
An Empirical Model for Predicting Cross-Core

Performance Interference on Multicore Processors

Jiacheng Zhao∗†

∗Institute of Computing Technology,

Chinese Academy of Sciences
†University of Chinese Academy of Sciences

Beijing, China

zhaojiacheng@ict.ac.cn

Xiaobing Feng

SKL Computer Architecture,

Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, China

fxb@ict.ac.cn

Huimin Cui

SKL Computer Architecture,

Institute of Computing Technology,

Chinese Academy of Sciences

Beijing, China

cuihm@ict.ac.cn

Youliang Yan

Shannon Laboratory,

Huawei Technologies Co., Ltd.

Shenzhen, China

yanyouliang@huawei.com

Jingling Xue

School of Computer Science and

Engineering, University of

New South Wales

Sydney, NSW 2052, Australia

jingling@cse.unsw.edu.au

Wensen Yang

Shannon Laboratory,

Huawei Technologies Co., Ltd.

Shenzhen, China

yangwensen@huawei.com

Abstract—Despite their widespread adoption in cloud com-
puting, multicore processors are heavily under-utilized in terms
of computing resources. To avoid the potential for negative
and unpredictable interference, co-location of a latency-sensitive
application with others on the same multicore processor is
disallowed, leaving many cores idle and causing low machine uti-
lization. To enable co-location while providing QoS guarantees, it
is challenging but important to predict performance interference
between co-located applications.

This research is driven by two key insights. First, the per-
formance degradation of an application can be represented as a
predictor function of the aggregate pressures on shared resources
from all cores, regardless of which applications are co-running
and what their individual pressures are. Second, a predictor
function is piecewise rather than non-piecewise as in prior work,
thereby enabling different types of dominant contention factors
to be more accurately captured by different subfunctions in
its different subdomains. Based on these insights, we propose
to adopt a two-phase regression approach to efficiently build-
ing a predictor function. Validation using a large number of
benchmarks and nine real-world datacenter applications on three
different platforms shows that our approach is also precise, with
an average error not exceeding 0.4%. When applied to the nine
datacenter applications, our approach improves overall resource
utilization from 50% to 88% at the cost of 10% QoS degradation.

Keywords-cross-core performance interference, memory sub-
systems, multicore processors, performance analysis, prediction
model.

I. INTRODUCTION

Two significant trends are emerging to dominate the land-

scape of computing today: multicore processors and cloud

computing [31]. The microprocessor industry is rapidly mov-

ing towards multi/many-core architectures that integrate tens

or even hundreds of cores onto a single chip. Meanwhile, much

of the world’s computing continues to move into the cloud.

Due to a synergy of the two trends, multicore processors have

been widely adopted in cloud computing.

A datacenter houses large-scale web applications and cloud

services. However, the utilization of its computing resources

is very low, i.e., around 20% [2], [24]. When multiple ap-

plications are co-located on the same multicore processor,

contention for shared resources in the memory subsystem

can cause severe cross-core performance interference [12],

[24], [36], [37], [42], [45]. Unfortunately, such performance

interference impacts negatively and unpredictably the quality

of service (QoS) of some user-facing and latency-sensitive

applications. As a result, co-location for such applications is

disallowed, leaving many cores idle and causing low machine

utilization [24]. To enable co-location while providing QoS

guarantees, it is challenging but important to predict the

performance interference between co-located applications.

Despite extensive efforts on mitigating the performance in-

terference due to resource contention on multicore processors,

not much work is directly applicable to the datacenter co-

location problem. The majority of existing solutions [4], [17],

[19], [23], [25], [26] classify qualitatively how aggressive

an application is for shared resources and make co-location

decisions accordingly. To predict quantitatively the amount

of the performance degradation suffered by an application

due to co-location, brute-force profiling is frequently used but

impractical for a datacenter housing N applications (with Cm
N

co-locations on an m-core processor), where N can be 1000+.

To alleviate this problem, Bubble-Up [24] characterizes the

sensitivity and aggressiveness of an application by co-running

it with a stress-testing application (called the bubble). How-

ever, it is limited to predicting the performance interference

between two co-running applications only. Bandit [11] does

not have this limitation but focuses on bandwidth contention

only.

In this paper, we introduce an empirical approach to effi-

ciently and precisely predicting the performance degradation

suffered by an application due to arbitrarily many co-located

applications. Our two key insights are:

• The performance degradation of an application can be

represented as a predictor function of the aggregate

pressures on shared resources from all cores, regardless

of which applications are co-running and what their

individual pressures are, and

• A predictor function is piecewise rather than non-

piecewise as in prior work so that different dominant

contention factors can be accommodated more accurately

with different subfunctions in its different subdomains.

To build a precise predictor function efficiently, we proceed

in two phases. The key lies in decoupling the construction

of the piecewise functional relation itself from that of its

coefficients. The first phase uses training workloads to build

an abstract model, which defines the functional form used to

relate the performance degradation of any application to the

aggregate pressures on shared resources from all cores, with its

coefficients undetermined. This phase is platform-dependent

but application-independent. The second phase instantiates

the abstract model for a given application by co-running it

with a small number of training workloads to determine the

application-specific coefficients for the functional form ob-

tained earlier. The instantiated model for the given application

can then be used to predict its performance degradation with

any co-runners. Therefore, the more costly first phase can be

amortized by all applications in a datacenter.

This paper makes the following contributions:

• We present empirical evidence for the existence of a

functional relation between the performance degradation

of an application and the aggregate pressures on shared

resources from all cores, regardless of what co-running

applications and their individual pressures are.

• We propose to characterize the performance degradation

of an application due to co-location with a piecewise

predictor function, which admits different subfunctions

depending which contention factors are dominant.

• We introduce a two-phase regression approach to building

a predictor function. Our approach is efficient because the

first phase is performed only once for a platform and the

second phase can be done in O(1). Our approach is also

precise as it has an average error not exceeding 0.4%,

validated using a large number of benchmarks and nine

real-world datacenter applications on three platforms.

• Our prediction model can be used in a datacenter to

increase its overall resource utilization. For the nine

applications tested, the resource utilization has gone up

from 50% to 88% at the cost of 10% QoS degradation.

The rest of the paper is organized as follows. Section II mo-

tivates this work. Section III presents our two-phase approach.

Section IV describes our experimental validation. Section V

discusses the related work. Section VI concludes.

II. MOTIVATION

We first present some experimental results to demonstrate

performance interference resulting from co-locations (Sec-

0%

10%

20%

30%

40%

50%

60%

70%

80%

4
2
9
.m

cf

4
3
5
.g
ro
m
a
cs

4
6
4
.h
2
6
4
re
f

4
8
2
.s
p
h
in
x

4
2
9
.m

cf

4
1
0
.b
w
a
v
e
s

4
3
6
.c
a
ct
u
sA
D
M

4
8
2
.s
p
h
in
x

4
2
9
.m

cf

4
1
0
.b
w
a
v
e
s

4
5
0
.s
o
p
le
x

4
5
6
.h
m
m
e
r

4
2
9
.m

cf

4
3
3
.m

il
c

4
5
6
.h
m
m
e
r

4
5
9
.G
e
m
sF
D
T
D

4
2
9
.m

cf

4
3
3
.m

il
c

4
3
6
.c
a
ct
u
sA
D
M

4
8
2
.s
p
h
in
x

4
2
9
.m

cf

4
4
7
.d
e
a
lI
I

4
5
4
.c
a
lc
u
li
x

4
7
0
.l
b
m

P
e
rf
o
rm

a
n
ce

D
e
g
ra
d
a
ti
o
n

Fig. 1: Performance slowdowns of 429.mcf when co-running

some SPEC2006 benchmarks on a quad-core Xeon.

Aggregated bandwidth consumption (Pbw)

P
er

fo
rm

an
ce

 d
eg

ra
d

at
io

n

10%

20%

30%

40%

50%

60%

Aggregated cache consumption (P
cache)

Cache-Bound

Cache/BW-Bound

BW-Bound

Fig. 2: Existence of a piecewise function relating the perfor-

mance degradation of 429.mcf to the aggregate pressures on

shared cache and memory bandwidth. The three planes are the

plots of the three subfunctions given in (3).

tion II-A). We then discuss our key insights that motivated

the design of our prediction model, and subsequently, the

development of a two-phase approach to building it efficiently

(Section II-B). Finally, we use a benchmark to highlight the

intuition behind the precision of our prediction (Section II-C).

A. Performance Interference

Figure 1 shows the performance interference between some

co-running SPEC2006 benchmarks on an Intel quad-core Xeon

specified in the first paragraph of Section IV. The horizontal

axis shows six groups of co-runners representing six different

workloads for 429.mcf. The vertical axis represents the

performance degradation of a benchmark computed by:

PD = (ExeT imeco−run − ExeT imesolo)/ExeT imesolo

where ExeT imesolo (ExeT imeco−run) is the execution time

in solo (co-running) execution. Note that when co-running

with different workloads, a benchmark can experience a wide

variation in performance degradation. For example, 429.mcf

suffers from a slowdown ranging from 24.9% to 78%.

B. Our Insights

There are two key insights. First, the performance degra-

dation suffered by an application due to co-location can be

represented as a predictor function of the aggregate pressures

on shared resources, e.g., shared cache and memory bandwidth

(BW) from all cores, regardless of which applications are co-

running and what their individual pressures are. Second, a

predictor is piecewise in order to capture different dominant

contention factors more accurately with different subfunctions.

Consider two typical scenarios. Given a cache-intensive

application C, its performance worsens rapidly if its co-

runners compete severely with it for shared cache. However,

as the shared cache contention saturates, the contention shifts

to memory bandwidth, causing C’s performance to degrade

more slowly. Given a bandwidth-intensive application B,

its performance worsens slowly if its co-runners’ bandwidth

consumptions are low. However, as the total bandwidth con-

sumption increases, the bandwidth contention grows, causing

B’s performance to degrade more quickly. In this case, the

performance degradation of an application can be predicted

by a piecewise function consisting of three subfunctions to

account for three different dominant contention factors: cache-

bound, cache/BW-bound, and BW-bound contention.

C. Our Prediction Model

We use 429.mcf from SPEC2006 to introduce the key

elements involved in building a prediction model for the

performance degradation of an application. This sheds some

light on the precision behind our prediction. However, the

approach discussed here is brute-force and thus impractical

for a datacenter housing a large number of applications. In

Section III, we introduce our scalable two-phase approach.

We focus on two shared resources, shared cache and mem-

ory bandwidth. We generated randomly 200 workloads (with

three applications per workload) from SPEC2006 to co-run

with 429.mcf. For each workload, we calculate the aggregate

pressure for each shared resource and seek for a functional

relation with the performance degradation of 429.mcf.

1) Measuring Aggregate Pressures: For a given workload,

let the three co-runners of 429.mcf, denoted Amcf , be A1,

A2 and A3. First, we use PMUs to collect each benchmark’s

pressure on (i.e., consumption of) each shared resource in

solo execution. Let cachei (bwi) be the individual pressure on

shared cache (bandwidth) from Ai, where i ∈ {1, 2, 3,mcf}.

We then combine the individual pressures on a resource to

obtain the aggregate pressure on the same resource:

Pcache = cachemcf +Σ3
i=1cachei

Pbw = bwmcf +Σ3
i=1bwi

(1)

2) Collecting Data Points: For each workload w, the per-

formance degradation of 429.mcf is recorded as PDw and

the aggregate pressures Pcache and Pbw are found by (1),

giving rise to one data point, denoted ((Pcache, Pbw), PDw).

3) Finding the Functional Relation: With 200 randomly

generated workloads to co-run with 429.mcf, we obtain 200

data points for 429.mcf. The Xeon platform used for this

experiment has a bandwidth of 12.8GB/s. With [0, 12.8GB/s]

being partitioned into three bandwidth bands (as described in

Section III), we obtain the following piecewise function:

PDmcf =

PDCache−Bound if Pbw < 3.2

PDCache/BW−Bound if 3.2 ≤ Pbw ≤ 9.6

PDBW−Bound if Pbw > 9.6

(2)

where

PDCache−Bound = 0.485Pbw + 0.183Pcache − 0.138

PDCache/BW−Bound = 0.706Pbw + 1.725Pcache − 0.220

PDBW−Bound = 0.907Pbw + 3.087Pcache − 0.561

(3)

The R-squared value for PDmcf is 0.90, indicating a strong

fit. Figure 2 plots the three subfunctions of PDmcf given

in (3) that capture three different types of dominant contention

factors. The performance degradation of 429.mcf varies at

different rates in the three corresponding subdomains.

III. TWO-PHASE REGRESSION APPROACH

Our insights lead to the design of a precise prediction model.

However, a datacenter may house hundreds to thousands of

applications with the frequent development and updating of

these applications. Repeating the same regression analysis as

above for each application is impractical. Fortunately, we have

made an important observation about a predictor function

used for an application on a given computer platform: its

coefficients are application-specific but the actual functional

relation, i.e., form itself is not. Based on this, we introduce a

two-phase regression approach, as shown in Figure 3, to build

a predictor function efficiently for a given application.

The first phase is platform-dependent but application-

independent. This phase builds an abstract prediction model,

i.e., a piecewise function to be shared by all applications in

a datacenter, with its coefficients undetermined. The second

phase instantiates the abstract model for a given application to

determine its application-specific coefficients. By decoupling

the construction of the two components, the more costly first

phase is performed only once for a platform, with its cost

being amortized by all applications in a datacenter.

In this paper, we focus on the contention for shared cache

and memory bandwidth, as this is the dominant contention in

many applications. Our approach is expected to be applicable

to other shared resources as well. Section III-A describes how

to build an abstract prediction model. Section III-B describes

how to instantiate the abstract model for a given application.

Section III-C analyzes the efficiency of our approach, which

will be experimentally validated in Section IV-C.

A. Phase 1: Building an Abstract Model

All the components of this first phase are shown in the

top part of Figure 3. The “Application Warehouse” contains

all applications routinely run in a datacenter. The “Feature

Extractor” is responsible for obtaining each application’s in-

dividual consumptions of (pressures on) shared resources and

Fig. 3: Two-phase approach for predicting the performance

degradation of an application on a computer platform.

storing these as a feature vector in the “Feature Database”

(Section III-A1). The feature vectors are used to compute

the aggregate pressures of co-runners on shared resources and

allow the “Training Set Generator” to generate training work-

loads (Section III-A2). The “Co-Running Trainer” records

the performance slowdowns of all training workloads (Sec-

tion III-A3). The “Abstract Model Creator” builds an abstract

prediction model via regression analysis (Section III-A4).

1) The Feature Extractor: We make use of PMUs to obtain

the individual consumptions of shared cache and bandwidth

from each application Ai in solo execution and represent

the individual pressures as a feature vector of the form

FV (Ai) = (cachei, bwi). The critical issue here is to identify

appropriate PMUs to use. For illustration purposes, we con-

tinue to consider the Intel platform described in Section II-A,

with private L1 and L2 caches and a shared L3 cache.

To measure the shared cache (L3) consumption, L2 LinesIn

rate is recommended [35], [37], which gives the number of

cache lines brought from the L3 cache for a given period of

time, including passive accesses triggered by cache misses and

proactive prefetching. Figure 4 confirms a good correlation

between the accumulated L2 LinesIn and the performance

degradation of 429.mcf. Each bar represents the accumu-

lated L2 LinesIn for a workload (against the left y-axis) and

the (red) line shows the performance degradation of 429.mcf

subject to the corresponding workload (against the right y-

axis). The good correlation illustrates that L2 LinesIn is a

good indicator for shared cache consumption.

An application’s bandwidth consumption can be profiled

using Intel’s PTU (Performance Tuning Utility) [15], which

offers the hardware event counters for memory system perfor-

mance analysis. PTU can report the System Memory Through-

put periodically. In our experiments, we use the average

throughput of an application as its bandwidth consumption.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0

0.1

0.2

0.3

0.4

0.5

P
e
rf
o
rm

a
n
ce

 D
e
g
ra
d
at
io
n

L2
Li
n
e
sI
n

 R
a
te

 (
M
il
li
o
n
s
o
f
C
a
ch
e

Li
n
e
s
p
e
r
S
e
co
n
d
)

Co!Running Workloads from SPEC2006

L2LinesIn Rate Performance Degradation

Fig. 4: Performance degradation of 429.mcf varies with

accumulated L2 LinesIn, indicating that the degradation has a

good correlation with accumulated L2 LinesIn.

2) The Training Set Generator: A datacenter warehouse

can contain a large number of applications, say, 1000+. It is

impractical to use them all as training workloads. We create a

training set so that the warehouse is evenly sampled based on

the feature vectors of all applications stored in the “Feature

Database”. This ensures that different degrees of contention for

shared resources are all represented by the training workloads.

We proceed in three steps. First, we define an n-dimensional

feature space, with one dimension representing the consump-

tion of each distinct shared resource. In this paper, the feature

space has two dimensions. Each application is mapped into

the feature space using its feature vector. Second, we partition

the feature space into Ncache ×Nbw grids, where Ncache and

Nbw are user-supplied values. The applications falling into

the same grid can be regarded as having a similar resource

consumption. Finally, we sample one point from each non-

empty grid by adding it to the training set.

3) The Co-Running Trainer: Given an m-core processor,

the co-running trainer randomly generates a set of workloads

of size m from our training set, launches these workloads one

by one, and records every application’s degradation.

When generating co-running workloads, there is no need

to enumerate all possible co-locations from the training set,

which can be too expensive. Instead, we guarantee that ev-

ery application appears in Q different workloads (with no

duplicates) to provide enough data points for our regression

analysis, where Q is a user-supplied parameter.

The training data are organized into an interference table,

shown in Table I, where each row has three columns: an

application Ai, its set WAi,j of m− 1 co-runners, and the

performance degradation PDAi,WAi,j
of Ai in this j-th work-

load. For each workload, m new rows are added to the table,

one for each application in the workload.

4) The Abstract Model Creator: Given the interference

table for training applications and their feature vectors, we (1)

compute the aggregate consumptions of shared resources, (2)

identify the subdomains for the piecewise predictor function

being created, and (3) determine their corresponding subfunc-

tions but leave their coefficients undetermined. To accomplish

TABLE I: An interference table for a m-core processor, with

each co-running workload WAi,j containing m−1 co-runners.

Application Co-Runners A
′

is Performance Degradation
A1 WA1,1 PDA1,WA1,1

. . .

A1 WA1,Q PDA1,WA1,Q

A2 WA2,1 PDA2,WA2,1

. . .

A2 WA2,Q PDA2,WA2,Q

. . .

these tasks, we provide an interface for the user to define a

model search space via a configuration file. Our model creator

will automatically search this space to find an optimal solution

by performing a regression analysis.

#Aggregation
#Pre-Processing: none/exp(p)/log(p)/pow(p)
#Mode: add/mul

#Domain Partitioning: (shared-resource1, condition1), . . .
#Function: linear/polynomial(p)/user-defined

Fig. 5: Syntax of a configuration file.

Configurations: Figure 5 shows the syntax of a config-

uration file. Each option admits multiple values so that many

different configurations can be tried to find the best solution.

• Aggregation. The “pre-processing” option allows the

user to specify how to process the individual resource

consumptions recorded in a feature vector before they

are aggregated. There are presently four choices: none,

exp(p), log(p) and pow(p), which transform v into v, pv,

logp v and vp, respectively. The default is none.

The “mode” option specifies an arithmetic operator used

for combining the pre-processed resource consumptions

of co-runners for a shared resource into their aggregate

pressure on the same shared resource. There are presently

two choices: add and mul, with add set as the default.

• Domain Partitioning. This option allows the user to

define the subdomains of a predictor function in terms

of shared resource pressures. For each (shared-resourcei,

conditioni), shared-resourcei is a list of shared resources,

which is (Pcache), (Pbw) or (Pcache, Pbw), and conditioni

is a conditional expression in terms of variables in

shared-resourcei. As a shorthand, equal(n1, n2, . . .) is

a condition indicating that the j-th resource in shared-

resourcei is partitioned into nj equal bands. One ex-

ample is (Pbw, equal(4)). The user can leverage some

empirical knowledge to perform this task. In particular,

Tang et al. [35] observed that contention for bandwidth

has a more dominating effect on performance interference

than for other shared resources and Xu et al. [42] ob-

served that performance degradation worsens when band-

width consumption approaches the system peak band-

width. Some arbitrary user-defined conditions are also

admitted.

• Function. This option specifies the functional form used

for interpolation. The default is linear, i.e., polynomial(1),

indicating a functional form of a1×Pcache+a2×Pbw+
a3. Some user-defined functions are also allowed.

Regression Analysis: We find the best piecewise pre-

dictor function as follows. We try all possible configurations

and pick the one with the largest average R-squared value,

indicating the best fit possible. Given a data set consisting of

n observed values xi each of which has an associated predicted

value x̂i, let x̄ =
∑n

i=1 xi/n be the average of the observed

values. The R-squared value is 1−
∑n

i=1((xi−x̂i)
2/(xi−x̄)2).

In a configuration file, there are four options, with each

specifying a set of values. Collectively, they define a set C of

configurations as their Cartesian product to be searched for.

Let T = {A1, . . . , AP } be the training set of size P . For every

application Ai ∈ T , let Ri be the set of Q rows in the inter-

ference table given in Table I that contains the performance

slowdowns for Ai. For every (c, Ai) ∈ C ×T , let D(c, Ai) be

the set of Q data points created from Ri, one from each row

of Ri, as follows. For a row (Ai,WAi,j , PDAi,WAi,j
) in Ri,

the feature vectors for its associated applications are available

in the “Feature Database”. The data point obtained from the

row is ((Pcache, Pbw), PDAi,WAi,j
), where Pcache and Pbw

are the aggregated pressures on shared cache and bandwidth

computed according to the configuration c.
Let f(c, Ai) be the interpolating function over D(c, Ai).

Let Fitness(c, Ai) be the R-squared value of f(c, Ai). Let

AV G Fitness(c) be the average of the R-squared values for

all applications in the training set T under configuration c:

AV G Fitness(c) =

P
∑

i=1

Fitness(c, Ai)/P (4)

The best prediction is made under configuration copt if

AV G Fitness(copt) ≥ max
c′∈C

AV G Fitness(c′) (5)

We also record the best predictor functions found for all

applications in the training set under the best configuration:

best funs = {f(copt, A)|A ∈ T } (6)

We have also tried a few more sophisticated interpolation

methods. However, the one described above is fast and precise

for the co-location problem addressed here, as evaluated later.

B. Phase 2: Instantiating the Abstract Model

All the components of this second phase are shown in

the bottom part of Figure 3. For a given application A, we

instantiate the abstract model obtained earlier by determining

its application-specific coefficients. There are two cases. If A
is in the training set, we are done, because its coefficients

are already recorded in (6) in the first phase. Otherwise, we

proceed in the four steps as described below:

• Step 1. Determining the Feature Vector for A. This is

done only if it is not in the “Feature Database”.

• Step 2. Generating Co-Running Workloads. We build a

set CS of workloads from the training set to co-run with

A. CS contains C points for each subdomain, where C
is set by the user based on the functional form found. So

|CS| is C×S, where S is the number of subdomains. To

ensure that C points are sampled evenly from the training

set in each subdomain, we generate all Cm−1
P possible co-

locations from the training set, where P is the size of the

training set and m is the number of cores. We map these

workloads into a two-dimensional space, one for Pcache

and one for Pbw. Finally, we partition each subdomain

evenly into C strips/grids. Then one point is sampled

from each strip/grid. If some strips/grids are empty, the

partitioning is refined until C points are sampled.

• Step 3. Creating the Interference Table for A. For each

workload in CS, we co-run the m−1 applications in the

workload with A, record the performance degradation of

A, and finally, create its interference table.

• Step 4. Determining the Coefficients for A. With

A’s interference table and the abstract model obtained

earlier in Section III-A4, we perform a regression analysis

to determine A’s coefficients, and finally, obtain the

instantiation of the abstract model for A.

This second phase takes O(1) as C × S is small relative to

the number of workloads run in the first phase.

C. Why Two Phases Instead of Just One Phase?

Our approach consists of two phases when building a

predictor function for an application A. In the first application-

independent phase, the piecewise functional relation, i.e.,

functional form shared by all applications is found. In the

second phase, the application-specific coefficients for A are

determined. In a brute-force approach that combines the two

phases, A must be co-run with a large number of training

workloads.

By comparing the two approaches, our approach is more ef-

ficient while equally being precise (validated in Section IV-C).

1) The Brute-Force Approach: To build a predictor function

for A, let us suppose that A is to be co-run with Q workloads

to obtain Q data points for regression analysis. Then the

dominant cost of building a predictor function for A is:

COSTbf =

Q
∑

i=1

wkld
bf
i (7)

where wkldbfi is the execution time of the i-th workload. The

time spent on regression analysis is negligible.

2) The Two-Phase Approach: Let P be the size of our

training set and m be the number of cores in a multicore

processor. As each application is restricted to appear only in

Q workloads, Q

C
m−1

P−1

× Cm
P = Q × P/m training runs are

required. So the dominant cost of the first phase is:

COSTphase1 =

Q×P/m
∑

i=1

wkld
phase1
i (8)

where wkldphase1i is the execution time of the i-th workload.

To determine the application-specific coefficients for A, C×
S workloads are co-run with A as discussed in Section III-B.

So the dominant cost of the second phase is:

COSTphase2 =

C×S
∑

i=1

wkld
phase2
i (9)

where wkldphase2i is the execution time of the i-th workload.

3) Discussion: If we have N applications to predict, both

approaches have the following time complexities:

COSTbrute−force = N
∑Q

i=1 wkld
bf
i

COSTtwo−phase =

Q×P/m
∑

i=1

wkld
phase1
i +N

C×S
∑

i=1

wkld
phase2
i

(10)

In our approach, the first phase is performed only once for a

platform. (A re-run is warranted only some major software

upgrades occur.) When N is large, the underlying cost is

amortized. In general, C × S ≪ Q holds. So our approach

is much more efficient in practice, as evaluated below.

IV. EVALUATION

We demonstrate using a large number of benchmarks and

nine real-world applications available to us that our approach

can build a precise prediction model for an application effi-

ciently. The main platform used is an Intel 2.13GHz quad-core

Xeon E5506 with a private 32KB L1 D-cache, a private 32KB

L1 I-cache, a private 256KB L2 cache, a shared 4MB L3 cache

and a memory bandwidth of 12.8GB/s (with only two channels

populated). The other two platforms are a six-core Intel Xeon

E7-4807 and a quad-core AMD Opteron 8374.

A. Methodology and Benchmark

We built a warehouse including the benchmarks from

SPEC2000, SPEC2006, LINPACK, MiBench [14], PAR-

SEC [3], and Graph 500 and the nine real-world datacenter

programs listed in Table II with a total of 506 applications. All

are compiled using “GCC -O3” under Linux (kernel 2.6.18).

In the first phase, we created a training set as Section III-A2.

With Ncache = 6 and Nbw = 10, there are 30 applications

selected since half of the Ncache × Nbw = 60 grids

are empty. During training, we collected Q = 200
data points for each application as per Section III-A3.

With the 30 applications in the training set, we ran

30 × 200/4(cores) = 1500 workloads. In the configuration

file given in Figure 5, “pre-processing” is {none, exp(2),

log(2), pow(2)}, “mode” is {add, mul}, “domain partitioning”

is {((Pbw), equal(4)), ((Pcache), equal(4)), ((Pcache, Pbw),
equal(4, 4))}, and “function” is {linear, polynomial(2)}.

Thus, we conducted regression analysis for a total of

4 × 2 × 3 × 2 = 48 configurations, which took under 15

minutes using MATLAB, to build the abstract model. Finally,

the best piecewise function found is:

PD =

a11Pcache + a12Pbw + a13 if Pbw < 3.2

a21Pcache + a22Pbw + a23 if 3.2 ≤ Pbw ≤ 9.6

a31Pcache + a32Pbw + a33 if Pbw > 9.6

(11)

The domain for bandwidth was initially partitioned into four

equal bands. However, the subfunctions in the middle two

bands are merged because they are identical.

bw

bw

bw

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw cache

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

bw

Fig. 6: Predictor functions for eight SPEC2006 benchmarks.

In the second phase, we follow the four steps described

in Section III-B to instantiate the above abstract model for a

new application A. As the function is linear, we sample four

workloads (or points) from each of the three subdomains to

obtain 4 × 3 = 12 workloads, create an interference table

and determine its application-specific coefficients. We can

then use the instantiated model to predict its performance

degradation when co-located. Figure 6 gives the predictor

functions for eight SPEC2006 benchmarks. For 433.milc,

the subfunction under Pbw < 3.2 does not exist, because its

own bandwidth consumption is larger than 3.2GB/s.

B. Prediction Precision

We show that our predictors (with some given in Figure 6)

are precise for both benchmarks and real-world applications.

1) SPEC Benchmarks: We focus on the 18 SPEC2006

benchmarks that are not included in the training set. We

randomly generated 200 co-running workloads from these

18 benchmarks and randomly picked one representative for

each workload. For the 200 representative workloads selected,

Figure 7 depicts the real and predicted performance slowdowns

for each benchmark. In most cases, the predicted performance

degradation is close to the real one, with the prediction errors

ranging from 0.0% to 8.6% with an average of 0.2%.

2) Datacenter Applications: Let us now consider the nine

datacenter applications available to us as listed in Table II,

with five oriented to process large data and implemented using

TABLE II: Datacenter applications.

Application Description QoS Metric

openssl A secure sockets layer performance stress
test.

user time
(seconds)

openclas A lexical analyzer to segment sentences
into words with tags.

queries per
second

nlp-mt A language translator, with a similar func-
tionality as google translate.

user time
(seconds)

maxflow A maximum flow algorithm, widely used
in social networks.

user time
(seconds)

MR-ANN An artificial neural network algorithm,
used to infer a function from observation,
implemented using MapReduce.

throughput

MR-KNN A K-nearest neighbor algorithm, a type of
instance-based learning, implemented us-
ing MapReduce.

throughput

MR-
kmeans

A K-means clustering algorithm, one of the
most commonly-used algorithms in data
mining, implemented using MapReduce.

throughput

MR-sort A sorting algorithm, implemented using
MapReduce.

throughput

MR-iindex An inverted index algorithm used in text
searches, with an index data structure used
to store a mapping from content to its
locations, implemented using MapReduce.

throughput

MapReduce. For each application, we randomly generated 15

workloads from these applications to co-run with it. Figure 8

depicts both the real and predicted performance slowdowns

for each application. In most cases, the predicted performance

degradation is close to the real one. The prediction errors range

from 0.0% to 5% with an average of only 0.3%.

3) Prediction Error Analysis: While exhibiting a small

average prediction error, our approach can make relatively

large errors for some applications. In Figure 7, the two worst

cases are Workload 108 (for 450.soplex co-running with

456.hmmer, 410.bwaves and 459.GemsFDTD) with an

error of 8.6% and Workload 191 (for 473.astar co-running

with 450.soplex, 433.milc and 410.bwaves) with an

error of 7.3%.

There are two main sources of errors. First, our compu-

tations for shared resource consumptions are only estimates.

We use the PMU for L2 LinesIn to estimate the shared cache

consumed by an application. While reflecting the number of

cache lines fetched from the shared L3 cache to the L2 cache,

this metric cannot precisely determine the footprint of an

application in the L3 cache, because it is not precisely related

to the amount of data reuse in the application. For example, a

cache line is fetched twice into the L2 cache due to capacity

misses, L2 LinesIn counts it twice. However, this indicates

only one cache line in the L3 cache.

Second, we use the average consumption for a shared

resource by an application during its entire execution to obtain

its feature vector. The phase behavior of an application cannot

be accurately taken into account. Figure 9 shows the band-

width consumption of 450.soplex with a 1-second sam-

pling interval. For an application, when its co-runners reach

their peaks (troughs) simultaneously in terms of bandwidth

consumption, the performance degradation would be larger

(smaller) than predicted. For this main reason, the prediction

0%

10%

20%

30%

40%

50%

60%

70%

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

A
V
G

P
e
rf
o
rm

a
n
ce

D
e
g
ra
d
a
ti
o
n

Workload ID

Real Predicted

Fig. 7: Prediction precision for 200 randomly generated workloads from 18 SPEC2006 benchmarks. For each workload (with

four benchmarks), the real and predicted performance slowdowns of a randomly picked representative are shown.

0%

10%

20%

30%

40%

50%

maxflow nlp mt openclas openssl MR ANN MR KNN MR kmeans MR sort MR iindex

P
e

rf
o

rm
a

n
c
e

 D
e

g
ra

d
a
ti

o
n

Real Predicted

Fig. 8: Prediction precision for the applications listed in Table II, with each co-running in 15 workloads from Table II.

0

1

2

3

4

5

0 100 200 300 400 500

M
e
m
o
ry

 B
a
n
d
w
id
th

 (
G
B
/s
)

Time Interval

Fig. 9: The phase behavior of the bandwidth consumption for

450.soplex with a sampling interval of 1 second.

error for 450.soplex is 8.6% (Workload 108) as shown in

Figure 7. Similarly, our approach has the errors mentioned

above for Workload 191 in Figure 7 and Workloads 138 and

139 in Figure 10. Some of their co-runners also exhibit phase

behavior, including 433.milc between 3GB/s to 5.4GB/s

and 483.xalancbmk between 0GB/s to 2GB/s.

C. Prediction Efficiency

We provide experimental results to back up the analysis

given in Section III-C. We show that our two-phase approach

is scalable but the brute-force one-phase approach is not, and

in addition, our approach is equally precise.

1) Comparing Efficiency: For our warehouse on Xeon,

m = 4, P = 30, Q = 200, C = 4 and S = 3. A workload

takes 15 minutes on average to finish, which is common in

practice. According to (10), the costs (in hours) incurred by

both approaches in making predictions for N applications are:

COSTbrute−force = 50N
COSTtwo−phase = 375 + 3N

(12)

COSTbrute−force > COSTtwo−phase when N ≥ 8. Further-

more, the first phase in our approach takes 375 hours, i.e.,

about two weeks to build the abstract model for the Xeon

platform, but this cost, which is independent of N , can be

amortized as our second phase is applied to more and more

applications (i.e., as N increases). Our second phase takes

three hours for each application. In contrast, the brute-force

approach takes more than two days for each application. If

N = 100, the brute-force approach spends nearly 30 weeks

on the N applications while our approach takes only 4 weeks.

2) Comparing Precision: Our two-phase approach is not

only scalable but also as precise as the brute-force approach,

as shown in Figure 10. We have randomly generated 150

workloads from SPEC2006 to co-run with 471.omnetpp

and compared both in terms of prediction precision. The

prediction errors by brute-force range from 0.0% to 10.1%

with an average of 0.23%. The prediction errors with two

phases range from 0.0% to 11.7% with an average of 0.40%,

which is slightly higher than that of the brute-force approach.

0%

40%

80%

120%

160%

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

1
2
9

1
3
3

1
3
7

1
4
1

1
4
5

1
4
9

P
e
rf
o
rm

a
n
ce

 D
e
g
ra
d
a
ti
o
n

Workload ID

Real Two Phase Brute Force

Fig. 10: Prediction precision of the two-phase and brute-force approaches for a SPEC2006 benchmark, 471.omnetpp, co-

running with 150 co-running workloads randomly generated from 18 SPEC2006 benchmarks.

D. Benefits of Piecewise Predictor Functions

We examine the benefits of a piecewise interpolation of the

data points for our co-location problem. If a non-piecewise

function is used instead, the predictor errors will usually

increase, especially in the areas around the breakpoints of the

corresponding piecewise predictor function.

Let us consider the 200 workloads in Figure 7. To obtain

a non-piecewise predictor function, we use the same data

points and configuration file as before except that the domain

partitioning option is ignored. The resulting prediction errors

range from 0.0% to 15.2% with an average of 3.5%. In

contrast, the prediction errors from our piecewise predictor

function range from 0.0% to 8.6% with an average of 0.2%.

Even though its average error may be small, a non-piecewise

predictor tends to make larger prediction errors near the

breakpoints of its corresponding piecewise predictor, called

bad areas. For these workloads, our piecewise predictor given

in (11) has two breakpoints. Two bad areas are observed:

2.2 < Pbw < 4.2 and 8.6 < Pbw < 10.6, with 45 out

of 200 data points falling inside. For these data points, the

prediction errors of the non-piecewise predictor range from

1.2% to 15.2% with an average of 9.0%. In contrast, the

prediction errors of our piecewise predictor are much smaller,

ranging from 0.0% to 4.5% with an average of 1.2%. For

illustration purposes, both predictor functions are compared

using five workloads in the two bad areas in Figure 11.

E. Applying Our Model in a Datacenter

In this section, we present an evaluation of applying our

prediction model in a datacenter to increase hardware resource

utilization. We allow the datacenter applications to have a

small amount of QoS degradation, with the tolerable degrada-

tion threshold, e.g., 5% or 10%, specified by the user. We use

our prediction model obtained in Section IV-A to predict the

QoS degradation and allow co-locations when the predicted

QoS degradation is within the specified threshold.

We use a real-time interactive language translator appli-

cation, nlp-mt, which is functionally equivalent to google

translate, as the main application whose QoS should be

0%

10%

20%

30%

40%

50%

4
3
6
.c
a
ct
…

4
3
7
.l
e
sl
i…

4
5
3
.p
o
v
…

4
6
4
.h
2
6
…P
e
rf
o
rm

a
n
ce

 D
e
g
ra
d
a
ti
o
n

Real Predicted (Piecewise) Predicted (Non!Piecewise)

4
5
6
.h
m
…

4
8
3
.x
a
la
…

4
2
9
.m
cf

4
5
3
.p
o
v
…

4
3
6
.c
a
ct
…

4
5
0
.s
o
p
l…

4
5
8
.s
je
n
g

4
5
0
.s
o
p
l…

4
6
4
.h
2
6
…

4
5
0
.s
o
p
l…

4
5
8
.s
je
n
g

4
6
5
.t
o
n
to

4
6
5
.t
o
n
to

4
8
3
.x
a
la
…

4
1
0
.b
w
a
…

4
3
7
.l
e
sl
i…

Fig. 11: Comparing piecewise and non-piecewise predictor

functions using five workloads selected from “bad areas”.

0%

20%

40%

60%

80%

100%

baseline 99% 98% 96% 94% 90%

C
lu
st
e
r
U
ti
li
za
ti
o
n

QoS Policy

Fig. 12: Cluster utilization improvement when allowing co-

locations with nlp-mt using our prediction model.

guaranteed. Our platform is a cluster with 300 Quad-core

processors. There are 300 instances of nlp-mt with each

running on two cores in a processor. There are 600 other

application instances, randomly created from the other 8

applications given in Table II, with one instance per core. Our

baseline is the resource utilization obtained when co-location

is disabled for nlp-mt. We evaluate the utilization increases

with our prediction model when co-location is enabled.

Figure 12 shows the cluster resource utilization improve-

ment when using our prediction model to allow co-locations

with nlp-mt. The baseline is 50% when co-location is

disabled, in which case, each four-core processor allocates

two cores for running nlp-mt, thus leaving the other two

cores unused. The resource utilization for the cluster is defined

0

200

400

600

99% 98% 96% 94% 90%

C
o

lo
ca
ti
o
n
s

QoS!Policy

QoS Violated 1%!2%

QoS Violated < 1%

QoS Enforced

Fig. 13: Number of co-locations with nlp-mt under different

QoS policies.

0%

20%

40%

60%

80%

100%

baseline 99% 96% 94% 90% 80%

C
lu
st
e
r
U
ti
li
za
ti
o
n

QoS Policy

Fig. 14: Cluster utilization improvement when allowing co-

locations with openclas using our prediction model.

as the aggregate performance of all applications running on

the 300 processors, normalized by their performance in solo

execution. Suppose A1, A2, A3 and A4 are co-located on a

processor, with their performance degradation ratios being

PD1, PD2, PD3 and PD4, respectively. Then the resource

utilization on the processor is (
∑4

i=1
1

1+PDi
)/4.

Figure 12 shows that our prediction model can help improve

resource utilization. When the QoS policy is set as 99%,

MR-ANN or MR-KNN can co-locate with nlp-mt, pushing the

resource utilization from 50% to 63%. When the QoS policy

is relaxed to 90%, the four cores on some processors are fully

occupied, pushing the resource utilization further to 88%. In

this case, we have improved the resource utilization from 50%

to 88% at the cost of only 10% QoS degradation.

Figure 13 shows that as the QoS policy becomes more re-

laxed, the number of co-locations steadily increases, reaching

540 when the QoS policy is 90%. The peak is 600 as there are

600 unused cores when co-location is disabled. However, due

to prediction errors, some co-locations may slightly violate

the specified QoS policy. For example, the 90% QoS policy is

violated by around 11% of the 540 co-locations, causing less

than 1% extra QoS degradation. Such violations can be tackled

by using an error tolerance scheme, as suggested in [24].

Figure 14 shows the cluster utilization improvement when

we apply our approach to openclas. The experiments setup

is the same as in Figure 12 except that nlp-mt has been

replaced by openclas. Similar trends are observed in both

cases. However, openclas is more sensitive to contention

than nlp-mt, causing openclas to enjoy less utilization

improvement under the same QoS policy. Take the 99%

QoS policy as an example. While MR-KNN or MR-ANN

can be co-located with nlp-mt, no co-location is allowed

for openclas. As the QoS policy is relaxed, co-locations

become possible, pushing the resource utilization from 50%

to around 88% at the cost of 20% QoS degradation eventually.

F. Two More Platforms

These are (1) a 2.20GHz quad-core AMD Opteron 8374,

with a private 64KB L1 D-cache, a private 64KB L1 I-cache,

a private 512KB L2 cache, a shared 6MB L3 cache and a

memory bandwidth of 12.8GB/s, and (2) a 1.86GHz six-core

Intel Xeon E7-4807, with a private 128KB L1 D-cache, a

private 128KB L1 I-cache, a private 1MB L2 cache, a shared

18MB L3 cache and a memory bandwidth of 25.6GB/s.

With the same warehouse created earlier, we repeat the same

steps discussed in Section IV-A to build an abstract model

for each new platform in the first phase. The training set

obtained has 30 programs for the quad-core AMD Opteron

and 60 programs for the six-core Xeon. The abstract model is

instantiated similarly for each new program.

For the quad-core AMD Opteron, there are 26 SPEC2006

benchmarks not included in its training set. We randomly

generated 200 co-running workloads from these benchmarks

and randomly picked one representative for each workload.

Figure 15 depicts the real and predicted performance slow-

downs for the 200 representatives selected. The prediction

errors range from 0.0% to 5.1% with an average of 0.3%.

For the six-core Xeon, there are 20 SPEC2006 benchmarks

not included in its training set. Figure 16 is obtained for the

six-core Xeon as an analogue of Figure 15. The prediction

errors range from 0.0% to 10.2%, with an average of 0.1%.

V. RELATED WORK

There has been a lot of work on addressing the contention

for shared resources, especially shared cached, for multicore

processors. Cache partitioning has been used to mitigate

shared cache contention [33], [29], [30], [13], [5], [20], [44],

[18], [22], [28], [7], [21], [38], [39]. For hardware solutions,

cache resources are allocated to applications based on benefit

rather than rate of demand [33], [29], [30], [46]. For software

solutions, page coloring is used instead [7], [21], [44].

In the case of the contention for other shared re-

sources such as memory bandwidth and on-chip interconnect,

contention-aware scheduling represents a useful approach to

mitigate the contention. By default, these shared resources

are application-unaware, causing performance interference be-

tween co-running applications. The main intuition behind

contention-aware scheduling is to classify qualitatively all

applications into two categories depending on whether they

consume shared resources aggressively or not. With this clas-

sification, the scheduler can mix the applications from the

two categories to mitigate resource contention when deciding

which applications should be grouped together to run simulta-

neously on the same multicore processor [6], [17], [19], [42],

[40], [24], [25]. Furthermore, the scheduler can also adjust the

resources allocated to an application to mitigate the contention

to shared resources [45], [42], [12], [41], [36], [37].

0%

10%

20%

30%

40%

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

A
V
G

P
e
rf
o
rm

a
n
ce

D
e
g
ra
d
a
ti
o
n

Workload ID

Real Predicted

Fig. 15: Prediction precision for 200 randomly generated workloads from 26 SPEC2006 benchmarks on the quad-core AMD

Opteron. For each workload, the real and predicted performance slowdowns of a randomly picked representative are shown.

0%

20%

40%

60%

80%

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

A
V
G

P
e
rf
o
rm

a
n
ce

D
e
g
ra
d
a
ti
o
n

Workload ID

Real Predicted

Fig. 16: Prediction precision for 200 randomly generated workloads from 20 SPEC2006 benchmarks on the six-core Xeon.

For each workload, the real and predicted performance slowdowns of a randomly picked representative are shown.

There are also extensive studies on understanding and

predicting shared cache contention on multicore processors.

The best known techniques are Stack Distance Profiles (SDP)

[27] and Miss Rate Curves (MRC) [27], [4], which shed light

on an application’s reuse behavior with its cache sharing.

These earlier techniques cannot be used directly to solve the

datacenter co-location problem, which requires the ability of

predicting quantitatively the performance interference between

co-running applications on a multicore processor. Recently,

Bubble-Up [24], [25], [36] predicts the performance degra-

dation that results from contention for the shared memory

subsystem. This is the closest related to our work. However,

Bubble-Up is limited to predicting interference between two

applications. Bandit [11] does not have this limitation but

focuses only on bandwidth contention. In contrast, our two-

phase approach applies to arbitrary co-running applications

competing for multiple shared resources. In addition, this

paper represents the first to use a piecewise predictor function.

Finally, once performance interference is predicted, appli-

cations can be mapped to multicores under some schedul-

ing policies and optimization goals [16], [45]. The perfor-

mance interference model can be leveraged by the compiler

to include some co-runner-aware code transformations and

optimizations [1], [36]. Furthermore, some domain-specific

optimizations [9], [8], [10] can be applied to some datacenter

applications to make them co-locate better.

VI. CONCLUSION AND FUTURE WORK

This paper presents a two-phase regression approach to

predicting the performance interference between multiple ap-

plications co-running on a multicore processor. We have

experimentally validated the existence of a piecewise function

between the aggregate shared resource consumptions and the

performance degradation of an application when co-located.

By proceeding in two phases rather than one, we can obtain

a predictor function scalably. By using a piecewise rather

than a non-piecewise predictor function, we can accommodate

different types of dominant contention factors in its different

subdomains, thereby achieving a more accurate prediction.

In future work, we plan to generalize our model so that more

multi-threaded programs can be handled. Presently, our model

works for a multi-threaded program if the program has a fixed

number of threads, statically grouped, so that the threads in a

group always run together on a processor, with at most one

thread per core. In addition, we also plan to study how to

consider positive interactions between applications, e.g., those

caused by applications sharing the same OS utility. Finally, it

would be interesting to investigate how to predict performance

interference by combining static program analysis, particularly

pointer analysis [32], [34], [43] with profiling.

ACKNOWLEDGEMENTS

This research is supported in part by the National High

Technology Research and Development Program of China

(2012AA010902), the National Key Basic Research Program

of China (2011CB302504), the National Natural Science

Foundation of China (61202055, 60925009, 61100011), the

Innovation Research Group of NSFC (60921002), and Aus-

tralian Research Council Grants (DP0987236, DP110104628

and DP130101970). We would like to thank all the reviewers

for their valuable comments and suggestions.

REFERENCES

[1] B. Bao and C. Ding. Defensive loop tiling for shared cache. In CGO,
2013.

[2] L. A. Barroso and U. Holzle. The case for energy-proportional
computing. In IEEE Computer, 2007.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications. In PACT, 2008.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache
contention on a chip multi-processor architecture. In HPCA, 2005.

[5] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip
multiprocessors. In ICS, 2007.

[6] S. Chen, P. Gibbons, M. Kozuch, V. liaskovitis, A. Ailamaki, G. Blel-
loch, B. Falsafi, L. Fix, N. Hardavellas, T. Mowry, and C. Wilkerson.
Scheduling threads for constructive cache sharing on CMPs. In SPAA,
2007.

[7] S. Cho and L. Jin. Managing distributed, shared L2 caches through
OS-level page allocation. In MICRO, 2006.

[8] H. Cui, L. Wang, J. Xue, Y. Yang, and X. Feng. Automatic library
generation for BLAS3 on GPUs. In IPDPS, 2011.

[9] H. Cui, J. Xue, L. Wang, Y. Yang, X. Feng, and D. Fan. Extendable
pattern-oriented optimization directives. In CGO, 2011.

[10] H. Cui, J. Xue, L. Wang, Y. Yang, X. Feng, and D. Fan. Extendable
pattern-oriented optimization directives. ACM Transactions on Architec-

ture and Code Optimization, 9(3):14, 2012.
[11] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Bandwidth

Bandit: Quantitative characterization of memory contention. In CGO,
2013.

[12] A. Fedorova, M. Seltzer, and M. Smith. Improving performance isolation
on chip multiprocessors via an operating system scheduler. In PACT,
2007.

[13] F. Guo and Y. Solihin. An analytical model for cache replacement policy
performance. In SIGMETRICS, 2006.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded
benchmark suite. In IISWC, 2001.

[15] Intel. Intel performance tuning utility. http://software.intel.com/en-
us/articles/intel-performance-tuning-utility.

[16] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and approximation
of optimal co-scheduling on chip multiprocessors. In PACT, 2008.

[17] Y. Jiang, K. Tian, and X. Shen. Combining locality analysis with online
proactive job co-scheduling in chip multiprocessors. In HiPEAC, 2010.

[18] S. Jim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning
in a chip multiprocessor architecture. In PACT, 2004.

[19] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS
observations to improve performance in multicore systems. In Micro,
2008.

[20] Y. Liang and T. Mitra. Cache modeling in probabilistic execution time
analysis. In DAC, 2008.

[21] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
insights into multicore cache partitioning: Bridging the gap between
simulation and real systems. In HPCA, 2008.

[22] F. Liu, X. Jiang, and Y. Solihin. Understanding how off-chip memory
bandwidth partitioning in chip multiprocessors affects system perfor-
mance. In HPCA, 2010.

[23] J. Machina and A. Sodan. Predicting cache needs and cache sensitivity
for applications in cloud computing on CMP servers with configurable
caches. In IPDPS, 2009.

[24] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-
Up: Increasing Utilization in Modern Warehouse Scale Computers via
Sensible Co-locations. In MICRO, 2011.

[25] J. Mars, L. Tang, and M. L. Soffa. Directly characterizing cross-core
interference through contention synthesis. In HiPEAC, 2011.

[26] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. Contention aware
execution: online contention detection and response. In CGO, 2010.

[27] R. L. Matterson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. In IBM Systems Journal 9, 1970.

[28] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J. Smith.
Multicore resource management. In MICRO, 2008.

[29] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for
MLP-aware cache replacement. In ISCA, 2006.

[30] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO, 2006.

[31] K. Sankaralingam and R. H. Arpaci-Dusseau. Get the parallelism out
of my cloud. In HotPar, 2010.

[32] L. Shang, X. Xie, and J. Xue. On-demand dynamic summary-based
points-to analysis. In CGO, pages 264–274, 2012.

[33] S. Srikantaiah, R. Das, A. K. Mishra, C. R. Das, and M. Kandemir. A
case for integrated processor-cache partitioning in chip multiprocessors.
In SC, 2009.

[34] Y. Sui, Y. Li, and J. Xue. Query-directed adaptive heap cloning for
optimizing compilers. In CGO, pages 1–11, 2013.

[35] L. Tang, J. Mars, and M. L. Soffa. Contentiousness vs. sensitivity:
improving contention aware runtime systems on multicore architectures.
In EXADAPT, 2011.

[36] L. Tang, J. Mars, and M. L. Soffa. Compiling For Niceness Mitigating
Contention for QoS in Warehouse Scale Computers. In CGO, 2012.

[37] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. The
Impact of Memory Subsystem Resource Sharing on Datacenter Appli-
cations. In ISCA, 2011.

[38] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking hard real-
time systems. In RTSS, pages 154–165, 2003.

[39] X. Vera, B. Lisper, and J. Xue. Data cache locking for tight timing
calculations. ACM Transactions on Embedded Computing Systems, 7(1),
2007.

[40] Y. Xie and G. Loh. PIPP: promotion/insertion pseudo-partitioning of
multi-core shared caches. In ISCA, 2009.

[41] D. Xu, C. Wu, P. Yew, J. Li, and Z. Wang. Providing Fairness on Shared-
Memory Multiprocessors via Process Scheduling. In SIGMETRICS,
2012.

[42] D. Xu, C. Wu, and P.-C. Yew. On mitigating memory bandwidth
contention through bandwidth-aware scheduling. In PACT, 2010.

[43] H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level by level: making
flow- and context-sensitive pointer analysis scalable for millions of lines
of code. In CGO, pages 218–229, 2010.

[44] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-
based multicore cache management. In EuroSys, 2009.

[45] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In ASPLOS,
2010.

[46] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto.
Survey of scheduling techniques for addressing shared resources in
multicore processors. ACM Computing Surveys, pages 1–31, 2011.

