
Instruction Scheduling with Release Times and Deadlines onILP Processors

Hui Wu
School of Computer Science and Engineering

The University of New South Wales
Email: huiw@cse.unsw.edu.au

Joxan Jaffar

School of Computing
National University of Singapore
Email: joxan@comp.nus.edu.sg

Jingling Xue
School of Computer Science and Engineering

The University of New South Wales
Email: jxue@cse.unsw.edu.au

Abstract

ILP (Instruction Level Parallelism) processors are be-
ing increasingly used in embedded systems. In embedded
systems, instructions may be subject to timing constraints.
An optimising compiler for ILP processors needs to find
a feasible schedule for a set of time-constrained instruc-
tions. In this paper, we present a fast algorithm for schedul-
ing instructions with precedence-latency constraints, indi-
vidual integer release times and deadlines on an ILP pro-
cessor with multiple functional units. The time complexity
of our algorithm isO(n2 log d) + min{O(de), O(ne)} +
min{O(ne), O(n2.376)}, wheren is the number of instruc-
tions, e is the number of edges in the precedence graph
and d is the maximum latency. Our algorithm is guar-
anteed to find a feasible schedule whenever one exists in
the following special cases: 1) one functional unit, ar-
bitrary precedence constraints, latencies in{0, 1}, inte-
ger release times and deadlines; 2) two identical func-
tional units, arbitrary precedence constraints, latencies of
0, integer release times and deadlines; 3) multiple identi-
cal functional units or multiple functional units of differ-
ent types, monotone interval-ordered graph, integer release
times and deadlines; 4) multiple identical functional units,
in-forest, equal latencies, integer release times and dead-
lines. In case 1), our algorithm improves the existing fastest
algorithm fromO(n2 log n) + min{O(ne), O(n2.376)} to
min{O(ne), O(n2.376)}. In case 2), our algorithm im-
proves the existing fastest algorithm fromO(ne + n2 log n)
to min{O(ne), O(n2.376)}. In case 3), no polynomial time
algorithm for multiple functional units of different typeswas
known before.

1 Introduction

ILP (Instruction Level Parallelism) processors are being
increasingly used in embedded Systems. Examples include
Texas Instruments’ TI C6, StartCore’s SC140, Philips’ Tri-
media and HP and STMicroelectronics’ Lx [6].

A typical ILP processor consists of multiple parallel
functional units of different types. An instruction can be
executed only on a functional unit of the same type. Typ-
ically, the execution of an instruction takes one processor
cycle. However, there are often delays of one or more pro-
cessor cycles between instructions. These delays, calledla-
tencies, arise primarily because of off-chip communication
and pipelining architecture. For example, if instructionvi

precedes instructionvj and the latency betweenvi andvj

is k (cycles), then instructionvj can be executed only ifk
cycles has elapsed after the completion ofvi. Instruction
scheduling is a key problem in an optimising compiler for
ILP processors. In non-real-time applications, the objective
of instruction scheduling is to find a shortest schedule for a
set of instructions. This problem is NP-complete even if the
target processor has only one functional unit and latencies
can be arbitrarily large [12, 13].

In real-time systems, instructions are subject to timing
constraints. Typical timing constraints include release times
and deadlines. For example, in CNC systems [7], the out-
put to motors must be sent at particular times to maintain
high positioning accuracy of the machine tool. A number
of researchers have studied the problem of scheduling time-
constrained instructions [1–5]. Palem and Simon [4] stud-
ied the problem of scheduling instructions with individual
deadlines on an ILP processor with multiple identical func-
tional units. Their algorithm is guaranteed to find a fea-
sible schedule in several special cases. Wu and Jaffar [2]

1

proposed an efficient algorithm for scheduling instructions
with individual deadlines on an ILP processor with multiple
functional units of different types. Their algorithm is guar-
anteed to find a feasible schedule in several special cases.
Leung et al [1] proposed a polynomial-time algorithm for
scheduling instructions with individual release times and
deadlines on an ILP processor with multiple identical func-
tional units.

In this paper, we propose a fast algorithm for schedul-
ing instructions with individual release times and dead-
lines on an ILP processor with multiple functional units
of different types. Our algorithm is guaranteed to find
a feasible schedule whenever one exists in the follow-
ing special cases: 1) one functional unit, arbitrary prece-
dence constraints, latencies in{0, 1}, integer release times
and deadlines; 2) two identical functional units, arbi-
trary precedence constraints, latencies of0, integer re-
lease times and deadlines; 3) multiple identical func-
tional units or multiple functional units of different types,
monotone interval-ordered graph, integer release times and
deadlines; 4) multiple identical functional units, in-forest,
equal latencies, integer release times and deadlines. In
case 1), our algorithm improves the existing fastest al-
gorithm [3] from O(n2 log n) + min{O(ne), O(n2.376)}
to min{O(ne), O(n2.376)}, wheren is the number of in-
structions ande is the number of edges in the precedence
graph. In case 2), our algorithm improves the existing
fastest algorithm [1] fromO(ne+n2 log n) to min{O(ne),
O(n2.376)}. In case 3), no polynomial time algorithm for
multiple functional units of different types was known be-
fore.

The main idea of our algorithm is computing
a tighter deadline called thelmax(vi)-successor-tree-
consistent deadlinefor each instructionvi, wherelmax(vi)
is the maximum latency betweenvi and all its immediate
successors. Given a problem instanceP , the lmax(vi)-
successor-tree-consistent deadline of an instructionvi is
the upper bound on its latest completion time in any
feasible schedule for the relaxed problemP ′(vi) where
the precedence-latency constraints are represented by the
lmax(vi)-successor treewhich is a subset of the orig-
inal precedence-latency constraints. To make it faster
to compute thelmax(vi)-successor-tree-consistent deadline
for each instructionvi, we use a number of techniques,
namely, forward scheduling, backward scheduling, disjoint
set union-find and binary search.

2 Model and Definitions

The target ILP processorM hasm functional unitsF1,
F2, · · · , Fm of w different typesR1, R2, · · · , Rw. The
type ofFj is denoted byR(Fj). The number of the func-
tional units of typeRi is mi. An instruction of typeRi

can be executed only on a functional unit of the same type.
The execution of each instruction takes one processor cy-
cle. A latency exists between two instructions with direct
dependency. The precedence-latency constraints are repre-
sented by a weighted DAGG = (V, E, W) whereV de-
notes the set of all instructions,E the set of precedence
constraints andW the set of all latencies. In addition, each
instruction may have a pre-assigned release time and a pre-
assigned deadline. If an instruction has no pre-assigned re-
lease time, its release time is set to0. If an instruction has
no pre-assigned deadline, its deadline is set to the largest
pre-assigned deadline.

The problem of scheduling instructions with individual
release times and deadlines on an ILP processor is de-
scribed as follows. Given a problem instanceP : a set
V = {v1, v2, · · · , vn} of n UET (Unit Execution Time)
instructions, where each instruction has a typeR(vi) ∈
{R1, R2, · · · , Rw} , a set of precedence-latency constraints
in the form of a weighted DAGG = (V, E, W), where
E = {(vi, vj) : vj is directly dependent onvi}, W =
{lij : (vi, vj) ∈ E and lij ∈ {0, 1, · · · , d} is the latency
betweenvi andvj}, a setRT = {ri : ri is the release time
of vi andri is a non-negative integer} of release times, a
set D = {di : di is the deadline ofvi anddi is a posi-
tive integer} of deadlines and the ILP processorM , com-
pute afeasible schedulewhenever one exists. A schedule
σ : V → {0, 1, 2, · · · , } is called a feasible schedule if it
satisfies the following constraints:

1. Precedence-latency constraints:∀(vi, vj) ∈ E
(σ(vi) + 1 + lij ≤ σ(vj).

2. Release time and deadline constraints:∀vi ∈ V (ri ≤
σ(vi) ≤ di − 1).

3. Resource constraints: For each typeRi, 1) an instruc-
tion vj of typeRi can be executed only on a functional
unit of typeRi; 2) ∀t ∈ [0,∞)(|{vk ∈ V : R(vk) =
Ri andσ(vk) ≤ t < σ(vk) + 1}| ≤ mi) i.e. the num-
ber of instructions of typeRi which are executed at
the same time, cannot exceed the number of functional
units of typeRi.

σ is called avalid scheduleif it satisfies constraints1 and2.
Given two instructionsvi andvj , if there is a directed

path fromvi to vj , thenvi is apredecessorof vj andvj is
a successorof vi. Especially, if(vi, vj) ∈ E, thenvi is an
immediate predecessorof vj andvj is animmediate succes-
sorof vi. If instructionvi has no immediate successor, then
vi is asink instruction; if vi has no immediate predecessor,
thenvi is a source instruction. The set of all successors
of instructionvi is denoted bySucc(vi). Throughout this
paper, we uselmax(vi) to denote the maximum latency be-
tweenvi and its immediate successors.

In a weighted DAGG, if there is a directed pathPij from

vi to vj , thepath lengthof Pij is the sum of its constituent
edge weights and the number of instructions inPij , exclud-
ing two end instructionsvi and vj . The maximum path
lengthfrom vi to vj , denoted byl+ij , is the maximum path
length of all paths fromvi to vj . The maximum path length,
also calledtransitive latency, betweenvi andvj specifies
that the relative distance betweenvi and vj in any valid
schedule must be at leastl+ij time units.

Definition 2.1. Given a problem instanceP , the edge-
consistent release timeof an instruction vi, denoted
by r(vi), is recursively defined as follows:r(vi) =
max{ri, max{r(vj) + lji + 1 : vj is an immediate prede-
cessor ofvi}}. Theedge-consistent deadlineof an instruc-
tion vi, denoted byd(vi), is recursively defined as follows:
d(vi) = min{di, min{d(vj)− lij − 1 : vj is an immediate
successor ofvi}}.

Given a problem instanceP , the edge-consistent release
times and the edge-consistent deadlines of all instructions
can be computed inO(e) time by using breadth-first search,
wheree is the number of edges in the precedence graph.

Definition 2.2. Given a non-negative integerk, a weighted
DAGG = (V, E, W) and an instructionvi, thek-successor
tree of vi is a weighted directed treeWST (G, vi, k) =
(V ′, E′, W ′), whereV ′ = {vi} ∪ {vj : vj is a successor
of vi in G}, E′ = {(vi, vj) : vj is a successor ofvi in G}
andW ′ = {l′ij : (vi, vj) ∈ E′ and l′ij = l+ij if l+ij < k,
l′ij = k otherwise}.

In this paper, all time points and the two endpoints of any
time interval are non-negative integer.

Definition 2.3. Given a problem instanceP and a typeRi,
a time interval[t1, t2) is called a forbidden intervalwith
respect toRi if there aremi(t2 − t1) instructions such that
their release times and deadlines are within[t1, t2 − 1] and
[t1 + 1, t2], respectively. Given a forbidden interval[t1, t2)
with respect toRi, all time pointst1, t1 + 1, · · · , t2 − 1 are
calledforbidden time pointswith respect toRi. A forbidden
interval is called amaximum forbidden intervalif no longer
forbidden interval contains it.

Intuitively, all instructions of typeRi in a forbidden in-
terval with respect toRi fully occupy the forbidden in-
terval and cannot be scheduled outside the forbidden in-
terval in any feasible schedule. As a result, no other in-
struction can be scheduled in this forbidden interval. For-
bidden intervals are used to make it faster to compute the
lmax(vi)-successor-tree-consistent deadline for each non-
sink instructionvi. All maximum forbidden intervals can be
computed inO(n) time if we keep two lists of all instruc-
tions sorted in non-decreasing order of their release times
and in non-decreasing order of their deadlines, respectively.

An interval-ordered graph[14] is a DAGG = (V, E),

whereV is a set of intervals in the real line,E = {(vi, vj) :
vi, vj ∈ V and∀(x ∈ vi and y ∈ vj) x < y}. In an
interval-ordered graphG, given any two nodesvi andvj ,
either all predecessors ofvi are also the predecessors of
vj or all predecessors ofvj are also the predecessors of
vi. A monotone interval-ordered graph[4] is a weighted
interval-ordered graph where for any pair of edges(vi, vj)
and(vi, vk), lij ≥ lik holds if the predecessors ofvk are
also the predecessors ofvj . In-forest is a set of disjoint
directed trees where each node has at most one immediate
successor.

The key idea of our algorithm is computing thelmax(vi)-
successor-tree-consistent deadlinefor each instructionvi,
where lmax(vi) is the maximum latency betweenvi and
all its immediate successors. Thelmax(vi)-successor-tree-
consistent deadline of instructionvi, denoted byd′i, is typ-
ically tighter than its pre-assigned deadline. Specifically,
given a problem instanceP and an instructionvi, if vi is a
sink instruction, thend′i is equal to its pre-assigned dead-
line; otherwise,d′i is the upper bound on its latest comple-
tion time in any feasible schedule for the relaxed problem
instanceP ′(vi) which has the same set of instructions as in
P with the following constraints:

• Precedence-latency constraints: thelmax(vi)-
successor-treeWST (G, vi, l

max(vi)).

• Release time constraints:RT = {r(vj): the release
time ofvj is its edge-consistent release timer(vj)}.

• Deadline constraints:D = {dj : if vj is a succes-
sor of vi or the edge-consistent release time ofvj is
greater than that ofvi, then the deadlinedj of vj is
vj ’s lmax(vj)-successor-tree-consistent deadline; oth-
erwise, it isvj ’s edge-consistent deadline}.

• Resource constraints: the same ILP processor as inP .

To compute thelmax(vi)-successor-tree-consistent dead-
line for a non-sink instructionvi, our algorithm first
computes itsthe successor-tree-consistent deadline. The
successor-tree-consistent deadline ofvi is the upper bound
on its latest completion time in any feasible schedule for
the relaxed problem instanceP (vi). The only difference
betweenP (vi) andP ′(vi) is that there is no latency con-
straint inP (vi).

3 Forward Scheduling and Backward
Scheduling

In our algorithm, both forward scheduling and backward
scheduling are used to compute thelmax(vi)-successor-
tree-consistent deadline of each non-sink instructionvi.
Forward scheduling solves the following special instruction
scheduling problem: Given a setA of n independent UET

instructions with integer release times and deadlines, finda
feasible scheduleσf on the ILP processorM such that the
maximum completion time of all instructions is minimised.
Forward scheduling is a greedy scheduling technique where
each instruction is scheduled as early as possible. In for-
ward scheduling, an instruction isready at time t if t is
not less than its release time. Forward scheduling works
as follows. For each time point0, 1, . . . , choose a ready
instructionvk with the smallest deadline to run on an idle
functional unit of typeR(vk). Ties are broken arbitrarily. A
schedule generated by forward scheduling is calledforward
schedule. A forward schedule can be constructed inO(n)
time by using Frederickson’s linear time algorithm [9, 15]
for scheduling a set of UET tasks with individual integer re-
lease times and deadlines on multiple identical processors
as follows.

1. LetRs1
, Rs2

, · · · ,Rsp
be the different types of all in-

structions inA. Partition all instructions inA into p
disjoint setsAj = {vj : vj ∈ A andR(vj) = Rsj

}
(j = 1, 2, · · · , p).

2. For eachAj(j = 1, 2, · · · , p), compute a forward
scheduleσfj

for Aj on msj
identical functional units

by using Frederickson’s algorithm, wheremsj
is the

number of functional unit of typeRsj
.

3. The forward scheduleσf for A is the union ofσf1
, σf2

,
· · · , σfp

.

Backward scheduling solves the following special instruc-
tion scheduling problem: Given a set ofn independent UET
instructions with individual integer deadlines, find a feasi-
ble schedule on the ILP processorM such that the mini-
mum start time of all instructions is maximised. Note that in
backward scheduling release time constraints are ignored.
In backward scheduling, each instruction is scheduled as
late as possible. In backward scheduling, an instruction
is readyat time t if t is less than its deadline. Backward
scheduling works as follows. For each time pointtmax − 1,
tmax − 2, · · · , wheretmax is the largest deadline of all
instructions, choose a ready instructionvk which has the
largest deadline among all ready instructions to run on an
idle functional unit of typeR(vk). Ties are broken arbi-
trarily. The schedule generated by backward scheduling
is calledbackward schedule. A backward schedule can be
trivially constructed inO(n) time if we keep a sorted list of
all instructions in non-increasing order of deadlines. It can
be shown that forward scheduling and backward scheduling
have the following properties.

Property 3.1. Given a setV of independent instructions
with individual integer release times and deadlines, for-
ward scheduling will find a feasible schedule iff one ex-
ists. Furthermore, given a forward scheduleσf for V ,

tmax(σf) = min{tmax(σ) : σ is a feasible schedule for
V } holds, wheretmax(σ) = max{σ(vi) : vi ∈ V }.

Property 3.2. Given a setV of independent instructions
with individual integer deadlines, backward scheduling will
find a feasible schedule iff one exists. Furthermore, given a
backward scheduleσb for V , tmin(σb) = max{tmin(σ) :
σ is a feasible schedule forV } holds, wheretmin(σ) =
min{σ(vi) : vi ∈ V }.

4 Scheduling Algorithm

In this section, we describe a fast algorithm for schedul-
ing instructions with precedence-latency constraints,
individual release times and deadlines on the ILP processor
M .

Our algorithm consists of three main steps. The first
step is preprocessing. The preprocessing includes com-
puting edge-consistent release times and deadlines for all
instructions and sorting4 arrays which will be used in
forward scheduling, backward scheduling and computing
the lmax(vi)-successor-tree-consistent deadline for each
non-sink instructionvi. The second step is computing the
lmax(vi)-successor-tree consistent deadlined′i for each
non-sink instructionvi. The last step is constructing a
schedule forP by using list scheduling.

Note that by the definition of thelmax(vj)-successor-
tree-consistent deadline, if an instructionvj is a successor
of vi or the edge-consistent release time ofvj is greater
than that ofvi, then thelmax(vj)-successor-tree-consistent
deadline ofvj must be computed before that ofvi. To
satisfy this requirement, our algorithm uses an arrayL of
all non-sink instructions which is sorted in non-ascending
order of release times. The framework of our algorithm is
shown in pseudo code as follows.

procedure Instruction Scheduler(P)
/* P is a problem instance */

var L≤
r , L

≤

d
, L

≥

d
: array of all instructions inP ;

var L: array of all non-sink instructions inP ;

begin

/****** Preprocessing ******/

compute the edge-consistent release times and deadlines
for all instructions;
for each instructionvi do

begin
set its release time to its edge-consistent release time.
set its deadline to its edge-consistent deadline.

end
sortL≤

r in non-decreasing order of release times;
sortL≤

d
in non-decreasing order of deadlines;

/* Both L≤
r andL

≤

d
are used in forward scheduling */

sortL≥

d
in non-ascending order of deadlines;

/* L
≥

d
is used in backward scheduling */

sortL in non-ascending order of release times;

/* Compute thelmax(L[i])-successor-tree-consistent deadline
for each non-sink instructionL[i] */
k= the number of instructions inL;
for i = 0, 1 · · · , k − 1 do

begin
compute thelmax(L[i])-successor-tree-consistent
deadline of instructionL[i];
if thelmax(L[i])-successor-tree-consistent deadline of
L[i] is less than its edge-consistent deadlinethen

begin
setL[i]’s deadline to itslmax(L[i])-successor
-tree-consistent deadline;
sortL≥

d
in non-ascending order of deadlines;

sortL≤

d
in non-decreasing order of deadlines;

end
end

/****** Compute a feasible schedule ******/

compute a scheduleσ for P by using list scheduling;

end

In list scheduling, the priority of each instructionvi is its
lmax(vi)-successor-tree-consistent deadline and a smaller
number implies a higher priority. List scheduling works
as follows. At any time, among all ready instructions,
an instruction with the highest priority is chosen and
scheduled as early as possible on an idle functional unit of
same type as the instruction. Ties are broken arbitrarily.
An instructionvi is ready at timet if 1) for each immediate
predecessorvj of vi vj has finished beforet − lji, and 2)t
is not less than its release time.

Our algorithm computes thelmax(vi)-successor-tree-
consistent deadline of each non-sink instructionvi in
two steps. In the first step, our algorithms computes
the successor-tree-consistent deadline ofvi. In the
second step, our algorithms uses binary search and the
successor-tree-consistent deadline ofvi to compute its
lmax(vi)-successor-tree-consistent deadline. Next we
describe these two steps in details.

STEP 1: Computing the successor-tree-consistent
deadline ofvi.

Let σf1

i be a forward schedule forV − {vi} − Succ(vi)
andRs1

, Rs2
, · · · , Rsc

be c different types of all instruc-
tions inSucc(vi) ∪ {vi} andRsc

= R(vi). Given a type
x ∈ {Rsj

: j = 1, 2, · · · , c} and a time pointt, an instruc-
tion setA(x, t) is defined as follows.

• If x 6= R(vi), thenA(x, t) = {vk : vk ∈ Succ(vi)
andR(vk) = x} ∪ {vk : vk ∈ V − Succ(vi) and
R(vk) = x andσf1

i (vk) ≥ t}.

• If x = R(vi), then two cases are distinguished. If one
functional unit of typeR(vi) is idle during the time in-
terval[t− 1, t) in the forward scheduleσf1

i , A(x, t) =
{vk : vk ∈ Succ(vi) andR(vk) = x} ∪ {vk : vk ∈

V −Succ(vi)−{vi} andR(vk) = x andσf1

i (vk) ≥ t}.
Otherwise,A(x, t) = {vk : vk ∈ Succ(vi) and
R(vk) = x} ∪ {vk : vk ∈ V − Succ(vi) − {vi} and
R(vk) = x andσf1

i (vk) ≥ t} ∪ {vj}, wherevj is the
instruction of typeR(vi) scheduled at timet − 1 with
the largest deadline inσf1

i .

Let tmax be a time point satisfying the following constraint:

For each typeRsj
(j = 1, 2, · · · , c) min{σbj

(vk) : vk ∈
A(Rsj

, tmax)} ≥ tmax, whereσbj
is a backward

schedule forA(Rsj
, tmax).

By the properties of forward scheduling and backward
scheduling, the successor-tree-consistent deadline ofvi is
min{di, tmax}.

Our algorithm for computing the successor-tree-
consistent deadline ofvi is shown as follows:

1. For each typeRsj
(j = 1, 2, · · · , c − 1) compute the

maximum time pointtmax[j] satisfyingmin{σbj
(vk)

: vk ∈ A(Rsj
, tmax[j]} ≥ tmax[j], whereσbj

is a
backward schedule forA(Rsj

, tmax[j]).

2. For the typeRsc
compute the maximum time point

tmax[c] satisfying 1) tmax[c] ≤ min{tmax[1],
tmax[2], · · · , tmax[c−1]}, and 2)min{σbc

(vk) : vk ∈
A(Rsc

, tmax[c]} ≥ tmax[c], whereσbc
is a backward

schedule forA(Rsc
, tmax[c]).

It is not difficult to show that the successor-tree-consistent
deadline ofvi is min{di, tmax[c]}. The maximum time
point tmax[j](j = 1, 2, ·, c) can be computed by using dis-
joint set union-find algorithm as follows.

1. Let S(ri, Rsj
) = {vk : vk ∈ Succ(vi) andR(vk) =

Rsj
} ∪ {vk : vk ∈ V − {vi} − Succ(vi) and

σf1

i (vk) ≥ ri, and R(vk) = Rsj
}, d[j, 0] = ri

and d[j, 1], d[j, 2], · · · , d[j, cj] be cj different dead-
lines of all instructions inS(ri, Rsj

) with d[j, 1] <
d[j, 2] < · · · < d[j, cj], whereri is the release time
of vi. Partition the time interval [d[j, 0], d[j, cj]) into
cj smaller disjoint intervalsπ1 = [d[j, 0], d[j, 1]),
π2 = [d[j, 1], d[j, 2]), · · · , πcj

= [d[j, cj −1], d[j, cj]).
An instructionvk in S(ri, Rsj

) belongs to an interval
[x, y) if its deadlinedk satisfiesx < dk ≤ y. Each
instructionvk ∈ S(ri, Rsj

) is assigned a rank, de-
noted byrank(vk). If vk belongs to the intervalπb,

thenvk ’s rank isb. Each intervalπb(b = 1, 2, · · · , cj)
has two fields:size and limit, whereπb.size keeps
the number of instructions currently scheduled in the
interval πb andπb.limit is the maximum number of
instructions which can be scheduled in the interval
πb. Initially, πb.size is set to0 and πb.limit is set
to msj

(d[j, b] − d[j, b − 1]), wheremsj
is the number

of functional units of typeRsj
. In addition, a variable

u is used to dynamically keep the interval number of
the first non-empty interval (πu.size 6= 0) from the
left. The dynamic update onu is trivial and therefore
omitted in the subsequent descriptions.

2. For each instructionvk ∈ {vt : vt ∈ Succ(vi) and
R(vt) = Rsj

} do the following.

(a) Find the intervalπb to whichvk belongs by using
find(vk).

(b) Put vk into intervalπb by doing 1)πb.size =
πb.size + 1; 2) if πb.size = πb.limit andb > 1,
then mergeπb with its left intervalπb−1 by using
union(πb−1, πb); 3) if πb.size = πb.limit and
b = 1, then no feasible schedule exists forP (vi).
As a result, no feasible schedule exists forP ′(vi).

3. Let vw1
, vw2

, · · · , vwp
be all instructions satisfying

the following constraints: 1) For eachvwk
(k =

1, 2, · · · , p), both vwk
∈ V − Succ(vi) − {vi} and

R(vwk
) = Rsj

hold. 2) For anys, t ∈ [1 : p], if s < t,

then eitherσf1

i (vws
) < σf1

i (vwt
) or (σf1

i (vws
) =

σf1

i (vwt
) and dws

≤ dwt
) holds, wheredws

and
dwt

are the deadlines ofvws
and vwt

, respectively.
Note that the sorted list ofvw1

vw2
· · · vwp

can be con-
structed inO(n) time.
Let TC be the condition defined as follows:

• If Rsj
6= R(vi), then TC is

σf1

i (vwk
) < d[j, u] − ⌈(πu.size/msj

)⌉ or
d[j, u] − ⌈(πu.size/msj

)⌉ < ri; otherwise, it

is (σf1

i (vwk
) < d[j, u] − ⌈(πu.size/msj

)⌉ and
one functional unit of typeR(vi) is idle during
the time interval[d[j, u] − ⌈(πu.size/msj

)⌉ −

1, d[j, u] − ⌈(πu.size/msj
)⌉) in σf1

i or
d[j, u] − ⌊(πu.size/msj

)⌋ < ri.

For each instructionvwk
(k = p, p − 1, · · · , 1), do the

following: If the conditionTC holds, jump out of the
loop; otherwise, removevwk

from the forward sched-
ule σf1

i and put it into the interval to which it belongs
as follows.

(a) Find the intervalπb to whichvwk
belongs by us-

ing find(vwk
).

(b) Putvwk
into intervalπb by doing 1)πb.size =

πb.size + 1; 2) if πb.size = πb.limit andb > 1,
then mergeπb with its left intervalπb−1 by using
union(πb−1, πb); 3) if πb.size = πb.limit and
b = 1, then no feasible schedule exists forP (vi).
As a result, no feasible schedule exists forP ′(vi).

When the loop terminates normally,tmax[j] =
d[j, u] − ⌈(πu.size/msj

)⌉.

STEP 2: Computing the lmax(vi)-successor-tree-
consistent deadline ofvi.

Let a = max{ri, tmax − lmax(vi) − 1}, and b =
min{di − 1, tmax − 1}]. We first check if thelmax(vi)-
successor-tree-consistent deadline ofvi falls within the in-
terval[a, b] by using binary search. Binary search cannot be
performed before all maximum forbidden intervals with re-
spect toR(vi) have been removed. The procedure for com-
putingd′i is shown as follows.

1. Find all forbidden intervals with respect tovi for
the relaxed problem instanceP ′(vi) excludingvi and
let B[0], B[1], · · · , B[r] be r + 1 all different non-
forbidden time points in the interval[a, b] with B[j −
1] < B[j](j = 1, 2, · · · , r);

2. Perform binary search over the interval[B[0], B[r]] to
find the largestB[j] such that instructionvi can be
scheduled atB[j] in a feasible schedule for the relaxed
problem instanceP ′(vi).

Notice that ifvi cannot be scheduled atB[k], then it cannot
be scheduled at any time pointB[t](r > t > k) in any fea-
sible schedule forP ′(vi). Therefore, binary search can be
used to find the the largestB[j] such that instructionvi can
be scheduled atB[j] in a feasible schedule for the relaxed
problem instanceP ′(vi). To check ifvi can be scheduled
at a time pointB[j], we simply set the release time ofvi

to B[j] and find a forward schedule forP ′(vi). If the for-
ward schedule is feasible, thenvi can be scheduled atB[j];
otherwise,vi cannot be scheduled atB[j] in any feasible
schedule forP ′(vi).

If either thelmax(vi)-successor-tree-consistent deadline
of vi is not found to be within[a, b] or a > b holds, find a
time pointtmax satisfying the following constraints:

1. ri ≤ tmax < a.

2. [tmax, tmax + 1] is not a forbidden interval.

3. [tmax + 1, a] is a forbidden interval with respect tovi

or tmax = a − 1.

If such a tmax exists, it is thelmax(vi)-successor-tree-
consistent deadline ofvi. Otherwise, no feasible schedule
for the relaxed problem instanceP ′(vi). As a result, no

feasible exists for the original problem instanceP (vi).

1 2 3

4 5

7 8

9 11

14

13 10

15 16

1

1

0 0

1 0 0

0
0 4 2 1

0
0

0

v [1, 4]

v [0, 3] v [0, 3] v [0, 3]

v [3, 14]

v [3, 12]v [3, 15]

v [5, 15] v [5, 15]

6

v [8, 10]v [8, 10]

v [2, 10]

v [0, 4]

v [1, 6]v [1, 12]

12 v [3, 15]

Figure 1. A problem instance P

1 2 3

4 5

7 8

9 11

14

12 13 10

1

1

0 0

1 0 0

0
0 4 2 1

0
0

0

v [0, 2] v [0, 3] v [0, 3]

v [2, 4] v [1, 4]

15 16

v [5, 12]

v [6, 15] v [6, 15]

v [5, 14]

v [8, 15]

v [3, 10]6

v [6, 15] v [8, 10] v [8, 10]

v [4, 9] v [2, 6]

Figure 2. The edge-consistent release times
and deadlines in P

Example 1 Consider a problem instanceP with 14
instructions and an ILP processor with two heterogeneous
functional unitsF1 andF2. The precedence-latency con-
straints, release times and deadlines are shown in Figure 1
where a filled node denotes an instruction which must be
executed onF1 and a non-filled node represents an instruc-
tion which must be executed onF2. x andy in [x, y] are the
pre-assigned release time and deadline of the corresponding
instruction, respectively.

First, our algorithm computes the edge-consistent re-
lease times and deadlines for all instructions. In Figure 2,
x andy in [x, y] are the edge-consistent release time and
edge-consistent deadline of the corresponding instruction,
respectively.

Next, our algorithm computes thelmax(vi)-successor-
tree-consistent deadline for each non-sink instructionvi in
non-increasing order of their edge-consistent release times.
Suppose that our algorithm has computed the0-successor-
tree consistent deadline ofv6 which is7, we show how our
algorithm computes the4-successor-tree-consistent dead-

1 2 3

4 5

9

2

4
8

v [0, 3] v [0, 3]

6

v [2, 4]

10 11 12 13 14 15 16

7

2
2 1 1

v [0, 2]

v [8, 15] v [6, 15]

v [3, 10]

v [6, 15] v [6, 15]v [5, 13]v [8, 10] v [8, 10]

v [4, 8]

v [5, 12]

v [2, 6]

v [1, 4]

Figure 3. The relaxed problem instance P ′(v7)

1

2

v1 v

v v

v

vv

2F

F

3

5 4 8 6v v9 10

0 1 2 3 4 5 6 7 8 9 10

Figure 4. A forward schedule for V −
Succ(v7) − {v7}

line d′7 of v7. By the definition,d′7 is the upper bound of
the latest completion ofv7 in any schedule for the relaxed
problem instanceP ′(v7) shown in Figure 3. Our algorithm
computesd′7 in two steps:

1. Compute the successor-tree-consistent deadline ofv7.
First, our algorithm computes a forward schedule for
V −Succ(v7)−{v7} shown in Figure 4. Next it com-
putes a backward schedule forSucc(v7) shown in Fig-
ure 5. Lastly it applies disjoint union-find algorithm
to find the successor-tree-consistent deadline which is
11.

2. Computed′7. First, our algorithm finds all forbid-
den time points within[a, b] and stores all the non-
forbidden time points within[a, b] in the arrayB,
wherea = 6, b = 10. In this case, two forbidden
time points are8 and9. Therefore, we haveB[0] = 6,
B[1] = 7 andB[2] = 10. Next, it applies binary search
to find the latest completion time ofv7 in the relaxed
problem instanceP ′(v7) which is7.

The lmax(vi)-successor-tree-consistent deadline of each
instructionvi is shown in Figure 6 wherey in [x, y] beside
each instructionvi is thelmax(vi)-successor-tree-consistent
deadline ofvi.

Lastly, our algorithm uses list scheduling to compute a
schedule for the original problem instanceP . The schedule
which is feasible is shown in Figure 7.

By using induction and the properties of forward
scheduling and backward scheduling, we can prove the fol-

1

2

F

F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v15 v16

v12 v11

v14v13

Figure 5. A backward schedule for Succ(v7)

1 2 3

4 5

7 8

9 11

14

12 13 10

1

1

0 0

1 0 0

0
0 4 2 1

0
0

0

v [0, 2] v [0, 3] v [0, 3]

v [2, 4] v [1, 4]

15 16

v [5, 12]

v [6, 15] v [6, 15]

v [8, 15]

6

v [6, 15] v [8, 10] v [8, 10]

v [4, 8]

v [5, 13]

v [2, 6]v [3, 7]

Figure 6. The lmax(vi)-successor-tree-
consistent deadlines

lowing lemma. The proof is omitted due to the space limi-
tation.

Lemma 4.1. Given a problem instanceP , each instruction
vi must be completed before itslmax(vi)-successor-tree-
consistent deadline in any feasible schedule forP .

Theorem 4.1. Our scheduling algorithm computes a fea-
sible schedule whenever one exists in the following special
cases.

1. Arbitrary DAG, latencies in{0, 1}, individual integer
release times and deadlines, and one functional unit.

2. Arbitrary DAG, latencies of0, individual integer re-
lease times and deadlines, and two identical functional
units.

3. Monotone interval-ordered graph, arbitrary latencies,
individual integer release times and deadlines, and
multiple functional units of different types or multiple
identical functional units.

4. In-forest, equal latencies, individual integer release
times and deadlines, and multiple identical functional
units.

Proof Suppose that there exists a feasible schedule
σ′, but a scheduleσ computed by our algorithm is not fea-
sible. Letvk be the first late instruction andt the earliest
integer time point satisfying 1) there aremk(σ(vk) − t) in-
structions scheduled in the time interval[t, σ(vk)) on mk

functional unit of typeR(vk) in σ, wheremk is the number
of functional units of typeR(vk), and 2) for each instruction

1

2

F

F

v1 v 3v2

vv5 4 vv8 7 v v9 10 v13 14v

v12 v11

v15 16v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7. A forward schedule for the original
problem instance P

vj of typeR(vk) scheduled in the time interval[t, σ(vk)),
d′j ≤ d′k holds. LetS = {vk} ∪ {vj : t ≤ σ(vj) < σ(vk)
andR(vj) = R(vk) }. If t = 0, then by pigeon hole prin-
ciple, there must be a late instruction in any schedule forP ,
which contradicts the assumption. Otherwise, consider the
following special cases.

1. Arbitrary DAG, latencies in{0, 1}, individual integer
release times and deadlines and one functional unit.
Let vi be the instruction scheduled in time interval[t−
2, t − 1). Consider all possible cases.

(a) No instruction is scheduled in time interval[t −
2, t − 1) or d′i > d′k. In this case, by the greed-
iness of list scheduling, the release times of all
instructions inS must be greater than or equal to
t. Therefore, by pigeonhole principle, at least one
instruction must be late in any feasible schedule
for P , which contradicts the assumption.

(b) d′i ≤ d′k. Consider the two possible cases.

i. The release times of all instructions inS
are greater than or equal tot. By pigeon-
hole principle, there must be at least one late
instruction in any feasible schedule forP ,
which contradicts the assumption.

ii. There is at least one instruction whose re-
lease time is less than or equal tot − 1.
In this case, all instructions whose release
times are less than or equal tot − 1 must
be the successors ofvi. By our algorithm
for computing thelmax(vi)-successor-tree-
consistent deadline,vi must be also late
with respect to itslmax(vi)-successor-tree-
consistent deadline in the scheduleσ, which
contradicts the assumption thatvk is the first
late instruction.

2. Arbitrary DAG, latencies of0, individual integer re-
lease times and deadlines, and two identical functional
units. Consider all possible cases.

(a) No instruction is scheduled in the time inter-
val [t, t − 1) or the lmax(vj)-successor-tree-
consistent deadline of each instructionvj sched-
uled in[t, t− 1) is greater thand′k. By the greed-
iness of list scheduling, the release times of all

instructions inS must be greater than or equal
to t. By pigeon hole principle, there must be at
least one late instruction in any feasible schedule
for P , which contradicts the assumption.

(b) There is an instructionvi scheduled in the time
interval [t, t − 1) with d′i ≤ d′k. In this case, for
each instructionvj ∈ S, eithervj is a successor
of vi or rj ≥ t. If no instruction inS is the suc-
cessor ofvi, by pigeon hole principle, there must
be at least one late instruction in any feasible
schedule forP , which contradicts the assump-
tion. Otherwise, by our algorithm for computing
successor-tree-consistent deadlines,vi must be
also late with respect to itslmax(vi)-successor-
tree-consistent inσ, which contradicts the as-
sumption thatvk is the first late instruction.

3. Monotone interval-ordered graph, arbitrary latencies,
individual integer release times and deadlines, and
multiple functional units of different types or multiple
identical functional units.
Let S1 be the set of all instructions inS whose re-
lease times are less thant and vr an instruction in
S1 which has the minimum number of predecessors.
Sincevr cannot start beforet in σ, there must exist an
immediate predecessorvs of vr such thatvs prevents
vr from starting beforet in σ due to the latencylsr.
By the property of monotone interval-ordered graph,
vs is the predecessor of all instruction inS1. Let
S2 = {vj : vj ∈ S1 andvj is an immediate successor
of vs}. By the definition of monotone interval-ordered
graph, for each instructionvj ∈ S2, lsj ≥ lsr holds.
Since each instruction inS1 − S2 must be a successor
of some instruction inS1, for each instructionvj ∈ S1,
l+sj ≥ lsr also holds. By our algorithm for com-
puting successor-tree-consistent deadlines,vs must be
also late with respect to itslmax(vs)-successor-tree-
consistent deadline in the scheduleσ, which contra-
dicts the assumption thatvk is the first late instruction.

4. In-forest, equal latencies, individual integer release
times and deadlines, and multiple identical functional
units. The proof for this special case is essentially the
same as in [11].

Our algorithm for computing the successor-tree-consistent
deadlines uses disjoint set union-find algorithm. Since the
union tree in this case is a chain, we can use Gabow’s lin-
ear time union-find algorithm [15]. Therefore, for each
non-sink instructionvi, it takesO(n) time to compute the
successor-tree-consistent deadline forvi, wheren is the
number of instructions. After the successor-tree-consistent
deadline of each non-sink instructionvi has been com-
puted, our algorithm uses binary search to compute the

lmax(vi)-successor-tree-consistent deadline forvi. The bi-
nary search takesO(n log d) time, whered is the maximum
latency. In addition, maintaining two sorted arraysL≥

d and
L≤

d takesO(n) time because each time onlyL[i]’s deadline
is changed. Therefore, it takesO(n2 ∗ log d) time to com-
pute thelmax(vi)-successor-tree-consistent deadlines for all
non-sink instructions. The transitive closure can be com-
puted inO(ne) time by n depth-first searches, wheree is
the number of edges in the precedence graph. Alternatively,
it can be reduced to matrix multiplication [17], which is
O(n2.376) [18]. Moreover, thelmax(vi)-successor-tree for
each instruction can be computed inmin{O(ne), O(ed)}
time. Therefore, it is easy to show the following theorem.

Theorem 4.2. The time complexity of our algorithm
is min{O(ne), O(n2.376)} + min{O(ed) ,O(ne)} +
O(n2 log d).

5 Conclusion

We proposed a fast algorithm for scheduling instructions
in a basic block with precedence-latency constraints, timing
constraints in the form of individual integer release times
and deadlines on an ILP processor. The key idea of our
scheduling algorithm is computing thelmax(vi)-successor-
tree-consistent deadline for each instruction. To make
it faster to compute thelmax(vi)-successor-tree-consistent
deadline for each non-sink instructionvi, we use a num-
ber of techniques, namely, forward scheduling, backward
scheduling, disjoint set union-find and binary search. Our
algorithm is guaranteed to find a feasible schedule when-
ever one exists in a number of special cases. In the first
special case where the processor has only one functional
unit and the maximum latency is1, our algorithm im-
proves the existing fastest algorithm [3] fromO(n2 log n)+
min{O(ne), O(n2.376)} to min{O(ne), O(n2.376)}. In
the second special case where the ILP processor has only
two identical functional units, our algorithm improves the
existing fastest algorithm [1] fromO(ne + n2 log n) to
min{O(ne), O(n2.376)}. The first polynomial time algo-
rithm for this special case proposed by Garey and John-
son [8] runs inO(n3) time. In the third special case where
the precedence-latency constraints can be represented as a
monotone interval-ordered graph and the ILP processor has
multiple functional units of different types, our algorithm is
the first polynomial time algorithm.

Further research on instruction scheduling with timing
constraints is expected. One open problem is loop schedul-
ing with individual release times and deadlines on an ILP
processor. In non-real-time computing, software pipelining
is an efficient approach to employ ILP. In real-time embed-
ded systems, timing satisfaction is the primary considera-
tion. It is interesting to see how release times and deadlines

are handled in software pipelining. Another open problem
is scheduling instructions with timing constraints on clus-
tered ILP processors. On a clustered ILP processor such
as Lx, communication constraints exist. If two instruc-
tions with data dependency are assigned to different clus-
ters, communication delay between these two instructions
must be respected in any valid schedule. However, if these
two instructions are assigned to the same cluster, there is not
communication delay. It is not known if there is any con-
sistency technique for handling communication constraints
efficiently.

References

[1] Leung, Allen, Krishna V. Palem and Amir Pnueli.
Scheduling Time-Constrained Instructions on
Pipelined Processors. ACM Transactions on Program-
ming Languages and Systems 23(1), 73-103, January
2001.

[2] Wu, Hui and Joxan Jaffar. An Efficient Algorithm for
Scheduling Instructions with Deadline Constraints on
ILP Processors. The Proceedings of the 22nd IEEE
Real-Time Systems Symposium, London, UK, Dec.
2001, pp. 235-242.

[3] Wu, Hui, Joxan Jaffar and Roland Yap. Instruction
Scheduling with Timing Constraints on A Single
RISC Processor with0/1 Latencies. Lecture Notes in
Computer Science, Volume 1894. Springer Verlag. pp.
457-469.

[4] Palem, Krishna. V. and Barbara B. Simon. Scheduling
Time-Critical Instructions on RISC machines. ACM
Transactions on Programming Languages and Sys-
tems 15(4), 632-658, Sept. 1993.

[5] Bogong Su, Shiyuan Ding, Jian Wang, Jinshi Xia. Mi-
crocode compaction with timing constraints. Proceed-
ings of MICRO 1987, pp. 59-68.

[6] Paolo Faraboschi et al. Lx: a technology platform for
Customizable VLIW Embedded Processing. Proceed-
ings of the 27th International Symposium on Com-
puter Architecture, Vancouver, Canada, 2000, pp. 203-
213.

[7] Namyun Kim et al. Visual Assessment of A Real-Time
System Design: A Case Study on A CNC Controller.
Proceedings of IEEE Real-Time Systems Symposium,
Washington, USA, 1996, pp. 300-310.

[8] Garey, M.R. and D.S. Johnson. Two Processor
Scheduling with Start-Times and Deadlines. SIAM J.
Comput. 6, 1977, pp. 416-426.

[9] Greg N. Frederickson. Scheduling Unit-Time Tasks
with Integer Release Times and Deadlines. Informa-
tion Processing Letters, 16(4), 171-173, 1983.

[10] Bernstein, D. and I. Gertner. Scheduling Expressions
on A RISC Processor with A Maximal Delay of
One Cycle. ACM Transactions on Programming Lan-
guages and Systems, 11(1), 57-66, 1989.

[11] Bruno, J. J. Jones and K. So. Deterministic Scheduling
with RISC Processors. IEEE Transactions on Comput-
ers, 29, 308-316, April 1980.

[12] Finta, L. and Z. Liu. Single Processor Scheduling Sub-
ject to Precedence Delays. Discrete Applied Mathe-
matics 70, 247-266, 1996.

[13] Hennessy, J. and T. Gross. Postpass Code Optimisa-
tion of Pipeline Constraints. ACM Transactions on
Programming Languages and Systems 5(3), 1983.

[14] Papadimitriou, C. and M. Yannakakis. Scheduling
Interval-Ordered Instructions. SIAM Journal on Com-
puting 8, 405-409, 1979.

[15] Gabow H.N and R. E. Tarjan. A Linear-Time Algo-
rithm for A Special Case of Disjoint Set Union. Jour-
nal of Computer and System Sciences 30, 209-221,
1985.

[16] Garey, M.R., D.S. Johnson, B.B. Simon and R.E. Tar-
jan. Scheduling Unit-Time Jobs with Arbitrary Re-
lease Times and Deadlines. SIAM J. Comput 10, 256-
269, 1981.

[17] Aho, A. V., J. E. Hopcroft and J. D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-
Wesley, Reading, Mass., 1974.

[18] Coppersmith, D. and S. Winograd. Matrix Multiplica-
tion via Arithmetic Progressions. J. of Symbolic Com-
putation, 9, 251-280, 1990.

[19] http://developer.intel.com/design/itanium.

