On nonsingular loop transformations using SUIF’s dependence abstraction

Jingling Xue, School of Computer Science and Engineering, University of New South Wales, Sydney NSW 2052, Australia, jxue@cse.unsw.edu.au

Abstract

In SUIF, the data dependences of a program are represented by dependence vectors consisting of direction values. Based on SUIF’s component arithmetic, the legality of a loop transformation can be tested sufficiently. By recasting SUIF’s dependence vectors in terms of dependence polyhedra, this paper provides a geometric interpretation for the non-necessity of SUIF’s legality test and gives a necessary and sufficient condition for checking the legality of any nonsingular transformation.

Keywords: Parallelising compilers, loop transformation, dependence vector, legality test.

1 Introduction

SUIF is a parallelising compiler developed at Stanford University and utilised by many universities and industrial laboratories around the world. In SUIF, the data dependences of perfectly nested loops are captured by a dependence abstraction that encompasses both distance and direction vectors. A component arithmetic operating on dependence vectors is defined, allowing the legality of a loop transformation to be tested sufficiently. By recasting SUIF’s dependence vectors in terms of dependence polyhedra, this paper provides a geometric interpretation of SUIF’s component arithmetic, and consequently, a geometric understanding of the non-necessity of SUIF’s legality test. A necessary and sufficient condition is presented that allows the legality of any nonsingular loop transformation to be tested exactly. Section 2 introduces SUIF’s dependence vectors, component arithmetic and legality test. Section 3 describes how a dependence vector can be represented by a special form of convex polyhedra, which is a cone once the origin is appropriately translated. Section 4 gives a geometric interpretation of SUIF’s component arithmetic and explains why SUIF’s legality test is sufficient but not necessary. Section 5 presents a necessary and sufficient condition for checking the legality of a nonsingular transformation. Section 6 concludes the paper.

2 SUIF’s dependence vectors, component arithmetic and legality test

In SUIF, a dependence vector for an n-dimensional perfect loop nest is a vector $\vec{d} = (d_1, \ldots, d_n)$, where the k-th entry d_k corresponds to the k-th loop. Each entry d_k is a possibly infinite range of integers, represented by $[d_k^{\min}, d_k^{\max}]$, where

$$d_k^{\min} \in \mathbb{Z} \cup \{-\infty\}, d_k^{\max} \in \mathbb{Z} \cup \{\infty\}, \text{ and } d_k^{\min} \leq d_k^{\max}$$

In general, d_k takes two kinds of values:

Distance Value: If d_k^{\min} and d_k^{\max} are integers, then $[d_k^{\min}, d_k^{\max}]$ represents a finite number of integer values. In the special case when $d_k^{\min} = d_k^{\max} = a$, $[d_k^{\min}, d_k^{\max}] = [a, a]$ degenerates into a singleton distance value, and

Direction Value: If $d_k^{\min} = -\infty$ or $d_k^{\max} = \infty$ or both, then $[d_k^{\min}, d_k^{\max}]$ represents infinitely many integer values.

Figure 1 gives the shorthands used in this paper and by others for representing direction values.

A dependence vector is a distance vector if all its entries are distance values and a direction vector otherwise. The set of distance vectors, $\mathcal{P}(\vec{d})$, represented by a dependence vector \vec{d} is:

$$\mathcal{P}(\vec{d}) = \{(z_1, \ldots, z_n) \in \mathbb{Z}^n | d_k^{\min} \leq z_k \leq d_k^{\max}\}$$

which contains infinitely many distance vectors if \vec{d} contains a direction value.
### Integer Value Range	This Paper	SUIF	Tiny
$[a, \infty]$ | a^+ | $[a, \infty]$ | unavailable when $a \neq 1$
$(-\infty, a]$ | a^- | $(-\infty, a]$ | unavailable when $a \neq -1$
$[1, \infty]$ | $+$ | $+$ | $<$
$(-\infty, -1]$ | $-$ | $-$ | $>$
$[0, \infty]$ | 0^+ | 0^+ | \leq
$(-\infty, 0]$ | 0^- | 0^- | \geq
$(-\infty, \infty]$ | \pm | \pm | $*$

Figure 1: Shorthand notations for direction values.

The lexicographic ordering relations, \succ, \preceq, \prec, and \preceq on integer vectors can be extended to operate on dependence vectors. Let \vec{d} be a dependence vector. We define:

$$\vec{d} \succ 0 \quad \text{if } \forall \vec{z} \in \mathcal{P}(\vec{d}): \vec{z} \succ \vec{0}$$

That is, \vec{d} is lexicographically positive if all its distance vectors are. Likewise for the other three operators.

The notation D stands for the set of all dependence vectors in a loop nest, called the dependence set. In a sequential program, its dependence vectors are lexicographically positive:

$$\forall \vec{d} \in D: \vec{d} \succ \vec{0}$$

This paper considers the class of loop transformations representable by square integer matrices. This class includes well-known transformations such as loop interchange, permutation, reversal and skewing. Since T is linear, the following well-known result is immediate.

Lemma 1 A nonsingular transformation T is legal iff $\forall \vec{d} \in D: (\langle \vec{z} \in \mathcal{P}(\vec{d}): T \vec{z} \succ \vec{0})$.

In 4, Wolf and Lam introduce component arithmetic on dependence vectors so that they can calculate $T \vec{d}$ directly, where $T \in \mathbb{Z}^{n \times n}$ for a dependence vector \vec{d}:

$$T \vec{d} = \begin{pmatrix} t_{1,1} & \cdots & t_{1,n} \\ \vdots & \ddots & \vdots \\ t_{n,1} & \cdots & t_{n,n} \end{pmatrix} \begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n t_{1,j}d_j \\ \vdots \\ \sum_{j=1}^n t_{n,j}d_j \end{pmatrix}$$

and check the legality of a transformation T by examining $T \vec{d}$ only.

In SUIF's component arithmetic, the component addition is defined to be:

$$[a, b] + [c, d] = [a + c, b + d]$$

where for all $x \in \mathbb{Z} \cup \{\infty\}$, $x + \infty = \infty$ and for all $x \in \mathbb{Z} \cup \{-\infty\}$, $x + (-\infty) = -\infty$. Similarly, multiplication by an integer scalar $s \in \mathbb{Z}$ is defined as:

$$s[a, b] = \begin{cases} [sa, sb] & \text{if } s \geq 0 \\ [sb, sa] & \text{if } s < 0 \end{cases}$$

where s_{∞} is infinite for positive s, 0 if $s = 0$, and $-\infty$ for negative s, and likewise for $s(-\infty)$. Finally, the component subtraction $a - b$ is defined to be $a + (-1)b$.

Based on component arithmetic, Wolf and Lam 4 developed a sufficient condition for checking the legality of a unimodular transformation. Their result, which applies to non-unimodular transformations, is stated below.

Theorem 1 (5, Lemma 2.6 and Theorem 2.8) Let $T \in \mathbb{Z}^{n \times n}$ be a nonsingular transformation. We have:

(a) $\forall \vec{d} \in D: \vec{z} \in \mathcal{P}(\vec{d}) \implies T \vec{z} \in \mathcal{P}(T \vec{d})$, and (b) T is legal if $\forall \vec{d} \in D: T \vec{d} \succ \vec{0}$.

As illustrated in Figure 2 (and pointed out in 4), SUIF's component arithmetic guarantees that $\mathcal{P}(T \vec{d}) \supseteq \{T \vec{z} \mid \vec{z} \in \mathcal{P}(\vec{d})\}$, where the equality almost never holds. While classifying T_1 and T_2 as being legal, SUIF's legality test is inconclusive when applied to Examples 3 and 4 because $T_3 \vec{d}_3 = T_4 \vec{d}_4 = (0+, 0+, *) \not\succ \vec{0}$.

2
<table>
<thead>
<tr>
<th>Dependence Set</th>
<th>Transformation</th>
<th>Transformed Dependences Using Component Arithmetic</th>
<th>Result of SUIF’s Legality Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_1 = { \tilde{d}_1 }) {(+,+)}</td>
<td>(T_1 = \left(\begin{array}{c} 1 \ 0 \ 1 \end{array} \right))</td>
<td>(T_1 \tilde{d}_1 = (2+,+))</td>
<td>Legal</td>
</tr>
<tr>
<td>(D_2 = { \tilde{d}_2 }) {(1+,+)}</td>
<td>(T_2 = \left(\begin{array}{c} 0 \ 2 \ -1 \end{array} \right))</td>
<td>(T_2 \tilde{d}_2 = (2+,+))</td>
<td>Legal</td>
</tr>
<tr>
<td>(D_3 = { \tilde{d}_3 }) {(+,1+)}</td>
<td>(T_3 = \left(\begin{array}{c} \frac{1}{2} \ 0 \ -1 \end{array} \right))</td>
<td>(T_3 \tilde{d}_3 = (+0,+0,*))</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>(D_4 = { \tilde{d}_4 }) {(+,1+)}</td>
<td>(T_4 = \left(\begin{array}{c} \frac{1}{2} \ 0 \ -1 \end{array} \right))</td>
<td>(T_4 \tilde{d}_4 = (+0,+0,*))</td>
<td>Inconclusive</td>
</tr>
</tbody>
</table>

Figure 2: SUIF’s legality test for four examples.

3 Dependence polyhedron abstraction

For practical programs, the entries of a dependence vector are either direction values (those in Figure 1) or singleton distance values (values in \(\mathbb{Z} \)). The non-singleton distance values \([d_k^{\text{min}}, d_k^{\text{max}}]\), where \(d_k^{\text{min}}, d_k^{\text{max}} \in \mathbb{Z}\), are uncommon. Without loss of generality, we assume that a dependence vector component draws its values from:

\[\mathbb{Z} \cup \{\ast\} \cup (\mathbb{Z} \times \{+, -\}) . \]

Note that ‘+’ is a shorthand for ‘1+’ and ‘-’ is a shorthand for ‘-1-1’.

By convention, \(\tilde{e}_k \) denotes the \(k \)-th elementary vector, i.e., the vector whose \(k \)-th entry is 1 and the others are 0. Based on Irigoin’s work \(^2\) and Darre’s and Vivien’s work \(^1\), \(P(\tilde{d}) \) is a special form of a convex polyhedron, which is a cone once the origin is appropriately translated:

\[P(\tilde{d}) = V(\tilde{d}) + \text{cone } R(\tilde{d}) \]

where \(V(\tilde{d}) \in \mathbb{Z}^n \) and \(R(\tilde{d}) \subset \mathbb{Z}^n \) are obtained using the algorithm in Figure 3.

Figure 3: An algorithm for constructing the dependence polyhedron for a dependence vector.

Figure 4 depicts the dependence polyhedra for the eight dependence vectors in Figure 2.

4 Non-necessity of SUIF’s legality test

A nonsingular transformation \(T \) maps the set of dependences in \(P(\tilde{d}) \) to the following set:

\[P_T(\tilde{d}) = \{ T \tilde{z} \mid \tilde{z} \in P(\tilde{d}) \} \]
Figure 4: Dependence polyhedra for four examples in Figure 2.
In terms of dependence polyhedron abstraction, this set can be specified precisely as:

\[
\mathcal{P}_T(\vec{d}) = \mathcal{L}(T) \cap (TV(\vec{d}) + \text{cone } TR(\vec{d}))
\]

where \(\mathcal{L}(T) \) is the lattice generated by the columns of \(T \) and \(TR(\vec{d}) = \{ T\vec{r} \mid \vec{r} \in R(\vec{d}) \} \), i.e., \(TR(\vec{d}) \) is the image of \(R(\vec{d}) \) under \(T \).

Figure 5 depicts the transformed dependences for the four examples in Figure 2. \(\mathcal{P}_{T_2}(\vec{d}_2) \) is not dense because \(T_2 \) is nonunimodular. \(\mathcal{P}_{T_1}(\vec{d}_1) \), \(\mathcal{P}_{T_3}(\vec{d}_3) \) and \(\mathcal{P}_{T_4}(\vec{d}_4) \) are all convex because \(T_1 \), \(T_3 \) and \(T_4 \) are all unimodular; they are cones once the corresponding origins are translated to the points highlighted with fat dots.

The set \(\mathcal{P}_T(\vec{d}) \) can be represented exactly by a single dependence vector iff

- \(T \) is unimodular, and
- All rays and lines in \(\{ T\vec{r} \mid \vec{r} \in R(\vec{d}) \} \) are elementary basis vectors.

Therefore, neither of the four sets \(\mathcal{P}_{T_1}(\vec{d}_1) \), \(\mathcal{P}_{T_2}(\vec{d}_2) \), \(\mathcal{P}_{T_3}(\vec{d}_3) \) and \(\mathcal{P}_{T_4}(\vec{d}_4) \) displayed in Figure 5 is representable by one single dependence vector.

Based on dependence polyhedron abstraction, a geometric interpretation for SUF’s component arithmetic can be given as follows. The set \(\mathcal{P}_T(\vec{d}) \) for a dependence vector \(\vec{d} \) is approximated by one dependence vector \(T\vec{d} \) such that \(\mathcal{P}(T\vec{d}) \) is the smallest dependence polyhedron enclosing \(\mathcal{P}_T(\vec{d}) \). The four sets in Figure 5 are approximated as illustrated in Figure 4. Although \(\mathcal{P}_{T_1}(\vec{d}_1) \neq \mathcal{P}_{T_2}(\vec{d}_2) \), \(\mathcal{P}(T_1\vec{d}_1) = \mathcal{P}(T_2\vec{d}_2) \) holds. Similarly, \(\mathcal{P}_{T_3}(\vec{d}_3) \neq \mathcal{P}_{T_4}(\vec{d}_4) \) but \(\mathcal{P}(T_3\vec{d}_3) = \mathcal{P}(T_4\vec{d}_4) \) holds. We shall see shortly that \(T_3 \) is legal but \(T_4 \) is not. It is impossible to distinguish both cases by examining \(T_3\vec{d}_3 = T_4\vec{d}_4 \) alone.

Based on dependence polyhedron abstraction, \(T\vec{d} \) can also be constructed as follows:

1. Construct the smallest dependence polyhedron enclosing \(\mathcal{P}_T(\vec{d}) \) of the form:

\[
\mathcal{P}(T\vec{d}) = V(T\vec{d}) + \text{cone } R(T\vec{d})
\]
where
\[V(T\vec{d}) = TV(\vec{d}) \]
\[R(T\vec{d}) = \{ \text{sign}(\vec{r}_k) \times \vec{e}_k | \exists \vec{r} \in TR(\vec{d}) : \vec{r} \neq 0 \text{ for some } k \} \]

2. Construct \(T\vec{d} \) from \(\mathcal{P}(T\vec{d}) \) by applying the reverse of DepPoly in Figure 3.

This procedure also serves as a proof for our geometric interpretation of SUIF’s component arithmetic.

Let us apply this procedure to calculate \(T_3 \vec{d}_3 \) in Figure 4. Based on \(\mathcal{P}_{T_3}(d_3) = T_3 V(\vec{d}_3) + \text{cone} \ T_3 R(\vec{d}_3) \) in Figure 5(c), we find in the first step \(V(T_3 \vec{d}_3) = (0, 0, 1) \) and \(R(T_3 \vec{d}_3) = \{ (1, 0, 0), (0, 1, 0), \pm (0, 0, 1) \} \). In the second step, applying the reverse of DepPoly yields \(T_3 \vec{d}_3 = (0+, 0+, *) \).

5 A necessary and sufficient legality test

The legality of a nonsingular transformation \(T \) can be tested exactly. The notation \(\vec{x}[i : j] \) denotes the subvector containing the entries \(x_i, \ldots, x_j \) in that order.

Theorem 2 A nonsingular transformation \(T \) is legal iff for every dependence vector \(\vec{d} \) in the dependence set \(D \) of the program, the following two conditions are both true:

(a) \(TV(\vec{d}) \gg 0 \)

(b) \(\forall \vec{r} \in TR(\vec{d}) : \vec{r}[1 : k] \gg 0 \), where \((TV(\vec{d}))[k] \) is the first nonzero entry of \(TV(\vec{d}) \).

In Figure 2, SUIF’s legality test was found to be inconclusive for Examples 3 and 4. From Figure 5(c), we obtain \(T_3 V(\vec{d}_3) = (0, 0, 1) \) and \(T_3 R(\vec{d}_3) = \{ (1, 0, -1), (0, 1, 1) \} \). From Figure 5(d), we obtain \(T_4 V(\vec{d}_4) = (0, 0, -1) \) and \(T_4 R(\vec{d}_4) = \{ (1, 0, -1), (0, 1, 1) \} \). By applying Theorem 2, we find that \(T_3 \) is legal but \(T_4 \) is not.

6 Conclusion

In this paper, we recast SUIF’s dependence vectors using convex polyhedra, which are cones once the origins are appropriately translated. Based on the dependence polyhedron abstraction, we give a geometric interpretation of SUIF’s component arithmetic and explain why SUIF’s legality test is sufficient but not necessary: We present a necessary and sufficient condition for testing the legality of any nonsingular loop transformation. The proposed legality test will allow a larger class of loop transformations to be applied.

7 Acknowledgements

This work is supported by an Australian Research Grant A10007149.

References