Instruction Scheduling with Release Times and Deadlines oi.P Processors

Hui Wu

Joxan Jaffar

School of Computer Science and Engineering

The University of New South Wales
Email: huiw@cse.unsw.edu.au

School of Computing
National University of Singapore

Email: joxan@comp.nus.edu.sg

Jingling Xue
School of Computer Science and Engineering
The University of New South Wales
Email: jxue@cse.unsw.edu.au

Abstract 1 Introduction

ILP (Instruction Level Parallelism) processors are being
ILP (Instruction Level Parallelism) processors are be- increasingly used in embedded Systems. Examples include
ing increasingly used in embedded systems. In embeddedexas Instruments’ TI C6, StartCore’s SC140, Philips’ Tri-
systems, instructions may be subject to timing constraints media and HP and STMicroelectronics’ Lx [6].
An optimising compiler for ILP processors needs to find A typical ILP processor consists of multiple parallel
a feasible schedule for a set of time-constrained instruc- functional units of different types. An instruction can be
tions. In this paper, we present afast algorithm for schedul executed On|y on a functional unit of the same type_ Typ-
ing instructions with precedence-latency constraintsiin jcally, the execution of an instruction takes one processor
vidual integer release times and deadlines on an ILP pro- Cyc|e_ However’ there are often de|ays of one or more pro-
cessor with multiple functional units. The time complexity cessor cycles between instructions. These delays, daed
of our algorithm isO(n? log d) 4 min{O(de), O(ne)} + tencies arise primarily because of off-chip communication
min{O(ne), O(n*?7°)}, wheren is the number of instruc- and pipelining architecture. For example, if instructign
tions, e is the number of edges in the precedence graph precedes instruction; and the latency between anduv,
and d is the maximum latency. Our algorithm is guar- s k (cycles), then instruction; can be executed only i
anteed to find a feasible schedule whenever one exists irtycles has elapsed after the completiorvof Instruction
the following special cases: 1) one functional unit, ar- scheduling is a key problem in an optimising compiler for
bitrary precedence constraints, latencies {0, 1}, inte- [P processors. In non-real-time applications, the object
ger release times and deadlines; 2) two identical func- of instruction scheduling is to find a shortest schedule for a
tional units, arbitrary precedence constraints, latersc® set of instructions. This problem is NP-complete even if the
0, integer release times and deadlines; 3) multiple identi- target processor has only one functional unit and latencies
cal functional units or multiple functional units of differ can be arbitrarily large [12, 13].
ent types, monotone interval-ordered graph, integer iedea In real-time systems, instructions are subject to timing
times and deadlines; 4) multiple identical functional 8nit constraints. Typical timing constraints include releases
in-forest, equal latencies, integer release times and dead and deadlines. For example, in CNC systems [7], the out-
lines. In case 1), our algorithm improves the existing fsiste put to motors must be sent at particular times to maintain
algorithm fromO(n?logn) + min{O(ne), O(n**™)} to high positioning accuracy of the machine tool. A number
min{O(ne), O(n*3)}. In case 2), our algorithm im- of researchers have studied the problem of scheduling time-
proves the existing fastest algorithm fra@ne +n* log n) constrained instructions [1-5]. Palem and Simon [4] stud-
to min{O(ne), O(n*37%)}. In case 3), no polynomial time jed the problem of scheduling instructions with individual
algorithm for multiple functional units of differenttyp@ss deadlines on an ILP processor with multiple identical func-
known before. tional units. Their algorithm is guaranteed to find a fea-
sible schedule in several special cases. Wu and Jaffar [2]

proposed an efficient algorithm for scheduling instrucsion can be executed only on a functional unit of the same type.
with individual deadlines on an ILP processor with multiple The execution of each instruction takes one processor cy-
functional units of different types. Their algorithm is gua cle. A latency exists between two instructions with direct
anteed to find a feasible schedule in several special caseslependency. The precedence-latency constraints are repre
Leung et al [1] proposed a polynomial-time algorithm for sented by a weighted DAG' = (V, E, W) whereV de-
scheduling instructions with individual release times and notes the set of all instructiong; the set of precedence
deadlines on an ILP processor with multiple identical func- constraints andll’ the set of all latencies. In addition, each
tional units. instruction may have a pre-assigned release time and a pre-
In this paper, we propose a fast algorithm for schedul- assigned deadline. If an instruction has no pre-assigned re
ing instructions with individual release times and dead- lease time, its release time is setOtolf an instruction has
lines on an ILP processor with multiple functional units no pre-assigned deadline, its deadline is set to the largest
of different types. Our algorithm is guaranteed to find pre-assigned deadline.
a feasible schedule whenever one exists in the follow- The problem of scheduling instructions with individual
ing special cases: 1) one functional unit, arbitrary prece- release times and deadlines on an ILP processor is de-
dence constraints, latencies{if, 1}, integer release times scribed as follows. Given a problem instanfe a set

and deadlines; 2) two identical functional units, arbi- V' = {vy,v2,---,v,} of n UET (Unit Execution Time)
trary precedence constraints, latenciesOpfinteger re- instructions, where each instruction has a typg@;) €
lease times and deadlines; 3) multiple identical func- {R1, Rs,---, Ry}, a set of precedence-latency constraints

tional units or multiple functional units of different type in the form of a weighted DAGZ = (V, E, W), where
monotone interval-ordered graph, integer release timds an £ = {(v;,v;) : v; is directly dependent om;}, W =
deadlines; 4) multiple identical functional units, in-ést, {lij : (vi,vj) € Eandl;; € {0,1,---,d} is the latency
equal latencies, integer release times and deadlines. Irbetweery; andv;}, a setRT = {r; : r; is the release time
case 1), our algorithm improves the existing fastest al- of v; andr; is a non-negative integgiof release times, a
gorithm [3] from O(n?logn) + min{O(ne), O(n?376)} setD = {d; : d; is the deadline of; andd; is a posi-
to min{O(ne), O(n?37%)}, wheren is the number of in- tive intege} of deadlines and the ILP processhf, com-
structions ana is the number of edges in the precedence pute afeasible schedulevhenever one exists. A schedule
graph. In case 2), our algorithm improves the existing o : V" — {0,1,2,---,} is called a feasible schedule if it
fastest algorithm [1] fron®(ne +n? log n) to min{O(ne), satisfies the following constraints:

O(n?376)}. In case 3), no polynomial time algorithm for

multiple functional units of different types was known be- 1+ Precedence-latency constraintsv(vi,v;) € B

(o(v) + 1+ 1;; < o(v;).

fore. =

The main idea of our algorithm is computing 5 Release time and deadline constraikts: € V (r; <
a tighter deadline called thé™%*(v;)-successor-tree- o(v;) < d; — 1).
consistent deadlin®r each instruction;, wherel™%* (v;) -
is the maximum latency between and all its immediate 3. Resource constraints: For each typg 1) an instruc-
successors. Given a problem instan@e the "% (v;)- tionv; of type R; can be executed only on a functional
successor-tree-consistent deadline of an instructiors unit of type R;; 2) V¢t € [0,00)({vr € V : R(vg) =
the upper bound on its latest completion time in any R; ando(vg) <t < o(v) + 1} < m;) i.e. the num-
feasible schedule for the relaxed problgP(v;) where ber of instructions of typeR; which are executed at
the precedence-latency constraints are represented by the the same time, cannot exceed the number of functional
[max(y;)-successor treewhich is a subset of the orig- units of typeR;.

inal precedence-latency constraints. To make it faster
to compute thé™** (v,)-successor-tree-consistent deadline
for each instructionv;, we use a number of techniques,
namely, forward scheduling, backward scheduling, disjoin
set union-find and binary search.

o is called avalid scheduléf it satisfies constraints and2.
Given two instructions); andv,, if there is a directed
path fromv; to v;, thenw; is apredecessoof v; andv; is
asuccessopf v;. Especially, if(v;,v;) € E, thenw; is an
immediate predecessof v; andv; is animmediate succes-
sor of v;. If instructionv; has no immediate successor, then

2 Model and Definitions v; is asink instruction if v; has no immediate predecessor,
thenwv; is asource instruction The set of all successors

The target ILP processdvl hasm functional unitsFy, of instructionv; is denoted bySucc(v;). Throughout this
By, ---, F,, of w different typesR;, Ro, ---, Ry. The paper, we usé™“*(v;) to denote the maximum latency be-

type of F;; is denoted byR(F;). The number of the func- tweenw; and its immediate successors.
tional units of typeR; is m;. An instruction of typeR; In a weighted DAGG, if there is a directed path;; from

v; to v;, thepath lengthof P;; is the sum of its constituent
edge weights and the number of instruction®jp, exclud-
ing two end instructions; andv;. The maximum path
lengthfrom v; to v;, denoted b)l;;, is the maximum path
length of all paths from; to v;. The maximum path length,
also calledtransitive latency betweenv; andv; specifies
that the relative distance betweepandv; in any valid
schedule must be at Ied%‘t time units.

Definition 2.1. Given a problem instancé, the edge-
consistent release timef an instruction v;, denoted
by r(v;), is recursively defined as follows:(v;)
max{r;, max{r(v;) +l;; + 1 : v; is an immediate prede-
cessor ofv; } }. Theedge-consistent deadlimé an instruc-
tion v;, denoted byi(v;), is recursively defined as follows:
d(v;) = min{d;, min{d(v;) — l;; — 1 : v; is an immediate
successor of; } }.

Given a problem instanck, the edge-consistent release
times and the edge-consistent deadlines of all instrustion
can be computed i@(e) time by using breadth-first search,
wheree is the number of edges in the precedence graph.

Definition 2.2. Given a non-negative integér a weighted
DAGG = (V, E, W) and an instruction;, thek-successor
tree of v, is a weighted directed tre&/ ST (G, v;, k) =
(V',E',W'), whereV’ = {v;} U {v; : v; is a successor
ofv; in G}, E' = {(v;, v;) : v; is a successor af; in G}
and W’ = {lj; : (vi,v;) € E'andlj; = I} if I, <k,
l;; = k otherwisg.

In this paper, all time points and the two endpoints of any
time interval are non-negative integer.

Definition 2.3. Given a problem instancE and a typeR;,
a time intervallt1,t2) is called aforbidden intervalwith
respect taR; if there arem; (to — ¢1) instructions such that
their release times and deadlines are witfiin ¢t — 1] and
[t1 + 1, 2], respectively. Given a forbidden intenjal, t2)
with respect taR;, all time pointsty,t; +1,--- ,to — 1 are
calledforbidden time pointsvith respect ta?;. A forbidden
interval is called anaximum forbidden intervaf no longer
forbidden interval contains it.

Intuitively, all instructions of typeR; in a forbidden in-
terval with respect taR; fully occupy the forbidden in-
terval and cannot be scheduled outside the forbidden in-
terval in any feasible schedule. As a result, no other in-
struction can be scheduled in this forbidden interval. For-

bidden intervals are used to make it faster to compute the

[™a= (v,)-successor-tree-consistent deadline for each non-
sink instructiory;. All maximum forbidden intervals can be
computed inO(n) time if we keep two lists of all instruc-

whereV is a set of intervals in the real lin& = {(v;, v;) :
vi,v; € VandV(z € v; andy € v;) z < y}. Inan
interval-ordered graply, given any two nodes; andv;,
either all predecessors of are also the predecessors of
v; or all predecessors af; are also the predecessors of
v;. A monotone interval-ordered grapgH] is a weighted
interval-ordered graph where for any pair of edgesv;)
and (v;, vg), l;; > L holds if the predecessors of are
also the predecessors of. In-forestis a set of disjoint
directed trees where each node has at most one immediate
SucCcessor.

The key idea of our algorithm is computing tHe** (v,)-
successor-tree-consistent deadliioe each instruction;,
where™*(v;) is the maximum latency between and
all its immediate successors. THe*(v;)-successor-tree-
consistent deadline of instructian, denoted byl,, is typ-
ically tighter than its pre-assigned deadline. Specifycall
given a problem instancE and an instruction;, if v; is a
sink instruction, thenl, is equal to its pre-assigned dead-
line; otherwise! is the upper bound on its latest comple-
tion time in any feasible schedule for the relaxed problem
instanceP’ (v;) which has the same set of instructions as in
P with the following constraints:

e Precedence-latency constraints:
successor-treB’ ST (G, v;, "™ (v;)).

thgna (’Ui)'

Release time constraintf?T = {r(v;): the release
time of v, is its edge-consistent release time;)}.

e Deadline constraintsD = {d;: if v; is a succes-
sor of v; or the edge-consistent release timevpfis
greater than that of;, then the deadlind; of v; is
v;'s 1™ (v;)-successor-tree-consistent deadline; oth-
erwise, it isv;'s edge-consistent deadlihe

e Resource constraints: the same ILP processor &s in

To compute thel™**(v;)-successor-tree-consistent dead-
line for a non-sink instructionv;, our algorithm first
computes itghe successor-tree-consistent deadlinEhe
successor-tree-consistent deadline,0is the upper bound
on its latest completion time in any feasible schedule for
the relaxed problem instand@(v;). The only difference
betweenP(v;) and P’(v;) is that there is no latency con-
straint in P (v;).

3 Forward Scheduling and Backward

Scheduling

In our algorithm, both forward scheduling and backward
scheduling are used to compute tHe**(v;)-successor-

tions sorted in non-decreasing order of their release timestree-consistent deadline of each non-sink instructign
and in non-decreasing order of their deadlines, respédgtive Forward scheduling solves the following special instrutti
An interval-ordered grapH14] is a DAGG = (V, E), scheduling problem: Given a sdtof n independent UET

instructions with integer release times and deadlinesdind t,,4.(07) = min{tma(o) :

feasible schedule; on the ILP processa¥/ such that the
maximum completion time of all instructions is minimised.
Forward scheduling is a greedy scheduling technique wher

each instruction is scheduled as early as possible. In for-

ward scheduling, an instruction ready at timet if ¢ is

not less than its release time. Forward scheduling works

as follows. For each time poirit, 1, ..., choose a ready
instructionv, with the smallest deadline to run on an idle
functional unit of typeR(vy,). Ties are broken arbitrarily. A
schedule generated by forward scheduling is cdtbegard
schedule A forward schedule can be constructedifin)
time by using Frederickson'’s linear time algorithm [9, 15]
for scheduling a set of UET tasks with individual integer re-

Swith individual integer deadlines, backward scheduling wi

find a feasible schedule iff one exists. Furthermore, given a

o is a feasible schedule for
V'} holds, wheré.,,q..(c) = maz{o(v;) : v; € V}.

Property 3.2. Given a setl/ of independent instructions

backward schedule;, for V, t,,in (o) = max{tmin(o) :
o is a feasible schedule fdr'} holds, wheret,,;, (o)
min{o(v;) : v; € V}.

4 Scheduling Algorithm

In this section, we describe a fast algorithm for schedul-
ing instructions with precedence-latency constraints,

lease times and deadlines on multiple identical processorgndividual release times and deadlines on the ILP processor

as follows.

1. LetR,,, Rs,, ---,R,, be the different types of all in-
structions inA. Partition all instructions in4 into p
disjoint setsA; = {v; : v; € AandR(v;) = R,,}
(] = 1a27"' 7p)

. For eachA;(j = 1,2,---,p), compute a forward
schedulery, for A; onm; identical functional units
by using Frederickson’s algorithm, where,; is the
number of functional unit of typé, .

3. The forward scheduley for A is the union oby,, oy,,

O,

Backward scheduling solves the following special instruc-
tion scheduling problem: Given a setrofndependent UET
instructions with individual integer deadlines, find a feas
ble schedule on the ILP processbf such that the mini-
mum start time of all instructions is maximised. Note thatin

M.

Our algorithm consists of three main steps. The first
step is preprocessing. The preprocessing includes com-
puting edge-consistent release times and deadlines for all
instructions and sorting arrays which will be used in
forward scheduling, backward scheduling and computing
the ™4 (v,)-successor-tree-consistent deadline for each
non-sink instructiory;. The second step is computing the
[™a* (y;)-successor-tree consistent deadlide for each
non-sink instructionv;. The last step is constructing a
schedule forP by using list scheduling.

Note that by the definition of th&™**(v;)-successor-
tree-consistent deadline, if an instructionis a successor
of v; or the edge-consistent release timevpfis greater
than that ofv;, then thel™** (v;)-successor-tree-consistent
deadline ofv; must be computed before that of. To
satisfy this requirement, our algorithm uses an atagf
all non-sink instructions which is sorted in non-ascending
order of release times. The framework of our algorithm is

backward scheduling release time constraints are ignoredshown in pseudo code as follows.
In backward scheduling, each instruction is scheduled as
late as possible. In backward scheduling, an instruction procedure Instruction_Scheduler(P)

is readyat timet if ¢ is less than its deadline. Backward
scheduling works as follows. For each time paint,.. — 1,
tmaz — 2, -+, Wheret,,,, is the largest deadline of all
instructions, choose a ready instruction which has the

largest deadline among all ready instructions to run on an

idle functional unit of typeR(v). Ties are broken arbi-

trarily. The schedule generated by backward scheduling

is calledbackward scheduleA backward schedule can be
trivially constructed inO(n) time if we keep a sorted list of
all instructions in non-increasing order of deadlines.alt ¢

/* P is a problem instance */

var LS, L3, L7 : array of all instructions irP;
var L: array of all non-sink instructions iR;

begin
/% Preprocessing

compute the edge-consistent release times and deadlines
for all instructions;

be shown that forward scheduling and backward scheduling for each instructiom; do

have the following properties.

Property 3.1. Given a set// of independent instructions
with individual integer release times and deadlines, for-
ward scheduling will find a feasible schedule iff one ex-
ists. Furthermore, given a forward schedutg for V,

begin
set its release time to its edge-consistent release time.
set its deadline to its edge-consistent deadline.
end
sortLs in non-decreasing order of release times;
sortL5 in non-decreasing order of deadlines;

/*Both LS andLs are used in forward scheduling */ o If z # R(v;), thenA(z,t) = {vr : vp € Suce(v;)
sortL7 in non-ascending order of deadlines; andR(v;) = z} U {vg : vp € V — Succ(v;) and
Vid Lf is used in backward scheduling */ R(vy) == andngl (vg) > t}.
sortL in non-ascending order of release times;
e If x = R(v;), then two cases are distinguished. If one

/* Compute thd™**(L[i])-successor-tree-consistent deadline functional unit of typeR(v;) is idle during the time in-
for each non-sink instructiohli] */ terval[t — 1,¢) in the forward schedule/", A(z,t) =
k= the number of instructions ih; {vg : vk € Suce(v;) andR(vy) = a} U {vg : v €

fori=0,1---,k—1do
begin
compute thé™** (L[i])-successor-tree-consistent
deadline of instructiorL[i];

V —Suce(v;)—{v;} andR(vy,) = zando?" (vg) > t}.
Otherwise, A(z,t) = {vg : vxy € Suce(v;) and
R(vx) =z} U {vg : vp € V — Suce(v;) — {v;} and

if thel™**(L][i])-successor-tree-consistent deadline of R(vy,) = x anda* (vy,) > t} U {v;}, wherev; is the
L[i] is less than its edge-consistent deaciiven instruction of typeR(v;) scheduled at time — 1 with
begin the largest deadline in/” .
setL[i]'s deadline to itd™*" (L][i])-successor
-tree-consistent deadline; Lett..q. be atime point satisfying the following constraint:

sorth in non-ascending order of deadlines;
sortL§ in non-decreasing order of deadlines;
end

For each typeR,,(j = 1,2, -+ ,¢) min{op, (vk) : v €
A(Rs; tmaz)} = tmaz, Whereoy, is a backward

end schedule forA(R;; , tinaz)-

By the properties of forward scheduling and backward
scheduling, the successor-tree-consistent deadling isf
min{d;, tmaz -

Our algorithm for computing the successor-tree-

/¥**xx Compute a feasible schedule *****%/

compute a schedute for P by using list scheduling;

end consistent deadline af, is shown as follows:
1. For each typeR,,(j = 1,2,--- ,c — 1) compute the
In list scheduling, the priority of each instructiopis its maximum time point, .. [j] satisfyingmin{os, (v)
[™a*(y;)-successor-tree-consistent deadline and a smaller cvp € A(Rs, tmazli]} > tmazlj], Whereoy, is a
number implies a higher priority. List scheduling works backward schedule fot (R, , tnax[i])-

as follows. At any time, among all ready instructions,)) .
an instruction with the highest priority is chosen and 2. For the typeR,, compute the maximum time point
scheduled as early as possible on an idle functional unit of ~ tmazlc] satisfying 1) tmazlc] < min{tmaz(l],

same type as the instruction. Ties are broken arbitrarily. tmaz[2]; -+ s tmazlc—1]}, and 2)"“'”{% (vk) :vp €
An instructionu; is ready at time if 1) for each immediate A(Rs, tmazlcl} 2 tmaz(c], Whereoy, is a backward
predecessar; of v; v; has finished before— [;;, and 2)¢ schedule ford (R, , tmaz|c])-

is not less than its release time.

Our algorithm computes th&™%*(v;)-successor-tree-
consistent deadline of each non-sink instruction in
two steps. In the first step, our algorithms computes
the successor-tree-consistent deadline vof In the
second step, our algorithms uses binary search and the 1. LetS(r;, Rs;) = {vr : vp € Succ(v;) andR(vy) =

It is not difficult to show that the successor-tree-consiste
deadline ofv; is min{d;, tmaz[c]}. The maximum time
pointt,...[j](5 = 1,2, -, ¢) can be computed by using dis-
joint set union-find algorithm as follows.

successor-tree-consistent deadline wpfto compute its Re} U{vr + v € V — {v;} — Suce(v;) and
[™a (y;)-successor-tree-consistent deadline. Next we ngl (vi) > 7, and R(vy) = Ry}, d[j,0] =
describe these two steps in details. and d[j, 1],d[j, 2], - - ,d[j,c;] be ¢; different dead-
lines of all instructions inS(r;, Rs,) with d[j, 1] <
STEP 1: Computing the successor-tree-consistent dlj,2] < --- < d[j,¢;], wherer; is the release time
deadline ofv;. of v;. Partition the time intervald]j, 0], d[4, ¢;]) into
¢; smaller disjoint intervalst; = [d[4,0], d[j,1]),
Let crf1 be a forward schedule far — {v;} — Succ(v;) o = [d[j,1],d[},2]), - -, 7, = [d]j, c; —1],d[], ¢;]).
andR,,, Rs,, ---, Rs, bec different types of all instruc- An instructionuy, in S(r;, R,) belongs to an interval
tions in Succ(v;) U {v;} andR,, = R(v;). Given a type [x,y) if its deadlined;, satisfiest < dj < y. Each
r € {Rs, : j=1,2,---,c} and a time point, an instruc- instructionv, € S(r;, Rs,) is assigned a rank, de-

tion setA(x,t) is defined as follows. noted byrank(vg). If v; belongs to the intervat,,

thenvy's rank isb. Each intervair, (b = 1,2, -+, ¢;)
has two fields:size andlimit, wherem,.size keeps

the number of instructions currently scheduled in the

interval 7, and m,.limit is the maximum number of

instructions which can be scheduled in the interval

mp. Initially, m.siz¢ is set to0 and my.limit is set
to my, (d[j, b] — d[j, b — 1]), wherem, is the number
of functional units of typeR, . In addition, a variable

u is used to dynamically keep the interval number of

the first non-empty intervaln(,.size # 0) from the
left. The dynamic update om is trivial and therefore
omitted in the subsequent descriptions.

. For each instructiony, € {v; : v € Succ(v;) and
R(v:) = R4, } do the following.

(a) Find the intervair, to whichv belongs by using
find(vg).

(b) Putwvy into interval m, by doing 1)m,.size =
mp.size + 1; 2) if my.size = mp.limit andb > 1,
then merger, with its left intervalm,_; by using
union(mp—1,m); 3) If m.size = mp.limit and
b = 1, then no feasible schedule exists fofv;).
As aresult, no feasible schedule existsi(v;).

. Let vy, vu,, -+, vy, be all instructions satisfying
the following constraints: 1) For each,, (k =
1,2,---,p), bothv,, € V — Suce(v;) — {v;} and
R(vw,) = R, hold. 2) Foranys, ¢t € [1:p], if s <t,
then eithero?* (v,,) < of" (vw,) OF (67" (vw,) =
o/ (vy,) and d,, < d.,) holds, whered,, and
d,, are the deadlines of,,, anduv,,, respectively.
Note that the sorted list af,,, vy, - - - v, Can be con-
structed inO(n) time.

Let TC be the condition defined as follows:

o If R, % R(v;), then TC is
Ulfl(vwk) < dlj,u] — [(my.size/ms;)]| or
dlj,u] — [(my.size/ms;)] < r;; otherwise, it
is (0] (vw,) < dlj,u] — [(my.size/ms,)] and

one functional unit of typeR(v;) is idle during

the time interval[d[j, u] — [(m,.size/msg;)] —

1,d[j,u] [(my.si2¢/ms;)]) N oi' or
dlj,u] — [(my.si2ze/mg;)] < 7;.
For each instructiom,,, (k = p,p — 1,--- ,1), do the

following: If the condition7'C holds, jump out of the

loop; otherwise, remove,,, from the forward sched-

ule azfl and put it into the interval to which it belongs
as follows.

(a) Find the intervair, to whichv,,, belongs by us-
ing find(vy,)-

(b) Putv,, into intervalm, by doing 1)m,.size =
mp.stze + 1; 2) if mp.si2¢ = mp.limit andb > 1,
then merger, with its left intervalr,_; by using
union(mp—1,m); 3) If m.size = mp.limit and
b = 1, then no feasible schedule exists ffv;).
As aresult, no feasible schedule existsR(v;).

When the loop terminates normally,,..[j] =
dj,u] — [(my.size/ms;)].

STEP 2: Computing the "% (v;)-successor-tree-
consistent deadline of;.

Let a = max{r;, tmaz — M™**(v;) — 1}, andb =
min{d; — 1,tmaz — 1}]. We first check if the™**(v;)-
successor-tree-consistent deadlineofalls within the in-
terval|a, b] by using binary search. Binary search cannot be
performed before all maximum forbidden intervals with re-
spect toR(v;) have been removed. The procedure for com-
putingd; is shown as follows.

1. Find all forbidden intervals with respect tq for
the relaxed problem instand® (v;) excludingv; and
let B[0], B[1],---,B[r] ber + 1 all different non-
forbidden time points in the intervid, b] with B[j —
1 <Bljl(j=12-,r)

2. Perform binary search over the inter{/&[0], B[r]] to
find the largestB][j] such that instruction;; can be
scheduled aB[j] in a feasible schedule for the relaxed
problem instancé”’ (v;).

Notice that ifv; cannot be scheduled &k, then it cannot
be scheduled at any time poiB{t](r > t > k) in any fea-
sible schedule foP’(v;). Therefore, binary search can be
used to find the the larges[j] such that instruction; can
be scheduled aB[j] in a feasible schedule for the relaxed
problem instanceé”’(v;). To check ifv; can be scheduled
at a time pointB][j], we simply set the release time of
to B[j] and find a forward schedule fd¥ (v;). If the for-
ward schedule is feasible, thencan be scheduled &[j];
otherwise,v; cannot be scheduled &t[j] in any feasible
schedule forP’ (v;).

If either thel™** (v,)-successor-tree-consistent deadline
of v; is not found to be withira, b] or a > b holds, find a
time pointt,, ., satisfying the following constraints:

1. r < thnaz < a.
2. [tmaz, tmas + 1] is not a forbidden interval.

3. [tmaz + 1, d] is @ forbidden interval with respect g
Ol tyae = a — 1.

If such at,.. exists, it is thel™**(v;)-successor-tree-
consistent deadline af;. Otherwise, no feasible schedule
for the relaxed problem instand® (v;). As a result, no

feasible exists for the original problem instarfegy;).

V2[0,3] %0, 3]

v4[0, 3]

V143, 14]
Vg[8, 10]

Vi5[5,15] w4 [5, 15]

Figure 1. A problem instance P

v4[0, 2] v2[0,3] v3[0, 3]

V4[5, 14]

Vg[8, 10] Vi [8,10] v44[8, 15] V,[6, 15] v 43l5, 12] 0

Vi5[6,15] vy [6, 15]

Figure 2. The edge-consistent release times
and deadlines in P

Example 1 Consider a problem instande with 14

instructions and an ILP processor with two heterogeneous

functional unitsF; and F». The precedence-latency con-

straints, release times and deadlines are shown in Figure 1

where a filled node denotes an instruction which must be
executed orf; and a non-filled node represents an instruc-
tion which must be executed diy. « andy in [z, y] are the
pre-assigned release time and deadline of the corresppndin
instruction, respectively.

First, our algorithm computes the edge-consistent re-
lease times and deadlines for all instructions. In Figure 2,
xz andy in [z,y] are the edge-consistent release time and
edge-consistent deadline of the corresponding instmuctio
respectively.

Next, our algorithm computes the, . (v;)-successor-
tree-consistent deadline for each non-sink instructioim
non-increasing order of their edge-consistent releasestim
Suppose that our algorithm has computedGFseiccessor-
tree consistent deadline of which is7, we show how our
algorithm computes thd-successor-tree-consistent dead-

O

v4[0, 2] vo[0,3] v3[0, 3]
[] [] []

O vu12,4] O vgll,4]
O Vel4. 8]

v4[3, 10] le) vg[2, 6]
4 2
> 11 2
O [} O

Vg[8, 10] Vvig[8,10] v 14[8, 15] V1,[6,15] v 145,12] v 1J5,13] v 1i6, 15] v 146, 15]

Figure 3. The relaxed problem instance P’(v7)

Vi| V2| V3

Vs | Vg4

2

Vg

3

Ve Vo

8

Vio
9

0 1 4 5 6 7 10

Figure 4. A forward schedule for V —
Suce(vr) — {vr}

line d, of v;. By the definition,d’, is the upper bound of
the latest completion of; in any schedule for the relaxed
problem instancé’ (v;) shown in Figure 3. Our algorithm
computesl’, in two steps:

1. Compute the successor-tree-consistent deadling. of
First, our algorithm computes a forward schedule for
V — Suce(vr) — {v7} shown in Figure 4. Next it com-
putes a backward schedule ft.cc(v7) shown in Fig-
ure 5. Lastly it applies disjoint union-find algorithm
to find the successor-tree-consistent deadline which is
11.

2. Computed,. First, our algorithm finds all forbid-
den time points withinla, b] and stores all the non-
forbidden time points withinfa,] in the array B,
wherea = 6, b = 10. In this case, two forbidden
time points are8 and9. Therefore, we hav&[0] = 6,
BJ[1] = 7andBJ2] = 10. Next, it applies binary search
to find the latest completion time ef, in the relaxed
problem instancé”’ (v7) which is7.

The 1.4, (v;)-successor-tree-consistent deadline of each
instructionv; is shown in Figure 6 wherg in [z, y] beside
each instructiom; is thel,, ... (v;)-successor-tree-consistent
deadline ofv;.

Lastly, our algorithm uses list scheduling to compute a
schedule for the original problem instanPe The schedule
which is feasible is shown in Figure 7.

By using induction and the properties of forward
scheduling and backward scheduling, we can prove the fol-

F Vig| Vi1

F Vi3] V14| Vis| Vi

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5. A backward schedule for Succ(vr)

v4[0, 2]

v2[0,3] 300, 3]

V14[5, 13]
Vol8, 10] vy [8, 10] v11[8, 15] vy, [6, 15] V5[5, 12]

Vi5[6,15] vy [6, 15]

Figure 6. The
consistent deadlines

Imaz(v;)-SUCCESSOr-tree-

lowing lemma. The proof is omitted due to the space limi-
tation.

Lemma 4.1. Given a problem instancB, each instruction
v; must be completed before it¥**(v;)-successor-tree-
consistent deadline in any feasible scheduleRor

Theorem 4.1. Our scheduling algorithm computes a fea-
sible schedule whenever one exists in the following special
cases.

1. Arbitrary DAG, latencies if0, 1}, individual integer
release times and deadlines, and one functional unit.

2. Arbitrary DAG, latencies 06, individual integer re-
lease times and deadlines, and two identical functional
units.

3. Monotone interval-ordered graph, arbitrary latencies,
individual integer release times and deadlines, and
multiple functional units of different types or multiple
identical functional units.

4. In-forest, equal latencies, individual integer release
times and deadlines, and multiple identical functional
units.

Proof Suppose that there exists a feasible schedule
o', but a schedule computed by our algorithm is not fea-
sible. Letv, be the first late instruction andthe earliest
integer time point satisfying 1) there are, (o (vg) — t) in-
structions scheduled in the time interalo(vg)) on my
functional unit of typeR (v) in o, wheremy, is the number
of functional units of typeR (v), and 2) for each instruction

Vi| V| V3 V12 Vi1

Vs| V4| Vg| V7| Vo| Vio| Viz| V14| V15| Vie

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7. A forward schedule for the original
problem instance P

v; of type R(vx) scheduled in the time intervéd, o(vy)),
d; < dj holds. LetS = {vi} U {v; : t < o(v;) < o(vk)
andR(v;) =
ciple, there must be a late instruction in any scheduléor
which contradicts the assumption. Otherwise, consider the
0 following special cases.

R(vg) }. If t = 0, then by pigeon hole prin-

1. Arbitrary DAG, latencies if0, 1}, individual integer
release times and deadlines and one functional unit.
Letw; be the instruction scheduled in time interja
2,t — 1). Consider all possible cases.

(a) No instruction is scheduled in time interjal
2,t — 1) ord; > dj.. In this case, by the greed-
iness of list scheduling, the release times of all
instructions inS must be greater than or equal to
t. Therefore, by pigeonhole principle, at least one
instruction must be late in any feasible schedule
for P, which contradicts the assumption.

(b) d; < dj.. Consider the two possible cases.

i. The release times of all instructions i
are greater than or equal to By pigeon-
hole principle, there must be at least one late
instruction in any feasible schedule fét,
which contradicts the assumption.

ii. There is at least one instruction whose re-
lease time is less than or equal to- 1.

In this case, all instructions whose release
times are less than or equal to- 1 must
be the successors of. By our algorithm
for computing thel™**(v;)-successor-tree-
consistent deadliney; must be also late
with respect to it9** (v,)-successor-tree-
consistent deadline in the schedulewhich
contradicts the assumption thatis the first
late instruction.

2. Arbitrary DAG, latencies of), individual integer re-
lease times and deadlines, and two identical functional
units. Consider all possible cases.

(@) No instruction is scheduled in the time inter-
val [t,t — 1) or the I"**(v,)-successor-tree-
consistent deadline of each instructionsched-
uledin[t,t — 1) is greater thaw,; .. By the greed-
iness of list scheduling, the release times of all

instructions inS must be greater than or equal
to t. By pigeon hole principle, there must be at
least one late instruction in any feasible schedule
for P, which contradicts the assumption.

There is an instruction; scheduled in the time
interval [t,t — 1) with d; < dJ,. In this case, for
each instruction; € S, eitherv; is a successor
of v; orr; > t. If no instruction inS'is the suc-
cessor of;, by pigeon hole principle, there must
be at least one late instruction in any feasible
schedule forP, which contradicts the assump-
tion. Otherwise, by our algorithm for computing
successor-tree-consistent deadlingsmust be
also late with respect to it8"%*(v;)-successor-
tree-consistent iy, which contradicts the as-
sumption thaty, is the first late instruction.

(b)

3. Monotone interval-ordered graph, arbitrary latencies,
individual integer release times and deadlines, and
multiple functional units of different types or multiple
identical functional units.

Let S; be the set of all instructions i whose re-
lease times are less thanand v,, an instruction in
S1 which has the minimum number of predecessors.
Sincewv,. cannot start beforein o, there must exist an
immediate predecessog of v, such that, prevents

v, from starting before in o due to the latencys,..

By the property of monotone interval-ordered graph,
vs IS the predecessor of all instruction . Let

So = {v; : v; € S1 andv; is an immediate successor
of v, }. By the definition of monotone interval-ordered
graph, for each instruction; € Sy, l;; > [, holds.
Since each instruction if; — S, must be a successor
of some instruction ity , for each instruction; € 51,

ljj > I, also holds. By our algorithm for com-
puting successor-tree-consistent deadlingsnust be
also late with respect to it8"**(v,)-successor-tree-
consistent deadline in the schedulg which contra-
dicts the assumption tha}, is the first late instruction.

. In-forest, equal latencies, individual integer release
times and deadlines, and multiple identical functional
units. The proof for this special case is essentially the
same as in [11].

Our algorithm for computing the successor-tree-consisten
deadlines uses disjoint set union-find algorithm. Since the
union tree in this case is a chain, we can use Gabow’s lin-
ear time union-find algorithm [15]. Therefore, for each
non-sink instructiony;, it takesO(n) time to compute the
successor-tree-consistent deadline dgr wheren is the
number of instructions. After the successor-tree-coasist
deadline of each non-sink instructian has been com-

[™a (v,)-successor-tree-consistent deadlinedorThe bi-
nary search taked(n log d) time, whered is the maximum
latency. In addition, maintaining two sorted arra’yd% and

Lf takesO(n) time because each time only:|'s deadline

is changed. Therefore, it tak€Xn? * log d) time to com-
pute thd™* (v,)-successor-tree-consistentdeadlines for all
non-sink instructions. The transitive closure can be com-
puted inO(ne) time by n depth-first searches, wheeds

the number of edges in the precedence graph. Alternatively,

it can be reduced to matrix multiplication [17], which is
O(n?376) [18]. Moreover, the™* (v;)-successor-tree for
each instruction can be computediinin{O(ne), O(ed)}

time. Therefore, it is easy to show the following theorem.

Theorem 4.2. The time complexity of our algorithm
is min{O(ne), O(n?3")} + min{O(ed) ,O(ne)} +
O(n?logd).

5 Conclusion

We proposed a fast algorithm for scheduling instructions
in a basic block with precedence-latency constraintsyigmi
constraints in the form of individual integer release times
and deadlines on an ILP processor. The key idea of our
scheduling algorithm is computing th&** (v;)-successor-
tree-consistent deadline for each instruction. To make
it faster to compute thé&™**(v;)-successor-tree-consistent
deadline for each non-sink instructief, we use a num-
ber of techniques, namely, forward scheduling, backward
scheduling, disjoint set union-find and binary search. Our
algorithm is guaranteed to find a feasible schedule when-
ever one exists in a number of special cases. In the first
special case where the processor has only one functional
unit and the maximum latency i$, our algorithm im-
proves the existing fastest algorithm [3] fraiin? log n) +
min{O(ne),0(n%376)} to min{O(ne), O(n?3"¢)}. In
the second special case where the ILP processor has only
two identical functional units, our algorithm improves the
existing fastest algorithm [1] fron®(ne + n?logn) to
min{O(ne),0(n?37%)}. The first polynomial time algo-
rithm for this special case proposed by Garey and John-
son [8] runs inO(n?) time. In the third special case where
the precedence-latency constraints can be represented as a
monotone interval-ordered graph and the ILP processor has
multiple functional units of different types, our algorittis
the first polynomial time algorithm.

Further research on instruction scheduling with timing
constraints is expected. One open problem is loop schedul-
ing with individual release times and deadlines on an ILP
processor. In non-real-time computing, software pipatini
is an efficient approach to employ ILP. In real-time embed-
ded systems, timing satisfaction is the primary considera-

puted, our algorithm uses binary search to compute thetion. Itis interesting to see how release times and deaglline

are handled in software pipelining. Another open problem [9] Greg N. Frederickson. Scheduling Unit-Time Tasks
is scheduling instructions with timing constraints on elus
tered ILP processors. On a clustered ILP processor such

as Lx, communication constraints exist.
tions with data dependency are assigned to different clus-

If two instruc-

ters, communication delay between these two instructions
must be respected in any valid schedule. However, if these
two instructions are assigned to the same cluster, therg is n

communication delay. It is not known if there is any con-

sistency technique for handling communication constsaint
efficiently.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

Leung, Allen, Krishna V. Palem and Amir Pnueli.
Scheduling Time-Constrained Instructions
Pipelined Processors. ACM Transactions on Program-
ming Languages and Systems 23(1), 73-103, January
2001.

[14]

Wu, Hui and Joxan Jaffar. An Efficient Algorithm for
Scheduling Instructions with Deadline Constraints on
ILP Processors. The Proceedings of the 22nd IEEE

Real-Time Systems Symposium, London, UK, Dec. [15]

2001, pp. 235-242.

Wu, Hui, Joxan Jaffar and Roland Yap. Instruction
Scheduling with Timing Constraints on A Single
RISC Processor with/1 Latencies. Lecture Notes in
Computer Science, Volume 1894. Springer Verlag. pp.
457-469.

Palem, Krishna. V. and Barbara B. Simon. Scheduling
Time-Critical Instructions on RISC machines. ACM
Transactions on Programming Languages and Sys-
tems 15(4), 632-658, Sept. 1993.

Bogong Su, Shiyuan Ding, Jian Wang, Jinshi Xia. Mi-
crocode compaction with timing constraints. Proceed-
ings of MICRO 1987, pp. 59-68.

Paolo Faraboschi et al. Lx: a technology platform for
Customizable VLIW Embedded Processing. Proceed-
ings of the 27th International Symposium on Com-
puter Architecture, Vancouver, Canada, 2000, pp. 203-
213.

Namyun Kim et al. Visual Assessment of A Real-Time
System Design: A Case Study on A CNC Controller.
Proceedings of IEEE Real-Time Systems Symposium,
Washington, USA, 1996, pp. 300-310.

Garey, M.R. and D.S. Johnson. Two Processor
Scheduling with Start-Times and Deadlines. SIAM J.
Comput. 6, 1977, pp. 416-426.

[16]

[17]

[18]

with Integer Release Times and Deadlines. Informa-
tion Processing Letters, 16(4), 171-173, 1983.

[10] Bernstein, D. and I. Gertner. Scheduling Expressions

on A RISC Processor with A Maximal Delay of
One Cycle. ACM Transactions on Programming Lan-
guages and Systems, 11(1), 57-66, 1989.

[11] Bruno, J.J. Jones and K. So. Deterministic Scheduling

with RISC Processors. IEEE Transactions on Comput-
ers, 29, 308-316, April 1980.

[12] Finta, L. and Z. Liu. Single Processor Scheduling Sub-

ject to Precedence Delays. Discrete Applied Mathe-
matics 70, 247-266, 1996.

on [13] Hennessy, J. and T. Gross. Postpass Code Optimisa-

tion of Pipeline Constraints. ACM Transactions on
Programming Languages and Systems 5(3), 1983.

Papadimitriou, C. and M. Yannakakis. Scheduling
Interval-Ordered Instructions. SIAM Journal on Com-
puting 8, 405-409, 1979.

Gabow H.N and R. E. Tarjan. A Linear-Time Algo-
rithm for A Special Case of Disjoint Set Union. Jour-
nal of Computer and System Sciences 30, 209-221,
1985.

Garey, M.R., D.S. Johnson, B.B. Simon and R.E. Tar-
jan. Scheduling Unit-Time Jobs with Arbitrary Re-
lease Times and Deadlines. SIAM J. Comput 10, 256-
269, 1981.

Aho, A. V., J. E. Hopcroft and J. D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-
Wesley, Reading, Mass., 1974.

Coppersmith, D. and S. Winograd. Matrix Multiplica-
tion via Arithmetic Progressions. J. of Symbolic Com-
putation, 9, 251-280, 1990.

[19] http://developer.intel.com/design/itanium.

