
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2004; 36:1655–1685 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Partial dead code elimination

on predicated code regions

Jingling Xue ∗,†, Qiong Cai and Lin Gao

Programming Languages and Compilers Group, School of Computer Science and Engineering,
University of New South Wales, Sydney, NSW 2052, Australia

SUMMARY

This paper presents the design, implementation and experimental evaluation of a
practical region-based partial dead code elimination (PDE) algorithm on predicated
code in the ORC compiler framework. Existing PDE algorithms are not applicable
on predicated code due to the existence of if-converted branches in the program. The
proposed algorithm processes all PDE candidates in a worklist and reasons about their
partial deadness using predicate partition graphs. Our algorithm operates uniformly on
individual hyperblocks as well as regions comprising basic blocks and hyperblocks. The
result of applying our algorithm to a SEME (single-entry multiple-exit) region is optimal:
partially dead code cannot be removed without changing the branching structure of
the program or potentially introducing new predicate defining instructions. We present
statistical evidence about the PDE opportunities in the 17 SPEC95 and SPEC00 integer
benchmarks. Our algorithm achieves performance improvements in 12 out of the 17
benchmarks on an Itanium machine at small compilation overheads. Our results indicate
that our algorithm can be used as a practical pass before instruction scheduling.

key words: code optimisation; partial dead code elimination; predicated code; predication;

predicate partition graphs; hyperblocks; regions; performance evaluation

1. Introduction

Based on Explicitly Parallel Instruction Computing (EPIC) technology, the Itanium
architecture was designed to combine explicit instruction-level parallelism (ILP) with
instruction predication. In order to realise the performance potential of the Itanium processors,
the compiler must expose and express increasing amounts of ILP in application programs.
Region-based compilation as proposed in [1] and implemented in the IMPACT [2] and ORC [3]

∗Correspondence to: Jingling Xue, Programming Languages and Compilers Group, School of Computer Science
and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
†E-mail: jxue@cse.unsw.edu.au

Received
Copyright c© 2004 John Wiley & Sons, Ltd. Revised

1656 J. XUE, ET AL. ���������� ����	
� �
��� �
����
��� ��
(a) before (b) after

Figure 1: Partial dead code elimination for non-predicated code.

compilers repartitions the program into regions to replace functions as the units of compilation.
By exploiting static/dynamic profile information, the compiler can create regions that reflect
more accurately the dynamic behavior of the program. In particular, by forming regions
containing cycles across function boundaries, the potential for the compiler to expose more ILP
is increased [1, 4]. By selecting the sizes and contents of regions appropriately, the compiler
can also tradeoff the compilation cost and the use of aggressive ILP techniques.

Predicated execution, supported by the Itanium architecture, allows parallel execution of
instructions from multiple control paths and aids in efficient instruction scheduling. In this
architectural model, each instruction may be guarded by a boolean operand, its qualifying
predicate; the value of this predicate determines whether the instruction is executed or nullified.
The values of predicates are manipulated by a set of predicate defining instructions. To explore
predication, the compiler generally uses a technique called if-conversion [5], which eliminates
branch instructions and replaces affected instructions with predicate defining instructions and
predicated forms. This technique enlarges the scope of instruction scheduling and avoids branch
misprediction penalties that may be caused by the eliminated branches.

This paper discusses the design, implementation and experimental evaluation of a practical
region-based partial dead code elimination (PDE) algorithm on predicated code. An
assignment is partially dead if there is a path along which the value computed by the assignment
is never used, and is fully dead if it is partially dead along all such paths. Consider the CFG for
non-predicated code as depicted in Figure 1. In Figure 1(a), the assignment x = a+ b in block
1 is partially dead along the left branch. This partial deadness can be eliminated by sinking
this assignment into block 3, where it is blocked by the use of x due to the flow dependence
on x. Dead code appears frequently as a result of the optimisations applied earlier by the
compiler, including partial redundancy elimination (PRE) [6], strength reduction and global
copy propagation. PDE, which subsumes the standard (full) dead code elimination (DCE), is an
aggressive global optimisation. PDE is harder than PRE due to the second-order effects clearly
exemplified in [7]. Basically, the code motion for one assignment may be blocked by another
due to the data dependences between the two assignments. Therefore, if a complete removal
of all partial deadness is to be achieved, the effects of code motions for some assignments on
those for the others must be taken into account.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1657

Existing PDE algorithms [8, 9, 7] are developed for non-predicated code with functions
as compilation units. These algorithms are not applicable when instructions are predicated.
Consider, for example, the following sequence of predicated instructions:

x = a + b (p)
y = x - 1 (q)
x = c + d (r)

Being insensitive to the qualifying predicates, p, q and r, classic PDE algorithms cannot
determine whether or not the first assignment x = a + b is partially or fully dead or even dead
at all. For example, if p = q ∪ r, where q and r are disjoint, then x = a + b is partially dead. if
p∪ q = r, where p and q are disjoint, then x = a + b is fully dead. If p = q = r, then x = a + b
is not dead at all.

The contributions of this work are summarised as follows:

• We introduce a region-based PDE algorithm on predicated code. Based on the notion of
Predicate Partition Graph (PPG) [10, 11], our algorithm is designed to operate uniformly
on both hyperblocks (i.e., fully predicated blocks) [4] as well as SEME (single-entry
multiple-exit) regions comprising basic blocks and hyperblocks. In the ORC compiler
for the Itanium architecture, the regions processed by our algorithm are the leaf, i.e.,
innermost regions in the region trees of a program [12]. These regions are frequently
executed parts of the program and thus demand the use of aggressive optimisations.
When compiling a program using a region-based compiler such as IMPACT or ORC,
(full) dead code elimination (DCE) is often invoked several times in order to reap the
benefits of some optimisations applied before each DCE pass. However, PDE is not
supported in these compiler frameworks. The PDE algorithm developed in this research
is the first that works on regions comprising both basic blocks and hyperblocks.

• The result of applying our algorithm to a region is optimal: partially dead code in the
resulting region cannot be removed without changing the branching structure in the
program or potentially introducing non-existent predicate defining instructions, which
may impair some program executions.

• We have implemented our PDE algorithm in the ORC compiler [3]. We apply PDE
just before its instruction scheduling pass since doing so can potentially reduce critical
path lengths along frequently executed paths [8]. We present statistical evidence about
the PDE opportunities in the 17 SPEC95 and SPEC00 integer benchmarks despite the
fact that DCE has been applied several times earlier in the ORC framework. We obtain
performance improvements in 12 out of the 17 benchmarks on an Itanium machine with
the top three speedups 5.75% and 2.81%, 2.53% being attained by compress, crafty
and twolf, respectively. The compilation overhead for all the benchmarks is very small.

Our running example is the CFG (control flow graph) depicted in Figure 2, where the three
regions formed by the compiler are highlighted by dashed boxes. For illustration purposes,
use(y) in block 3 indicates that y is used at that point. Similarly, use(a, x, y) in block 8
indicates that the three variables are used in that block. Suppose that the compiler applies if-
conversion [5] to eliminate the branches in block 2. This leads to Figure 2(b), where the blocks
2 – 5 have been merged into a new hyperblock, HB. As result, the branching instruction

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1658 J. XUE, ET AL.

������������	�
�� ��
���������������������	�
�� ������������������ !" #��$ %&' (()� !�*�&�� ����+"*"��
,-. /0 1 2 3R4

R5R6
789:;<=><?8;@<A9B CDE<=FG8H:;H8;:I<J><K8;@<AG8;:L E<JFMNIEGFE<JF<O><P8;@<A9B DDQE<OFRSTUV WXYZ[\R\]^

_àb c dRe
RfRgTh iij

Th iijTh iik Th iik
lm
lnlo lp

(a) Region formation (b) If-conversionqrstuvwxvyruzv{s| }~�vw��r�tu�rut�v�xv�ruzv{�rut� �v���������v��v�xv�ruzv{s| ~~��v������������
���� � �R�

R�R��� ¡
�� ¡�¢�£¤�� ¥ �� ¥
¦§
¦̈¦© ¦ª

«¬­®̄°±²°³¬¯́ °µ­¶ ·̧ ¹°±º»¬¼®̄°½²°¾¬¯́ °µ»¬¯®¿ ¹°½ºÀÁÂ¹»º¹°½º°Ã²°Ä¬¯́ °µ­¶ ¸¸Å¹°Ãº
ÆÇÈÉÊËÌËÍÎ

ÏÐÑÒ Ó ÔRÕ
RÖR×ØÙ ÚÚÛ

ÊÜÝÞÈØÙ ÚÚÛÌÜØÞßÊÜÝÞÈØÙ ÚÚà ØÙ ÚÚà
áâ
áãáä áå

(c) After PDE for x = b + d and y = c + d (p3) (d) After PDE for a = c + eæçèéêëìíëîçêïëðèñ òóôëìõëöíë÷çêïëðøçùéê ôë÷õøçêéú ôëöõûüýôøõôëöõëþíëÿçêïëðèñ óó�ôëþõ
���������	

��
 � �R�
R�R��� ���

������� ��������������� ��� �� ���
��
���� �

!"#!$%&'!()* +,-!".!/#!0%&'!(1%23& -!0.1%&34 -!/.567-1.-!/.!8#!9%&'!()* ,,:-!8.
;<=>?@A@BC

DEFG H IRJ
RKRL

AMNOPNQ RRS?MPO=AMNOPNQ RRSAMNOT?MPO=NQ RRU NQ RRU
VW

VXVY VZ
(e) After PDE for y = a + c (f) After PDE for x = b + c

Figure 2: A running example

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1659

“brBB3 (p3)” in block 2 has been eliminated. The two instructions in block 3 are now guided
by the predicate p3. Similarly, all instructions in block 4 will be guided by p4; these instructions
are not shown since they are assumed to be irrelevant to our discussions. In Figure 2(b), we
have also introduced the so-called interface blocks [13], I1 – I4, at all region exits to simplify
the design and implementation of our algorithm.

Let us explain briefly the effectiveness of our algorithm using the SEME region R2 in
Figure 2(b). We will examine this example in more detail in Section 3.3. There are five
assignments in region R2, which are processed in the reverse topological order of their data
dependences, one at a time. To begin with, x = b + d in block 6 is moved into block I3. As
for the y = c + d (p3) in block HB, nothing needs to be done since there is a use of y in the
ensuing instruction with predicate p3. At this stage, we obtain Figure 2(c). For the other three
assignments, our algorithm first sinks a = c + e into blocks I2 and I3 to get Figure 2(d). By
sinking a = c + e, we are able to eliminate the partial deadness of y = a + c (along the edge
(2, 3) in Figure 2(a)). Otherwise, a = c+e would block y = a+c from being moved downwards
(due to the anti dependence on a), preventing the partial deadness of y = a + c from being
eliminated. By processing the PDE candidates in the reverse topological order of their data
dependences, we can achieve optimal results by avoiding the second-order effects in the PDE
problem. In actuality, y = a + c is first removed from HB and the so-called compensation code
y = a + c (p4) is inserted into HB after the predicate defining instruction for p4. Figure 2(e)
depicts the resulting program so far. Finally, x = b + c in block 1 is partially dead along path
1−HB −6− I3. The elimination of this partial deadness is illustrated in Figure 2(f): x = b+ c
has been removed from block 1 and inserted into blocks I1 and I2.

The rest of this paper is organised as follows. Section 2 gives the background information
about the regions, predication, if-conversions and PPGs. Section 3 presents our PDE algorithm.
Section 4 proves its correctness and optimality and argues that the algorithm always
terminates. In Section 5, we discuss the implementation of our algorithm in ORC and present
our performance results and statistics on the SPEC95 and SPEC00 integer benchmarks.
Section 6 compares our work with the related work. Section 7 concludes the paper.

2. Background

Our algorithm applies to any SEME region comprising basic blocks and hyperblocks. However,
this work is carried out in the context of ORC, which is a region-based compiler for Intel’s
Itanium processors. Therefore, this section presents the background information for this work
and defines the program representations used in our algorithm. In Section 2.1, we define the
regions handled by our algorithm and discuss if-conversion and regional CFGs. In Section 2.2,
we introduce PPGs and the queries on the PPGs used by our algorithm.

2.1. Regions

A region-based compiler incorporates a region formation phase for partitioning a CFG into
regions. Several region formation algorithms have been proposed [14, 1, 15, 4]. In particular,
the ORC compiler [3] uses an algorithm similar to interval analysis [16]). As a result, the
division of a CFG into regions serves to put a hierarchical structure on the CFG, called the

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1660 J. XUE, ET AL.

region tree (also known as the control tree [16]). There are four kinds of regions in ORC [12]:
(1) loop regions, (2) SEME (single-entry multiple-exit) regions, (3) MEME (multiple-entry
multiple-exit) regions, and (4) improper regions (or irreducible regions). By default, ORC
produces MEMEs only temporarily in an intermediate step and eventually converts each of
MEMEs into multiple SEMEs (with tail duplication [4] if necessary). While it is possible to
force ORC to create MEMEs explicitly, no optimisations will be applied to them.

Consider the three regions formed in Figure 2(a), where R2 and R3 are contained in R1.
The leaf R2 is a SEME consisting of blocks 1 – 6. The leaf R3 is a loop region formed by block
7 alone. The root region R1 contains R2, R3 and block 8.

We restrict ourselves to two kinds of leaf regions: SEMEs and innermost loop regions. As in
the ORC compiler, back edges are not included in loop regions since they cannot be handled by
if-conversion. So loop regions are SEMEs. Thus, our PDE algorithm is applicable to SEMEs.

There are several reasons for applying PDE to leaf regions only. First, the most benefit of
performing PDE should come from leaf regions. These regions, which include the innermost
loop regions as a special case, represent the hottest parts in a program. Second, a region-
based PDE algorithm that focusses on leaf regions is consistent with the philosophy of the
region-based compilation strategy in the sense that the regions are the units of optimisations.
Finally, the leaf regions contain enough PDE opportunities (and particularly so in light of the
first point). Some statistical evidence for justifying these claims will be presented in Section 5.

We assume that if-conversion is applied to the regions created during the region formation
phase. In particular, a SEME subregion within a region is often fully converted into a single,
branch-free block of predicated code. The resulting block is known as a hyperblock [4]. In
Figure 2(a), blocks 2 – 5 can be regarded as a SEME subregion contained within region R2.
After the two branches in block 2 have been if-converted, the four blocks are combined to form
one single hyperblock, HB, as shown in Figure 2(b).

Our algorithm operates on a region by traversing the nodes in its regional CFG [12]. Every
region has a regional CFG, which is essentially the CFG for the region except that some nodes
are regions themselves. The concept can be easily understood by an example. For the running
example given in Figure 2, there are three regions. Figure 3 shows the corresponding regional
CFGs for the three regions. Note that the back edge around block 7 is not included in the
regional CFG for the loop region R3. Note also that for each leaf region, we have inserted
the so-called interface blocks [13] (depicted in dashed boxes), one for each region exit. As a
result, the successors of every original block in a leaf region must all reside in that region. This
simplifies the design and implementation of our PDE algorithm as will be clear later.

2.2. Predicate Partition Graphs

Unlike the existing PDE algorithms on non-predicated code [8, 9, 7], our algorithm uses the
notion of Predicate Partition Graph (PPG) [10] to eliminate partial deadness in predicated
code. When operating on leaf regions, our algorithm assumes that each leaf region is associated
with a unique PPG, which tracks relations among predicates. In ORC, PPGs can be built for
all SEME regions. From now on, by a block we mean either a basic block or a hyperblock.

The PPG tracks uniformly control flow and explicit use of predicates in a SEME region.
A predicate assigned to a block is called a control predicate and a predicate which explicitly

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1661

��� �� �� �� �	
R

R�
�
��������
������ �������
����
�������
�����
��! ����"#���������$��%
������ ��&��$�'()*+

,-. /
)0 112
)0 112)0 113

45
4647 8 9: ;;<=>

(a) R1 (b) R2 (c) R3

Figure 3: Regional CFGs in our running example.

appears in the instruction is called a materialised predicate. The control predicate of a block is
viewed as a predicate combining all of the conditions which control whether the block will be
executed or not. The control predicate of the unique entry block of a SEME region is denoted
by p0. By convention, p0 always denotes the true predicate.

Due to the presence of p0, every instruction can be expressed to have the predicated form:

v = π (p)

where v is a variable, π an expression and p its qualifying predicate. If the materialised predicate
of the instruction is p = p0 = true, we simply write v = π (without the qualifying predicate).

Let α be an instruction in a block. The following notations are used:

• BBα: the block in which α resides
• M-PRED(α): the materialised predicate of α
• C-PRED(BBα): the control predicate of BBα

• E-PRED(α): the executing predicate of α such that α is executed iff E-PRED(α) = true:

E-PRED(α) =

{

C-PRED(BBα) if M-PRED(α) = p0

M-PRED(α) otherwise
(1)

Consider the regional CFG for R2 depicted in Figure 3(b). There are three blocks: 1, HB and
6. Their control predicates are C-PRED(1) = p0, C-PRED(HB) = p1 and C-PRED(6) = p5. Let us
take a look at the materialised and executing predicates for the two instructions a = c+ e and
y = c + d (p3) in HB. We find that M-PRED(a = c + e) = p0 and M-PRED(y = c + d (p3)) = p3.
In addition, E-PRED(a = c + e) = C-PRED(HB) = p1 and E-PRED(y = a + c (p3)) = p3.

The notion of PPG for a region is defined based on execution traces. An execution trace
includes all of the instructions being executed. A trace belongs to the domain of a predicate

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1662 J. XUE, ET AL.

p0

p1

w

p3

u

p4

u

p5

v

p6

v

p2

w

Figure 4: The PPG for the SEME region R2 in our running example.

p if all of the instructions on this trace are executed when p is true. Following [10, 11], we
will use p to mean the domain of p. A partition of a predicate p divides the domain of p into
mutually disjoint subsets. In a PPG, each node represents a predicate p and each directed
edge (p, q) represents the fact that there exists a partition r in p such that q is a subset of r.
Figure 4 depicts the PPG for the region R2 in our example, where the edges from the same
partition are conventionally decorated to have the same label. For example, p1 has two distinct
partitions, which are denoted by p1 = p3 ∪ p4 and p1 = p5 ∪ p6, respectively.

Our PDE algorithm relies on the following queries on PPGs. We illustrate these operations
on predicates using the regional CFG for R2 shown in Figure 3(b) and its PPG in Figure 4.

• IsDisjoint(p, q): asks whether the domain of predicate p overlaps with that of predicate
q. Two predicates are disjoint if they can reach a common ancestor in the PPG
through different edges of the same partition and not disjoint otherwise. For example,
IsDisjoint(p3, p4) = true and IsDisjoint(p4, p2) = true but IsDisjoint(p4, p5) = false.

• IsSubset(p, q): asks whether the domain of p is a subset of the domain of q. For example,
IsSubset(p3, p1) = true and IsSubset(p3, p0) = true but IsSubset(p3, p4) = false.
Following [10, 11], we shall write p ⊆ q if IsSubset(p, q) holds and p ⊂ q if p ⊆ q but p 6= q.

• LUB Diff(p, q): returns the set of predicates such that the union of their domains is the
smallest superset of the domain of p subtracted by the domain of q, i.e., LUB Diff(p, q) ⊇
p− q, where the equality holds when q ⊆ p [10, 11]. In our PDE algorithm, LUB Diff(p, q)
is called only when q ⊂ p. In addition, the result of this operation is simplified such that
if all of the child predicates in a partition appear in p − q, then these child predicates
are replaced with their parent predicate. For example, LUB Diff(p1, p3) = {p4}, where
p1 − p3 = p4. As another example, LUB Diff(p0, p3) = {p2, p4}, where p0 − p3 = p2 ∪ p4.
Our algorithm uses this query to find the points for the insertion of compensation code.

We assume that the critical edges in a regional CFG have been split. These are the edges
leading from nodes with more than one immediate successor to nodes with more than one

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1663

immediate predecessor [6]. This simplifies the construction of the PPG for a region and makes
it easy to perform the code insertions required in code motion/sinking transformations.

3. Region-based PDE on Predicated Code

There are two main challenges in designing a worklist-based PDE algorithm that works for
regions comprising both basic blocks and hyperblocks. First, we must handle uniformly explicit
branches and if-converted branches. We solve this first problem by using a region’s PPG to
guide the PDE process. Second, sinking an instruction across a branching node and later a join
node is not straightforward in a worklist solution. Once again the branches at these branching
and join nodes can be explicit or if-converted branches. We solve this second problem by
sinking copies of an instruction with appropriate predicates at a branching node. We use a
forest as a data structure to record the arriving copies at a join node. We combine the arriving
copies at the join node into a single instruction once we have detected that a copy has arrived
from each of its incoming edges by comparing predicate relations.

3.1. Scope

Our PDE algorithm operates on SEME regions, one at a time. When working on a region,
our worklist-based algorithm eliminates partial deadness for the instructions in the region,
one at a time. As in [7], the process of performing PDE for an instruction, which is typically
an assignment, involves two basic operations: sinking and elimination. The sinking operation
moves the instruction along the control flow on all possible control flow paths. Multiple copies of
the instruction guided by mutually disjoint executing predicates are created at branching nodes
and moved along the appropriate branches (explicit or implicit). In assignment elimination,
copies of the instruction that become fully dead on some paths are eliminated.

We eliminate partial deadness in a SEME region by using its PPG to guide assignment
sinking and elimination. We assume that every compare instruction of the form “p1, p2 =
cmp . . . ” generates both true and false predicate values, as is typically the case after if-
conversion has been fully performed. The proposed algorithm achieves a complete removal of
partial deadness in a SEME region, and is thus optimal in terms of exactly the same criterion
used in [7] under the assumption that all PDE candidates are considered to be distinct. This
notion of optimality for predicated code regions is introduced below and then illustrated by a
few examples.

Definition 1 (Optimality) Let α be an instruction in a SEME region R – all instructions
are distinct. During assignment sinking and elimination, α may be split into multiple copies
with mutually disjoint executing predicates. Upon the completion of the PDE algorithm on R,
let α1, . . . , αn be all such copies of α existing in the resulting program, which always satisfy:

1. E-PRED(α1), . . . , E-PRED(αn) are the existing predicates in the PPG of R,

2. E-PRED(α1), · · · , E-PRED(αn) are mutually disjoint, and

3. E-PRED(α1) ⊆ E-PRED(α), . . . , E-PRED(αn) ⊆ E-PRED(α).

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1664 J. XUE, ET AL.

����� �������	 �
���
� ����� �������� ���� ��� � � !"# $%& � !"# $'&� (") $*&+ ,-. /
before before before01234 567 01839 5:;67<= >? @ABCD EFG@AHCI EJGK LMN O PQRST UVW PQRST UXWPQYSZ U[W\]^_ `
after after after

(a) q ⊂ p (b) p 6⊆ q and q 6⊆ p (c) p 6⊆q, q 6⊆p and IsDisjoint(p, r)= true

Figure 5: Scope of our PDE algorithm.

Such a transformation (assumed to be semantics-preserving) is optimal if every αi is not
partially redundant when optimised using only assignment sinking and elimination.

Our PDE algorithm guarantees this optimality. The three restrictions as stated in this
definition are explained as follows. Since we apply PDE before instruction scheduling, all
optimisations have already been performed. Therefore, when eliminating the partial deadness
of an instruction α, we refrain from changing the branching structure of the program. We use
only the existing predicates that are subsets of E-PRED(α). Thus, we do not introduce any new
predicate defining instructions. Hence, Restriction 1 in Definition 1. Implicit in the optimality
criterion is that the dynamic count of instructions along any path is not increased. When
sinking an instruction across a branching node, multiple copies of that instruction will be
created at the branching node and pushed downwards across the respective branches. These
copies will be guided by mutually disjoint executing predicates. Obviously, the domains of
these executing predicates are subsets of that of the executing predicate of the instruction
under consideration. Hence, Restrictions 2 and 3 in Definition 1.

In comparison with the prior work on non-predicated code, we eliminate partial deadness
by performing assignment sinking and elimination as illustrated in Figure 5(a) as in Knoop,
Rüthing and Steffen’s PDE algorithm [7]. In the transformed code, the executing predicate
p− q for the instruction in block 3 satisfies p− q ⊆ p. However, as in [7], we do not attempt to
eliminate the partial deadness illustrated in Figure 5(b) since p and q are not related. There are
two approaches to eliminating the partial deadness of x = a+ b (p) along path 1-3-4. If control
flow restructuring is used as in [8], it is possible to ensure that the dynamic count of instructions
is not increased along any path. But the new predicates introduced due to restructuring will

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1665

1 int x, y, z;
2 z = x + y; TN717 :- add TN257(p0) TN713 TN715 ;
3 if (z > y) TN718 TN719 :- cmp4.le TN257(p0) TN717 TN713 ;
4 x = z + x; TN715 :- add TN719 TN717 TN715<defopnd> ; cond def
5 else
6 x = z + y; TN715 :- add TN718 TN717 TN713 ; cond def
7 z = x + y; TN720 :- add TN257(p0) TN713 TN715 ;

Figure 6: CGIR for a code snippet in ORC. Initially, the mappings of three variables to
registers are: (TN713) = y, (TN715) = x and (TN717) = z. However, z in line 7 is renamed
from TN717 to TN720. Thus, the two high-level assignments that are syntactically identical in
lines 2 and 7 become syntactically distinct in the low-level CGIR representation.

increase the pressure for predicate registers. If restructuring is not used, some new predicate
defining instructions may be introduced along some paths. As a result, the dynamic count
of instructions along the path will be increased. This further explains the motivation behind
Restriction 1 stated in Definition 1. Finally, we do not aim at removing the partial deadness
removable by simultaneously sinking multiple occurrences of the same instruction. This is why
all instructions are regarded as being distinct in Definition 1. However, Knoop et al. [7] can
sink the two instructions in blocks 1 and 2 together into block 5 (as illustrated in Figure 5(c)).
As shown in Figure 14, our PDE pass is used in the code generation (CG) module of the
ORC compiler. It operates on its intermediate representation (IR), called code generation IR
(CGIR). Figure 6 gives a code snippet and its corresponding CGIR instructions, in which
TNxyz represents a virtual register, where TN stands for Temporary Name and xyz is an
integer. When translating a program into such a register-based IR, a compiler typically keeps
local variables and temporaries in registers by assuming the existence of infinitely many virtual
registers. In Figure 6, two occurrences of assignment z=x+y are translated into instructions that
are no longer syntactically identical (with their predicates ignored). In all 17 SPEC benchmark
programs used in our experiments, we have found no single SEME region that contains two
identical PDE candidates (with their predicates ignored). Such a property facilitates the
practical implementation of the PDE optimisation in optimising compilers. When all PDE
candidates are distinct, our algorithm achieves exactly the same optimality results in SEME
regions as traditional PDE algorithms on non-predicated codes [8, 9, 7] (Theorem 3).

In our illustrations, basic blocks with explicit branches are used. However, our algorithm
works uniformly even when all these branches are if-converted (into implicit branches).

3.2. Algorithm

Our algorithm works on SEME regions one at a time. All PDE candidates in a region are
kept in a worklist and processed in the reverse topological order of their data dependences. A

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1666 J. XUE, ET AL.

PDE candidate is an instruction that is both movable and free of side effects. In Section 5, we
shall examine all kinds of PDE candidates considered by our algorithm. When working on a
PDE instruction, our algorithm essentially sinks the instruction along the control flow on all
possible paths. When sinking an instruction across a branching node (explicit or if-converted),
multiple copies of the instruction with mutually disjoint executing predicates are created and
moved along their designated branches. Each copy of the PDE candidate instruction is moved
downwards as far as possible until it is either eliminated because it becomes fully dead, or
blocked due to data dependences or has been moved into an interface block (as shown in
Figure 2). If one copy has arrived at at every incoming edge of a join node, then these copies
will be merged and the merged instruction will be processed in the same manner.

Let α : v = π be the PDE candidate that is presently processed by our algorithm. Let β
be a different instruction that may be executed later on a control flow path. Both are not
necessarily in the same block. The following predicates about the two instructions are used:

• DEFINED(v, β): v is modified by β, i.e., there is an output dependence from α to β.
• USED(v, β): v is used by β, i.e., there is a flow dependence from α to β.
• KILLED(π, β): some operands of π are modified by β, i.e., there is an anti dependence

from α to β.

To facilitate the presentation of our algorithm, the following two predicates are also used:

• DEP(α, β) =df DEFINED(v, β) ∨ KILLED(π, β) ∨ USED(v, β). There is a data dependence
from α to β if and only if DEP(α, β) holds.

• DEFINED-BUT-NOT-USED(α, β) =df DEFINED(v, β) ∧ ¬USED(v, β). Essentially, α is
partially dead with respect to β only if DEFINED-BUT-NOT-USED(α, β) holds.

Figures 7, 8 and 13 give our algorithm, called PPDE (Predicate-Based PDE), for performing
PDE on a SEME region, R, consisting of basic blocks and hyperblocks. There are two data
structures shared by all procedures: W and F . W is a worklist consisting of all PDE candidates
to be processed and F contains copies of a PDE candidate waiting to be merged during sinking
and elimination. The procedures of our algorithm are described below and illustrated with
examples.

3.2.1. Main Program (Figure 7)

In line 2, the empty interface blocks are created at all region exits as illustrated in Figure 2(b).
This ensures that all successors of every basic block or hyperblock in R are contained in
R itself. This simplifies the design of our algorithm so that we can move code out of R
easily (line 21). In line 3, the worklist W is initialised with all PDE candidates sorted in
the reverse topological order of their dependences. Such an order guarantees the optimality of
our algorithm. This is because by eliminating a partially dead instruction, another instruction
on which the eliminated instruction is data-dependent may become partially dead. As a result,
such so-called second-order effects [7] are dealt with appropriately, resulting in the optimality
of PPDE (Theorem 3). Finally, PPDE terminates when W is empty in line 4.

The PDE candidates in the worklist are processed sequentially, one at a time. As the
algorithm proceeds, the candidates are always removed from the worklist in line 6 and new

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1667

1 PROCEDURE PPDE (R: SEME Region)

2 Create an empty interface block (with a branching instruction) for each region exit
3 Initialise the worklist W with all PDE candidates in R

sorted in the reverse topological order of their data dependences
4 while W is not empty
5 α = first PDE candidate from W , which, say, has the form v = π (p)
6 Remove α from W
7 if v is not live out of R and the def-use chain of v in R is empty
8 Delete α from BBα // α fully dead
9 continue

10 if α does not have the same form v = π as Prev // initialised to NULL
11 F = NULL
12 Prev = α
13 β = instruction following α in BBα // β = NULL if α is the last in BBα

14 if (¬ Sink(R, W , F , α, β))
15 for each descendant block BB of BBα in R sorted in topological order
16 if ¬IsDisjoint(E-PRED(α), C-PRED(BB))
17 β = first instruction of BB
18 if Sink(R, W , F , α, β)
19 break
20 Delete the empty blocks (including empty interface blocks)
21 Move the interface blocks at the non-main exits of R into the parent region of R

Figure 7: The PDE algorithm on predicated code.

candidates always added at the beginning of the worklist in lines 43, 71 and 79. Thus, to
understand the PPDE algorithm, it suffices to understand how one PDE candidate is handled.

In lines 5 – 6, we remove the first PDE candidate α from the worklist. Like the existing
PDE algorithms [8, 9, 7], our algorithm makes use of live-in, live-out and def-use chains and
assumes that this information is updated wherever appropriate. Hence, in lines 7 – 9, α is
deleted when it is fully dead. Then the next iteration of while in line 4 is executed. As a loop
invariant, α itself cannot be fully dead if the procedure Sink is called.

Lines 10 – 12 are concerned with sinking the multiple occurrences of an instruction created
at a branching node and combining them at a join node. This will be discussed in Section 3.2.2.

In line 13, β is initialised to be the instruction that immediately follows the PDE candidate
α in block BBα. If α is the last instruction in the block, then β is set to be NULL.

In line 14, the procedure Sink is called to perform assignment sinking and elimination in
the block containing α. If this returns false, then α can be further moved downwards. So we
continue the PDE process for α in all the descendant blocks BB rooted at BBα in the region
R. The test in line 16 is performed since α can be partially dead only along the execution
paths starting from α. The PDE process for α is declared to be complete when either the call
to Sink in line 18 returns true or all the blocks rooted at BBα in R have been processed. Then
the same PDE process will be repeated on the next PDE candidate in the worklist.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1668 J. XUE, ET AL.

At the end of PDE, we do two things. In line 20, we clear up the regional CFG by deleting
all empty blocks such as block 6 in Figure 2(f). In line 21, we move the interface blocks at the
non-main region exits into the parent region of R. This strategy tends to reduce the critical
path lengths along the frequently executed paths leaving the main exit(s) of the region R .

3.2.2. Sinking and Elimination (Figure 8)

The procedure Sink aims at eliminating the partial deadness of α in BBα with respect to the
instruction δ starting from β in BBβ (line 24). In lines 23 and 25, p and q are the executing
predicates of α and δ, respectively. The procedure is driven entirely by comparing the predicate
relations between p and q. If IsDisjoint(p, q) = true in line 26, then the executions of α and δ are
mutually exclusive. Therefore, α is not partially dead with respect to δ. Nothing needs to be
done. So the next iteration for loop in line 24 will be executed. Otherwise, there are four cases
depending on the relations between the predicates p and q as explained below. All illustrating
CFGs for these four cases given in Figures 9 – 12 consist of explicit branches only. However,
the versions of these examples in which the explicit branches are if-converted will be equally
applicable.

Case 1 (lines 27 – 37): p = q. If there is a dependence from α to δ (line 28), then α cannot
be moved beyond δ. Hence, we return true to PPDE to start processing the next PDE
candidate. However, if DEFINED-BUT-NOT-USED(α, δ) also holds, α is fully dead and then
deleted. If there is no dependence from α to δ (line 32), there are two cases. If δ is a
branching instruction, this must be the only exit for α (since p = q). Hence, we move
α just before δ (which has the effect of moving α into BBδ when both are in distinct
blocks). We then return false to enable PPDE to process the descendant blocks of BBδ

in lines 15 – 19. This situation, which may occur in a program, is illustrated in Figure 9.
As a special case, this allows instructions to be moved into interface blocks as shown in
Figure 2. Otherwise, in line 37, we move α after δ and and set δ to point to α. Thus, in
the next iteration of the for in line 24, δ will point to the instruction following α. By
swapping α and δ, we are essentially sinking α downwards along the flow of control. A
functionally equivalent but less efficient replacement for line 37 would be:

Move α after δ
Insert α at the beginning of W
return true

However, this alternative will only cause Sink to be called immediately.

Case 2 (lines 38 – 47): q ⊂ p. There are two possible scenarios, which are illustrated in
Figure 10, depending on whether α is partially dead or not:

(a) If DEFINED-BUT-NOT-USED(α, δ) = true (line 44), then α is partially dead with
respect to δ. The elimination of the partial deadness is accomplished as illustrated
in Figure 10(a). First, the so-called compensation instruction(s) are inserted in

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1669

22 PROCEDURE Sink(R: SEME Region, W : worklist, F : Forest, α, β: Instruction)
23 p = E-PRED(α)
24 for(δ = β; δ 6= NULL; δ = instruction following δ in instruction list of BBβ)
25 q = E-PRED(δ)
26 if ¬IsDisjoint(p, q)
27 Case 1 if p = q

28 if DEP(α, δ)
29 if DEFINED-BUT-NOT-USED(α, δ)
30 Delete α from BBα // α is fully dead
31 return true
32 else
33 if δ is an exit (i.e., a branching instruction) of BBβ

34 Move α before δ
35 return false
36 else
37 Move α after δ and then set δ to point to α

38 Case 2 else if p ⊃ q

39 if ¬DEFINED-BUT-NOT-USED(α, δ)
40 θ = Create a copy of α
41 C-PRED(θ) = C-PRED(δ), M-PRED(θ) = M-PRED(δ)
42 Insert θ before δ
43 Insert θ at the beginning of W
44 else do nothing // α is partially dead
45 CompensationInsert(R, W , α, δ)
46 Delete α from BBα

47 return true

48 Case 3 else if p ⊂ q
49 if DEP(α, δ) ∧ DEFINED-BUT-NOT-USED(α, δ)
50 Delete α from BBα // α is fully dead
51 DelInst(R, F , α)
52 return true
53 else
54 AlreadyMerged = AddInst(R, F , α, δ)
55 if AlreadyMerged ∨ DEP(α, δ)
56 return true

57 Case 4 else
58 if DEP(α, δ)
59 return true
60 return false
61 PROCEDURE DelInst(R: SEME region, F : Forest, α: Instruction)
62 Delete the node α from F (if α exists in F) of R
63 PROCEDURE AddInst(R: SEME region, F : Forest, α, δ: Instruction)
64 if the node α does not exist in F (of R)
65 Add the directed edge δ → α to F
66 Let α1, . . . , αn be all children of δ in F
67 if

Sn

i=1
E-PRED(αi) = E-PRED(δ)

68 θ = Create a copy of α
69 C-PRED(θ) = C-PRED(δ), M-PRED(θ) = M-PRED(δ)
70 Insert θ before δ
71 Insert θ at the beginning of W
72 Delete the nodes α1, . . . , αn and δ from F
73 Delete α1, . . . , αn from BBα1

, . . . BBαn

74 return true
75 return false

Figure 8: The PDE algorithm on predicated code (cont’d).

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1670 J. XUE, ET AL. � � ������ � �� 		
��
 ������� ������
before after

Figure 9: Case 1 of Sink when DEP(α, δ) = false and δ is a branching instruction.

������� ��!�"�# $% &' :α

:δ ()*+,-./ ()0+1-23./45 67
before after

89:;<=>?@9A;B=C?DE FG :α

:δ HIJKLMNOPIQKRMNO HIJKLMSTNOUV WX
before after

(a) DEFINED-BUT-NOT-USED(α, δ) = (b) DEFINED-BUT-NOT-USED(α, δ) =

DEFINED(x, δ) ∧ ¬USED(x, δ) = DEFINED(x, δ) ∧ ¬USED(x, δ) =
true ∧ ¬ false = true false ∧ ¬ false = false

Figure 10: Case 2 of Sink (q ⊂ p).

the code and into the worklist in the call to the procedure CompensationInsert

made in line 45. In this example, the compensation instruction x = a + b (p − q)
is inserted into block 3. This instruction is also inserted at the beginning of the
worklist (line 79). Then, in line 46, α is removed from block BBα. In line 47, we
return true to PPDE so that we will continue to perform the assignment sinking and
elimination for all the compensation instructions (queued now all at the beginning
of the worklist).

(b) If DEFINED-BUT-NOT-USED(α, δ) = false (line 39), α is not partially dead with
respect to δ. Figure 10(b) illustrates this scenario for the case when DEFINED(v, δ) =
USED(v, δ) = false. In comparison with Figure 10(a), the only difference is that a
copy of α with the executing predicate q must also be inserted before δ. As a
result, we can create more than one copy of α with mutually disjoint predicates.
For example, two copies of α are created in Figure 10(b). Of all occurrences of
α created at these branching points, some may be deleted later because they are
dead, some may be blocked during their code motions due to data dependences
and the others will eventually arrive at some control flow merging points. If there

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1671

������������	�
���
�
:δ

:α ���������� ��
before after

����� !" ����� #"$�%�& '"() *+
:δ

:α ,-./01234-5/612378 9:
before after

(a) DEFINED-BUT-NOT-USED(α, δ) = true (b) DEFINED-BUT-NOT-USED(α, δ) = false

Figure 11: Case 3 of Sink (p ⊂ q).

is an instruction occurrence arriving at each distinct incoming execution path at a
merging point, these occurrences will be combined as described in Case 3 below.

Case 3 (lines 48 – 56) : p ⊂ q. There are also two possible scenarios as explained below:

(a) If DEFINED-BUT-NOT-USED(α, δ) = true (line 49), then α is fully dead with respect
δ as illustrated in Figure 11(a). This is dealt with in lines 50 – 52. We return true
in line 52 so that the next PDE candidate in the worklist can be processed.

(b) If DEFINED-BUT-NOT-USED(α, δ) = false (line 53), then α cannot be fully dead with
respect to δ. This is dealt with in lines 54 – 56 and illustrated in Figure 11(b) when
DEP(α, δ) = false. The instruction δ represents a merging point (at a join node) for
copies of the PDE candidate α created earlier and arriving at the incoming edges
of the join node. To guarantee the optimality of our algorithm, we must merge
these copies once they have arrived along all the incoming edges of the join node.
However, these copies arrive (i.e., are processed) sequentially. When working on one
copy, we do not know in advance if the others will eventually arrive or not since
some of them may have been deleted because they are dead or blocked during their
code motions due to data dependences. Thus, this part of our algorithm has been
designed to deal with all these possibilities optimally. In line 54, we call AddInst

to record this arriving instruction and also check to see if we can combine the
instruction occurrences of α that were created earlier in Case 2 as illustrated in
Figure 10. In AddInst, we use a forest, denoted F , as a data structure to keep track
of the instructions arriving at the merging point δ from all its incoming edges. If
this is so (line 67), we combine them into θ (lines 68 – 69) and insert it before
δ and also into the worklist (lines 70 – 71). To clean up, we delete these arriving
instructions and associated nodes in lines 72 – 73. We return true in line 74 so that
PPDE can process immediately the next PDE candidate, i.e., the instruction θ
that we have just inserted into the worklist. If the equality in line 67 does not hold,
then at least one copy of α is not found just before δ along some incoming edge
at the merging point δ. This copy may or may not arrive eventually. It is possible

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1672 J. XUE, ET AL.

����� �����	�
 ����
�� �������
:α

:δ

Figure 12: Case 4 of Sink when DEP(α, δ) = false.

that no copies of α were ever created earlier on the paths leading to that edge or
copies were created but some were later deleted due to partial deadness or blocked
in their code motions due to data dependences. Hence, we return false in line 75 to
continue the PDE process on α. In this case, α can only be fully dead (with respect
to some instruction that will be executed after δ) or not dead at all. In the former
case, AlreadyMerged ∨ DEP(α, δ) in line 55 will evaluate to false. Then continuing
the PDE process on α will cause it to be eliminated eventually. Similarly, all the
other copies of α that arrive at this merging point later will also be eliminated.
In the latter case, AlreadyMerged ∨ DEP(α, δ) will evaluate to true. Then these
instruction copies will be merged at the merging point if there is one copy arriving
at every incoming edge of the join node. The same PDE process will be repeated
on the merged instruction. Note that in the case when DEP(α, δ) = true, we will
still call AddInst in line 54 to see if it is possible to combine the instruction copies
from all the incoming edges of the merging point so that we can insert the merged
instruction just before the data-dependent instruction δ.

Recall that in lines 10 – 12, we destroy (or re-initialise) F if two adjacent PDE candidates
in the worklist are not identical (with their predicates being ignored). This explains the
purpose of Prev used in PPDE, which is initialised to NULL.

Case 4 (lines 57 – 59) : p and q are not disjoint but neither is a subset of the other. If there
is a dependence from α to δ, α cannot be moved beyond δ. We return true so that PPDE

can process the next candidate in the worklist. Otherwise, i.e., when DEP(α, δ) = false, we
return false since we must continue to perform the assignment sinking and elimination for
α due to the optimisation opportunities that may happen later. The rationale behind this
is illustrated in Figure 12, where we need to eliminate the full deadness of α with respect
to x = c+d. If all these basic blocks are part of a hyperblock (due to if-conversion), then
y = e + 1 (q) can appear earlier before x = c + d in the hyperblock. Hence, the PDE
process for α must continue after y = e + 1 (q) has been examined.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1673

76 PROCEDURE CompensationInsert(R: SEME Region, W : worklist, α, δ: Instruction)

77 for each predicate r in LUB Diff(E-PRED(α), E-PRED(δ))
78 θ = Create a copy of α such that E-PRED(δ) = r
79 Insert θ at the beginning of W
80 if BBα = BBδ // BBδ is a hyperblock
81 Insert θ before (or after) δ
82 else
83 for each successor BBs of BBα in the regional CFG of R
84 if C-PRED(BBs) = r
85 Insert θ at the entry of BBs

86 break

Figure 13: The PDE algorithm on predicated code (cont’d).

3.2.3. Compensation Code Insertion (Figure 13)

The procedure CompensationInsert is called with four arguments: the region R being processed,
the worklist W for R and the PDE candidate instruction α (with the executing predicate
p = E-PRED(α)) and the instruction δ (with the executing predicate q = E-PRED(δ)). This
procedure is responsible for inserting copies of α with appropriate executing predicates such
that the executions of these so-called compensation instructions have exactly the same effect
as the execution of α in BBα when its executing predicate is changed to p − q.

When this procedure is called in line 45, α has just been sunk to a branching node. There
are two cases. If both α and δ are in a common hyperblock, i.e., BBα = BBδ, then δ is the
instruction that immediately follows α (due to assignment sinking in general and instruction
swapping in line 37 in particular). If α and δ are in two distinct blocks, i.e., BBα 6= BBδ, then
δ must be the first instruction of BBδ, which is a successor block of BBα (line 15). Therefore,
CompensationInsert has been simply designed to handle these two cases.

We use LUB Diff(E-PRED(α), E-PRED(δ)) to find all the insertion points with the required ex-
ecuting predicates. In line 77, we go through the predicates in LUB Diff(E-PRED(α), E-PRED(δ)).
For each predicate r, we create a compensation instruction θ with r being its executing
predicate. We insert this instruction into the worklist in line 79. If BBα = BBδ, where BBδ

must be a hyperblock, then the compensation insertion takes place inside BBδ (line 81). It
does not matter whether the compensation instruction θ is inserted before or after δ since both
have disjoint predicates. Otherwise, we traverse the successors of BBα in the regional CFG of
R in line 83 to locate the unique successor with the control predicate r. If BBs is the desired
successor (line 84), the compensation code is inserted at the entry of BBs. In both cases, the
compare instruction for defining predicate r must have been defined earlier. Since all critical
edges have been split, BBs has BBα as its unique immediate predecessor. We are done with
the predicate r. Hence, the break in line 86.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1674 J. XUE, ET AL.

3.3. Example
Let us trace the execution of our algorithm on the region R2 shown in Figure 2(b). In line 2, the
three interface blocks I1 – I3 are created as shown in Figure 2(b). There are five PDE candidates
in the region. So in line 3, W = (x = b+d, y = c+d (p3), a = c+e, y = a+ c, x = b+ c). These
five instructions appear in the list in the reverse topological order of their data dependences.
Consider the first PDE candidate α =df x = b + d in block 6, where x is live out of R2 (since
there is a use of x in block 8). This PDE candidate is the only instruction in block 6, so
β = NULL in line 13. As a result, the call to Sink in line 14 returns false immediately. Block
6 has one successor, I3. In line 17, β is pointing to the instruction “br BB8” in the interface
block I3. In line 18, Sink is called. Case 1 will be executed so that x = b + d will end up at the
beginning of block I3. This is all that can be done for this first PDE candidate. Consider now
how PPDE deals with the second PDE candidate α =df y = (c + d) (p3) in the worklist W .
This time, β = use(y) (p3) in line 13. Sink is called in line 14. Case 1 is executed. Due to the
flow (i.e., true) dependence between the two instructions, Sink simply returns true in line 31.
The result of performing PDE on these first two PDE candidates is shown in Figure 2(c). At
this time, there are three PDE candidates in the worklist: W = (a = c+e, y = a+c, x = b+c).

PPDE then takes the candidate α =df a = c + e from W and sets β to be the instruction
“p3, p4 = cmp...” – both instructions are in block HB. In the first iteration of the for loop in
line 24, Case 1 is executed since p = q = p1. This causes a = c + e and “p3, p4 = cmp...” to
be swapped. In the next iteration of the for loop, δ will be pointing to y = c + d (p3). Hence,
q = p3. The PPG for region R2, i.e., the region under consideration, is shown in Figure 4. We
can see that p3 ⊂ p1. So Case 2 is executed. Then the situation as illustrated in Figure 10(b)
will take place except that the branching is if-converted rather than explicit. This means that
a = c + e will be removed from HB and a = c + e (p3) and a = c + e (p4) inserted just after
“p3, p4 = cmp...”. In addition, both instructions will also be inserted into the worklist W .
What happens at this branching point is that a = c + e has been effectively split into two
copies, a = c + e (p3) and a = c + e (p4), with disjoint executing predicates. Sink then returns
true to PPDE. At this time, W = (a = c + e (p3), a = c + e (p4), y = a + c, x = b + c).

We will not describe all the details about how the first two PDE candidates in W , i.e.,
a = c + e (p3) and a = c + e (p4), are handled. Looking at Figure 2(a), a = c + e (p3) will
be moved conceptually to the bottom of basic block 3 and a = c + e (p4) to the bottom of
basic block 4. In line 54 of Case 3, both will be combined into one single instruction a = c + e,
which will be inserted just before “p5, p6 = cmp...”. Then the combined instruction a = c + e
is the next PDE candidate to be processed. It will be split again into two copies, which will be
moved eventually into the interface blocks I2 and I3, respectively, as shown in Figure 2(d). At
this time, W = (y = a + c, x = b + c). By applying PPDE to y = a + c, Case 2 of Sink will be
executed. The partial deadness of this instruction is eliminated as shown also in Figure 2(e). In
essence, the executing predicate of the instruction has been changed from p1 to p4. Figure 2(f)
shows the result of performing PDE on the last candidate x = b + c in block 1.

Finally, all three interface blocks I1 – I3 are non-empty. Those at the non-main region exits
are moved into the parent region of R2, which is the root region R1 in this particular case.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1675

3.4. Time Complexity

Suppose that a region R contains n instructions and m PDE candidates. Note that R is a SEME
region free of cycles. During assignment sinking and elimination for a particular candidate,
multiple copies of the candidate may be created (with disjoint predicates). These copies then
move along distinct branches of a branching node according to their predicates. However, some
of these copies are merged, whenever possible, at a join node (line 54). This implies that no
two copies of the same candidate, which must have disjoint predicates, may move along a
common branch. Hence, the worst-case time complexity for processing one PDE candidate is
O(n). This gives rise to an overall time complexity of O(nm) for processing all m candidates
in the region R. A linear algorithm does not appear to be possible due to the second-order
effects as explained briefly in Section 1 [7]. Despite its non-linear time complexity, we shall see
in Section 5 that the PPDE algorithm is efficient for benchmark programs.

4. Termination; Correctness; Optimality

Theorem 1 (Termination) The algorithm PPDE terminates.

Proof. It is sufficient to prove that the worklist W will eventually be empty. In line 3, W is
initialised with a finite number of PDE candidates in the region R. In lines 5 – 6, the first PDE
candidate α is removed from W . Let η be the next PDE candidate (i.e., the candidate after
α) in W . During the calls to Sink in lines 14 and 18, PPDE may add new PDE candidates
to W in lines 43, 71 and 79. But it will add them only at the beginning of W . We will prove
the theorem by arguing that PPDE will eventually remove η from W in lines 5 – 6 and start
performing the PDE on it. This is trivially the case if lines 7 – 8 are executed. Otherwise,
when α is processed, all the instructions created (in Cases 2 and 3, if any) are its copies with
mutually disjoint predicates. Due to the nature of assignment sinking and elimination, some
of these are eliminated since they are dead, some are blocked due to data dependences and
the others are eventually moved out of the region R. Since R is a SEME region free of cycles,
any new PDE candidates (i.e., copies of α) added to W will be removed eventually. Then, the
candidate η will be processed, i.e., removed from W in lines 5 – 6 eventually. 2

Theorem 2 (Correctness) The algorithm PPDE preserves the semantics of the program.

Proof. We argue that every assignment sinking or elimination preserves the semantics of the
program. In line 8, we delete α because it is fully dead. Let us examine Cases 1 – 3 in Sink.
In Case 1, we delete α because it is fully dead (line 30). The else statement beginning in
line 32 is justified due to the lack of dependences between α and δ. In Case 2, we delete α
because it is partially dead (line 46). In addition, the compensation instructions are inserted
by CompensationInsert (line 45) correctly according to the predicate relations. Otherwise, α
is not partially dead. But we have also inserted a copy of α, called θ, in lines 40 – 42 correctly
according to the predicate relations. In Case 3, we delete α because it is fully dead (line 50),
and also update the data structure F (line 51). In the else statement beginning in line 53,
we combine the instances of α arriving at a merging point only when the equality in line 67

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1676 J. XUE, ET AL.

holds. The simple data structure, F , always keeps tracks of the instruction instances that have
arrived at that point via the call to DelInst in line 51 and the call to AddInst in line 54. The
semantics of the program is preserved by lines 68 – 74. 2

The following lemma will be used to prove the optimality of our algorithm.

Lemma 1. During sinking and assignment elimination, every PDE candidate, once blocked by
an instruction due to data dependences, must always be positioned just before that instruction.

Proof. The code motion for the PDE candidate α happens only in the four cases in the
procedure Sink. In Case 1, α is moved downwards and blocked only just before a data-
dependent instruction δ (lines 34 and 37). In Case 2, the required compensation instructions
are inserted and they become new PDE candidates to be dealt with immediately afterwards.
In Case 4 (as illustrated in Figure 11), no code sinking is explicitly done. To complete the
proof, we need to deal with Case 3, the most important case for this lemma. In the else
statement (lines 53 – 56), we merge the copies of the PDE candidate instruction arriving at all
the incoming edges of a merging point. We then apply the same PDE process to the merged
instruction by returning true in line 56. In the special case when DEP(α, δ) = true, we also
return true (lines 55 – 56) since α cannot be moved further downwards. By returning true, the
other copies of the PDE candidate can be processed next. If there will be one copy arriving at
each incoming edge of the merging point, all these copies will be merged and positioned just
before the data-dependent instruction δ, which will prevent α from being moved downwards.
By combining all four cases, the claim of this lemma has been established. 2

Theorem 3 (Optimality) The algorithm PPDE is optimal.

Proof. As a loop invariant for the while loop in line 4, the PDE candidates in the worklist
for a region are always sorted in the reverse topological order of their data dependences. This
is possible since the region is a SEME region free of cycles. Each PDE candidate is moved
downwards as far as possible: (1) some copies are deleted if and only if they are dead, (2) some
are blocked due to data dependences, and (3) the remaining ones are moved into some interface
blocks inserted at the exits of the region. To complete the proof, it suffices to show that in
the case of (2), the blocked candidate is always positioned just before another instruction such
that both are related by data dependences. This result is established in Lemma 1. 2

5. Experimental Results

We have implemented our PDE algorithm in the code generation (CG) module of the Open
Research Compiler (ORC) [3] (version 2.1), a compiler for the Itanium Processor Family (IA-
64). Figure 14 depicts the compiler framework in which our PDE algorithm is recommended to
be used and evaluated. In the CG module, the major passes are region formation, if-conversion,
loop optimisation, control flow optimisation, scheduling and register allocation. Our PDE pass
is invoked just before the instruction scheduling pass. This phase-ordering not only eliminates
all partial deadness before scheduling (Theorem 3) but also tends to reduce the cycles that the
instructions wait for the source operands from the memory subsystem (Figures 18 and 19).

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1677

If−
Optimisation

Loop
Optimisation
Control Flow

Code

PDE on
Scheduling

Register
AllocationConversionFormation

Region
Predicated

Figure 14: The code generation (CG) module in ORC with PDE incorporated

SPEC Benchmark Language Description

00

164.gzip C Compression

175.vpr C FPGA Circuit Placement and Routing

176.gcc C C Programming Language Compiler

181.mcf C Combinatorial Optimisation

186.crafty C Game Playing: Chess

197.parser C Word Processing

252.eon C++ Computer Visualisation

253.perlbmk C PERL Programming Language

254.gap C Group Theory, Interpreter

255.vortex C Object-Oriented Database

256.bzip2 C Compression

300.twolf C Place and Route Simulator

95

099.go C An Internationally Ranked Go-Playing Program

124.m88ksim C A Chip Simulator for the Motorola 88100 Microprocessor

129.compress C An In-Memory Version of the Common UNIX Utility

130.li C Xlisp Interpreter

132.ijpeg C Image Compression/Decompression on In-Memory Images

Table I: All 17 SPEC95 and SPEC00 integer benchmark programs.

We evaluate this work using all 17 SPEC95 and SPEC00 integer benchmarks as shown in
Table I. The benchmarks are compiled at the “-O2” optimisation level with inlining switched on
(except for eon). Inlining enables the frequently executed blocks across the function boundaries
to be formed as regions. The profiling information is collected using the train inputs. However,
all benchmarks are executed using the reference inputs. The measurements were performed
on an Itanium machine equipped with a 667MHz Itanium processor and 1GB of memory.
We report the PDE opportunities, performance speedups and compilation overheads for the
benchmarks. We also collect dynamic execution statistics to understand how PDE impacts
various cycle metrics for a program using the pfmon performance monitoring tool [17].

Our algorithm is designed to work on cycle-free SEME regions consisting of basic blocks
and hyperblocks. In the ORC compiler, these are exactly the innermost (i.e., leaf) regions in
the region trees of a program. The only exception is that PDE is not applied to the innermost
regions that are loops when they are already software-pipelined. Figure 15 demonstrates the

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1678 J. XUE, ET AL.

0%

20%

40%

60%

80%

100%

D
is

tr
ib

u
ti

o
n

s
o

f
D

yn
am

ic
 O

P
s

(%
)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rl

bm
k

25
4.

ga
p

25
5.

vo
rt

ex
25

6.
bz

ip
2

30
0.

tw
ol

f

09
9.

go
12

4.
m

88
ks

im
12

9.
co

m
pr

es
s

13
0.

li
13

2.
ijp

eg

Innermost Non-Innermost

Figure 15: Innermost vs non-innermost regions for which the PDE algorithm can be applied.

sufficient benefits of performing PDE on the innermost regions, where “innermost” represents
all those innermost regions processed by our algorithm and “non-innermost” the remaining
non-leaf regions. The percentage of the dynamic number of instructions processed by our
algorithm over the total in both categories in a benchmark ranges from 41.15% for gzip to
93.00% for vortex with an average of 79.00% for all the benchmarks. These statistics show
that the innermost regions are the hottest regions in a program worth being optimised.

In our implementation, the PDE candidates are rather comprehensive, including instructions
on logical operations, arithmetic operations, shift operations, move operations (between
registers), float conversion operations (e.g., fcvt), zero-extension operations (e.g., zxt) and
multimedia operations. The non-PDE candidates are typically those with side effects, including
instructions on memory operations (e.g., load and store) and cache operations. Another reason
for excluding load instructions is that the instruction scheduler in ORC tends to move them up
against the control flow. The other non-PDE candidates are compare and branch instructions
and any instructions marked as being non-movable by the ORC compiler.

Figure 16 shows the benefits of PDE for the benchmarks. We see convincingly the existence
of PDE opportunities in the benchmarks. This is true even though ORC has applied DCE
several times earlier before our PDE algorithm is applied. For each program, we measure the
opportunity as the dynamic count of instructions which were found to be partially dead and
eliminated. The bottom bar represents the amount of full deadness. All benchmarks except
eon are dominated by the strictly partial deadness, which is removable by our PDE algorithm.

Figure 17 shows the execution time speedups of the ORC+PDE configuration (with PDE
being included) over the default ORC configuration. The positive speedups are obtained in 12

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1679

0

1

2

3

4

5

6

7

D
yn

am
ic

 R
ed

u
n

d
an

cy

R
ed

u
ct

io
n

 (
%

)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rl

bm
k

25
4.

ga
p

25
5.

vo
rt

ex
25

6.
bz

ip
2

30
0.

tw
o

lf

09
9.

go
12

4.
m

88
ks

im
12

9.
co

m
pr

es
s

13
0.

li
13

2.
ijp

eg

DCE PDE (Strictly Partial)

Figure 16: PDE opportunities in benchmarks.

-2

-1

0

1

2

3

4

5

6

S
p

ee
d

u
p

 (
%

)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rl

bm
k

25
4.

ga
p

25
5.

vo
rt

ex
25

6.
bz

ip
2

30
0.

tw
ol

f

09
9.

go
12

4.
m

88
ks

im
12

9.
co

m
pr

es
s

13
0.

li
13

2.
ijp

eg

Figure 17: Execution time improvements in benchmarks.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1680 J. XUE, ET AL.

Benchmark ORC (secs) ORC+PDE (secs) Overhead (%)

164.gzip 5.44 5.49 0.92

175.vpr 16.02 16.09 0.44

176.gcc 159.24 162.59 2.10

181.mcf 2.89 2.93 1.38

186.crafty 27.17 27.26 0.33

197.parser 13.35 13.61 1.95

252.eon 136.23 137.09 0.63

253.perlbmk 84.84 86.37 1.80

254.gap 58.74 59.15 0.70

255.vortex 61.27 62.36 1.78

256.bzip2 3.33 3.35 0.60

300.twolf 33.01 33.06 0.15

099.go 24.27 24.71 1.81

124.m88ksim 20.35 20.39 0.20

129.compress 0.77 0.77 0.00

130.li 7.79 7.79 0.00

132.ijpeg 22.99 23.29 1.30

Table II: Compilation overheads ”ORC+PDE” over ”ORC” (eon is not inlined).

out of the 17 benchmarks. The best three speedups are 5.75% and 2.81%, 2.53% which are
achieved by compress, crafty and twolf, respectively. The performance degradations for gcc,
mcf, parser, vortex and m88ksim are observed (due to some complex interactions between
PDE and other later passes used in the ORC compiler).

As shown in Table II, the implementation of our PDE algorithm accounts for small
compilation overheads for all the benchmarks. The benchmarks are cross-compiled on a 2.6GHz
Pentium 4 PC with 2GB memory running Redhat Linux 8.0. According to [3], the cross
compiler is more stable since “the native compiler has gone through less testing due to lack
of resources.” There are two main reasons for this efficiency. First, the leaf regions are small
as shown in Table III. Second, Table IV lists the number of PDE candidates in a benchmark
and shows how far they are moved downwards during assignment sinking and elimination.
These statistics together show that our PDE algorithm completes quickly on SEME regions
in benchmark programs.

To understand how PDE affects performance, we use pfmon to measure dynamic
execution statistics through the eight Itanium performance monitors on an Itanium 1
system. Figure 18 presents the dynamic cycles distributed into the Itanium stall categories
[18] for each program in both the ORC and ORC+PDE configurations (cf. Table II).
Figure 19 shows more clearly the reductions in the eight categories for each program.
The dominant category (i.e., the one with the largest cycle reduction in absolute value) is
PIPELINE BACKEND FLUSH CYCLE for gzip, DEPENDENCY SCOREBOARD CYCLE for parser and
perlbmk, INST ACCESS CYCLE for eon and gap and ISSUE LIMIT CYCLE for compress. In the
case of m88ksim, both PIPELINE BACKEND FLUSH CYCLE and DATA ACCESS CYCLE are reduced

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1681

Benchmark R P P/R M

164.gzip 142 4,335 30.53 147

175.vpr 455 16,142 35.48 162

176.gcc 7,801 211,885 27.16 319

181.mcf 28 1,106 39.50 149

186.crafty 732 26,101 35.66 399

197.parser 501 11,366 22.69 123

252.eon 3,442 111,943 32.52 627

253.perlbmk 2,764 82,192 29.74 787

254.gap 2,308 80,053 34.69 264

255.vortex 2,295 109,237 47.60 229

256.bzip2 107 2,949 27.56 102

300.twolf 705 25,506 36.18 239

099.go 902 29,034 32.19 146

124.m88ksim 536 19,739 36.83 167

129.compress 20 885 44.25 139

130.li 381 10,216 26.81 105

132.ijpeg 521 21,197 40.69 301

Table III: Sizes of innermost regions processed by the PDE algorithm (i.e., PDE regions).
For each benchmark, R and P represent the number of PDE regions and the total number of
(static) OPs in these regions, respectively. Thus, P/R is the average number of OPs in a PDE
region. For each benchmark, M is the maximum number of OPs in a PDE region.

equally more significantly than the other six categories. However, DATA ACCESS CYCLE enjoys
the largest reduction among all the eight stall categories in the remaining 11 benchmarks.
Clearly, PDE affects the cycles in the stall category DATA ACCESS CYCLE more profoundly than
the other seven categories. This category counts the number of cycles that the pipeline is
stalled when instructions are waiting for the source operands from the memory subsystem. Of
the 11 benchmarks for which DATA ACCESS CYCLE is the dominant (or equally dominant) stall
category, the cycles in DATA ACCESS CYCLE are decreased in vpr, gcc, crafty, twolf, m88ksim,
compress, li and ijpeg but increased in gcc, mcf, vortex and go. This phenomenon may be
attributed to the aggressive nature of code sinking inherent in our PDE algorithm. By sinking
instructions as low as possible along the control flow, the lifetimes are decreased for some
variables but increased for the others. However, the overall impact of such a code motion is
positive: the performance improvements are achieved in 12 out of the 17 benchmarks.

6. Related Work

Region-based compilation may potentially reduce expensive compilation costs by focusing
aggressive optimisations on regions rather than functions. The scope of regions ranges from

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1682 J. XUE, ET AL.

Benchmark C V V/C M

164.gzip 1,251 3,468 2.77 74

175.vpr 4,385 10,979 2.50 101

176.gcc 49,813 100,948 2.03 157

181.mcf 363 599 1.65 11

186.crafty 9,104 35,583 3.91 265

197.parser 2,850 6,562 2.30 46

252.eon 26,850 48,692 1.81 208

253.perlbmk 17,943 47,440 2.64 97

254.gap 25,830 52,418 2.03 116

255.vortex 20,089 42,700 2.13 95

256.bzip2 802 2,058 2.57 28

300.twolf 8,865 26,978 3.04 188

099.go 8,993 19,887 2.21 95

124.m88ksim 4,871 13,841 2.84 92

129.compress 326 1,002 3.07 39

130.li 1,141 1,881 1.65 68

132.ijpeg 7,746 58,492 7.55 165

Table IV: The number of (static) OPs encountered by PDE candidates during code motions.
For each benchmark, C represents the number of PDE candidates and V the number of OPs
they encounter during their code motions. Thus, V/C denotes the average number of OPs
encountered by a PDE candidate. For a benchmark, M denotes the maximum number of OPs
encountered by some PDE candidate.

simple trace [14], superblock [15] and hyperblock [4] to more general multiple-entry multiple-
exit (MEME) and single-entry multiple-exit (SEME) regions [1, 12]. Region-based compilation
has been used in the IMPACT and ORC compilers [2, 19, 3]. In practice, function inlining is
often performed in order to create regions spanning multiple functions [1] and new blocks may
be introduced through tail duplication (to turn MEME into SEMEs regions, for example) [4].
Therefore, duplication ratios must be controlled in order to avoid excessive code expansion.

Most existing PRE algorithms [20, 21, 22, 6] and PDE algorithms [8, 9, 7] are developed
for non-predicated code. These algorithms are designed to operate directly on the explicit
branches in a CFG and are thus not applicable when instructions are predicated.

Some earlier research efforts on performing PRE on predicated code can be found in [23, 24].
In particular, Knoop, Collard and Ju’s PRE algorithm [24] is based on SI-graphs. By avoid
introducing new predicate defining instructions, their algorithm guarantees that the dynamic
count of instructions along any path is not increased. Collard and Djelic [23] introduce a PRE
algorithm on a single hyperblock by using first-order logical operations on predicates.

August [25] discusses by an example how to perform PDE for a single hyperblock based on a
predicate flow graph (PFG) [26]. The IMPACT compiler [2] supports DCE on predicated code.
The ORC compiler performs DCE only on non-predicated IRs. We are not aware of any other

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1683

0

100

200

300

400

500

600

700

800

900

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

O
R

C

O
R

C
+P

D
E

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf go m88ksim comp. li ijpeg

C
yc

le
s

B
re

ak
d

o
w

n
 (

B
ill

io
n

s)

DATA_ACCESS_CYCLE RSE_ACTIVE_CYCLE
INST_ACCESS_CYCLE UNSTALLED_PIPELINE_CYCLE
PIPELINE_BACKEND_FLUSH_CYCLE TAKEN_BRANCH_CYCLE
DEPENDENCY_SCOREBOARD_CYCLE ISSUE_LIMIT_CYCLE

Figure 18: Cycle breakdown in stall categories.

region-based PDE algorithm on predicated code that works uniformly on both hyperblocks
and/or regions containing basic blocks and hyperblocks.

Several approaches to predicate analysis have been described in the literature [10, 11, 27].
The predicate query system (PQS) introduced in [10, 11] is based on the PPG. This is
the system implemented in the ORC compiler. PQS can accurately represent predication
conforming to the style of if-conversion. The Predicate Analysis System (PAS) introduced
in [27] is more powerful since it can accurately accommodate arbitrary predicate formulations.
Our algorithm can be easily adapted when a PAS-based system is used provided it also supports
the queries on control and materialised predicates at the same time.

The existence of dynamically dead codes in application programs has also been dealt with
in the microprocessor community [28, 29]. In particular, Butts and Sohi [28] show that the
majority of the dynamically dead instructions arise from a small set of static instructions.
They use a dead instruction predictor to avoid the execution of predicted-dead instructions.
The proposed hardware implementation achieves an average of 0.6% performance speedup
for SPEC00 integer benchmarks if their base architecture is used and an average of 3.6%
performance speedup if the limited-resource architecture is used instead.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1684 J. XUE, ET AL.

-4

-2

0

2

4

6

8

16
4.

g
zi

p

17
5.

vp
r

17
6.

g
cc

18
1.

m
cf

18
6.

cr
af

ty

19
7.

p
ar

se
r

25
2.

eo
n

25
3.

p
er

lb
m

k

25
4.

g
ap

25
5.

vo
rt

ex

25
6.

b
zi

p
2

30
0.

tw
o

lf

09
9.

g
o

12
4.

m
88

ks
im

12
9.

co
m

p
re

ss

13
0.

li

13
2.

ijp
eg

C
yc

le
 R

ed
u

ct
io

n
s

(%
)

DATA_ACCESS_CYCLE RSE_ACTIVE_CYCLE

INST_ACCESS_CYCLE UNSTALLED_PIPELINE_CYCLE

PIPELINE_BACKEND_FLUSH_CYCLE TAKEN_BRANCH_CYCLE

DEPENDENCY_SCOREBOARD_CYCLE ISSUE_LIMIT_CYCLE

Figure 19: Individual performance improvements of ORC+PDE over ORC measured separately
in terms of the eight event categories. An event bar for a benchmark represents the speedup
achieved by ORC+PDE over ORC as a result of reducing the cycles in that event category.
The eight bars for a benchmark add up to the corresponding speedup given in Figure 17.

7. Conclusion

Region-based compilation increases scheduling opportunities, which can be critical for
improving the performance of programs running on ILP architectures. Predicated execution
on these architectures is an effective technique for dealing with conditional branches. The
contribution of this research is the development of a practical algorithm for performing region-
based PDE on predicated code. This algorithm is optimal in the sense that it can eliminate
all partial deadness that can be removed without changing the branching structure of the
program or potentially introducing new predicate defining instructions. We have implemented
this algorithm in the ORC compiler for Intel’s Itanium Processor family. In our implementation,
PDE is applied just before instruction scheduling. This strategy not only eliminates all partial
deadness but also achieves an overall effect of reducing the cycles distributed into the Itanium
stall categories on Itanium 1. We present statistical evidence about the PDE opportunities in
SPEC benchmark programs. We demonstrate that our PDE algorithm can achieve performance
improvements in application programs. The implementation of our PDE algorithm accounts

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

PDE ON PREDICATED CODE REGIONS 1685

for only a small fraction of the total compile time for each benchmark. Therefore, our algorithm
can be used as a practical pass in a region-based compiler for EPIC architectures.

8. Acknowledgements

We wish to thank the reviewers for their comments and suggestions on the initial version of
this paper. This work is supported in part by an ARC Grant DP0452623.

REFERENCES

1. Richard E. Hank, Wen-Mei Hwu, and B. Ramakrishna Rau. Region-based compilation: an introduction
and motivation. In Proceedings of the 28th Annual International Symposium on Microarchitecture, pages
158–168, Los Alamitos, CA, USA, 1995. IEEE Computer Society Press.

2. P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and Wen-Mei Hwu. Impact: An architectural
framework for multiple-instruction-issue processors. In 18th International Symposium on Computer
Architecture (ISCA), pages 266–275. IEEE Computer Society, 1991.

3. ORC. Open Research Compiler for Itanium Processor Family, 2005. http://ipf-orc.sourceforge.net.
4. Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A. Bringmann. Effective

compiler support for predicated execution using the hyperblock. In Proceedings of the 25th Annual
International Symposium on Microarchitecture, pages 45–54, New York, NY, USA, 1992. IEEE Computer
Society Press.

5. J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conversion of control dependence to
data dependence. In Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 177–189, New York, NY, USA, 1983. ACM Press.

6. Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Optimal code motion: theory and practice. ACM
Transactions on Programming Languages and Systems, pages 147–158, 1994.

7. Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimination. In Proceedings of the
ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation, pages 147–158,
New York, NY, USA, 1994. ACM Press.

8. Rastislav Bodik and Rajiv Gupta. Partial dead code elimination using slicing transformations.
In Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language Design and
Implementation, pages 159–170, New York, NY, USA, 1997. ACM Press.

9. Rajiv Gupta, David A. Berson, and Jesse Fang. Path profile guided partial dead code elimination using
predication. In 5th International Conference on Parallel Architectures and Compilation Techniques, pages
102–113, Washington, DC, USA, 1997. IEEE Computer Society Press.

10. David M. Gillies, Roy Ju, Richard Johnson, and Michael Schlansker. Global predicate analysis and its
application to register allocation. In Proceedings of the 29th Annual ACM/IEEE International Symposium
on Microarchitecture, pages 114–125, Washington, DC, USA, 1996. IEEE Computer Society Press.

11. Richard Johnson and Michael Schlansker. Analysis techniques for predicated code. In Proceedings of the
29th Annual ACM/IEEE International Symposium on Microarchitecture, pages 100–113. IEEE Computer
Society Press, 1996.

12. Yang Liu, Zhaoqing Zhang, Ruliang Qiao, and Roy Ju. A region-based compilation infrastructure. In
Proc. of the 7th Workshop on Interaction between Compilers and Computer Architectures, pages 75–84,
Washington, DC, USA, 2003. IEEE Computer Society Press.

13. Jay Bharadwaj, Kishore Menezes, and Chris McKinsey. Wavefront scheduling: path based data
representation and scheduling of subgraphs. In Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture, pages 262–271, Washington, DC, USA, 1999. IEEE Computer Society
Press.

14. Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE transactions on
Computers, 30(7), July 1981.

15. Wen-Mei Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter, Roger A. Bringmann,
Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E. Haab, John G. Holm, and Daniel M.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

1686 J. XUE, ET AL.

Lavery. The superblock: An effective technique for VLIW and superscalar compilation. The Journal of
Supercomputing, 7(1):229–248, January 1993.

16. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.
17. pfmon. http://www.hpl.hp.com/research/linux/perfmon/pfmon.php4, 2005.
18. Intel. Intel Itanium processor reference manual for software development, December 2001.
19. Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A region-based compilation technique for a Java

just-in-time compiler. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation, pages 312–323, New York, NY, USA, 2003. ACM Press.

20. Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Complete removal of redundant expressions. In
PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and
implementation, pages 1–14, New York, NY, USA, 1998. ACM Press.

21. Qiong Cai and Jingling Xue. Optimal and efficient speculation-based partial redundancy elimination.
In Proceedings of the international symposium on Code generation and optimization, pages 91–102,
Washington, DC, USA, 2003. IEEE Computer Society Press.

22. Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, and Peng Tu. Partial redundancy elimination
in SSA form. ACM Transactions on Programming Languages and Systems, 21(3):627–676, 1999.

23. Jean-Francois Collard and Ivan Djelic. A practical framework for redundancy elimination on EPIC
processors. Technical Report 2000/02, PRiSM, 2000.

24. Jens Knoop, Jean-Francois Collard, and Roy Ju. Partial redundancy elimination on predicated code. In
Proceedings of the 7th International Static Analysis Symposium, London, UK, 2000. Springer-Verlag.

25. David Isaac August. Systematic Compilation For Predicated Execution. PhD thesis, University of Illinois
at Urbana-Champaign, 2002.

26. David I. August, Wen-Mei Hwu, and Scott A. Mahlke. A framework for balancing control flow and
prediction. In 30th ACM/IEEE International Symposium on Microarchitecture, pages 92–103, 1997.

27. John W. Sias, Wen-Mei Hwu, and David I. August. Accurate and efficient predicate analysis with
binary decision diagrams. In Proceedings of the 33rd Annual ACM/IEEE International Symposium on
Microarchitecture, pages 112–123, New York, NY, USA, 2000. ACM Press.

28. J. Adam Butts and Guri Sohi. Dynamic dead-instruction detection and elimination. In Tenth
International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-X), pages 199–210, New York, NY, USA, 2002. ACM Press.

29. A. Yoaz, R. Ronen, R. Chappell, and Y. Almog. Silence is golden? In Proceedings of Work-in-
Progress Workshop in conjunction with the 7th Symposium on High Performance Computer Architecture,
Washington, DC, USA, 2001. IEEE Computer Society Press.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 36:1655–1685
Prepared using speauth.cls

