The 5th IEEE Symposium on Parallel and Distributed Processing, IEEE Computer Society Press,

Dallas, December 1993

An Algorithm to Automate
Non-Unimodular Transformations of Loop Nests

Jingling Xue
School of Electrical and Electronic Engineering
Nanyang Technological University
Singapore 2263

Abstract

Thas paper provides a solution to the open problem
of automatic rewriting loop nests for non-unimodular
transformations. We present an algorithm that
rewrites a loop nest under any non-singular (unimod-
ular or non-unimodular) transformation. The algo-
rithm works micely with unimodular transformations
being treated as a special case. The first step of the al-
gorithm calculates the loop bounds using the Fourier-
Motzkin elimination method. The second step relies
on a method based on the theory of Hermate normal
form and lattice and is only needed for non-unimodular
transformations. It consists of calculating the loop
strides and adjusting the loop bounds derwed in the
first step so that the “holes” in the image iteration
space are skipped. The time complexity of the second
step is polynomial, which is the time complezity of cal-
culating the Hermite normal form of an nxn matriz,
where n is the depth of the loop nest. The adjusted
loop bounds are the simplest that can be expected.

1 Introduction

Loop transformations, such as loop interchange, re-
versal, skewing and tiling, have been shown to be very
useful in the presently two closely related areas: paral-
lelising compilation [1, 3, 21, 22, 23] and regular array
design [6, 7, 15, 16, 19, 25]. The process of loop trans-
formations can be divided into three steps. The first
step 1s to gather useful knowledge about the underly-
ing dependences of a program [2, 11, 22]. The second
step is to choose the optimal loop transformations in
such a way that the dependences of the program are re-
spected and certain predefined goals are fulfilled. The
third step is to rewrite a loop nest transformed by a
loop transformation. It consists of rewriting the loop
body, strides and bounds. Algorithms for the rewrit-
ing of loop nests exist. See [10, 20] for algorithms in
regular array design and [1, 21] in parallelising compi-
lation. However, these algorithms work only for uni-
modular loop transformations.

In the context of regular array design, loop trans-
formations (often referred to as space-time mappings)
can be unimodular or non-unimodular. In fact, non-
unimodular transformations have been used to advan-
tage in the synthesis of fixed-size arrays [7]. However,
the issue of rewriting loop nests for loop transforma-
tions has not been adequately addressed. There have

512

been some work on generating systolic code from loop
nests for programmable arrays [4, 6, 17]. However,
the loop transformations are restricted to be unimod-
ular. Recently, an attempt on relaxing this restriction
was described in [5]. It was shown how to rewrite one
example double loop for one non-unimodular transfor-
mation. It is unclear whether and how general loop
nests can be dealt with. In the context of parallelis-
ing compilation, loop transformations have been re-
stricted to be unimodular [1, 3, 21]. This restriction
was relaxed in [12] to increase the space of loop trans-
formations. But how to rewrite loop nests for non-
unimodular transformations was not mentioned.

In this paper, we present an algorithm that rewrites
a loop nest under any non-singular (unimodular or
non-unimodular) loop transformation in a mechani-
cal manner. This algorithm works by first calculating
the loop bounds using the Fourier-Motzkin elimina-
tion method that has been previously promoted in the
literature, and then adjusting these loop bounds and
calculating the loop strides using a method based on
the theory of Hermite normal form and lattice.

The plan of the paper is as follows. Sect. 2 intro-
duces the basic terminology and definitions used in the
paper. Sect. 3 discusses the formulation of the prob-
lem. Sect. 4 gives a brief sketch of our loop rewrit-
ing algorithm. Sect. 5 explains briefly the Fourier-
Motzkin elimination method through the rewriting of
a loop nest for a unimodular transformation. Sect. 6
describes the details of the algorithm by focusing on
the non-unimodular loop transformations. Sect. 7 ex-
amines our loop rewriting algorithm from a geometri-
cal perspective. Sect. 8 demonstrates further the al-
gorithm through the rewriting of two more example
loop nests. Sect. 9 concludes the paper.

2 Unimodularity, lattice, hermite nor-

mal form

We recall several concepts in linear algebra that are
central to the paper [14, 18].

Definition 1 A square matrix is unimodular if it is
integral and has determinant +1.

The inverse of a unimodular matrix is still a unimodu-
lar matrix. The inverse of a non-unimodular matrix is
not integral. This is why the concept of unimodularity
comes 1n.

Definition 2 Let A be an mXxn integer matrix. The
set L(A)={y | y=Az Az Z™} is called the lattice
generated by the columns of A.

Theorem 1 If A s an mxn integer matriz and C 1is
an nxn unimodular matriz, then L(AC)=L(4).

If A is a non-singular square matrix, the columns are
called a basis of the lattice £(A). The columns of A
generate the lattice 7™ iff A is a unimodular matrix.

Definition 3 A non-singular square integer matrix is
sald to be in Hermate normal form if it is lower tri-
angular, nonnegative matrix, in which each row has a
unique maximum entry, which is located on its main
diagonal.

Theorem 2 If A is an mxn integer matriz of full row
rank, then there is an nxn unimodular matriz C such
that AC=[H 0] and H is in Hermite normal form.

By Thm. 1, £(A)=L(H). Every integer matrix of full
row rank has a unique Hermite normal form.

3 Problem statement

Z denotes the set of integers. As is customary, we
write [z] for the ceiling of z, i.e., the smallest integer
not smaller than z, and we write [z] for the floor of
z, l.e., the greatest integer not greater than z. The
operator % denotes the modulo operation. For z,y €
7", 2%y=r iff z=qy+r, where ¢,7r€Z and 0<r < |y|.

We represent a loop nest of depth n as follows:

for I from max([Ly1], [L1,2],")

to min(|Ui 1], [U1z2],) by step:
for I, from max([Ln 1], [Lna2], ")

to min(LUn 1J [Un,2],) by step,

where the lower bounds Ly ; and upper bounds Uy ;
are of the form:

Lii = (844, 0+ —|—fk_l.7k 1)/f’c ()
Uk,j = (uk]+uk]I1+ +uk]1Ik 1)/uk J
where £ i uj s Z are invariants in the loop nest. Ly ;

and Uy ; may evaluate to non-integral values. This ex-
plains tJhe necessity of the ceiling and floor functions
in the loop bounds. The stride of loop variable Ij is
stepy. The statements inside the loop nest are omit-
ted. Their rewriting after a transformation is straight-
forward [21]. A loop nest is said to be normalised if
all its loops have stride 1. We identify each itera-
tion in the loop nest by a point or an index vector
(I, -+, I,). We write ® for the iteration space, i.e.,
the set of all iterations of the loop nest. If the loop nest
is normalised, the iteration space ® is the (bounded)
convex polyhedron in Z" defined by the loop bounds:

max(L1 1, L1 2,)< <min(Uy1,U1 2,) "
3

ma'X(Ln,lx Ln,2; o) § In Smin(Un,lx Un,2) o)

A system of linear constraints that are in the form of
(2) and (3) is called a triangular system [1]. Unless

513

triangular, a system of linear constraints does not di-
rectly contribute to the calculation of the loop bounds
of the respective loop nest.

A loop transformation is an n X n non-singular in-
teger matrix and is denoted by T'. To be legal, a loop
transformation must respect the dependences of the
loop nest. Still, the space of legal loop transformations
is infinite. Finding optimal transformations from this
space is a difficult task. We refer to [19, 24] for meth-
ods on the minimisation of the latency and processor
count of a regular array and to [8] for the maximisa-
tion of parallelism in a loop nest. The issues of legality
and optimality of loop transformations are of no con-
cern here. Our loop rewriting algorithm applies for
any non-singular loop transformation.

In a sequential loop nest, the iterations in ® are
executed in the lexicographical order of their index
vectors. Let < be the lexicographical order:

< {(I,J) | I<J NI Jed}

A loop transformation T' changes the lexicographical
order < to:

<7 {TL,TT) | TI<TJ NI, JE€®}

The problem concerning us in this paper is the fol-
lowing. Given a normalised loop nest of depth n and a
non-singular loop transformation 7', find an algorithm
that rewrites the loop nest into another loop nest of
depth n that has the lexicographical order <.

The loop nest returned by the algorithm is called
the transformed loop nest. The transformed loop nest
1s correct if it has the lexicographical order <.

4 Algorithm sketch

The loop nest input to our loop rewriting algorithm
is normalised; it has the form (1) where stepr =1. A
loop transformation T maps an iteration (I, -, I,)

to an iteration (I7, -, I)):
T I I T
l=T| |, e =T s | (@)
I L. In I,

The transformed loop nest returned by our loop
rewriting algorithm has the form:

for I} from rnax([LfL 1]—}—61 1 [LY 2]—}—61 PYEE)

to min([U7, 1J |_U1 P) by Stepl
for I, from max([L;, 146}, 1, [Ly, 5] 4+65 2,7
to min(|U}, J LUn o]y > by step!,

For convenience, we still refer to L’ ki as the lower

bounds. We refer to é, i as the lower bound offsets.

The algorithm consists of two parts:

1. Calculate the loop bounds L}, ; and Uy, ; using the
Fourier-Motzkin elimination method.

2. Calculate the loop strides step) and the lower
bound offsets &}, % using a method based on the
theory of Hermite normal form and lattice.

In the rational space, a loop transformation maps a
bounded convex polyhedron to another bounded con-
vex polyhedron. We refer to the image of the iteration
space ® under a loop transformation in the rational
space as the image iteration space and denote it by
®’. The image iteration space ®' is obtained by sub-
stituting the solutions of Iy, - -, I, in (4) into (3).

To calculate L}, ; and Uy, ; is to rewrite the image

iteration space &’ into a triangular system. To accom-
plish this, Ancourt and Irigoin proposed to use the
Fourier-Motzkin method. See [18] for details about
the Fourier-Motzkin method and [1] about Ancourt
and Irigoin’s algorithmic implementation. The basic
idea of the Fourier-Motzkin method is given below.
The Fourier-Motzkin method works by a successive
projection of the the linear system defining &' along
I'' .-+, I} in that order. In the k-th projection (the
starting point is the case k= 1), we have as input a
system of linear constraints containing I{, R (A
only. By projecting the system along I, ;. ;, we ob-

tain as output the lower and upper bounds of I kgl

max(lﬁi—k+1,1’L7;—k+l 2° ')<I k+1<m1n(Un-k+1 1’Un—k+1 2
and U!

n—k+1, n—k+1,j
of (2) and contain If,---,I,_, only. The new system

with I,’_L_k_l_1 eliminated is the input in the (k+1)-st

projection. After the (n—1)-st, i.e., the last projection
along I}, we end up with a system of linear constraints
containing only I from which the lower and upper
bounds of I] can be trivially calculated.

The image iteration space ® is now defined by the
following triangular system:

)<I]/.<m1n(U{ 11U2{ 20)

where L/ conform to the format

/ /
ma'X(Ll,l)Ll,2; s

L/

n,20 "

)<I’ <min(U}

max(L! ol

n,11 n2’)

where Lk,i and U,:’j are the solutions so desired in the

first step of our loop rewriting algorithm.

The second step of the algorithm is to calcu-
late the loop strides and lower bound offsets. From
now on, whenever we speak of lattice poinits we
mean the lattice points in L£(T). We refer to
the integer points in Z”\L(T) as the non-lattice
points. When we say (I, -+, I, %) is a lattice
point with its last n—k components unspecified, we

mean that there are Xk+1""’X7lz in Z such that
(I1,- "’II/chI/c+1’ -+, X)) is a lattice point. That is,
if (I7, -, I, *) is a lattice point, then (If,- - -, I;) be-

longs to the projection of £(T') onto I7,- -+, I}.

If the loop transformation 7' is unimodular, then
L(T)=17". All the integer points in the image iter-
ation space are lattice points. The transformed loop
nest is correct if we set step; = 1 and 6, , = 0. If
the loop transformation 7' is non-unimodular, then
L(T)#Z". Some integer points in the image iteration
space are not lattice points. These non-lattice points
are what have been conventionally called holes. Their
inverse images under 7' are non-integral. If we still
set step; =1 and 6; ; =0, the transformed loop nest is

514

I, I

A\

(00) a) 1, (41) (b) I

Figure 1: The iteration space ® (a) and the image
iteration space & (b) of Ex. 1 (n=4).

incorrect. This is because the holes in the image itera-
tion space are treated as iterations in the transformed
loop nest, although they should not be.

Let (I7,- -, I}, *) be a lattice point. The loop stride
step), of I}, is simply the positive integer such that
(I3, - -, Ii4step),, *) is the smallest (in the lexicograph-
ical sense) lattice point larger than (I7,:--, I,’C, *).
Since L(T) is a lattice, the existence of step) is
guaranteed. To specify the lower bound offset &}, i

we consider the set of lattice points (I7,---,I;_,, *)

If (I, I _q, [L 41, %) is a lattice point whenever
(I, I, _;,%) is, we set 6, , = 0. In general, we
choose 5; which is an expreséion of I, -+, I}, _;, such
that (I1, -+, I, _q, [L} 1]—}—6,0 0) is the smallest lattice

point not smaller than (11, -, I,_q, fL;m-],*). With
the loop strides and the lower bound offsets so calcu-
lated, the iteration space of the transformed loop nest
1s just the set of the lattice points in the image iter-
ation space. The correctness of the transformed loop
nest is not difficult to see.

5 TUnimodular transformations
This section discusses the rewriting of loop nests for

unimodular transformations. In this case, we simply
set step), =1 and §;, ;=0. To calculate L’ % and Uy 5,

we apply the Fourler Motzkin method.

Example 1 Consider the double loop:

for I; from 1 ton by 1
for I from 1 ton by 1

and the following unimodular transformation:

R 1 1 R M I T

Fig. 1(a) depicts the corresponding iteration space &:

1 S I2 S n
Fig. 1(b) depicts the image iteration space &', which
1s obtained by substituting the solutions of I; and I
in (6) into (7) and is defined as follows:

1< II-2I,<n
1< —I43, <n

(8)

This system of linear constraints is not triangular,
since the loop bounds of I] are not readily available.

We use the Fourier-Motzkin method to rewrite this
system into the following triangular system:

(i-n)/2 < I < (I, —1)/2
(I1+1)/3 < I < (I1+n)/3

which is equivalent to:
)2, I1+1)3) < I <min((I3-1)/2, (T1+n)/3) (9)

This gives rise to the lower and upper bounds of .
Eliminating I from (9), we obtain

max((I{—n

(I;—n)/2 < (I;-1)/2
(I;—n)/2 < (I;+n)/3
(I +1)/3 < (L,—1)/2
(I1+1)/3 < (I1+n)/3
which simplifies to:
5< I <bn (10)
This yields the lower and upper bounds of Ij. The

image iteration space which was defined before by the
system (8) has been rewritten to the triangular system
of linear constraints in (9) and (10). Since the loop
transformation 7' is unimodular, we choose

step] =1, stepy =1, 61 1=0, 62 ,=0, & 2=0
The transformed loop nest becomes:

for I from 5 to 5n by 1
for I} from max([(—n)/2], [(1{+1)/3])
b min(|(1i~1)/2), [(+n)/3]) by 1

6 Non-unimodular transformations

If the loop transformation is non-unimodular, an
automatic method for the calculation of the loop
strides step) and lower bound offsets &}, P 1s called for.

To facilitate the development of our method we con-
sider a motivating example.

Example 2 Consider the double loop in Ex. 1. This
time, we choose a non-unimodular transformation:

)= [] o (8] = a3 A

Applying the Fourier-Motzkin method, we obtain the
transformed loop nest as follows:

for I; from 5+4; ; to 5n by step
for I2 from max(1—|—62 1 [(I1=2n)/3] 485 5)
to min(n, L(I1—2)/3J) by stepl,

Fig. 2 depicts is image iteration space ®’. The lattice
points inside are depicted by heavy dots and the non-
lattice points inside are not highlighted.

The loop strides step; and step, and the lower
bound offsets 67 1, 65, and & , in the transformed

loop nest (11) are to be determined. If we simply set

(11)

step) =1, steph =1, 61’1:0, 65’120, 6§’2:O

The transformed loop nest thus obtained is incorrect
because of the presense of the non-lattice points in

515

I

(4,0) I

Figure 2: The image iteration space ® of Ex. 2 (n=4).

®’. In fact, our algorithm returns the following loop
strides and lower bound offsets:

step) =1, steph =2,

8, 20,8, = (I} = 1)%2, 8 , = (I, — [(I{ —2n)/3])%2

To see why the transformed loop nest thus obtained is
correct, let us consider the image iteration space de-
picted in Fig. 2. The loop stride step) is set to 1, be-
cause if (I7, It) € £(T), then (I;+1, *) € L(T). The loop
stride step} is set to 2, because if (I], I4) € L(T) then
(I1, I5+1)¢ L(T) and (Il, IL+2)e L(T). Tt is easy to
understand why 6] ; =0. To see why 65 ; = (I} —1)%2,
we consider the bottom boundary of the image itera-
tion space, i.e., Ly ; =1=1;. L5 =11s a constant. It
represents the second components of the integer points
on the bottom boundary. Some of these integer points
are non-lattice points. This is where the lower bound
offset &5 1 = (I1—1)%2 comes into play. It evaluates to
0 and 1 alternatively starting from the first iteration

=5. Thus, [L5]+85, evaluates to 1 and 2 alter-
natively, giving rise to the second components of the
lattice points closest to the bottom boundary, as in-
tended. The analysis for 65 , is similar and is omitted.

We are now ready to describe our method for the
derivation of the loop strides step) and the lower
bound offsets &}, i In fact, all information necessary
for the derivation is contalned implicitly in the loop
transformation T'. To make this information explicit,

all we need to do is to calculate the Hermite normal
form, denoted A, of T

A TC

(C is an nxn unimodular matrix.) By Thm. 1, £(T)=
L(A). Le. the columns of T' generate the same lattice
as those of A. From A, the loop strides step), and the
lower bound offsets &, % ; can be readily read off.

We use the followmg notations for A. A; ; denotes
its (4, j)-th element. Ay denotes its k-th column.
6.1 The derivation of loop strides

To calculate the loop stride of Ij, we only need
to pay attention to a subset of lattice points in £(T)
whose first k—1 components are identical. In addition,
it suffices to consider only the set of k-th components
of all lattice points in the subset. It is for this reason
that we introduce the following notation:

The next lemma provides the basis for the calcu-

lation of loop strides. It asserts that £;(7T) is a one-
dimensional lattice generated by the 1x1 matrix [Ay z].

Lemma 1 Ly (T)=L([Ag 1))

Proof. By the definition of Lx(T), 0 € Lix(T). Tt
suffices to show that (1) Ay € Lix(T) and (2) =z ¢
Ly(T), for 0 <z < Ap . The columns of A belong to
L(T). The first k—1 components of the k-th column
of A is 0 and the k-th component is Ay . Hence,
Ay x € Lx(T). This proves (1). Let (0,---,0,z,%) be
in Z™ such that its first k—1 components are 0 and
the k-th component z satisfies 0 <z <Ay . To prove
(2) is to prove (0,---,0,z,%) & L(T). A is a lower
triangular matrix. If (0,---,0,z,*) € L(T), Ay, must
divide . This is impossible, since 0 <z <Ay .]

Theorem 3 The loop strides of loop variables I}, (0<
k<n) are: step, =Ap .

Proof. Following directly from Lemma 1. ad
Let us use this theorem to derive the loop strides
for Ex. 2. The loop transformation T is as in (11). Its
Hermite normal form A is:
1 2
-1 -3

1 0 3 2
A= [1 2] = [10
So step] =1 and step), =2 are the desired loop strides.

The loop strides step), are unique, since the Hermite
normal form A is.

] = TC (12)

6.2 The derivation of lower bound offsets

Just like the calculation of the loop strides, the
calculation of the lower bound offsets can be car-
ried out based on A alone. Let there be a lattice

point (I7, -+, I,_;,*) € L(A). In the column basis of
A, (I{’ T II{:—lx I_th z-|) becomes (Xl g "Xllc) *)’
where X7 ;,- -+, X} ; are the solutions to the equation:

X!, L

)2 .
A X:’ - = Ii’/_l (13)

f’l (L ;]

*
Since (I1,---, I;_1,*%) € L(A), X1, - ~,X;’c_1’i are
integers. Since A is lower triangular, Xj , does

not depend on the last (n — k) components of

(I3, -+ Ioq, L 51, %), If X, is an integer when-
ever (If,---,I,_;,*) is a lattice point. Then,
(I3, -, I,_y, [L4, ;],%) is a lattice point whenever
(I, -+, I,_;,*) is. In this case, we set 6,’“ =0. In

general, (I, -, I;,_;,[L} ;], *) can be a hole for some
lattice point (I7,- ~~,Il’c_’1,*). We choose é}, ,; such
that (I1, -+, I, _q, [L% ;1464 ;, %) is the smallest lattice
point not smaller than (17, L T g, [L;cyi],

io= (= Xp A) %A

By this formula, 6] ;=[L ;%A1 1. A1 is the great-
est common divisor of the elements in the first row of
T. Hence, Aq,; divides L i This implies that &/ P =0.

*), where

8%, (14)

516

Theorem 4 The transformed loop nest with the loop
strides step), as in Thm. 8 and the lower bound offsets

6, ; as in (14) is correct.

Proof. The transformed loop nest is correct if it
has the lexicographical order <r. It suffices to
show that the iteration space of the transformed
loop nest is the set of all lattice points in the im-
age iteration space. This follows from the two
facts. (1) With the adjusted lower bounds, every

loop variable Ij starts to iterate at a lattice point
(I, Lo 1,max([Lk 1+ 6k 1) [L;c,2—| + 512,2’) %),
which is the smallest lattice pomt not smaller than
(IZ/L: T Illc—li maX(l—L;c 1-|’ |—L;c 2-|’ o ')7 *)’ and (2) all
lattice points whose first £ — 1 components are
11, I _; have the form (I7, -, I _;, max([L} |+
51/«, 1 [L4 2]+5k P <)+ step},, *) (Thm. 3). O
Let us calculate the lower bound offsets for Ex. 2.
With the A in (12), an algebraic calculation yields:

511 = |—L 1]%Al,l = 5%1 = 0
61 = (L= [Lh N%Az2 = (I;—1)%2
622 = (1 —=[L551) %Az = (I1—[(I1—2n)/3])%2

6.3 The loop rewriting algorithm

Our loop rewriting algorithm is given below.
ALGORITHM loop_Rewrite
INPUT: a loop transformation T, a loop nest in
the form of (1) where stepr =1.
OUTPUT: a loop nest in the form of (5) whose
lexicographical order is <.

1. Calculate the loop bounds Lj ; and Uy, ; using the
Fourier-Motzkin method.

2. Calculate the Hermite normal form A of T'.
3. Set step), = Ay k.

4. Set 6,’0’1- (—Xi,’iAk,k)%Ak,k, where Xl’m.
solution of (13).

The time complexity is dominated by Step 1, which
is not polynomial [18]. This step may also introduce
redundant lower and upper bounds L/, , and U,c An-

court and Irigoin’ algorithm uses the Fourler Motzkln
feasibility test to remove some redundant loop bounds
[1]. The time taken by the remaining steps is domi-
nated by Step 2, which is polynomially bounded by n,
the depth of the loop nest.

The ceiling and floor functions are indispensable
in the loop bounds L} ; and Uy ; for unimodular or

non-unimodular transformatlons because some loop
bounds may evaluate to non—integral values. Simi-
larly, the modulo operation is unavoidable in the lower
bound offsets, due to the need of bypassing the non-
lattice points in the image iteration space. It is in
this sense that the lower bound offsets derived in this
paper are the simplest that can be expected.

This algorithm works nicely with unimodular trans-
formations being treated as a special case. If the loop
transformation 7" is unimodular, A is the identity ma-
trix. We have Ay ,=1. Hence, step}, =1 and 6,’0’1-20.

In this case, Steps 2 — 4 can be dispensed with.

1s the

gbt gyl

I
Figure 3: The tiling of the image iteration space of
Ex. 2 (n=4).

0405

(4,0)

7 A geometrical interpretation of the

algorithm
This sections provides a geometrical insight into the
development of our algorithm. The insight also sheds
the light on how the transformed loop nest works.
Let O be a lattice point in £(T"). Let P(O) be the
unit parallelepiped with O being one of its vertices
and the columns of A being the edge vectors:

P(O)={O0+z1A1+ - +2nApn | (VEk:0<k<n:0<2zr< 1)}

Clearly, the number of integer points in P(O) is equal
to det(T"). The following lemma provides the basis of
our geometrical interpretation of the algorithm.

Theorem 5 P(O) contains only one lattice point,
whach 15 O.

Proof. Let I be an integer point in P(0O). If I
is a lattice point, then I — O must be an integral
combination of the columns of A. That 1s, I—0 =
X1 A+ - +X,A,,. Since A is a lower triangular matrix,
we have |I; —O1| < Ay,1. Thus, X; =0. This implies
that I = O, and consequently that |Io— 03| < As 5.
By repeatly applylng the same line of reasoning, we
obtain X, =0, ---,X,, =0. Hence, I = 0. That 15, O
is the only lattlce pomt contained in P(O). a

The image iteration space can be considered as be-
ing tiled by unit parallelepipeds. Fig. 3 depicts the
tiling of the image iteration space of Ex. 2. This time,
the non-lattice points inside are highlighted by circles.
Since det(T") =2, each tile contains two integer points:
one is a lattice point located at the bottom-right cor-
ner and the other is a hole located at the left edge.

If the loop transformation is unimodular, each tile
contains only one integer point, which is a lattice
point. In this case, the transformed loop nest scans
all the integer points in the image iteration space. If
the loop transformation is non-unimodular, each tile
contains det(T") integer points of which only one is a
lattice point. The transformed loop nest scans only
the lattice point in a tile. In both cases, the trans-
formed loop nest can be regarded as scanning the tiles
in the image iteration space. This way, only the lattice
point inside a tile is visited; the holes are bypassed.

8 Two examples
Example 3 Consider the triple loop:

for I; from 1 ton by 1
for I, from 1 ton by 1
for Iz from 1 ton by 1

517

(_4) _4) Ié
Figure 4: The space of all iterations (6, I3, I}) (n=4).

The following non-unimodular transformation speci-
fies Kung-Leiserson’s two-dimensional systolic array
for band-matrix product [9]. This array is appealing
because its size is dependent on the size of the band
rather than the size of the matrix.

7 1 1L L] [1/3 2/3-1/3\[L
Il={10-1||L| ie |IL|=|1/3 -1/3 2/3||I
o] [01-1]|Is Is] |13 -1/3 —1/3] |1}

An application of the Fourier-Motzkin method yields:

(L 21,L22,L23) (1-n, Il+3 I3 —3n)
(U 2,1, Us, 20 Us 3)-(" 1,1 -3, -1 +3n)
(Lg i L’3 2 L’3 3)= (I{—|—2I’ 3n EI’+I§+3)/2 I—I}—3n)
(Us 1) U35, U3 3) (142153, (= 1 +H3+3n))2, —71_12_3)
Following Step 2, we obtain
1 0 0
0 1 0
1 2 3
By Step 3, the loop strides are its diagonal elements:
step] =1, steph=1, steph=3

A

The calculation of the lower bound offsets follows Step
4. Trivially, 87 ; =85 1 =65 5 =65 =0, because Ay 1=
As 5=1. The lower bound offsets of I} are:

84, = (I+2I—(Ij+2I5—3n))%3 = 0
8, = (L+20—[(—I}+I3+3)/2])%3
8, = (I42I—(I}—I5—3n))%3 = 0

Due to space limitations, the transformed loop nest
is not shown here explicitly. It follows from (5). To
see how the transformed loop nest works, we fix n=4
and I{ =6. The two inner loops become:

for I, from —3 to 6 by 1
for I} from [(I} 3)/2] [es
to mln(2I2 +3,-I;+3) by 3

The set of all iterations (6,I2,I3) is contained in
the intersection of the image iteration space and the

(212 3)/21)%3

hyperplane {(I1, I, I5) | I} =6} (Fig. 4):
I; =6
3<T<6
(I4-3)/2 < I3 < min(2I5+3,—15+3)

It can be easily verified why I} always starts to
iterate at a lattice point. Note that the upper bound
of I} is 6. The iterations when I} ranges from 4 to
6 are redundant. This is the problem inherent in the
Fourier-Motzkin method.

Example 4 Consider the triple loop:

for I; from 1 to m by 1
for I, from 1 ton by 1
for Iz from 1 top by 1

and the following non-unimodular transformation:

7126 1L L7 [-7/10 6/10 —35/101[I
B4 77| e | L= 4/10 —2/10 10/10|| 1
| 0015 Is 0 0 10/10|I

An application of the Fourier-Motzkin method yields:
L/1,1 =9
U{’l = 2m+6n+p
(Ll2,1’ L'2’2, L’2’3):((7I{—1—45)/6,2I{—5n—|—5,7[{—10m—35n)
(Ué 1 U£,2’ Uéys):(7I{—45,2I{—|—5p—5,(7I{+10m+35p)/6)
(L3 1, L5 5, L 9=(1,ET4+615-10m)/35,(—41;+2I3+10)/10)
Us,1,U3,2,Us 3=, T1+615-10)35,(—411+21;+10n)/10)
Following Step 2, we obtain

A

By Step 3, the loop strides are its diagonal elements:
step] =1, stepy, =5, stepy =2
By Step 4, the lower bound offsets are:

6, = 9%l =0

651 = (2I1—[(71;+45)/6])%5

55’2 = (2[1 (2[1—571-}-5))%5 =0
6y = (2IL—(TI,—10m—35n))%5 —
6, = (L1 —1)%

6y = (I—[(—TI+6I)—10m)/35])%2
8, = (Il [(—4I14+215+10)/10])%2

The transformed loop nest is not shown here; it
follows from (5). To see how the transformed loop
nest works, we fix m=18, n="7, p=3, and I] = 23.
The two inner loops become:

for I/, from 36 to 56 by 5
for I} from max(1, [(I4—41)/5]+(1—[(Z}
to min(3, [(6I,—171)/35]) by 2

The set of all iterations (23, I, I4) is contained in
the intersection of the image iteration space and the

hyperplane {(I7, I}, I) | I; =23} (Fig. b):
In =23
35 < I’ < 56

—41)/5) < I3 < min(3, (6I,—171)/35)

Refer to the transformed loop nest above. When
I, =23, max([Z5,,], [Z,], [Z5]) = [L44] = 35 and
651 =1. Hence, [L5,]+65, =36. This is why in the
loop nest, I, starts to iterate at 36. Without &, ;, I
would start to iterate at 35. The transformed loop

max(1, (I}

—41)/5])%2

518

I3
—93 [T 1T

(35,0) I

Figure 5: The space of all iterations (23, I, I3) (m
18, n=7, p=3).

nest would be incorrect, because (23,35, I}) is always
a hole for every integer If.

Let us see how I} always starts to iterate at a lat-
tice point. Consider Fig. 5. The bottom boundary is
L3 1=1=1I;. Theright boundary is Ly 3 = (I5-41)/5=
IL. When I} =36,41 and 46, the lower bound of I} is
ng’l] = 1. Thus, I} starts to iterate at (23,36, 1),

(23,41,1) and (23,46, 1), respectively. These three
points are the lattice points on the bottom bound-
ary. When I3 =46,51 and 56, the lower bound of I3
is [L5 5] = [(I2 41)/5] which evaluates to 1,2 and 3

and the lower bound offset b5 3=(1— [(I§—41)/5-|)%2

evaluates to 0, 1 and 0, respectively. Thus, I} starts to
iterate at the three lattice points (23, 46, 1) (23 51,3)
and (23, 56, 3), respectively. Without 3 ,, would it-

erate from the hole (23,51, 2) when I} = 23 and IL=51.

9 Conclusions

We have presented an algorithm for automatic
rewriting loop nests for any non-singular loop trans-
formations. The rewriting of loop nests for non-
unimodular transformations does not seem as difficult
as it appears to be. The non-polynomial step of the al-
gorithm lies in the calculation of the loop bounds L;c i

and U,c using the Fourier-Motzkin method. This step

1s needed for both unimodular and non-unimodular
transformations. The calculation of the loop strides
step, and lower bound offsets §;, ; for non-unimodular

transformations is polynomial. All information neces-
sary for the calculation is implicitly contained in the
loop transformation T'. The main contribution of this
paper is to present a method that transforms the loop
transformation 7' into a lower triangular matrix we
called A from which the loop strides and lower bound
offsets can be automatically derived.

The relevance of non-unimodular transformations
to regular array design has been well known.
The Kung-Leiserson’s array for band-matrix prod-
uct i1s described by a non-unimodular transformation
(Ex. 3). The same transformation applied to LU-
decomposition yields a two-dimensional array in which
the functionality of every processor is time-invariant
[18]. The advantage is that control signals [25], which
would be required if differing transformations are used,
are dispensed with. If the iteration space is infinite
[15], and if, in addition, the goal of loop transforma-
tion i1s to maximise parallelism, then the space of legal
transformations may contain non-unimodular trans-
formations only.

In parallelising compilation, different transforma-
tions lead to syntactically different loop nests. It is

evident that once scheduled for execution in parallel
machines, these loop nests can differ in many ways,
say, in the amount of data transfer required among the
memory hierarchy [1]. So far, loop transformations
have been confined to be unimodular [1, 3, 21, 22].
Now, we have had an automatic method for the rewrit-
ing of loop nests for non-unimodular transformations.
Our future work is to investigate how non-unimodular
transformations can contribute to loop parallelisation.

Acknowledgement

Thanks to the referees for comments and to Irigoin
and Ancourt for answering my questions about their
papers.

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with
DO loops. In Proc. Third ACM SIGPLAN Symp.
on Principles & Practice of Parallel Programming

(PPoPP), pages 39-50. ACM Press, Apr. 1991.

U. Banerjee. Dependence Analysis for Supercomput-
tng. The Kluwer Int. Series in Engineering and Com-
puter Science: Parallel Processing and Fifth Genera-
tion Computing. Kluwer Academic Publishers, 1988.

U. Banerjee. Unimodular transformations of dou-
ble loops. In A. Nicolau, D. Gelernter, T. Gross,
and D. Padua, editors, Advances in Languages and
Compilers for Parallel Processing, chapter 10, pages
192-219. MIT Press, 1991.

M. Barnett. A Systolizing Compiler. PhD thesis, De-
partment of Computer Sciences, The University of
Texas at Austin, Feb. 1992. Technical Report TR-
92-13.

M. Barnett and C. Lengauer. Unimodularity con-
sidered not essential. In L. Bouge, M. Cosnard,
Y. Robert, and D. Trystram, editors, Parallel Process-
ing: CONPAR92-VAPP V, Lecture Notes in Com-
puter Science 634, pages 659-664. Elsevier (North-
Holland), 1992.

P. Clauss, C. Mongenet, and G. R. Perrin. Calculus of
space-optimal mappings of systolic algorithms on pro-
cessor arrays. In S. Y. Kung and E. E. Swartzlander,
editors, Application Specific Array Processors, pages
5-18. IEEE Computer Society Press, 1990.

A. Darte. Regular partitioning for synthesizing fixed-
size systolic arrays. Integration, 12(3):293-304, Dec.
1991.

F. Irigoin. Loop reordering with dependence direction
vectors. Technical Report EMP-CAI-I A/184, Ecole

Nationale Superieure des Mines de Paris, Nov. 1988.

H. T. Kung and C. E. Leiserson. Algorithms for VLSI
processor arrays. In C. Mead and L. Conway, editors,
Introduction to VLSI Systems, chapter 8.3. Addison-
Wesley, 1980.

H. Le Verge, C. Mauras, and P. Quinton. The ALPHA
language and its use for the design of systolic arrays.
J. VLSI Signal Processing, 3:173-182, 1991.

519

[11]

[12]

[13]

[14]

18]

[16]

[17]

[20]

[21]

(22]

(23]

[24]

[25]

Z. Li, P. C. Yew, and C. Q. Zhu. An efficient
data dependence analysis for parallelising compiler.
IEEE Trans. on Parallel and Distributed Systems,
1(1):26-34, Jan. 1990.
L.-C. Lu and M. Chen.
techniques for massive parallelism. Technical Report
YALEU/DCS/TR-833, Department of Computer Sci-
ence, Yale University, Oct. 1990.

D. I. Moldovan. On the design of algorithms for VLSI
systolic arrays. Proc. IEEE, 71(1):113-120, Jan. 1983.
G. L. Nemhauser and L. A. Wolsey. Integer and Com-
binatorial Optimization. Interscience Series in Dis-
crete Mathematics and Optimization. John Wiley &
Sons, 1988.

P. Quinton and V. van Dongen. The mapping of lin-
ear recurrence equations on regular arrays. J. VLSI
Signal Processing, 1(2):95-113, Oct. 1989.

S. K. Rao. Regular Iterative Algorithms and their Im-
plementations on Processor Arrays. PhD thesis, De-

New loop transformation

partment of Electrical Engineering, Stanford Univer-
sity, Oct. 1985.

H. B. Ribas. Automatic Generation of Systolic Pro-
grams from Nested Loops. PhD thesis, Department of

Computer Science, Carnegie-Mellon University, June
1990. Technical Report CMU-CS-90-143.

A. Schrijver. Theory of Linear and Integer Program-
maing. Series in Discrete Mathematics. John Wiley &
Sons, 1986.

W. Shang and W. A. B. Fortes. Time optimal linear
schedules for algorithms with uniform dependences.
IEEE Trans. on Computers, C-40(6):723-742, June
1991.

V. van Dongen and M. Petit. PRESAGE: A tool
for the parallelization of nested loop programs. In
L. J. M. Claesen, editor, Formal VLSI Specifica-
tion and Synthesis (VLSI Design Methods-I), pages
341-359. North-Holland, 1990.

M. Wolf and M. Lam.
theory and an algorithm to maximize parallelism.
IEEE Trans. on Parallel and Distributed Systems,
2(4):452-471, Oct. 1991.

M. J. Wolfe.

computers. Research Monographs in Parallel and Dis-
tributed Computing. MIT Press, 1989.

M. J. Wolfe. Data dependence and program restruc-
turing. J. of Supercomputing, 4(4):321-344, Jan. 1991.

Y. Wong and J. M. Delosme. Optimization of pro-
cessor count for systolic arrays. Technical Report
YALEU/DCS/RR-697, Department of Computer Sci-
ence, Yale University, May 1989.

A loop transformation

Optimizing Supercompilers for Super-

J. Xue and C. Lengauer. The synthesis of control sig-
nals for one-dimensional systolic arrays. Integration,
14(1):1-32, Nov. 1992.

