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ABSTRACT
The memory access limits the performance of stream proces-
sors. By exploiting the reuse of data held in the Stream Reg-
ister File (SRF), an on-chip storage, the number of memory
accesses can be reduced. In current stream compilers reuse
is only attempted for simple stream references, those whose
start and end are known. Compiler analysis from outside of
stream processors does not directly enable the consideration
of other complex stream references. In this paper we propose
a transformation to automatically optimize stream programs
to exploit the reuse supplied by loop-dependent stream ref-
erences. The transformation is based on three results: al-
gorithms to recognize the reuse supplied by stream refer-
ences, a new abstract expression called the Stream Reuse
Graph (SRG) to depict the reuse and the optimization of the
SRG for the transformation. Both the reuse between whole
sequences accessed by stream references and that between
partial sequences are exploited in the paper. In particular,
the problem of exploiting partial stream reuse does not have
its parallel in the traditional data reuse exploitation setting
(for scalars and arrays). Finally, we have implemented our
techniques using the StreamC/KernelC compiler for Imag-
ine. Experimental results show a resultant speedup of 1.14
to 2.54 times using a range of typical stream processing ap-
plication kernels.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors, Compilers;
D.3.2 [Programming Languages]: Language Classifica-
tions, Specialized application languages
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1. INTRODUCTION
In the past with increasing clock frequencies, and now

with an increasing number of cores, processing power is dou-
bling every eighteen months. Memory access times have also
been increasing but at a slower rate, leading to what has be-
come to be known as the memory wall [28]. Architectural
and software techniques, including reusing data on-chip and
prefetching to hide long memory latency, have been applied
to relieve the memory wall. The research of advanced pro-
cessors now focuses on two ways: developing multi-core as
well as multi-thread processors of conventional architectural
models, and developing stream processors of novel architec-
tural models, such as Imagine [14], Merrimac [9], Cell Pro-
cessor [13], RAW [26] and FT64 [30]. Much research has
been into reusing data on-chip of a conventional architec-
tural model [3, 5, 18, 6, 24, 17, 29]; however, research into
reusing data on-chip of a stream processor is a less mature
research area.

1.1 Stream Processing
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Figure 1: Stream processing.

The stream programming model [25, 15, 14, 30, 4, 9],
shown in Fig. 1(a), divides an application into a stream-level
program and one or more kernels that define each processing
step. The stream-level program declares the streams and de-
fines the high-level control- and data-flow between kernels.
Each kernel is a function that consumes and produces ele-
ments from streams. A stream is a sequence of data records.



Popular languages implementing the stream programming
model include StreamC/KernelC [23, 19] for Imagine and
Merrimac processor [9], Brook [4] for GPU and SF95 [30]
for FT64 processor. These languages can also be used to
develop stream programs for Cell Processors [13]. All these
stream architectures have the characteristic of SIMD stream
coprocessors with a large local memory for stream buffer-
ing. Fig. 1(b) shows a simplified diagram of such a stream
processor. A stream-level program is run on the host while
kernels are run on the stream processor. A single kernel that
operates sequentially on records of streams is executed on
clusters of ALUs, in a SIMD fashion. Only data in the local
register files (LRFs), immediately adjacent to the arithmetic
units, can be used by the clusters. Data passed to the LRFs
is from the Stream Register File (SRF) that directly access
memory. Off-chip memory is used for application inputs,
outputs and for intermediate streams that cannot fit in the
SRF.

 const int N = 256;    
 stream s(N*(N+2)),o(N*N);//declare basic streams s and o.

 stream s0,s1,s2,s3,o0; //declare variable-bound stream references.

for(int i = 0; i<N; i++){         
  s0 = s(i    *N,(i+1)*N);     
   s1 = s((i+1)*N,(i+2)*N);       
   s2 = s((i+2)*N,(i+3)*N);   
 s3 = s((i+2)*N,(i+3)*N-N/2);   

   o0 = o(i    *N,(i+1)*N);   
k(s3,s2,s1,s0,o0); //call kernel.   

} 

//define variable-bound stream 
//references. These statements 
//just define some pointers. 

Figure 2: Example 1, a stream program for
StreamC/KernelC.

StreamC/KernelC [19] is a popular language that can be
used to develop stream programs for Imagine [14], Merri-
mac [9], Cell Processor [13] and FT64 [30]. Additionally,
the Brook language [4] is an extension of StreamC/KernelC.
Fig. 2 shows a StreamC/KernelC program. Two basic streams,
s, o and five stream references s0, s1, s2, s3, o0 are defined.
Each stream reference accesses a subset of the basic stream
corresponding to its name. The stream reference is defined
by a start bound, end bound and an optional access mode.
The access mode defines which records between the start and
end are part of the stream. In Fig. 2, all stream reference ac-
cesses are sequential. Stream references with constant start
and end bounds are called constant-bound stream references;
all other stream references are called variable-bound stream
references. Among variable-bound stream references, the
most popular type of references whose start and end bounds
are functions of the index variables we call loop-dependent
stream references. For example, the stream reference s0 is
a loop-dependent reference and accesses the 0th, 1st, ...,
(N − 1)th records of the stream s in the first iteration. In
this paper, we assume each kernel call only has a single out-
put stream (the last argument).

1.2 Reusing Streams
Memory access still dominates most stream programs’ per-

formance [1], especially for scientific stream programs [21].
The only way to reduce off-chip memory bandwidth require-
ment is to exploit the reuse of streams in the SRF. Only the
data defined by stream references is held sequentially in the
software-managed SRF. The SRF location and length of the
data are stored in a stream descriptor register (SDR). Stream

operations specify what values they operate on by referring
to appropriate SDR. Except stream transfers, all operations
require that the operands be taken from the SRF and all
results be assigned to the SRF.

For two stream references accessing the same values, the
second reference can reuse the values that the first refer-
ence generated in to the SRF. We call the scenario whole
reuse. For two stream references accessing the shared por-
tion of values, the second reference can reuse this part of
the values generated by the first reference in to the SRF.
We call the scenario partial reuse. For partial reuse, stream
compilers try to find the supersequence of the two stream
references, then allocates a SRF buffer for the supersequence
and allocates a SDR for each stream reference that defines
which part of the buffer is accessed by the reference. For
example, two input stream references a0 = a(32, 96) and
a1 = a(64, 128) access the shared portion a(64, 96), so par-
tial reuse exists between them. The compiler finds their
supersequence, i.e. a(32, 128), allocates a SRF buffer for
the supersequence and allocates two SDRs for the two refer-
ences. One SDR describes that a0 accesses from the 0th to
63th records of the supersequence; the second SDR describes
that a1 accesses from the 32th to 95th records. During exe-
cution, only 96, instead of 128, words are loaded.

The stream compilers utilize all reuse supplied by constant-
bound stream references [19, 20]. However, when processing
a variable-bound stream reference, the stream compiler gen-
erates a stream load before each read and a stream save after
each write, without utilizing any reuse.

The problem addressed in this paper is to effect the reuse
supplied by loop-dependent stream references held in the
SRF. Some special consideration is required. Firstly, the
SRF is managed by software, which brings the opportunity
of partial reuse. Secondly, moving data within the SRF is
expensive. The SRF is divided into lanes so that each lane
supplies data to one cluster. If stream processors, such as
stream processors with indexed SRF [12] and Cell Proces-
sor [13] allow communication across SRF lanes, inter-lane
bandwidth is much lower than Lane-to-Cluster bandwidth;
if not, off-chip memory is used as a relay to avoid inter-lane
communication by generating SRF-to-memory and memory-
to-SRF data moves. Therefore, SRF-to-SRF data moves
should be avoided during the transformation. Finally, only
the reuse with respect to the innermost loop is useful, due
to the limited SRF capacity and the relatively large work
set of kernels.

1.3 Our Solution
We describe an algorithm to perform a source-to-source

transformation, called constant-bound stream replacement,
which replaces loop-dependent stream references with constant-
bound stream references to effect the reuse among loop-
dependent stream references. Our transformation is based
on three results: an algorithm recognizing reuse among stream
references, a new model called stream reuse graph (SRG) and
the optimization of the built SRG for the transformation.

Our stream reuse algorithm recognizes both whole and
partial reuse. Our algorithm first identifies the reuse of lo-
cations and then judges whether the values to be reused
will be unchanged before being reused. If the values are
unchanged, then reuse is possible.

The second result is a model, SRG, which describes the
whole reuse among stream references. During the SRG con-



struction, a Directed Acyclic Graph (DAG) is built first to
describe how kernels consume input streams and produce
output streams. Loop-independent reuse is also depicted by
the DAG. Then, a reuse graph (RG) is built based on the
DAG, by inserting a reuse edge with the value of di,j(di,j ≥
0) from the stream node si to sj if the values generated by
si is used by sj after di,j iterations.

Finally, the built SRG is optimized for the transformation
from the following two aspects. (1) A stream node in the
built SRG may have multiple reuse sources, we prune the
SRG so that every stream node has only one source for the
following transformation. The stream node chosen as reuse
source is called the generator. The concept is also used in [6].
(2) The SRG is expanded for partial reuse. The generator
is updated to be the stream node that other stream nodes
reuse part or whole of data generated by it before certain
iterations.
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Figure 3: Relationship of the access locations be-
tween s0, s1, s2 and s3.

We use Example 1 from Fig. 2 to describe our solution.
Fig. 3 shows the relationship of locations accessed by s0,
s1, s2 and s3. The values generated by s3 are reused as
part of s2 in the same iteration; the values generated by s2

in iteration i are reused as s1 after 1 iteration, reused as s0

after 2 iterations. However, current stream compilers cannot
recognize and utilize the reuse.
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Figure 4: Building the SRG for Example 1 from
Fig. 2.

Fig. 4 shows the graphs generated when building the SRG:
Fig. 4(a) shows the SRG that describes whole reuse of val-
ues; Fig. 4(b) shows the optimized SRG in which each stream
node has only one reuse source; Fig. 4(c) shows the expanded
SRG with partial reuse of values. In Fig. 4(c), g, accessing
the same sequence with s2, is the generator; s2, s1 and s0

reuse the whole data generated by g before 0, 1 and 2 iter-
ation(s), respectively; s3 reuses partial data generated by g
in the same iteration.

We get code in Fig. 5(a) by introducing four constant-
bound streams, s00, s01, s02 and o00, initializing s02 and s01

before the loop, defining the generator g, loading the values
referred to by g to s00, replacing the references involved by
references to whole or part of the corresponding constant-
bound stream references, saving the output o00 to the loca-
tions defined by o0 and moving the values of s01 and s00 to
s02 and s01 at the end of the loop body. Since s3 accesses
from the 0th to (N/2)th records of data generated by g, we
replace s3 with the reference s00(0,N/2). So, the compiler
will recognize and utilize both whole and partial reuse of

Stream s(N*(N+2)), o(N*N);
Stream s0,s1,s2,s3,o0,g;  
Stream s00(N), s01(N),s02(N);
Stream o00(N);

//init stream s01 and s02
s02←s(0,     N);
s01←s(N,2*N);

for(int i = 0; i<N; i++){

   g  = s((i+2)*N, (i+3)*N);
o0 = o(i1  *N,(i1+1)*N);

   s00←g;
    k( s00(0,N/2), s00, s01, s02, o00);
   o0←o00;

//Move values among streams
   s02←s01;
   s01←s00;
}   

… declare streams s, o, 

… init stream s01 and s02.

for(int i = 0; i<N-N%3; i++){

   //the 1st unrolled loop
… define g,o0

   s00←g;
   k( s00(0,N/2), s00, s01, s02, o00);

o0←o00;

//the 2nd unrolled loop
… define g,o0
i = i  + 1;
s02←g;

   k( s02(0,N/2), s02, s00, s01, o00);
o0←o00;

//the 3rd unrolled loop
… define g,o0
i = i  + 1;
  s01←g;
   k( s01(0,N/2), s01, s02, s00, o00);

o0←o00;
}

// epilogue loop
for(i = N-N%3; i<N;i++){

… original loop body
}

(a) Code with data copies (b)Unrolled code

Figure 5: Different stages of program transforma-
tion.

the transformed code. However, it does so at the expense of
introducing two expensive SRF-to-SRF data moves. Since
these moves implement a permutation of values in the SRF,
we can eliminate the need for moves by unrolling to the cy-
cle length of the permutation (equal to 3 for the example)
and permuting the stream references in each unrolled loop
bodies, and get the code shown in Fig. 5(b).

Fig. 6 graphically depicts the SRF allocation for the code
before (Fig. 6(a)) and after (Fig. 6(b)) transformation. In
original code, the stream compiler generates a stream load
for each input stream reference without utilizing any reuse;
in transformed code, the stream compiler generates only one
stream load for the stream reference g.
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Figure 6: SRF allocation graph for the code.

The main contributions of this paper are as follows.

• We present an algorithm to identify stream reuse;

• We build and optimize, for the first time, the SRG to
depict stream reuse in the SRF;

• We present a program transformation, called constant-
bound stream replacement, which determines the un-
rolling factor, unrolls loop body and transforms the
stream program, to effect the reuse among loop-dependent
stream references;



• We implement our algorithm in the StreamC/KernelC
compiler and evaluate the performance benefits of our
techniques on a simulator for Imagine.

Section 2 presents work related to this paper. Section 3
describes the algorithm of recognizing both whole and par-
tial stream reuse. In Section 4 we describe the construc-
tion of the SRG. Section 5 describes the optimization of the
SRG. The constant-bound stream replacement algorithm is
presented in Section 6. Our experiments and performance
evaluation appear in Section 7 and we conclude the paper
in Section 8.

2. RELATED WORK
Many schemes, such as kernel fusion [16, 14], software-

pipelining and loop unrolling [22, 10, 20], have been pro-
posed to exploit the reuse of data items in the LRFs. These
optimizations can reduce the amount of data transferred be-
tween the SRF and LRFs, but have no influence on off-chip
memory usage. To exploit the reuse of the data in the SRF,
strip-mining [10], software pipelining and loop-unrolling [22,
10, 20] have been proposed. Although these optimizations
can improve stream programs’ performance, they can only
be used for constant-bound stream references and only loop-
independent stream reuse is exploited.

To the best of our knowledge, there are no schemes that
look at exploiting the reuse supplied by loop-dependent stream
references. Current schemes omit all loop-carried stream
reuse.

Many authors have demonstrated exploiting data reuse
supplied by indexed-variables for scalar and vector proces-
sors. Allen and Kennedy pioneered the use of dependence
for optimization of register use on vector machines [2, 3].
Handling of complex loop nests was also due to Carr and
Kennedy [5]. Handling of complex loop nests was also due
to Carr and Kennedy [6]. Lu and Cooper [18] study the im-
pact of powerful pointer analysis in C programs for register
promotion. Kapasi et al. [14] and Lo et al. [17] show how to
use static single assignment (SSA) [8] to facilitate register
promotion. Lo et al. [17] also shows how PRE can be dual-
ized to handle the removal of redundant store operations.

Strategies for scalar and vector reuse cannot be directly
applied to exploiting the reuse supplied by loop-dependent
stream references for several reasons. Firstly, the interme-
diate representations, such as the dependence graph, SSA,
and PRE, on which the reuse in scalar and vector proces-
sors is exploited, assume that data participating in the com-
putation has the same length. However, stream references
may have different lengths. Therefore, existing intermediate
forms cannot be used to optimize stream programs directly.
Secondly, partial reuse and its treatment are quite new, and
have never, to the best of our knowledge, appeared in scalar
and vector processing. Finally, SRF-to-SRF data move is
expensive and should be avoided during program transfor-
mation.

3. RECOGNIZING STREAM REUSE

3.1 Presentation
The iteration space of an n-level loop nest is expressed

as I = (i1, ...,in), where i1, ...,in from left to right express
the index variables from the outermost to the innermost. A
stream reference of the stride type is expressed as the tuple

〈name, start , end , stride〉, where name denotes its basic
stream, start and end are start and end bounds respectively,
and stride is the access stride. An affine start expression is
expressed as: start = V sI + cs where I is the iteration
vector, V s is called the start access vector and cs is the start
constant term. Correspondingly, an affine end expression
can be expressed as: end = V eI + ce, where V e is called the
end access vector and ce is the end constant term.

The reuse relationship is expressed as the tuple 〈s0, s1, d〉,
where d is called the reuse distance. If d ≥ 0, s1 reuses data
generated by s0 d iterations earlier, with s0 as the reuse
source and s1 as the reuse destination; otherwise, s0 reuse
data generated by s1 d iterations earlier, with s1 as the reuse
source and s0 as the reuse destination.

In addition, we assume that the innermost loop has been
normalized, with in increased from zero to the constant N−1
in steps of 1. We also assume that the work space of a kernel
is less than the SRF capacity. When a kernel does not meet
this requirement, loop strip-mining [19, 20] can be applied.
For simplicity, we assume here that all loops are perfectly
nested.

3.2 Algorithms to Recognize Stream Reuse
As with the analysis of [27], we look to exploit location

reuse among stream references that have the same start and
end access vectors, and differ only in the constant terms,
examples of which are shown in Example 1 in Fig. 2, namely
the s0, s1, s2 and s3 references. Such references are called
uniformly generated stream references [11].

Two streams, s0 = 〈s, V s0I +cs0, V e0I +ce0, stride0 〉 and
s1 = 〈s, V s1I +cs1, V e1I +ce1, stride1 〉, are called uniformly
generated stream references if:

(1) V s0 = V e0 = V s1 = V e1 and
(2) stride0 = stride1 . As the vectors are equivalent, we

use V to represent them. We also define cn to be the nth item
of V . That is, cn represents the coefficient of the innermost
index variable, in, in the start and end expressions.

Since little exploitable reuse exists between non-uniformly
generated stream references, we partition stream references
in a loop nest into equivalence classes of references that op-
erate on the same basic stream and have the same V . We
call these equivalence classes uniformly generated sets [27].
In Example 1 from Fig. 2 the stream references s0, s1, s2

and s3 belong to a single uniformly generated set with an V
of [1].

Next we analyze the scenarios in which loop-carried reuse
exists. We first test whether the reuse of locations exists and
then test whether the values of the reuse source maintain
unchanged before being reused.

Loop-carried location reuse is possible in the following sce-
narios. A loop-invariant reference (i.e. cn = 0) refers to the
same locations in each iteration; a stream reference gets the
values in the SRF generated by another reference in previous
iterations. The Reuse algorithm tests when whole or par-
tial location reuse exists between two stream references. To
unify the process of loop-invariant and loop-variant stream
references, let C = 1 if cn = 0; otherwise C = cn.

Algorithm Reuse For two stream references s0 and s1 be-
longing to the same uniformly generated set, location reuse
relationship 〈s0, s1, d〉 is satisfied if:

(1) there are shared locations accessed by s0 in iteration
in and by s1 in iteration in + d, i.e.

(a) cs0modC≤cs1modC < ce0modC or,



(b) cs0modC < ce1modC≤ce0modC
(2) and, if inter-lane communication is forbidden, each

shared location must lie on the same lane [19], i.e.
(cs0 − cs1) mod NC×stride = 0.
If cn = 0, i.e. s0 and s1 are loop-invariant stream ref-

erences, C = 1; shared locations are accessed by s0 and
s1 in the same iteration and d = 0. Otherwise, C = cn;
shared locations are accessed in different iterations and d =
(cs0/cn− cs1/cn). Condition (2) is not necessary for stream
processors with an indexed SRF [12] and the Cell Processor
because these processors allow inter-lane communication. If
conditions (1a) and (1b) are both satisfied, whole location
reuse exists between s0 and s1; otherwise, partial location
reuse exists. If d ≥ 0, then s0 is the reuse source and s1 is
the reuse destination; otherwise, s1 is the reuse source and
s0 is the reuse destination.

s
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Figure 7: Example for the algorithms Reuse and Is-
Clean.

Fig. 7(a) shows the stream references s0 and s1 that meet
the conditions of the Reuse algorithm with d > 0 and cn > 0.
As shown, part of the locations accessed by s0 in iteration
in are accessed by s1 in iterations in + d, hence the reuse.

Since the reuse with respect to the SRF is the reuse of
values, intervening writes introduce output dependencies,
potentially inhibiting reuse. If the locations to be reused
are not written to before reuse occurs then reuse is possible.
The IsClean algorithm tests whether the values generated by
the reuse source s0 are not changed by the output reference
s1 in the next d iterations.

Algorithm IsClean For two stream references s0 and s1

that belong to the same uniformly generated set, the values
used by s0 are not changed by the output stream reference
s1 in the next d(d > 0) iterations, if:

ce0 < cs1 + min(0, cn×d) or cs0 > ce1 + max(0, cn×d).
Fig. 7(b) draws the locations accessed by s0 in iteration in

and the locations that s1 is allowed to write by the IsClean
algorithm with cn > 0. As shown, the values used by s0 in
iteration in are not changed by s1 in the next d iterations.

4. STREAM REUSE GRAPH
The SRG captures value reuse among stream references

and is applicable across differing stream architectures. It
consists of following components: stream nodes, kernel nodes,
reference edges and reuse edges. The stream node, drawn as
a circle, denotes stream references with distinct values. The
kernel node, drawn as a square block, denotes kernel calls.
The directed reference edge, expressed as a hollow arrow,
depicts that the kernel consumes the input stream (point-
ing from a stream to a kernel node) or produces the output
streams (the arrow comes from the kernel node). The di-
rected reuse edge, drawn as a solid arrow with its value d,
shows values of the source node are reused at the destination
after d iterations. Stream nodes, kernel nodes and reference

edges form a DAG that captures the relationship among ker-
nel and stream nodes. Stream nodes and reuse edges form
a RG that captures the reuse relationship among stream
nodes. The standard SRG depicts only whole stream reuse.
Section 5 shall extend the SRG to also depict partial reuse.

The SRG is built for straight-line loop l in the following
two steps. An extension of this work is to consider branches
within the innermost loop. The SRG is still applicable as
branches can be restructured to be around the innermost
loops.

Step 1. This step builds the DAG describing the re-
lationship between stream references and kernels, for l; it
builds kernel nodes and stream nodes, and then inserts refer-
ence edges between them. During the construction, a stream
node is built only for the stream reference with distinct val-
ues. That is, if two stream references use the same values,
only one stream node is built for the first reference, and
a reference edge is built from the node to the kernel that
refers to the second reference. So the DAG also describes
loop-independent reuse.

First, a kernel node ki is built for the corresponding ith
kernel call. Next stream references within ki are processed.
A stream reference with distinct values is either loaded from
off-chip memory, if accessed for the first time, or produced
by ki. A stream node is built for such a stream reference.
For the other references, we find the node generating data
needed by the reference.

In the algorithm implementation, an output stream node
is created for each output reference. However, while dealing
with an input reference, this step searches all built stream
nodes for stream nodes accessing the same locations with
the reference. The latest built node among them has the
values needed by the input reference. If such a node is not
found, an input stream node is built for the input reference.
Finally, reference edges are inserted from the built or found
stream nodes to the kernel node ki.

The DAG for code in Fig. 8(a), for example, is built as
follows. The kernel node k1 is built first; the stream nodes
t0, t1 and t2 are built, due to their distinct values. Next the
kernel node k2 is built. However, as the values needed by
t0 of k2 have been loaded into the SRF by the built node
t0 of k1, a reference edge is inserted from the built node t0
to k2. Similar treatment occurs for the input reference t2 of
k2. The built DAG is shown in Fig. 8(b).

The DAG describes the definition and use of the stream
references in l. As a result, loop-independent reuse is shown
in the DAG in the form of two or more kernel nodes being
connected to the same stream node.

Step 2. This step builds the RG based on the built DAG,
it must identify all incidents of loop-carried whole value
reuse among stream nodes, and add the corresponding reuse
edges.

First, this step, using the Reuse algorithm, identifies the
opportunities for whole location reuse supplied by two stream
nodes si and sj . If the reuse is identified, 〈si, sj , di,j〉 is re-
turned. Next, this step detects whether the values of the
reuse source are unchanged by every output stream node so

before the reuse. If so is an argument of a lexically earlier
kernel than the first kernel call referring to the reuse desti-
nation, this step, using the IsClean algorithm, tests whether
the values remain unchanged in next |di,j | iterations. If not
the algorithm tests whether the values remain unchanged in
the next |di,j |−1 iterations (If |di,j | = 0, the test is not nec-



essary). If the reuse source is unchanged before the reuse,
the value reuse 〈s0, s1, di,j〉 is satisfied. A reuse edge is in-
serted from the source to the destination with |di,j | as its
value.

The graph in Fig. 8(c) is built by this step. The values
of t2 are changed by the output stream t1 of k2 after one
iteration. Therefore, t2 cannot be reused as t0 after two
iterations. However, a reuse edge is inserted from t2 to t1 of
k1 because the change to the values occurs after the reuse..

k1

t0t1

t2

k1

t1

for i = 0; i < N; i++{

t0 = t(I *N,(i+1)*N);

t1 = t((i+1)*N,(i+2)*N);

t2 = t((i+2)*N,(i+3)*N);

k1(t0,t1,t2);

k2(t0,t2,t1); 

}

k1

t2

k2

t1

2
1

1

t0t1

(a) Example 2. (b) DAG. (c) SRG.

Figure 8: Example 2 showing the construction of the
SRG.

5. OPTIMIZING THE SRG
Although the built SRG describes all whole reuse in loop

l, it cannot be used for the transformation for the follow-
ing reasons. (1) One stream node may have multiple data
sources, such as the stream node s0 in the SRG in Fig. 4(a)
that is built for Example 1 from Fig. 2. But each stream
node may reuse only one data source for the convenience
of the transformation. (2) The SRG does not describe the
partial reuse. Next we optimize the built SRG to overcome
the deficiencies.

5.1 Selecting Data Source
It can be proven that the following properties are satisfied

in the built SRG:
If 〈si, sj , di,j〉 and 〈sj , sk, dj,k〉, then 〈si, sk, di,j + dj,k〉;
If 〈si, sk, di,k〉 and 〈sj , sk, dj,k〉, then 〈si, sj , di,k − dj,k〉.
The proof is not presented here due to insufficient space.

These properties demonstrate that the RG is divided into
q unilateral directed connected acyclic sub-RGs. Therefore,
there is one and only one stream node that has no reuse
edges pointing to it in each sub-RGi, and there is a reuse
edge issued from the stream node to every other stream
node. That is, all other stream nodes can reuse values gen-
erated by this stream node a number of iterations ago. This
stream node is called generator. We choose the generator
gi as the data source for stream nodes si,j in sub-RGi. So
only gi needs memory transfers while si,j reuses the values
generated by gi di,j iterations earlier.

First, this step picks up sub-RGi, then finds the generator
gi for sub-RGi and finally cuts all reuse edges that are not
issued from gi in sub-RGi. This step is repeated until all
sub-RGs are found.

The SRG in Fig. 4(a), for example, has three sub-RGs: o0

composes sub-RG0 and g0 is o0; s3 composes sub-RG1 and
g1 is s3; s0, s1 and s2 compose sub-RG2 and g2 is s2. In
sub-RG2, the reuse edge from s1 to s0 is cut. The optimized
SRG is shown in Fig. 4(b).

5.2 Expanding the Optimized SRG for Partial
Reuse

We expand the optimized SRG to make it also depict par-
tial reuse. From the algorithm Reuse we reach the conclusion

that for two generators gi1 and gi2, if the partial location
reuse 〈gi1, gi2, di1,i2〉(di1,i2 ≥ 0) is satisfied, the partial loca-
tion reuse 〈gi1, si2,k, di1,i2 + di2,k〉 is satisfied for the stream
node si2,k such that 〈gi2, si2,k, di2,k〉 holds.

Next we give the condition that sub-RGi1 and sub-RGi2

can be merged into one new sub-RG, with a new generator,
gnew. The stream nodes in the merged sub-RG, i.e. stream
nodes in sub-RGi1 and sub-RGi2 reuse part or whole data
generated by gnew certain iterations earlier. We first find
gnew for the merged sub-RG and then give the condition that
partial value reuse exists between gnew and stream nodes in
the merged sub-RG.

As defined before, the stream node sk in the merged sub-
RG with reuse distance dk uses data generated by gnew dk

iterations earlier. Therefore, the sequence accessed by gnew

in iteration in is the supersequence of all sequences accessed
by sk in iteration in +dk. Using the results of the algorithm
Reuse, we get the following results: gnew .start = gi1.start
- gi1.csmodC +min(gi1.csmodC, gi2.csmodC); gnew .end =
gi1.end - gi1.cemodC + max(gi1.cemodC, gi2.cemodC). Let
Di1 be the maximum reuse distance in sub-RGi1; Di2 be the
maximum reuse distance in sub-RGi2. From Fig. 9, we can
intuitively see the relationship between gnew and gi1, gi2.

Now, we give the condition that the partial value reuse is
satisfied between gnew and stream nodes in the merged sub-
RG. If gnew remains unchanged in next di1,i2 iterations, the
partial value reuse is satisfied. Fig. 9 describes which parts of
gnew are reused by stream nodes in sub-RGi1 and sub-RGi2

at what iteration. Values generated by gi1 are unchanged
from iteration in to in + Di1, due to the value reuse in sub-
RGi1, so this part of gnew is not changed from iteration in to
in + Di1, so partial value reuse exists between gnew and the
stream nodes in sub-RGi1. Similarly, values generated by gi2

are unchanged from iteration in + di1,i2 to in + di1,i2 + Di2,
and gnew is unchanged in next di1,i2 iterations. So this part
of gnew is not changed from iteration in to in + di1,i2 + Di2,
so partial value reuse exists between gnew and the stream
nodes in sub-RGi2.

Di2

Di1

di1,i2

gi1

gi2

gnew

in

in+di1,i2

in+di1,i2+Di2

in+Di1

time

locations

Figure 9: Scenario in which parts of gnew are reused
as stream nodes in sub-RGi1 and sub-RGi2 at what
iteration.

The above two results can be expanded straightforwardly
to merge multiple sub-RGs and find the new generator for
the merged sub-RG. The following process is performed to
expand the SRG for partial reuse. (1) Identify partial value
reuse between two generators, whose sub-RGs can be merged,
compute the new generator gnew and place the generators in
a set called the merged-set. If partial reuse exists between
two generators in the same iteration, the stream node of a
lexically earlier kernel call is the reuse source. (2) Find an-
other generator that has partial value reuse between gnew,
and update gnew. (3) Repeat (1) and (2) until there is no



stream node having partial value reuse with gnew. (4) Build
a new stream node for gnew and insert a reuse edge, with
di as its value, from gnew to the generator gi (gi ∈merged-
set) such that 〈gnew, gi, di〉 is satisfied. (4) For each stream
node si,k such that 〈gi, si,k, di,k〉, update the reuse source of
si,k to be gnew and its reuse distance to be di + di,k. Thus,
the sub-RGs with generators in the merged-set are merged
into one new sub-RG. At last, all stream nodes are divided
into p connected sub-RGs. All stream nodes reuse partial or
whole values generated by their generators certain iterations
earlier.

Fig. 4(c), for example, is expanded from the optimized
SRG in Fig. 4(b) for the code from Fig. 2. Partial value
reuse exists between the generators s3 and s2, so sub-RG1

and sub-RG2 are merged into one new sub-RG (we call the
merged sub-RG sub-RG1). The new generator is the stream
reference s((i+2)×N, (i+3)×N) and a stream node g is built
for it. The reuse sources of s3, s2, s1 and s0 are updated to
be g.

6. CONSTANT-BOUND STREAM REPLACE-
MENT

In this section, we transform a stream-level program to
make use of the reuse supplied by loop-dependent stream
references, based on the built SRG. The procedure consists
of four steps, as follows.

Determining the Number of Constant-Bound Stream
References. Now, we calculate the number of constant-
bound streams, Ni, needed to hold the data generated by
the generator, gi. To eliminate the load of the reuse destina-
tions in sub-RGi, Di +1 constant-bound streams are needed
[5], thus providing one constant-bound stream reference for
values computed on the Di previous iterations plus one for
the values computed on the current iteration.

Determining the Loop Unrolling Factors. To elim-
inate all SRF-to-SRF moves that implement data permu-
tation among Ni streams in sub-RGi, the loop should be
unrolled Ni times. To eliminate all data permutation for all
sub-RGs, the unrolling factors, NU , equals LCM (N0,...,Np−1).

Reference Replacement. This procedure first creates
Ni constant-bound streams, g0

i ,... ,gNi−1
i for each gener-

ator, gi. Next, the innermost loop body is unrolled NU
times and a statement in = in + 1 is inserted just before
each unrolled loop body except the first one. Finally, the
procedure replaces the references involved by references to
corresponding constant-bound stream references and inserts
stream loads or saves at right place.

For each reference si,j such that 〈gi, si,j , di,j〉 is satisfied,
in order to specify which part of data generated by gi is
reused by si,j after di,j iterations, the start and end offsets
of locations accessed by si,j on iteration in + di,j to the
start of gi on iteration in are computed. According to the
above computation of di,j and gi, the start offset of si,j ,
startOffset i,j = si,j .csmodC − gi.csmodC; the end offset,
endOffseti,j = si,j .cemodC − gi.csmodC.

In the first unrolled body, the references to gi are replaced
with g0

i ; the references to si,j are replaced with the stream

reference g
di,j

i (startOffseti,j , endOffseti,j ). In the uth un-
rolled body, the references to si,j are replaced with the

stream reference g
(di,j−u) modNi

i (startOffset i,j , endOffset i,j).
For the references to the stream nodes with reuse distance

equal to 0, if they are produced by their first kernel call, the

produced constant-bound streams are saved back just after
its first kernel call. If they are loaded by their first kernel
calls, a load of gi is inserted just before the first kernel call
referring to part or whole of gi. If gi is loop-invariant (i.e.
cn = 0), all loads or saves are merged into a single load or
save and moved just before or after the innermost loop body.

Initialization. This procedure initializes the constant-
bound streams, processes the innermost loop index variable
and produces the epilogue loop. We do not detail the last
two parts of the procedure as they are straightforward.

For sub-RGi, Di constant-bound streams should be ini-
tialized with the right values. For the stream node si,j such
that 〈gi, si,j , di,j〉, data used by si,j in the first iteration

should be assigned to g
di,j

i . If multiple stream nodes have
the same reuse distance, their supersequence is assigned. If
there is no reuse distance equal to di,j + 1, data used by si,j

in the second iteration is assigned to g
di,j+1

i , and so on.
By now, the reuse supplied by loop-dependent stream ref-

erences has been exploited and corresponding stream loads
have been eliminated. Fig. 5(b) shows the final code of
the example in Fig. 2. There are two sub-RGs, sub-RG0 =
{o0} and sub-RG1={s0, s1, s2, s3}; g0 = o0 and g1 = s((i +
2)×N, (i+3)×N). In sub-RG1, s3 reuses part of the genera-
tor g in the same iteration. Its start and offsets equal 0 and
N/2, respectively. Other stream references reuse whole of g.
The loop should be unrolled three times to eliminate SRF-
to-SRF data moves among three constant-bound streams in
sub-RG1.

7. EXPERIMENT
We have implemented a source-to-source translator indi-

cated by dark shading in the stream compiler developed by
Stanford University [10]. Fig. 10 shows our experimental
framework. The translator takes a StreamC program as in-
put, builds the SRG for each loop body, unrolls each loop
body and then replaces loop-dependent stream references by
constant-bound stream references. Table 1 summarizes the
10 applications we used. Test1, and Test2 represent the ex-
amples in Fig. 2 and Fig. 8, respectively. QMRCGSTAB [7]
is a real application and used to solve large sparse linear sys-
tems with asymmetrical coefficient matrices with the Krylov
subspace iteration method. MVM calculates the multipli-
cation of two band matrices. The item max(computation
density), used to evaluate the relationship between computa-
tions and memory transfers, is quantified with the number of
the computations per word transfer, assuming that all reuse
in the application is exploited. The code optimized with
and without our method is performed on a cycle-accurate
simulator of Imagine, with a 128KB SRF.

Transformer

StreamC Programs
Original

ImagineStream Compiler

Figure 10: Framework of experimental design.

7.1 Whole Reuse
We first demonstrate the importance of the exploitation

of whole reuse. Seven scientific kernels that are simple and
frequently used in real applications are used to evaluate the
exploitation. There is only one loop in each of the stream-



Laplace Swim MG GEMM FFT Jacobi QMRCGSTAB MVM Test1 Test2
Source NCSA Spec2000 NPB BLAS HPCC - - - - -

Problem Size 1K × 1K 512× 512 128× 128× 128 512× 512 4K 256× 256 800× 800 832× 832 1K × 1K 1K × 1K
max(comp. density) 2.5 3.67 3.67 341 44 4.98 1.85 1.5 1 2

Table 1: Application programs.

# Stream Unroll- Execution time (cycles) Loads (words) % Comp. Density
Bench- refer- # sub- ing % Re-
mark ences RGs factor Before Unrolled After Speedup Before After duction Before After

Laplace 4 2 3 5100800 4920800 4251473 1.20 1.16 3147312 1051472 66.6 50.0 99.8
Swim 6 5 2 2438930 2574754 2015020 1.21 1.18 1579320 793680 49.7 65.2 93.1
MG 13 4 6 2856388 2656388 1682982 1.70 1.58 2261664 934816 58.7 45.3 91.2

GEMM 4 4 1 66548854 - 58377634 1.14 - 27820032 19693568 29.2 0.022 0.029
MVM 5 3 3 2403683 2190350 1778603 1.35 1.23 2107016 1577864 25.1 66.4 85.5
Test1 5 2 4 5539172 4838179 3262166 1.70 1.48 3675520 1576320 57.1 44.4 80.0
Test2 6 2 2 5569908 5379828 3320023 1.68 1.62 4194520 2264 99.9 16.7 49.9

Table 2: Effect of whole reuse exploitation on execution time, memory load and computation density.

level programs. Table 2 shows the effectiveness of the whole
reuse exploitation. The column #Stream references illus-
trates the number of loop-dependent stream references of
each loop body. The column #sub-RGs describes the num-
ber of sub-RGs in each SRG. A stream load/save is needed
only for each generator of each sub-RG on each iteration
or just before/after the innermost loop body. These two
columns somewhat reflect the complexity of building the
SRG. The column Unrolling factor shows the number of
times that each loop is unrolled to avoid SRF-to-SRF data
moves.

The column Execution time demonstrates the significant
effect of our automatic method on the execution time. The
column Unrolled shows the speed of the original loop af-
ter unrolling it an amount equivalent to that done by our
method. This column shows the impact of unrolling on the
performance. The speedup column has two fields. The first
field shows the speedup of the transformed code over origi-
nal code; our method gains from 1.14 to 2.54 times speedup.
The second field shows the speedup of the transformed code
over the unrolled code; our method gains from 1.16 to 2.22
times speedup.

As the main contribution of our method is the elimina-
tion of the memory loads, the column Loads illustrates this
ability. Although some stream saves are eliminated by our
method in some applications, we shall only focus on the re-
duction of stream loads. The column % Reduction equals
(Before-After)/Before×100% showing the percentage of the
reduced loads from the loads in original code.

GEMM has loop-invariant reuse. Except the initial load,
one out of the three input streams do not need a load in the
innermost loop. Test2 has a similar improvement. All loads
within an iteration are eliminated. As our method aims to
only reduce stream loads, there are still redundant stream
saves that can be optimized in Test2. Laplace, a memory
bound application, is another interesting case because its
stream loads are reduced to nearly one third. For other
applications, the performance improvement is proportional
to the reduction of memory transfers.

The column % Comp. Density evaluates the exploitation
degree of the stream reuse and is quantified by comparing
the achieved computation density to the maximum compu-
tation density in Table 1. If its value equals 100%, all reuse is
exploited. Our automatic method effects all stream reuse in

Laplace, Swim, MG and MVM, although they do not get the
maximum computation density. The load of kernel code in-
troduces extra memory transfers and thus reduces the com-
putation density in Laplace and Test1; some redundant data
is introduced in Swim, NG and MVM when mapping them
on the stream processor in order to utilize the architecture
features. Partial reuse exits in Test1, which will be analyzed
in the next subsection. For Test2, the stream reuse is com-
pletely exploited, though there are still redundant stream
saves which are not considered by our method. As GEMM
is mapped on the stream processor by loop-tiling, some reuse
does not exist in the innermost loop. However, our method
exploits all its reuse with respect to the innermost loop.

7.2 Partial Reuse
We now demonstrate the effectiveness of the exploitation

of partial reuse. Three scientific kernels, Jacobi, FFT and
Test1, benefit from it. Fig. 11 draws the SRGs of Jacobi
and FFT. The outputs of kernels J0 and J1 are concatenated
together to be an input of the next iteration, which indicates
the generator g0 is the union of x0 and x1. For FFT, the first
half and second half of its output act as two inputs in the
next iteration. The generator g1 accesses the same sequence
with the stream reference o; the stream references i0 and i1
access the first and second half parts of data used by g1 in
the last iteration.

0

J0

a0 b0 ai0 x ai1 b1 a1

x0 x1

J1
1 o

i1 i2i0

FFT

(a) Jacobi (b) FFT

0 0

1
1

g1g0

Figure 11: SRGs of Jacobi(a) and FFT(b).

Our method eliminates two loads in each iteration of FFT,
one load in each iteration of Jacobi and three loads in each
iteration of Test1. The effectiveness of partial reuse is shown
in Table 3. FFT is an interesting case. Although FFT
is a computation-intensive application, it benefits greatly
from our method. Without our method, its stream program
is somewhat memory-bound. As FFT is mapped on the
stream processor optimized by strip-mining [10], some reuse
does not exist in the innermost loop. Therefore we do not



# Stream Unroll- Execution time (cycles) Loads (words) % Comp. Density
Bench- refer- # sub- ing % Re-
mark ences RGs factor Before Unrolled After Speedup Before After duction Before After

Jacobi 10 7 2 384949 372939 303681 1.27 1.23 434308 331754 23.6 19.7 19.9
FFT 4 2 1 153375 - 73935 2.07 - 62232 17832 71.3 19.8 68.7
Test1 5 2 4 5539172 4838179 2174777 2.54 2.22 3675520 1050880 71.4 44.4 99.8

Table 3: Effect of both whole and partial reuse exploitation on execution time, memory load and computation
density.

gain the maximum computation density. Although Jacobi
has a high inherent computation density, most reuse does
not exist in the innermost loop. Therefore, its reuse cannot
completely be captured. Compared with the result in Table
2, the exploration of partial reuse in Test1 reduces by one
third loads; all reuse in Test1 is exploited.

7.3 Complete Application
We also performed the test on a complete application,

QMRCGSTAB [7]. It consists of 4 2-level loops. Two of
them, called QMR iteration, perform the main calculations.
We only perform each outer loop once. Fig. 12 shows the
SRG of the first QMR iteration. As shown, the reuse rela-
tionship among stream references is complicated. Table 4
summarizes the characteristics of the SRG of each loop of
QMRCGSTAB. It has 41 loop-dependent stream references
in total. Each loop requires distinct unrolling factors. This
further demonstrates the complex reuse relationship in real
applications. Therefore it would be extremely difficult to
reuse the streams manually.

k1

r2 v2

k2

t1

v1

k3

f1

v0r0

k4

2

1
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v11

p2
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p1 p0

Figure 12: SRG of QMR loop.

Loop No. 1 2 3 4
# Stream references 14 6 17 6

# sub-RGs 8 5 9 5
Unrolling factors 3 1 3 1

Table 4: Characteristics of SRGs

Table 5 shows the results from when our method is ap-
plied to QMRCGSTAB. The application achieves a 28.2%
speedup and reduces the number of loads by 30.5%. All
possible stream reuse within the application has been ex-
ploited.

8. SUMMARY
In this paper, we have introduced the problem of stream

reuse for stream processors. We have built and analyzed

Before After % Reduction

Loads (words) 35630663 24767143 30.5
Execution time (cycles) 36918146 29686296 19.6

% Comp. density 53 99.6 -

Table 5: Effect of our method on the performance
of QMRCGSTAB.

methods to optimize stream reuse based around the SRG.
Our approach has considered whole and partial stream reuse.
Based on the SRG, we proposed a source-to-source trans-
formation, called constant-bound stream replacement, that
makes the reuse supplied by loop-dependent stream refer-
ences useful for the stream compiler, thus reducing unnec-
essary memory loads. Our optimization is implemented in
the StreamC/KernelC compiler. Results demonstrate that
our techniques can lead to a dramatic increase in perfor-
mance. For 9 benchmarks, on the Imagine stream processor,
a speedup of 1.14 to 2.54 times was achieved.
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