 1 s Y TS e e o A
3
(a) Before (b) After

Figure 6: SRF allocation graph for the code.

The main contributions of this paper are as follows.
e We present an algorithm to identify stream reuse;

e We build and optimize, for the first time, the SRG to
depict stream reuse in the SRF;

e We present a program transformation, called constant-
bound stream replacement, which determines the un-
rolling factor, unrolls loop body and transforms the

stream program, to effect the reuse among loop-dependent

stream references;

e We implement our algorithm in the StreamC/KernelC
compiler and evaluate the performance benefits of our
techniques on a simulator for Imagine.

Section 2 presents work related to this paper. Section 3
describes the algorithm of recognizing both whole and par-
tial stream reuse. In Section 4 we describe the construc-
tion of the SRG. Section 5 describes the optimization of the
SRG. The constant-bound stream replacement algorithm is
presented in Section 6. Our experiments and performance
evaluation appear in Section 7 and we conclude the paper
in Section 8.

2. RELATED WORK

Many schemes, such as kernel fusion [16, 14], software-
pipelining and loop unrolling [22, 10, 20], have been pro-
posed to exploit the reuse of data items in the LRFs. These
optimizations can reduce the amount of data transferred be-
tween the SRF and LRFs, but have no influence on off-chip
memory usage. To exploit the reuse of the data in the SRF,
strip-mining [10], software pipelining and loop-unrolling [22,
10, 20] have been proposed. Although these optimizations
can improve stream programs’ performance, they can only
be used for constant-bound stream references and only loop-
independent stream reuse is exploited.

To the best of our knowledge, there are no schemes that

look at exploiting the reuse supplied by loop-dependent stream

references. Current schemes omit all loop-carried stream
reuse.

Many authors have demonstrated exploiting data reuse
supplied by indexed-variables for scalar and vector proces-
sors. Allen and Kennedy pioneered the use of dependence
for optimization of register use on vector machines [2, 3].
Handling of complex loop nests was also due to Carr and
Kennedy [5]. Handling of complex loop nests was also due
to Carr and Kennedy [6]. Lu and Cooper [18] study the im-
pact of powerful pointer analysis in C programs for register
promotion. Kapasi et al. [14] and Lo et al. [17] show how to
use static single assignment (SSA) [8] to facilitate register
promotion. Lo et al. [17] also shows how PRE can be dual-
ized to handle the removal of redundant store operations.

Strategies for scalar and vector reuse cannot be directly
applied to exploiting the reuse supplied by loop-dependent
stream references for several reasons. Firstly, the interme-
diate representations, such as the dependence graph, SSA,
and PRE, on which the reuse in scalar and vector proces-
sors is exploited, assume that data participating in the com-
putation has the same length. However, stream references
may have different lengths. Therefore, existing intermediate
forms cannot be used to optimize stream programs directly.
Secondly, partial reuse and its treatment are quite new, and
have never, to the best of our knowledge, appeared in scalar
and vector processing. Finally, SRF-to-SRF data move is
expensive and should be avoided during program transfor-
mation.

3. RECOGNIZING STREAM REUSE

3.1 Presentation

The iteration space of an n-level loop nest is expressed
as I = (i1,...,in), where i1, ...,in from left to right express
the index variables from the outermost to the innermost. A
stream reference of the stride type is expressed as the tuple

(name, start, end, stride), where name denotes its basic
stream, start and end are start and end bounds respectively,
and stride is the access stride. An affine start expression is
expressed as: start = VI + ¢s where T is the iteration
vector, V, is called the start access vector and ¢ is the start
constant term. Correspondingly, an affine end expression
can be expressed as: end = VI + ce, where V. is called the
end access vector and c. is the end constant term.

The reuse relationship is expressed as the tuple (so, s1,d),
where d is called the reuse distance. If d > 0, s; reuses data
generated by so d iterations earlier, with so as the reuse
source and sy as the reuse destination; otherwise, sg reuse
data generated by s1 d iterations earlier, with s; as the reuse
source and sg as the reuse destination.

In addition, we assume that the innermost loop has been
normalized, with 4,, increased from zero to the constant N —1
in steps of 1. We also assume that the work space of a kernel
is less than the SRF capacity. When a kernel does not meet
this requirement, loop strip-mining [19, 20] can be applied.
For simplicity, we assume here that all loops are perfectly
nested.

3.2 Algorithms to Recognize Stream Reuse

As with the analysis of [27], we look to exploit location
reuse among stream references that have the same start and
end access vectors, and differ only in the constant terms,
examples of which are shown in Example 1 in Fig. 2, namely
the so, s1, s2 and sz references. Such references are called
uniformly generated stream references [11].

Two streams, so = (s, Vol +cs0, Veol +ceo, strideg) and
s1 = (s, Verl+cs1, Verl+ce1, stride;), are called uniformly
generated stream references if:

(1) Vso = Veo = Vsl = Ve1 and

(2) stridep = stride;. As the vectors are equivalent, we
use V to represent them. We also define ¢, to be the nth item
of V. That is, ¢, represents the coefficient of the innermost
index variable, iy, in the start and end expressions.

Since little exploitable reuse exists between non-uniformly
generated stream references, we partition stream references
in a loop nest into equivalence classes of references that op-
erate on the same basic stream and have the same V. We
call these equivalence classes uniformly generated sets [27].
In Example 1 from Fig. 2 the stream references so, s1, s2
and s3 belong to a single uniformly generated set with an V'
of [1].

Next we analyze the scenarios in which loop-carried reuse
exists. We first test whether the reuse of locations exists and
then test whether the values of the reuse source maintain
unchanged before being reused.

Loop-carried location reuse is possible in the following sce-
narios. A loop-invariant reference (i.e. ¢, = 0) refers to the
same locations in each iteration; a stream reference gets the
values in the SRF generated by another reference in previous
iterations. The Reuse algorithm tests when whole or par-
tial location reuse exists between two stream references. To
unify the process of loop-invariant and loop-variant stream
references, let C' =1 if ¢, = 0; otherwise C' = ¢,,.

For two stream references sg and s1 be-
longing to the same uniformly generated set, location reuse
relationship (so, s1,d) is satisfied if:

(1) there are shared locations accessed by so in iteration
in and by s; in iteration i, + d, i.e.

(a) csomodC<cs1modC < ceomodC or,

(b) csomodC < ceymodC<ceomodC

(2) and, if inter-lane communication is forbidden, each
shared location must lie on the same lane [19], i.e.

(cso — cs1) mod NC x stride = 0.

If ¢, = 0, i.e. sp and s; are loop-invariant stream ref-
erences, C' = 1; shared locations are accessed by so and
s1 in the same iteration and d = 0. Otherwise, C = cy;
shared locations are accessed in different iterations and d =
(¢so/cn — cs1/cn). Condition (2) is not necessary for stream
processors with an indexed SRF [12] and the Cell Processor
because these processors allow inter-lane communication. If
conditions (1a) and (1b) are both satisfied, whole location
reuse exists between so and si; otherwise, partial location
reuse exists. If d > 0, then sg is the reuse source and s; is
the reuse destination; otherwise, s; is the reuse source and
So 1s the reuse destination.

dXxc s dxe,
s = i, \
iy NETREN WY " l\
S] \S I J |
i+d ST o] in+d ,
(‘n
dxc, W locations accessed by S in iteration iy

[locations s, is allowed to write
(b) Scenario that sy is unchanged by
s1 in the next d iterations

(a) so reused as s, after d iterations

Figure 7: Example for the algorithms Reuse and Is-
Clean.

Fig. 7(a) shows the stream references sp and s; that meet
the conditions of the Reuse algorithm with d > 0 and ¢,, > 0.
As shown, part of the locations accessed by so in iteration
in are accessed by si in iterations i, + d, hence the reuse.

Since the reuse with respect to the SRF is the reuse of
values, intervening writes introduce output dependencies,
potentially inhibiting reuse. If the locations to be reused
are not written to before reuse occurs then reuse is possible.
The IsClean algorithm tests whether the values generated by
the reuse source so are not changed by the output reference
s1 in the next d iterations.

|A1g0rithm IsCle(m| For two stream references sg and si
that belong to the same uniformly generated set, the values
used by sop are not changed by the output stream reference
s1 in the next d(d > 0) iterations, if:

Ce0 < Cs1 + min(0, cp Xd) or cso > ce1 + max(0, cp Xd).

Fig. 7(b) draws the locations accessed by s¢ in iteration i,
and the locations that s; is allowed to write by the IsClean
algorithm with ¢, > 0. As shown, the values used by s¢ in
iteration 4, are not changed by s; in the next d iterations.

4. STREAM REUSE GRAPH

The SRG captures value reuse among stream references
and is applicable across differing stream architectures. It
consists of following components: stream nodes, kernel nodes,
reference edges and reuse edges. The stream node, drawn as
a circle, denotes stream references with distinct values. The
kernel node, drawn as a square block, denotes kernel calls.
The directed reference edge, expressed as a hollow arrow,
depicts that the kernel consumes the input stream (point-
ing from a stream to a kernel node) or produces the output
streams (the arrow comes from the kernel node). The di-
rected reuse edge, drawn as a solid arrow with its value d,
shows values of the source node are reused at the destination
after d iterations. Stream nodes, kernel nodes and reference

edges form a DAG that captures the relationship among ker-
nel and stream nodes. Stream nodes and reuse edges form
a RG that captures the reuse relationship among stream
nodes. The standard SRG depicts only whole stream reuse.
Section 5 shall extend the SRG to also depict partial reuse.

The SRG is built for straight-line loop [in the following
two steps. An extension of this work is to consider branches
within the innermost loop. The SRG is still applicable as
branches can be restructured to be around the innermost
loops.

Step 1. This step builds the DAG describing the re-
lationship between stream references and kernels, for [; it
builds kernel nodes and stream nodes, and then inserts refer-
ence edges between them. During the construction, a stream
node is built only for the stream reference with distinct val-
ues. That is, if two stream references use the same values,
only one stream node is built for the first reference, and
a reference edge is built from the node to the kernel that
refers to the second reference. So the DAG also describes
loop-independent reuse.

First, a kernel node k; is built for the corresponding ith
kernel call. Next stream references within k; are processed.
A stream reference with distinct values is either loaded from
off-chip memory, if accessed for the first time, or produced
by ki. A stream node is built for such a stream reference.
For the other references, we find the node generating data
needed by the reference.

In the algorithm implementation, an output stream node
is created for each output reference. However, while dealing
with an input reference, this step searches all built stream
nodes for stream nodes accessing the same locations with
the reference. The latest built node among them has the
values needed by the input reference. If such a node is not
found, an input stream node is built for the input reference.
Finally, reference edges are inserted from the built or found
stream nodes to the kernel node k;.

The DAG for code in Fig. 8(a), for example, is built as
follows. The kernel node k; is built first; the stream nodes
to, t1 and t2 are built, due to their distinct values. Next the
kernel node k2 is built. However, as the values needed by
to of k2 have been loaded into the SRF by the built node
to of ki1, a reference edge is inserted from the built node o
to k2. Similar treatment occurs for the input reference t2 of
k2. The built DAG is shown in Fig. 8(b).

The DAG describes the definition and use of the stream
references in [. As a result, loop-independent reuse is shown
in the DAG in the form of two or more kernel nodes being
connected to the same stream node.

Step 2. This step builds the RG based on the built DAG,
it must identify all incidents of loop-carried whole value
reuse among stream nodes, and add the corresponding reuse
edges.

First, this step, using the Reuse algorithm, identifies the
opportunities for whole location reuse supplied by two stream
nodes s; and s;. If the reuse is identified, (s;, s;,d; ;) is re-
turned. Next, this step detects whether the values of the
reuse source are unchanged by every output stream node s,
before the reuse. If s, is an argument of a lexically earlier
kernel than the first kernel call referring to the reuse desti-
nation, this step, using the IsClean algorithm, tests whether
the values remain unchanged in next |d; ;| iterations. If not
the algorithm tests whether the values remain unchanged in
the next |d;,;| — 1 iterations (If |d;, ;| = 0, the test is not nec-

essary). If the reuse source is unchanged before the reuse,
the value reuse (so, s1,d; ;) is satisfied. A reuse edge is in-
serted from the source to the destination with |d; ;| as its
value.

The graph in Fig. 8(c) is built by this step. The values
of to are changed by the output stream t; of k2 after one
iteration. Therefore, t2 cannot be reused as to after two
iterations. However, a reuse edge is inserted from ¢5 to ¢; of
k1 because the change to the values occurs after the reuse..

i < N; i++{

= 0;
t0 = t(I *N, (1+1) *N) ;
t1 = £ ((i+1)*N, (i+2)*N);
£2 = t((i+2)*N, (i+3)*N);
K1(t0,tl,t2)

)

(a) Example 2. (b) DAG. (¢) SRG.
Figure 8: Example 2 showing the construction of the
SRG.

S. OPTIMIZING THE SRG

Although the built SRG describes all whole reuse in loop
[, it cannot be used for the transformation for the follow-
ing reasons. (1) One stream node may have multiple data
sources, such as the stream node s in the SRG in Fig. 4(a)
that is built for Example 1 from Fig. 2. But each stream
node may reuse only one data source for the convenience
of the transformation. (2) The SRG does not describe the
partial reuse. Next we optimize the built SRG to overcome
the deficiencies.

5.1 Selecting Data Source

It can be proven that the following properties are satisfied
in the built SRG:

If <Si, Sj, di7j> and <Sj7 Sk, dj,k>7 then <Si, Sk, di,j + dj’k>;

If <Si, Sk,di,k> and <Sj7 Sk,dj7k>, then <S7;, Sj,dik — dj’k->.

The proof is not presented here due to insufficient space.
These properties demonstrate that the RG is divided into
¢ unilateral directed connected acyclic sub-RGs. Therefore,
there is one and only one stream node that has no reuse
edges pointing to it in each sub-RG;, and there is a reuse
edge issued from the stream node to every other stream
node. That is, all other stream nodes can reuse values gen-
erated by this stream node a number of iterations ago. This
stream node is called generator. We choose the generator
gi as the data source for stream nodes s; ; in sub-RG;. So
only g; needs memory transfers while s; ; reuses the values
generated by g; d; ; iterations earlier.

First, this step picks up sub-RG;, then finds the generator
g; for sub-RG; and finally cuts all reuse edges that are not
issued from g; in sub-RG;. This step is repeated until all
sub-RGs are found.

The SRG in Fig. 4(a), for example, has three sub-RGs: o9
composes sub-RGo and go is 0p; s3 composes sub-RG1 and
g1 is s3; So, s1 and s2 compose sub-RG2 and g2 is s2. In
sub-RG2, the reuse edge from s1 to sg is cut. The optimized
SRG is shown in Fig. 4(b).

5.2 Expanding the Optimized SRG for Partial
Reuse

We expand the optimized SRG to make it also depict par-
tial reuse. From the algorithm Reuse we reach the conclusion

that for two generators g;1 and g;2, if the partial location
reuse (g1, giz, di1,i2)(di1,i2 > 0) is satisfied, the partial loca-
tion reuse (gi1, Si2,k, di1,:2 + di2 k) is satisfied for the stream
node ;2 such that (giz, Si2,k, di2,k) holds.

Next we give the condition that sub-RG;1 and sub-RGi2
can be merged into one new sub-RG, with a new generator,
gnew- The stream nodes in the merged sub-RG, i.e. stream
nodes in sub-RGi1 and sub-RG;2 reuse part or whole data
generated by gnew certain iterations earlier. We first find
Jgnew for the merged sub-RG and then give the condition that
partial value reuse exists between gne,, and stream nodes in
the merged sub-RG.

As defined before, the stream node si in the merged sub-
RG with reuse distance dj uses data generated by gnew di
iterations earlier. Therefore, the sequence accessed by gnew
in iteration i,, is the supersequence of all sequences accessed
by sk in iteration ¢, + di. Using the results of the algorithm
Reuse, we get the following results: gnew.Start = gi1.start
- gi1-csmodC 4min(g;1.csmodC, gi2.csmodC); gnew-end =
gi1-end - gi1.cemodC' + max(gi1.cemodC, g;2.ccmodC'). Let
D;1 be the maximum reuse distance in sub-RG;1; D;2 be the
maximum reuse distance in sub-RG;2. From Fig. 9, we can
intuitively see the relationship between gne, and g1, giz.

Now, we give the condition that the partial value reuse is
satisfied between gne, and stream nodes in the merged sub-
RG. If gnew remains unchanged in next d;1 ;2 iterations, the
partial value reuse is satisfied. Fig. 9 describes which parts of
gnew are reused by stream nodes in sub-RG;1 and sub-RGi2
at what iteration. Values generated by g;1 are unchanged
from iteration 4, to i, + D;1, due to the value reuse in sub-
RG.1, so this part of gpew is not changed from iteration i,, to
in + Di1, so partial value reuse exists between gne, and the
stream nodes in sub-RG;1. Similarly, values generated by g;2
are unchanged from iteration i, + di1,i2 to in + di1,i2 + Di2,
and gnew is unchanged in next d;1 2 iterations. So this part
of gnew is not changed from iteration iy to in + di1,:2 + Dio,
so partial value reuse exists between gne, and the stream
nodes in sub-RG;o.

locations
y

—

inf

iytdi

intDit

iytdy D

timey

Figure 9: Scenario in which parts of g¢,., are reused
as stream nodes in sub-RG;; and sub-RG;> at what
iteration.

The above two results can be expanded straightforwardly
to merge multiple sub-RGs and find the new generator for
the merged sub-RG. The following process is performed to
expand the SRG for partial reuse. (1) Identify partial value
reuse between two generators, whose sub-RGs can be merged,
compute the new generator gnew and place the generators in
a set called the merged-set. If partial reuse exists between
two generators in the same iteration, the stream node of a
lexically earlier kernel call is the reuse source. (2) Find an-
other generator that has partial value reuse between gpeuw,
and update gnew. (3) Repeat (1) and (2) until there is no

stream node having partial value reuse with gnew. (4) Build
a new stream node for gne., and insert a reuse edge, with
d; as its value, from gnew to the generator g; (g; Emerged-
set) such that (gnew, gi, d;) is satisfied. (4) For each stream
node s; i such that (gi, s; k, di r), update the reuse source of
Si,k to be gnew and its reuse distance to be d; + d;,x. Thus,
the sub-RGs with generators in the merged-set are merged
into one new sub-RG. At last, all stream nodes are divided
into p connected sub-RGs. All stream nodes reuse partial or
whole values generated by their generators certain iterations
earlier.

Fig. 4(c), for example, is expanded from the optimized
SRG in Fig. 4(b) for the code from Fig. 2. Partial value
reuse exists between the generators ss and sz, so sub-RGi
and sub-RG2 are merged into one new sub-RG (we call the
merged sub-RG sub-RG1). The new generator is the stream
reference s((i4-2) x N, (i+3)x N) and a stream node g is built
for it. The reuse sources of ss, s2, s1 and so are updated to
be g.

6. CONSTANT-BOUND STREAM REPLACE-

MENT

In this section, we transform a stream-level program to
make use of the reuse supplied by loop-dependent stream
references, based on the built SRG. The procedure consists
of four steps, as follows.

Determining the Number of Constant-Bound Stream

References. Now, we calculate the number of constant-
bound streams, N;, needed to hold the data generated by
the generator, g;. To eliminate the load of the reuse destina-
tions in sub-RG;, D; 4+ 1 constant-bound streams are needed
[5], thus providing one constant-bound stream reference for
values computed on the D; previous iterations plus one for
the values computed on the current iteration.
Determining the Loop Unrolling Factors. To elim-
inate all SRF-to-SRF moves that implement data permu-
tation among N; streams in sub-RG;, the loop should be
unrolled N; times. To eliminate all data permutation for all

sub-RGs, the unrolling factors, NU, equals LCM (No,...,Np_1).

Reference Replacement. This procedure first creates
N; constant-bound streams, g¢?,... ,gfv i=! for each gener-
ator, g;. Next, the innermost loop body is unrolled NU
times and a statement i, = i, + 1 is inserted just before
each unrolled loop body except the first one. Finally, the
procedure replaces the references involved by references to
corresponding constant-bound stream references and inserts
stream loads or saves at right place.

For each reference s; ; such that (g, si,;,d; ;) is satisfied,
in order to specify which part of data generated by g; is
reused by s;,; after d; ; iterations, the start and end offsets
of locations accessed by s;; on iteration i, + d;; to the
start of g; on iteration i, are computed. According to the
above computation of d; ; and g¢;, the start offset of s; j,
startOﬁseti’j = 8;,5.¢smodC — g;.csmodC'; the end offset,
endOffset; ; = si,5.cecmodC — g;.csmodC.

In the first unrolled body, the references to g; are replaced
with ¢?; the references to 54,5 are replaced with the stream
reference gfi'j (startOffset; ;, endOffset; ;). In the uth un-
rolled body, the references to s;; are replaced with the
stream reference ggdi’jfu) modN: (startOffset, ;, endOffset; ;).

For the references to the stream nodes with reuse distance
equal to 0, if they are produced by their first kernel call, the

produced constant-bound streams are saved back just after
its first kernel call. If they are loaded by their first kernel
calls, a load of g; is inserted just before the first kernel call
referring to part or whole of g;. If g; is loop-invariant (i.e.
cn = 0), all loads or saves are merged into a single load or
save and moved just before or after the innermost loop body.

Initialization. This procedure initializes the constant-
bound streams, processes the innermost loop index variable
and produces the epilogue loop. We do not detail the last
two parts of the procedure as they are straightforward.

For sub-RG;, D; constant-bound streams should be ini-
tialized with the right values. For the stream node s; ; such
that (gs,si,;,di), data used by s;; in the first iteration
should be assigned to ggi’j. If multiple stream nodes have
the same reuse distance, their supersequence is assigned. If
there is no reuse distance equal to d; ; + 1, data used by s; ;
in the second iteration is assigned to gji’ﬁ_l, and so on.

By now, the reuse supplied by loop-dependent stream ref-
erences has been exploited and corresponding stream loads
have been eliminated. Fig. 5(b) shows the final code of
the example in Fig. 2. There are two sub-RGs, sub-RGy =
{00} and sub-RG1={so, s1, S2,83}; go = 0o and g1 = s((i +
2)x N, (i+3)xN). In sub-RG1, s3 reuses part of the genera-
tor g in the same iteration. Its start and offsets equ