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SUMMARY

Inter-iteration dependences in loops can hinder loop-level parallelism. For some loops,
existing thread-level speculation (TLS) techniques fail to expose their inherent loop-level
parallelism, because some inter-iteration dependences are too costly to synchronize, predict,
pre-compute and isolate. This paper presents a compiler technique called loop recreation to
change the nature of some dependences (by turning some inter-iteration dependences into
intra-iteration ones and vice versa) in a loop so that the inter-iteration dependences in the
transformed loop are less costly to enforce at run time than those in the original loop. We
present an algorithm for finding an optimal loop recreation transformation with respect
to a simple misspeculation cost model and demonstrate performance advantages of loop
recreation over two recent techniques for multicore systems running nine representative
irregular applications.

1. Introduction

As multicore architectures become commonplace, automatic parallelization of sequential programs
is required to maximize utilization of the computing resources provided by multicore processors.
However, it is difficult for the compiler to create parallel threads for irregular programs on
traditional multiprocessor architectures. One promising technique for overcoming this problem
is Thread-Level Speculation (TLS) or Speculative MultiThreading (SpMT), which allows the
compiler to optimistically create speculatively parallel threads for sequential programs without
having to prove they are independent. This can be particularly effective for applications that are
difficult to parallelize traditionally due to, for example, their use of irregular data structures (via
pointers or subscripted subscripts). Many compiler techniques [34, 27, 13, 9, 16, 2, 30, 22, 7, 31,
12, 3, 5, 24, 25, 29, 20] have been proposed to capitalize such thread-level parallelism (TLP) for
either individual program structures (such as loops and procedures) or whole programs. Most of
these compiler techniques target loops since substantial amounts of parallelism reside in loops.
Despite these research efforts, it remains challenging to develop effective compiler techniques
to parallelize individual loops, let alone whole programs. Excessive overhead incurred due to
enforcing synchronized and speculated inter-thread flow or true (aka RAW) dependences can lead
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Figure 1: Loop recreation as a loop transformation for a loop. {Vtop, Vbot} is a partition of the set
V of all instructions in the loop. The notation S[i] denotes the set of instructions in S instantiated
at iteration i. The instructions in the kernel created can be further scheduled, as illustrated in
Figure 2, so that some instructions in Vbot[i] may not appear before those in Vtop[i + 1].

to significant performance penalties. Therefore, effective management of inter-thread dependences
is crucial for achieving good performance on SpMT architectures.

Prior work on TLS for loops in sequential programs with irregular data structures achieves only
modest performance improvements. Some inter-iteration dependences in loops are the obstacle
to achieving good loop-level parallelism. Techniques such as synchronization, pre-computation,
prediction and code isolation have been used to expose the loop-level parallelism inherent in
loops. For some recent progress in this research area, POSH [16] yielded approximately 1.2x
for a 4-way CMP on SPECint2000 benchmarks when its loop-oriented TLS is applied. Like
many other existing TLS compiler techniques [30, 31, 32, 24, 25, 21], the POSH technique
turns loop iterations directly into speculative threads. Such an iteration-boundary-preserving loop
parallelization technique is referred to as Par in this work. By using Par, all inter-iteration flow
dependences in a loop become inter-thread dependences at run time. Intel’s effort on developing
the SPT compiler for loops [7] achieved 1.08x for a 2-way CMP on SPECint2000. Like Par, SPT
also uses loop boundaries as thread boundaries but pre-computes part of loop body to avoid
speculating dependences that are likely to happen. One major limitation of prior work is that
parallelization is always restricted to loop boundaries so that the nature of dependences (intra-
or inter-iteration) remains unchanged. In practice, some inter-iteration dependences in a loop can
be too costly to speculate, synchronize, pre-compute and isolate. Furthermore, value prediction
may not be effective for irregular loops accessing arrays with pointers or subscripted subscripts.
Therefore, loop boundaries are not desirable to serve as thread boundaries for some loops.

In this paper, we present a compiler technique, called loop recreation transformation (LRT) and
illustrated in Figure 1, to speculatively parallelize sequential loops. Loop recreation amounts to
finding a partition Vcut = {Vtop, Vbot} of the set of instructions in a loop (with V denoting the
set of nodes in its data dependence graph) and then transforming the loop into a prologue, a
kernel loop and an epilogue. This is where similarity with modulo scheduling ends and differences
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begin. When modulo scheduling a loop, the objective is to form a kernel loop by overlapping
instructions from multiple iterations in the original loop so that the instruction-level parallelism
(ILP) in the kernel is improved. Due to overlapping register lifetimes, register renaming (via, say,
rotating registers) is required. Furthermore, the overlapped register lifetimes are likely to span
more than one iteration, which indicates more inter-iteration dependences in a modulo-scheduled
loop than in the original loop. Therefore, when running iterations of a modulo-scheduled loop in
parallel speculatively, its inter-iteration dependences are likely to be more costly to enforce at
run time than those in the original loop. In LRT, however, our objective is to form a kernel loop
with a different set of inter-iteration dependences from that in the original loop by overlapping
instructions from two adjacent iterations in the original loop. LRT changes the nature of some
dependences so that some inter-iteration dependences in the original loop are turned into intra-
iteration dependences in the kernel and vice versa. When the loop iterations of the resulting kernel
is speculatively executed in parallel, its inter-iteration dependences are less costly to enforce at
run time than those in the original loop. As a result, the parallelism inherent in the original loop
is improved due to the increased speculative thread-level parallelism (TLP) in the kernel. No
register renaming is needed. Note that loop recreation differs fundamentally from (partial or full)
loop peeling since the instructions in Vtop or Vbot are usually not consecutive in the original loop.

For the loop given in Figures 2(a) and (b), the parallelized loops by three methods (Par, SPT
and LRT) are listed in Figures 2(c), (d) and (e), respectively. This example explains how LRT
works and why it can expose more parallelism than Par and SPT. It also highlights how speculative
threads are spawned by means of a fork instruction. In particular, the fork instruction inserted
in a parallelized loop divides each iteration into a pre-fork region and a post-fork region. The
instructions in the pre-fork region pre-compute values for the next thread, and thus are executed
sequentially. The key differences among the three methods are as follows. Par aims at maximizing
the amount of speculative parallelism achievable in a loop by making the post-fork the largest
possible. SPT attempts to reduce the misspeculation overhead of Par by moving the producer
instructions of some frequently misspeculated inter-iteration dependences into the pre-fork region
to pre-compute the producers for next thread. As a result, the misspeculation penalties that
would otherwise be incurred by these dependences in Par are eliminated. To ensure correctness,
any instruction on which such a producer depends must also be moved into the pre-fork region. So
SPT reduces misspeculation penalties at the expense of parallelism attainable. In comparison with
Par and SPT, LRT aims at simultaneously maximizing the parallelism (by keeping the post-fork
region the largest possible) and minimizing the misspeculation frequency (by turning frequently
occurring inter-iteration dependences into intra-iteration dependences).

For loops whose inter-iteration dependences can be effectively speculated, pre-computed or
value-predicted, these properties remain unchanged after LRT has been applied. Therefore, the
TLS techniques that use loop boundaries as thread boundaries can be considered as special cases
of LRT. Furthermore, LRT is developed to parallelize the loops whose boundaries are not desirable
to serve as thread boundaries. Being orthogonal to many existing TLS techniques, LRT can be
used as a prepass or postpass to enhance these techniques to extract more TLP from such loops.

In summary, the main contributions of this paper are as follows:

• We introduce a new compiler technique, called loop recreation and denoted LRT, to improve
the speculative parallelism inherent in sequential loops with a particular emphasis on
reducing the overhead of managing their inter-thread dependences.
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DO 120 I=I3,I4
CX(IJ(I)) = CX(IJ(I)) + X
CX(IJ(I)+1) =CX(IJ(I)+1) + Y

(a) Original loop

mov     I <- I3
brif       (I > I4), L3

L1:
ld         r1<- IJ[I] (1)
ld         r2 <- CX[r1] (2)
add      r3 <- r2, rx (3)
st         CX[r1] <- r3 (4)
add      r4 <- r1, 1 (5)
ld         r5 <- CX[r4] (6)
add      r6 <- r5, ry (7)
st         CX[r4] <- r6 (8)
add      I <- I, 1
brif       (I <= I4), L1
:

0
.0

5
0
.1

0

0
.6

0

0
.0

1

(b) Pseudo-assembly code,
where (rx)=X and (ry)=Y

mov     I <- I3
brif       (I > I4), L3

L1:  // Original Loop
add      I <- I, 1
fork( L1, L2, I)
ld         r1<- IJ[I-1] (1)
ld         r2 <- CX[r1] (2)
add      r3 <- r2, rx (3)
st         CX[r1] <- r3 (4)
add      r4 <- r1, 1 (5)
ld         r5 <- CX[r4] (6)
add      r6 <- r5, ry (7)
st         CX[r4] <- r6 (8)
brif       (I <= I4), L1
L2:

kill

L3:

0
.0

5
0

.1
0

0
.6

0

0
.0

1

(c) Parallelized by Par

mov     I <- I3
brif       (I > I4), L3
L1: // Kernel Loop
ld         r1 <- IJ[I] (1)
add      r4 <- r1, 1 (5)
ld         r5 <- CX[r4] (6)
add      r6 <- r5, ry (7)
st         CX[r4] <- r6 (8)
add      I <- I, 1
fork( L1, L2, I)
ld         r2 <- CX[r1] (2)
add      r3 <- r2, rx (3)
st         CX[r1] <- r3 (4)
brif       (I <= I4), L1
L2:

kill
:

0
.0

1

0
.1

0
0

.0
5

0
.6

0

(d) Parallelized by SPT

mov     I <- I3
brif       (I > I4), L3

Prologue:
ld         r1 <- IJ[I] (1)
ld         r2 <- CX[r1] (2)
add      r3 <- r2, rx (3)
st         CX[r1] <- r3 (4)
brif       (I = I4), Epilogue

L1: // Kernel Loop
add      I <- I, 1
fork( L1, L2, I)
wait     r1
add      r4 <- r1, 1 (5)
ld         r1 <- IJ[I] (1)
post    r1
ld         r5 <- CX[r4] (6)
add      r6 <- r5, ry (7)
st         CX[r4] <- r6 (8)
ld         r2 <- CX[r1] (2)
add      r3 <- r2, rx (3)
st         CX[r1] <- r3 (4)
brif       (I+1 <= I4), L1
L2:

kill

Epilogue:
add      r4 <- r1, 1 (5)
ld         r5 <- CX[r4] (6)
add      r6 <- r5, ry (7)
st         CX[r4] <- r6 (8)
L3:

0
.1

0
0

.0
5

0
.0

1

0
.2

5

(e) Parallelized by LRT

Figure 2: Loop recreation for a loop. In (a), the loop is abstracted from loop 120 in subroutine
parmvr of wave5 in SPECfp95. In (b), its pseudo-assembly code is given. In (c), the loop
parallelized by Par with iterations being mapped directly into threads is given. In (d), the
best solution from SPT is experimentally found according to their cost model. The producer
CX[r4] of (8) → (2) is moved into the pre-fork region, together with the four other (indirect
producer) instructions. In (e), the loop parallelized by LRT is given, where Vtop = {1, 2, 3, 4} and
Vbot = {5, 6, 7, 8}. In each loop given, all inter-iteration dependences are depicted, together
with their dependence probabilities. (1) → (5) in (e) is a register dependence on r1 and all the
others shown in (b) – (e) are memory dependences on CX. Par and SPT do not change the
dependences in the original loop. But LRT has changed the nature of two dependences: (1) → (5)
depicted in (e) is an intra-iteration dependence in (b) (and thus not shown in (b)), and (8) → (2) is
an inter-iteration dependence in (b) but has been turned into an intra-iteration dependence in (e)
(and thus not shown in (e)). Section 3.3 discusses how to represent the communication delays of
synchronized dependences such as (1) → (5) also by “probabilities”. By “swapping” the roles that
(1) → (5) and (8) → (2) play in terms of whether they are intra- or inter-iteration dependences,
LRT has selected the less costly (1) → (5) to enforce in the kernel loop. Thus, the misspeculation
probability of a thread has been greatly reduced from 1−(1−0.05)(1−0.6)(1−0.01)(1−0.10) = 0.66
in (c) to 1 − (1 − 0.25)(1 − 0.10)(1 − 0.01)(1 − 0.05) = 0.37 in (e).
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• We present an algorithm for finding an optimal loop recreation for a loop with respect to a
simple yet effective misspeculation cost model. This algorithm is efficiently implementable
once simple pruning heuristics are used to reduce the search space for an optimal solution.

• We have implemented LRT in SUIF/MachSUIF and demonstrated the performance
advantages of LRT over Par and SPT for multicore systems running nine representative
irregular applications. Significant performance improvements over Par and SPT are observed
under two squash mechanisms.

The rest of this paper is organized as follows. Section 2 describes the loop and execution models
used. Section 3 presents our loop recreation transformation, introduces a simple misspeculation
cost model and discusses its legality and optimality. Section 4 gives an algorithm for finding an
optimal loop recreation transformation with respect to our cost model. Section 5 discusses the
evaluation methodology used. Section 6 presents and analyzes our experimental results. Section 7
reviews the related work. Finally, Section 8 concludes the paper.

2. Loop and Execution Models

Like SPT [7], LRT considers only the data dependences when speculatively parallelizing loops. Par
is similarly applied to speculate on data dependences. If a loop contains other loops or if branches,
each branching structure is either reduced to one single instruction or translated into predicated
instructions by if-conversion. Except the back edge of a loop, only data dependences in the loop
will be speculated. Therefore, LRT operates on the data dependence graph (DDG) of a loop.

As illustrated in Figure 2(e), a thread consists of the sequence of instructions delineated by L1
and L2. A thread is divided by a fork instruction into a pre-fork region (marked by L1 and fork)
and a post-fork region (marked by fork and L2). A fork instruction, when executed on a core,
spawns a new thread (known as the successor thread) on the successor core. The iterations of a
parallelized loop are distributed to cores in the SpMT system as described in Section 5.4 in a
round-robin fashion. The oldest thread in sequential order is called the head thread, which is the
only non-speculative thread and thus allowed to commit its results. All others are speculative.

Inter-iteration anti- and output dependences are implicitly enforced by the hardware. An inter-
iteration RAW dependence can be either synchronized or speculated. Deciding which option to
take, which was investigated previously [32, 31], is orthogonal to this work. In this work, all
register dependences, i.e., the dependences involving register variables, are synchronized as in [32]
and all memory dependences, i.e., the dependences through memory variables, are speculated.

• Synchronization of Register Dependences
For each dependence involving a register value, the dependence is synchronized by
communicating the register value between two adjacent threads. To communicate the
register value associated with a scalar, whether or not the instruction corresponded to the
source of the dependence edge is in the pre-fork region is distinguished. If the corresponding
instruction is in the pre-fork region, the register value is already available to the successor
thread since all instructions in the pre-fork region of a thread are executed before the
successor thread is spawned. Therefore, the fork instruction in a thread not only spawns
the successor thread, but also forwards all register values defined in the pre-fork region of
the thread to the successor thread. Otherwise, the corresponding instruction is in the post-
fork region. The compiler inserts a post instruction after the last definition of the scalar
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in a thread and a wait instruction before any use of the scalar in the successor thread.
The wait instruction stalls execution until the value is produced by the predecessor thread,
which communicates the value by the post instruction. The insertion of wait and post

instructions, as a step of LRT, operates on the DDG of a loop.
• Speculation of Memory Dependences

We adopt the standard execution model supported by multicore SpMT architectures to
handle speculated dependences. Whether a memory dependence is misspeculated or not is
detected by the hardware.

Misspeculated threads are squashed and new threads are spawned to re-execute their previously
alloted iterations. We will evaluate this work using the following two squash mechanisms:

Eager Squash. Let T1, . . . , TN be all N concurrently running threads ordered from the least
speculative to the most speculative. For every write access made in a thread Ti, the hardware
checks immediately to see if there exists a dependence violation with respect to an earlier
read access made in all more speculative threads Ti+1, . . . , TN . Let Tj be the least speculative
thread where a dependence violation is detected. The hardware will squash immediately
Tj, . . . , TN and spawn a new thread on the same core where Tj was executed to re-execute
the same iteration that was previously alloted to Tj.

Lazy Squash. Only after a thread has finished will the hardware squash all more speculative
ones that have been misspeculated. Dependence violations can still be detected on the fly.

When a thread reaches the end of the loop marked by kill, the thread waits until it becomes
the head thread to execute the kill instruction, which will cause all speculative threads to be
squashed. These threads have been control-misspeculated (on the back edge of the loop).

3. Loop Recreation Transformation

We present an algorithm for finding an optimal loop recreation for a loop with respect to a
simple misspeculation cost model. Our algorithm consists of solving a min-cut problem on a set
of flow networks derived from the data dependence graph (DDG) of a loop. While the number
of flow networks may be large for some loops, our algorithm is practically efficient due to some
heuristics that can be readily deployed. Section 3.1 gives a necessary and sufficient condition
for the legality of a loop recreation transformation. Section 3.2 describes the cost model used
for approximating uniformly the costs incurred in enforcing both synchronized and speculated
dependences. Section 3.3 builds the DDG for a loop. Section 3.4 is concerned with the optimality
of a loop recreation transformation.

3.1. Legality

As shown in Figure 1, a loop recreation for a loop is uniquely specified by a partition of the set
V of its instructions into Vcut = {Vtop, Vbot}. The transformed loop by Vcut is referred to as the
recreated loop. The key idea behind a loop recreation Vcut = {Vtop, Vbot} is to transform some
intra-iteration dependences into inter-iteration dependences and vice versa. As can be observed
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in Figure 1, the distance of a dependence from Vtop to Vbot is increased by 1 while the distance
of a dependence from Vbot to Vtop is decreased by 1. The distances of other dependences remain
unchanged. The standard notion of dependence distance in optimizing compilers [19] is used here
(as in modulo scheduling). Therefore, inter-iteration dependences with distances being larger than
1 in the original loop remain to be inter-iteration dependences after loop recreation. However, the
nature of a dependence pointing from Vtop (Vbot) to Vbot (Vtop) with distance 0 (1) changes.
According to this observation, the legality of a loop recreation transformation is stated below.

Definition 1 (Legality) A loop recreation transformation Vcut = {Vtop, Vbot} for a loop is legal
if and only if there are no intra-iteration dependences pointing from Vbot to Vtop.

The results stated below are immediate from Figure 1.

Lemma 1. A loop recreation Vcut = {Vtop, Vbot} for a loop affects its dependence u → v spanning
Vtop and Vbot as follows. If u → v is an intra-iteration dependence pointing from Vtop to Vbot in
the loop, then u → v becomes an inter-iteration dependence with distance 1 in the recreated loop. If
u → v is an inter-iteration dependence with distance 1 pointing from Vbot to Vtop in the loop, then
u → v becomes an intra-iteration dependence in the recreated loop. Otherwise, an intra-iteration
(inter-iteration) dependence in the loop remains unchanged in the recreated loop.

3.2. Cost Model

There are many legal loop recreation transformations for a given loop. We will rely on a cost
model to rank the relative overheads incurred by different transformations so that the best can
be selected. We do not require the cost model to tell us exactly the cost incurred in speculatively
executing a loop. In practice, such cost depends on many factors such as the loop trip count, the
number of cores available, the architectural parameters of the underlying TLS system and the
inter-iteration dependences that are dynamically encountered during program execution. As in
prior work [7, 22], we build a simple cost model for a loop by making two common assumptions.
First, different dependences in the loop are independent. Second, all incurred memory dependences
in the loop are always misspeculated. Both are not always true in practice. However, it is difficult,
if not impossible, to know statically the interactions among dependences and determine accurately
the relative timings of dependent instructions in different threads.

As mentioned in Section 2, inter-iteration anti- and output register and memory dependences
are all automatically enforced in our execution model and incur no runtime overhead. So only inter-
iteration RAW (i.e., flow) dependences need to be considered. Each RAW dependence is associated
with a probability regardless whether it is a register or memory dependence. The probability
ranges over [0,1]. The intent is that the probability of an inter-iteration RAW dependence u → v
represents the fraction of a loop iteration (in cycles) that would be wasted on average due to
synchronization (misspeculation) when u → v is synchronized (speculated) individually.

The probability p of a RAW memory dependence u → v indicates how often the dependence
actually takes place at run time. That is, for every N writes issued by the producer instruction
u, p × N reads from the consumer instruction v are made to the same memory location. So p
represents the fraction of one iteration that is wasted (in cycles) if the dependence is misspeculated.
The probabilities of memory dependences can be estimated by instrumentation or static analysis.
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The probability of a RAW register dependence u → v represents the incurred communication
delay as a fraction of the total execution time for one loop iteration. By convention, we assume
that u → v may incur some communication delay only when the write access instruction u appears
lexically after the read access v. The incurred communication delay is the number of cycles spent
on executing instructions that are scheduled between v and u (inclusive).

To compare the costs of different loop recreation transformations for a given loop, we use the
misspeculation probability of the loop. Let D be the set of all inter-iteration RAW dependences of a
loop: D = Dmem∪Dreg, where Dmem and Dreg are the sets of all memory and register dependences
contained in D, respectively. As a starting point, we consider the case when D = Dmem, i.e.,
Dreg = ∅. In this case, the misspeculation probability of a loop can be approximated by:

P(D) = P(Dmem) = 1 − Πe∈D(1 − Probe) (1)

where Probe is the probability of e (under the assumption that all dependences are independent).
When D contains one or more register dependences, the misspeculation probability of a loop is

refined by distinguishing register dependences from memory dependences as follows:

P(D) = 1 − Πe∈Dmem(1 − Probe) + ProbDmax
reg

× Πe∈Dmem(1 − Probe) (2)

where Dmax
reg is the dependence with the largest probability value among all dependences contained

in Dreg. In (2), the first addend represents the fraction of a loop iteration lost in cycles due to
misspeculation and the second addend represents the fraction of a loop iteration lost (in cycles)
due to synchronization. As a result, the communication delay incurred by all dependences in Dreg

is estimated to be the same as the largest communication delay incurred by Dmax
reg .

By rearranging (2), we obtain our cost model given below:

P(D) = 1 − Πe∈(Dmem∪{Dmax
reg

})(1 − Probe) (3)

From this formula, we can see clearly why we also talk about probabilities for register dependences
like Dmax

reg just like we do for memory dependences.

3.3. Building the DDG

The DDG of a loop is a weighted directed multigraph, denoted G = (V, E, Q, K, W ), where V
is the set of instructions in the loop and E is the set of directed edges representing the data
dependences between instructions. Let u → v ∈ E such that u → v is a dependence from u to v.
Q(u, v) ∈ {R, M} represents whether u → v is a Register or Memory dependence.

K(u, v) represents the (minimum) dependence distance of u → v, meaning that instruction v
at iteration i + K(u, v) may depend on instruction u at iteration i. By convention, u → v is an
intra-iteration dependence if K(u, v) = 0 and inter-iteration dependence otherwise. For a pair of
instructions u and v, there can be many dependences u → v with varying distances. In order to
find an optimal loop recreation for a loop according to Lemma 1, it suffices to distinguish three
kinds of distances: (a) K(u, v) = 0, (b) K(u, v) = 1 and (c) K(u, v) > 2.

Given a path from u to v in G: Pu,v = z0 → z1 → ... → zn such that u = z0 and v = zn,
where n > 1, we write K(Pu,v) to represent the sum of dependence distances in the path Pu,v:
K(Pu,v) =

∑
06i<n K(zi−1, zi). So K(Pu,v) indicates that instruction v at iteration i + K(Pu,v)

depends on instruction u at iteration i. By definition, Pu,v consists of only intra-iteration
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dependences if K(Pu,v) = 0. Let V (Pu,v) be the set of instructions in the path Pu,v. V (Pu,v)
and K(Pu,v) are used below to compute an estimate for the weight of a register dependence.

For a dependence u → v, its weight W (u, v) is determined depending on whether it is a memory
or register dependence. If u → v is a memory dependence, W (u, v) is set to be its dependence
probability if it is a RAW dependence and 0 otherwise. Note that anti- and output dependences
are included in the DDG only if the IR (Intermediate Representation) representing a loop is not
in SSA form. If u → v is a register dependence, then we have W (u, v) = 0 if u → v is anti- or
output dependence. Otherwise, we note that when building the DDG for a loop, the loop has not
been transformed yet. The weight W (u, v) of a RAW register dependence is then estimated to be
(
∑

op∈(I∪{u,v}) Cop)/CL, where Cop is the number of cycles spent on executing instruction op, CL

is the total number of cycles spent on executing the entire loop and I ⊆ V is defined as follows:

I =

{
{z ∈ Pv,u | u, v ∈ V, Pv,u is a path in G s.t. K(Pv,u) = 0} if K(u, v) > 1
{z ∈ Pv,u | u, v ∈ V, Pv,u is a path in G s.t. K(Pv,u) = 1} if K(u, v) = 0

If K(u, v) > 1, i.e., u → v is an inter-iteration dependence in a loop L, all instructions in any path
Pv,u such that K(Pv,u) = 0 must appear between v and u in L. This is also true in any recreated
loop of L in which the dependence distance of u → v remains unchanged (Lemma 1). On the other
hand, if u → v becomes an intra-iteration dependence in a recreated loop of L, then its weight
assignment is immaterial. Hence, the incurred communication delay of u → v is estimated that
way. If K(u, v) = 0, i.e., u → v is an intra-iteration dependence in L, then u → v must point from
Vtop to Vbot in any recreated loop of L in order for it to turn into an inter-iteration dependence
(Lemma 1). To this end, for every path Pv,u, at least one edge in the path must point from Vbot

to Vtop. If K(Pv,u) = 1 holds, then the edge pointing from Vbot to Vtop must be the only inter-
iteration dependence in Pv,u and all the other edges in the path are intra-iteration dependences in
the resulting recreated loop. This means that all instructions in Pv,u must be scheduled between
v and u in the recreated loop. Therefore, the weight assigned to u → v is the potentially incurred
communication delay when u → v represents an inter-iteration dependence in the recreated loop.
Otherwise, the weight assignment is immaterial. Our experimental results show that this simple
technique for estimating the weights of register dependences suffices in real code.

Recall that D = Dmem ∪ Dreg denotes the set of inter-iteration dependences in G introduced
in Section 3.2. Obviously, Dmem and Dreg are related with G as follows: Dmem = {(u, v) ∈ E |
Q(u, v) = M, K(u, v) > 1} and Dreg = {(u, v) ∈ E | Q(u, v) = R, K(u, v) > 1}.

Figure 3 depicts the DDG for the loop given in Figure 2(b). The DDG has 8 nodes and 13
edges (representing four memory and nine register dependences). The probabilities and distances
of the four memory dependences (in dashed lines) are obtained based on profiling information.
The weights of the nine register dependences (in solid lines) are estimated as discussed above
by assuming that all instructions have unit latency. For register dependence 1 → 2, there is no
dependence path in the DDG from instruction 2 to instruction 1. So only the cycles spent on
executing instructions 1 and 2 are counted when estimating the weight of 1 → 2. The cases for
1 → 4, 1 → 5, 5 → 6 and 5 → 8 are handled identically. For register dependence 2 → 3, K(2, 3) = 0
and the path P3,2 = 3 → 4 → 2 is the only path from instruction 3 to 2 in the DDG that satisfies
K(P3,2) = 1. Therefore, its weight has been set to be 3

8 ≈ 0.38. The cases for 3 → 4, 6 → 7 and
7 → 8 are handled identically. So their weights are also 0.38 each.
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Figure 3: The DDG for the loop in Figure 2(b). Solid (dashed) arrows represent intra-
iteration (inter-iteration) dependences with annotations for their dependence nature (e.g., 0.25R0
associated with 1 → 2 means that Q(1, 2) = R, K(1, 2) = 0 and W (1, 2) = 0.25).

3.4. Optimality

Recall that G = (V, E, Q, K, W ) denotes the DDG of a loop. Let Ĝ = (V̂ , Ê, Q̂, K̂, Ŵ ) be the DDG
of the loop recreated by a loop recreation transformation (which will be clear from the context).

Clearly, V̂ = V , Ê = E, Q̂ = Q and Ŵ = W . By Lemma 1, the distances of transformed
dependences in K̂ can be derived from those in K as follows:

K̂(u, v) =






K(u, v) if u, v ∈ Vtop or u, v ∈ Vbot

K(u, v) + 1 if u ∈ Vtop and v ∈ Vbot

K(u, v) − 1 if u ∈ Vbot and v ∈ Vtop

(4)

Accordingly, we have D̂ = D̂mem ∪ D̂reg, where D̂mem = {(u, v) ∈ Ê | Q̂(u, v) = M, K̂(u, v) > 1}

and D̂reg = {(u, v) ∈ Ê | Q̂(u, v) = R, K̂(u, v) > 1}. In the recreated loop, D̂max
reg is the register

dependence with the largest probability value among all the register dependences in D̂reg.

Definition 2 (Optimality) A loop recreation transformation Vcut = {Vtop, Vbot} is optimal if

P(D̂) = 1 − Π
e∈( bDmem∪{ bDmax

reg
})(1 − Probe)

is the smallest possible with respect to the cost model (3).

Minimizing P(D̂) given in (3) is equivalent to minimizing:
∑

u→v∈( bDmem∪{ bDmax
reg })

ln(
1

1 − W (u, v)
) (5)

If W (u, v) = 1 for a dependence u → v, then 1
1−W (u,v) = ∞. In our implementation, this problem

is fixed easily by using W (u, v) = 0.99 as an accurate approximation instead.
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1 LRTmem(G) // G = (V, E, Q, K, W )

2 Let Gln = (V, E, Q, K, Wln) such that Wln(u, v) = ln( 1
1−W (u,v) )

3 F = Cons FNmem(Gln)
4 Vcut = {Vtop, Vbot} = Process FN(F)
5 return Vcut

Figure 4: An optimal algorithm LRTmem for loop recreation when D = Dmem.

4. Finding an Optimal Transformation

Based on the objective function (5), we find an optimal loop recreation for a loop by solving a
min-cut problem on some s-t flow networks derived from the DDG of the loop. The goal is to find
a minimum cut on one of these flow networks so that the minimum cut induces an optimal loop
recreation for the loop. However, we cannot find a loop recreation Vcut = {Vtop, Vbot} for a loop
by directly solving a min-cut problem on the DDG of the loop. There are two reasons why this is
not possible. First, some dependences in D̂ may not manifest themselves as cut edges. According
to (4), D̂ includes not only the dependences pointing from Vtop to Vbot but also those that are
confined in either Vtop or Vbot and those pointing from Vbot to Vtop. However, in a direct min-cut

formulation, P(D̂) is computed by setting D̂ as the set of cut edges in a minimum cut. All these
cut edges are inter-iteration dependence edges that point from Vtop to Vbot only, but all those
inter-iteration dependences that are confined in either Vtop or Vbot and those pointing from Vbot

to Vtop are not taken into account. Second, according to Definition 2, only one special register

dependence D̂max
reg in D̂ should be included in P(D̂). However, in a direct min-cut formulation, all

register dependences that point from Vtop to Vbot are considered when P(D̂) is computed.

Following our two-step process used in developing our cost model, we will also present our
algorithm in finding optimal loop recreation transformations in two steps. In Section 4.1, we
assume that all dependences in the DDG of a loop are memory dependences, i.e., D = Dmem.
Therefore, the cost model given in (1) is used. In Section 4.2, all register dependences in a loop
are also considered, i.e., D = Dmem ∪ Dreg. So the cost model given in (3) is used.

4.1. An Algorithm for the Special Case When D = Dmem

Given a loop such that its DDG G = (V, E, Q, K, W ) consists of memory dependences only,
LRTmem given in Figure 4 will find an optimal loop recreation from G. LRTmem operates on
Gln = (V, E, Q, K, Wln), which is the same as G except that the dependence weights are redefined
so that we can formulate the problem of finding an optimal loop recreation for a loop as a min-
cut problem (line 2). In Cons FNmem, we create a set, F , of flow networks from Gln (line 3). In
Process FN, we obtain an optimal loop recreation from a minimum cut with the smallest capacity
found from one of the flow networks in F (line 4).
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Section 4.1.1 describes the basic idea behind the development of our min-cut-based algorithm
LRTmem. Section 4.1.2 explains this algorithm in detail. Section 4.1.3 illustrates LRTmem by our
motivating example. Section 4.1.4 discusses the efficiency of our min-cut-based algorithm.

4.1.1. A Min-Cut-Based Formulation

A set of flow networks F is constructed from Gln = (V, E, Q, K, Wln). Let Gf = (Vf , Ef , Cf ) be a
flow network in F . Then Vf = V ∪{s, t}, i.e., a flow network will consist of all the nodes in V , the
source s and the sink t. Therefore, the key to constructing Gf lies in building the edge set Ef and
a capacity function Cf that assigns a non-negative real value Cf (u, v) to each edge u → v ∈ Ef .
Every flow edge u → v ∈ Ef is always created as a copy of some dependence edge x → y in Gln.

Let (S, T ) be an s-t cut in Gf that partitions Vf into S and T such that s ∈ S and t ∈ T :

(S, T ) = {u → v ∈ Ef | u ∈ S, v ∈ T } (6)

In other words, (S, T ) consists of only the edges in Ef pointing from S to T . The sum of the
capacities of all edges, i.e., cut edges in (S, T ) is known as the capacity, CAP(S, T ), of the cut:

CAP(S, T ) =
∑

u → v∈(S,T )

Cf (u, v) (7)

For convenience, (S, S), (T, T ) and (T, S) are defined similarly in this paper: (S, S) = {u → v ∈
Ef | u, v ∈ S}, (T, T ) = {u → v ∈ Ef | u, v ∈ T }, (T, S) = {u → v ∈ Ef | u ∈ T, v ∈ S}.

The basic idea behind building F is as follows. If {Vtop, Vbot} is a legal loop recreation for Gln

(or equivalently for G), then (Vtop ∪{s}, Vbot∪{t}) is an s-t cut in every flow network in Gf ∈ F .
If (S, T ) is a minimum cut in a flow network Gf , then {S \ {s}, T \ {t}} is a legal loop recreation
for Gln. The problem is that the quality, i.e., cost of a minimum cut (S, T ) is measured by its
capacity CAP(S, T ), which is defined only by the cut edges pointing from S to T . This implies
that when constructing Gf , we must make sure that all and only inter-iteration dependences in
the loop recreated by {S \ {s}, T \ {t}} are the cut edges in (S, T ). Therefore, we define:

P(S, T ) = 1 − Πe∈(S,T )(1 − Probe) (8)

Unless indicated otherwise, D̂ is associated with the loop recreated by {S \ {s}, T \ {t}}. Given
the assumption that D = Dmem, the misspeculation probability for the loop recreated by
{S \ {s}, T \ {t}} can be simplified from Definition 2 to:

P(D̂) = 1 − Π
e∈ bDmem

(1 − Probe)

For the reasons explained at the beginning of this section, we cannot find an optimal loop
recreation for a loop by directly solving a min-cut problem on the DDG of the loop. Instead, we
will create a set of flow networks F to ensure that every inter-iteration dependence in the loop
recreated by a cut {S \ {s}, T \ {t}} is captured by at least one cut edge in the s-t cut (S, T ). To
achieve this, some dependence edges are duplicated and may be counted more than once so that
P(D̂) 6 P(S, T ) holds. Hence, P(D̂) < P(S, T ) may hold for a particular minimum cut (S, T ).

However, our construction ensures that {S \ {s}, T \ {t}} is optimal such that P(D̂) = P(S, T ) if
CAP(S, T ) is the smallest among all minimum cuts in all flow networks in F .
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4.1.2. Finding Minimum Cuts

To ensure that every inter-iteration dependence edge in D̂ for a recreated loop can be identified as
a cut edge, some dependences in G may be mapped into several edges in Gf . Three sets of edges,
A-, B- and AB-duplicated edges, that require different ways of duplication are defined below.

Let x, y ∈ V be two instructions in the DDG G of a loop. We write K(x, y)∗ = 0 if there exists
a path, Px,y, of intra-iteration dependences from x to y in G, i.e., K(Px,y) = 0. If no such path
can be found, we write K(x, y)∗ 6= 0.

The following result that is immediate from Definition 1 is used to reduce the number of flow
networks that will otherwise need to be built in line 3 of the LRTmem algorithm.

Lemma 2. Let x, y ∈ V such that K(x, y)∗ = 0. If Vcut = {Vtop, Vbot} is a legal loop recreation
transformation, then either x 6∈ Vbot or y 6∈ Vtop holds.

Proof. if both x ∈ Vbot and y ∈ Vtop hold at the same time, then at least one intra-
iteration dependence on a dependence path from x to y must be pointing from Vbot to Vtop.
So Vcut = {Vtop, Vbot} cannot be legal by Definition 1. 2

The notions of A-, B- and AB-duplicated edges are formally defined below.

Definition 3 (A-, B- and AB-Duplicated Edges) The sets of A-duplicated edges, B-
duplicated edges and AB-duplicated edges for dependence edges with distance 1 are defined by:

CA(G) = {(u, v) ∈ E | u 6= v, K(u, v) = 1, W (u, v) 6= 0, K(u, v)∗ 6= 0, K(v, u)∗ = 0}
CB(G) = {(u, v) ∈ E | u 6= v, K(u, v) = 1, W (u, v) 6= 0, K(u, v)∗ = 0, K(v, u)∗ 6= 0}
CAB(G) = {(u, v) ∈ E | u 6= v, K(u, v) = 1, W (u, v) 6= 0, K(u, v)∗ 6= 0, K(v, u)∗ 6= 0}

K(u, v)∗ = 0 ∧ K(v, u)∗ = 0 is impossible since u and v would then depend on each other.

4.1.2.1. Cons FNmem Its four steps are explained below. The notation u
c

−→ v indicates that
u → v is an edge with the edge capacity c. In Step 1, we introduce two new nodes as the source
s and sink t, respectively. That is, every flow network consists of all nodes in V as well as s and
t. The construction of weighted edges for each flow network is carried out in Steps 2 – 4.

In Step 2, we note that every dependence u → v in a loop remains to be an inter-iteration
dependence after a loop recreation transformation if either K(u, v) > 2 or u → v is a self edge.
Therefore, u → v must be included in an s-t cut. As a result, an edge pointing from s to t for
u → v is added. After Step 2, every dependence considered in Steps 3 and 4 is neither a self-edge
nor a dependence with a distance larger than 1 unless indicated otherwise.

In Step 3, for every dependence u → v in Gln, we add two edges to Gf : u
Cf (u,v)
−→ v and

v
Cf (v,u)
−→ u, where the former edge represents the situation when u → v ∈ (S, T ) and the latter

edge represents the situation when u → v ∈ (T, S). Therefore, Cf (u, v) and Cf (v, u) are set as
implied by Lemma 1. In line 8, we set Cf (v, u) = ∞ if K(u, v) = 0 to prevent v → u from
becoming a cut edge. In particular, we set Cf (v, u) = ∞ if K(u, v) = 0 because u → v 6∈ (T, S)
holds for all legal loop recreation transformations by Lemma 1.

After Step 3, every dependence has been mapped to two copies in a flow network. This is
sufficient for intra-iteration but not for inter-iteration dependences. An intra-iteration dependence
u → v in a loop remains so in a recreated loop if u → v ∈ (S, S)∪(T, T ) by Lemma 1. In this case,
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1 Cons FNmem(Gln) // Gln = (V, E, Q, K, Wln)

// Build the part of Gf = (Vf , Ef , Cf ) that is common in all networks (lines 2 – 14)

// Step 1: create the source s and the sink t

2 Set Vf = V ∪ {s, t}

// Step 2: handle dependences that cross iterations before and after transformation

3 for u → v ∈ E such that K(u, v) > 2 or u = v do

4 Add an edge to Ef : s
Cf (s,t)
−→ t and set Cf (s, t) = Wln(u, v)

// Step 3: handle dependences spanning an s-t cut

5 for u → v ∈ E such that K(u, v) 6 1, where u 6= v do

6 Add two edges to Ef : u
Cf (u,v)
−→ v and v

Cf (v,u)
−→ u

7 if K(u, v) = 0 then
8 Set Cf (u, v) = Wln(u, v) and Cf (v, u) = ∞
9 else // K(u, v) = 1

10 Set Cf (u, v) = Wln(u, v) and Cf (v, u) = 0

// Step 4: duplicate inter-iteration dependences of distance 1 not spanning an s-t cut

// A-duplication

11 for u → v ∈ CA(Gln) do

12 Add s
Cf (s,v)
−→ v and u

Cf (u,t)
−→ t to Ef and set Cf (s, v) = Cf (u, t) = Wln(u, v)

// B-duplication

13 for u → v ∈ CB(Gln) do

14 Add s
Cf (s,u)
−→ u and v

Cf (v,t)
−→ t to Ef and set Cf (s, u) = Cf (v, t) = Wln(u, v)

// Build distinct parts for all flow networks in F (lines 15 – 18)
15 Let u1 → v1, . . . , u|CAB(Gln)| → v|CAB(Gln)| be all edges in CAB(Gln)

// AB-duplications

16 for (X1, . . . , X|CAB(Gln)|) ∈ {A, B}|CAB(Gln)| do
17 Let Gu1−→

X1
v1,...,u|CAB(Gln)| −→

X|CAB(Gln)|

v|CAB(Gln)|
be initialized with Gf and then

augmented with every ui → vi being Xi-duplicated
18 F ∪= {Gu1−→

X1
v1,...,u|CAB(Gln)| −→

X|CAB(Gln)|

v|CAB(Gln)|
}

19 return F

Figure 5: Constructing F from Gln when D = Dmem.
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Figure 6: Four different minimum cuts for u → v duplicated in two duplication schemes.

the edge should not be a cut edge (since it is absent in D̂). However, the situation is different if
u → v is an inter-iteration dependence. In this case, if u → v ∈ (S, S)∪(T, T ), then u → v remains

to be an inter-iteration dependence in D̂. However, in this case, u → v may not be a cut edge in
a cut although it should be.

In Step 4, two more copies are introduced for every inter-iteration dependence u → v in a
flow network. We do so by duplicating u → v so that if u → v ∈ (S, S) ∪ (T, T ), then every s-
t cut is guaranteed to include at least one copy of u → v. As illustrated in Figure 6, u → v is
either A-duplicated (lines 11 and 12) or B-duplicated (lines 13 and 14). When both are needed
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1 Process FN(F)

2 for every Gf = (Vf , Ef , Cf ) in F do
3 Let G′

f be the simple graph converted from the multigraph Gf by merging all parallel

edges into one single edge whose weight is the sum of those of the parallel edges)

4 (Sf , Tf ) = Find Min Cut(G′
f )

5 Let (Sopt, Copt) be one of the |F| minimum cuts found in line 4 with the smallest capacity

6 return (Sopt \ {s}, Topt \ {t})

Figure 7: Finding a minimum cut in F .

(lines 15 – 18), there are 2|CAB(Gln)| different ways for duplicating all edges in CAB(Gln). Hence,
|F| = 2|CAB(Gln)|. Let us explain why an edge u → v ∈ CA(Gln) needs not also to be B-duplicated
in lines 11 and 12. By the definition of CA(Gln), we know that K(v, u)∗ = 0. Thus, u → v 6∈ (S, T )
(Lemma 2). Due to line 8, the cut shown in Figure 6(a.4) must also include an ∞-weighted
edge. This cut, which corresponds to an illegal loop recreation, is not a minimum cut. Similarly,
u → v ∈ CB(Gln) is not also A-duplicated in lines 13 and 14.

By duplicating every inter-iteration dependence u → v, a flow network in F contains four copies
of that edge, three of which have the same weight, Wln(u, v). As shown in Figure 6, an s-t cut
is guaranteed to include at least one copy of u → v. However, in Figure 6(a.4) (Figure 6(b.4)),
the weight Wln(u, v) of u → v is counted twice (one time) too many. Due to such over-counting,
the underlying minimum cut may or may not induce an optimal loop recreation. By creating
2|CAB(Gln)| flow networks, however, we are guaranteed that such over-counting will not occur in at
least one minimum cut found in one of these flow networks.

4.1.2.2. Process FN This procedure, which is given in Figure 7, returns an optimal loop
recreation derived from the minimum cut found in one of the flow networks in F .

A proof for the optimality of LRTmem is given in Appendix A.

4.1.3. Example

The DDG for our example is depicted in Figure 3. There are 13 dependence edges. For
illustration purposes, let us assume that these are all memory dependences. There are four inter-
iteration dependences. We find that CA(Gln) = {4 → 2, 8 → 6}, CB(Gln) = ∅ and CAB(Gln) =
{8 → 2, 4 → 6} since K(2, 4)∗ = 0 ∧ K(4, 2)∗ 6= 0, K(6, 8)∗ = 0 ∧ K(8, 6)∗ 6= 0, K(2, 8)∗ 6=
0 ∧ K(8, 2)∗ 6= 0 and K(4, 6)∗ 6= 0 ∧ K(6, 4)∗ 6= 0. Hence, F has 2|CAB(Gln)| = 4 flow networks.

Let us trace the execution of our algorithm LRTmem with respect to the loop briefly. Gln for
the loop is shown in Figure 8(a). Of the four flow networks in F , G8−→

A
2,4−→

B
6, in which 8 → 2 is

A-duplicated and 4 → 6 is B-duplicated, is shown in Figure 8(b). This network is constructed by
applying Cons FNmem to Gln as follows. For each of the nine intra-iteration dependences, its two
copies in the network are created in lines 7 and 8. For each of the four inter-iteration dependences,
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Figure 8: An illustration of LRTmem for the DDG shown in Figure 3 by assuming that all edges
are memory dependences.

its two copies are created in lines 9 and 10 and the other two created in lines 11 – 18 (with 4 → 2,
8 → 6 and 8 → 2 being A-duplicated and 4 → 6 B-duplicated).

Figure 8(b) also depicts the minimum cut from which the optimal loop recreation {Vtop, Vbot} =
{{1, 2, 3, 4}, {5, 6, 7, 8}} with respect to the objective function (5) is found (on the simple graph
reduced from the multigraph shown in Figure 8(b)).

4.1.4. Time Complexity and Practical Efficiency

We have used Goldberg’s implementation of his push-relabel HIPR algorithm [10] to find minimum
cuts. Its worst-case time complexity when applied to G = (V, E, Q, K, W ) is O(|V |2 ×

√
|E|). In

line 2 of Process FN, there can be |F| = 2|CAB(G)| different flow networks. So the worst-case time
complexity of our algorithm is O(|V |2 ×

√
|E| × 2|CAB(G)|).

In practice, LRTmem is efficient if we adopt the following simple strategy in our implementation.
Let Gf ∈ F . Let u1 → v1, . . . , um → vm be all the B-duplicated edges in Gf . For any minimum
cut in Gf , a B-duplicated edge will be cut in one of the four possible ways as depicted in
Figure 6(b). Hence, the capacity of any minimum cut (S, T ) in Gf must be larger than or equal to∑m

i=1 Wln(ui, vi), i.e., CAP(S, T ) >
∑m

i=1 Wln(ui, vi). We will first find the minimum cut for the
unique flow network in F in which all edges in CAB(Gln) are A-duplicated and then examine the
remaining flow networks in the order in which more and more edges in CAB(Gln) are B-duplicated.
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1 LRT(G) // G = (V, E, Q, K, W )

2 Let Gln = (V, E, Q, K, L) such that Wln(u, v) = ln( 1
1−W (u,v) )

3 F = Cons FN(Gln)
4 Vcut = {Vtop, Vbot} = Process FN(F)
5 return Vcut

Figure 9: An optimal algorithm LRT for loop recreation when D = Dmem ∪ Dreg.

We ignore a flow network if
∑m

i=1 Wln(ui, vi) for all its B-duplicated edges u1 → v1, . . . , um → vm

is larger than or equal to the capacity of the best minimum cut found so far. This pruning strategy
is efficient as validated in our experiments discussed in Section 6.1.1.

4.2. A General Algorithm When D = Dmem ∪ Dreg

In the general case, memory dependences and register dependences must be distinguished
according to our cost model given in Definition 2. We generalize LRTmem to LRT so that LRT
is optimal with respect to the objective function (5), where only the register dependences D̂max

reg

is relevant. LRT is the same as LRTmem except a different module, Cons FN, for constructing F
is used. In fact, Cons FN given in Figure 10 is a simple extension of Cons FNmem to deal with
register dependences. The new lines added to Cons FNmem are highlighted by boxed lines. A proof
for the optimality of LRT can be found in Appendix B.

Unlike Cons FNmem, Cons FN may construct a maximum of 2|CAB(G)|× (Nreg +1) flow networks,
where Nreg is the number of distinct non-zero weights of register dependences in Gln. Let l0 = 0
and l1, . . . , lNreg

be Nreg distinct non-zero weights of register dependences in Gln (line 2). All flow
networks in F are divided into Nreg + 1 subsets F l0 , . . . ,F lNreg

(lines 3, 23 and 24) so that for
the flow networks in F li , only register dependences whose weights are no larger than li can be

cut edges (lines 4 and 5). Effectively, li is the weight of D̂max
reg referred to in our cost model given

in Definition 2. In the case of F l0 , only memory dependences can be cut edges. In fact, F l0 is
exactly the set of flow networks constructed for all memory dependences in G (Section 4.1).

By Lemma 1, every dependence u → v with a distance K(u, v) > 2 must be included in a
minimum cut. Therefore, we avoid building F li if there is a register dependence u → v with a
distance larger than or equal to 2 such that Wln(u, v) > li (line 4). In this case, achieving a

minimum synchronization delay li for D̂max
reg is not possible. Since F lNreg

, . . . ,F l0 are built in that
order (line 3), the construction of F terminates immediately at the i-th iteration when there exists
a register dependence u → v such that K(u, v) > 2 and Wln(u, v) > li (line 4).

In line 5, Gi
ln is derived from Gln with different register dependence weights so that only register

dependences with weights no larger than li can be cut edges. For a register dependence u → v,
we set W i

ln(u, v) = ∞ if Wln(u, v) > li to prevent it from becoming a cut edge. In lines 6 –

23, 2|CAB(Gi
ln)| flow networks in F li are constructed from Gi

ln in the same way as explained in

Section 4.1.2 except that an additional edge is added in line 7 to represent the weight of D̂max
reg .
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1 Cons FN(Gln) // Gln = (V, E, Q, K, Wln)

2 Let l0 = 0 and l1, . . . , lNreg
be Nreg distinct non-zero weights Wln(u, v) of all register

dependences u → v in Gln in increasing order of their values

3 for i = Nreg to 0
// Build s-t flow networks in F li

4 if ∃ u → v ∈ E such that Q(u, v) = R, Wln(u, v) > li and K(u, v) > 2 then break

5 Let Gi
ln = (V, E, Q, K, W i

ln) where W i
ln(u, v) is defined as follows:

W i
ln(u, v) = Wln(u, v) if Q(u, v) = M

W i
ln(u, v) = ∞ if Q(u, v) = R and Wln(u, v) > li

W i
ln(u, v) = 0 if Q(u, v) = R and Wln(u, v) 6 li

6 Set Vf = V ∪ {s, t}

7 if li 6= 0 then add s
Cf (s,t)
−→ t to Ef and set Cf (s, t) = li

8 for u → v ∈ E such that K(u, v) > 2 or u = v do

9 Add an edge to Ef : s
Cf (s,t)
−→ t and set Cf (s, t) = W i

ln(u, v)
10 for u → v ∈ E such that K(u, v) 6 1, where u 6= v do

11 Add two edges to Ef : u
Cf (u,v)
−→ v and v

Cf (v,u)
−→ u

12 if K(u, v) = 0 then
13 Set Cf (u, v) = W i

ln(u, v) and Cf (v, u) = ∞
14 else // K(u, v) = 1
15 Set Cf (u, v) = W i

ln(u, v) and Cf (v, u) = 0
16 for u → v ∈ CA(Gi

ln) do

17 Add s
Cf (s,v)
−→ v and u

Cf (u,t)
−→ t to Ef and set Cf (s, v) = Cf (u, t) = W i

ln(u, v)
18 for u → v ∈ CB(Gi

ln) do

19 Add s
Cf (s,u)
−→ u and v

Cf (v,t)
−→ t to Ef and set Cf (s, u) = Cf (v, t) = W i

ln(u, v)

20 Let u1 → v1, . . . , u|CAB(Gi
ln)| → v|CAB(Gi

ln)| be all edges in CAB(Gi
ln)

21 for (X1, . . . , X|CAB(Gi
ln)|) ∈ {A, B}|CAB(Gi

ln)| do

22 Let Gi
u1−→

X1
v1,...,u

|CAB(Gi
ln

)|
−→

X
|CAB(Gi

ln
)|

v
|CAB(Gi

ln
)|

be initialized with Gf and then

augmented with every ui → vi being Xi-duplicated
23 F li ∪= {Gi

u1−→
X1

v1,...,u
|CAB(Gi

ln
)|

−→
X

|CAB(Gi
ln

)|

v
|CAB(Gi

ln
)|
}

24 F =
⋃

06i6Nreg
F li

25 return F

Figure 10: Constructing F from Gln when D = Dmem ∪ Dreg.
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Figure 11: An illustration of LRT. In (a) – (c) G0
ln, G1

ln and G2
ln derived from G in Figure 3 are

shown. In (d), a flow network in F l1 with 8 → 2 A-duplicated and 4 → 6 B-duplicated is given.
The minimum cut shown by a dashed line represents the optimal solution found by LRT.

In terms of its worst-case time complexity, LRT is seemingly more expensive than LRTmem.
The worst-case time complexity of finding a minimum cut on G = (V, E, Q, K, W ) remains to
be O(|V |2 ×

√
|E|). Since there can be at most |F| = 2|CAB(G)| × (Nreg + 1) flow networks, the

worst-case time complexity of LRT is O(|V |2 ×
√
|E| × 2|CAB(G)| × (Nreg + 1)). As discussed in

Section 3.2, the weights of register dependences in a loop are often small. Nreg can be made smaller
if the register dependences with small weights are ignored in line 2 of Cons FN. In addition, there
are typically only a few different weight values for the remaining register dependences. Therefore,
Nreg is often very small in practice. When Nreg is relatively large in some pathological cases, we
can always bound it from above to a certain value by rounding off register dependence weights.
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In our motivating example with its Gln shown in Figure 8(a), there are nine register dependences
with two distinct weights. Therefore, l0 = 0, l1 = 0.29 and l2 = 0.47. Figure 11 shows the
three graphs, G0

ln, G1
ln and G2

ln, built in line 5 of Cons FN from Gln. Let us consider G1
ln

constructed for l1. The weights of 2 → 3, 3 → 4, 6 → 7 and 7 → 8 in G1
ln are all ∞ since

Wln(2, 3) = Wln(3, 4) = Wln(6, 7) = Wln(7, 8) = 0.47 > 0.29 = l1. As a result, these four
edges cannot be cut edges for all flow networks in F l1 by construction. The weights of the other
five register dependences are 0 in G1

ln. By applying lines 6 – 23 of Cons FN to G1
ln, we have

obtained a flow network G1
8−→

A
2,4−→

B
6 with 8 → 2 A-duplicated and 4 → 6 B-duplicated, shown in

Figure 11(d). The flow edge S
0.29
−→ T added in line 7 ensures that weight of Dmax

reg is also included
in the capacity of any cut. The optimal solution returned by LRT is found on G1

8−→
A

2,4−→
B

6. The

optimal loop recreation {Vtop, Vbot} ={{1, 2, 3, 4}, {5, 6, 7, 8}}happens to be same as the one found
in Figure 8(b). This transformation is illustrated earlier in Figure 2(e).

5. Evaluation Methodology

We first discuss our implementation of loop recreation in the SUIF/MachSUIF compilation
framework. We then describe the benchmarks and simulator used for evaluating our work. Finally,
we discuss the two TLS-based loop parallelization methods against which LRT is compared.

5.1. Loop Recreation Implementation

Loop recreation is implemented in the SUIF/MachSUIF compilation framework as illustrated in
Figure 12. A program is first converted into the SUIF IR by the SUIF frontend. The SUIF IR
is then converted into the MachSUIF IR. Several MachSUIF passes such as register allocation
can be applied on the MachSUIF IR. Finally, the MachSUIF backend is used to generate the
threaded alpha assembly code, which is fed to a cycle-accurate simulator. Our loop recreation is
implemented in the three new modules that are highlighted in gray.

Our three new modules all operate on the MachSUIF IR. The dependence analysis module
builds the DDG for a loop. The MachSUIF IR is not in SSA form. So both anti and output
intra-iteration dependences are included in the DDG. The data dependences for scalars are found
using the standard def-use information. The dependences for memory variables such as arrays
and pointers are analyzed in the SUIF IR and passed to the MachSUIF IR. The “probability” of
a synchronized register dependence is calculated as described in Section 3.3. The “probability” of
a memory dependence is obtained by the profiling module. Our loop recreation module reads the
MachSUIF IR of a loop and produces the parallelized code in the form of MachSUIF IR.

In our implementation, the loop recreation pass is invoked just before MachSUIF’s register
allocation pass. All virtual registers in the MachSUIF IR are candidates for synchronization. All
spilled scalars may be synchronized as described in [18] or speculated as memory variables. For
all the applications used in our experiments, no spilling has occurred. Loop recreation can also be
invoked after MachSUIF’s register allocation pass. But some anti- and output intra-dependences
artificially introduced on physical registers may reduce some loop recreation opportunities.
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Figure 12: A compilation framework for loop recreation.

5.2. Benchmarks

We examine nine irregular applications to evaluate our work, two benchmarks from [26], two
kernel loops from SPEC benchmarks, and five benchmarks from the SparseBench suite.
Irreg and Nbf are from [26]. Irreg is a representative of iterative PDE solvers found in

computational fluid dynamics (CFD) applications. In such applications, unstructured meshes are
used to model physical structures. The computation kernel is a two-deep nest, where the outer
loop is a time loop and the inner loop is parallelized. Nbf is a widely used kernel abstracted
from the GROMOS molecular dynamics code. It computes a force between two modules and
applied to their velocities. The computation kernel is a three-deep nest, where the outermost
loop is a time loop and the middle loop enumerates all the atoms available. Its innermost loop is
parallelized. For these two benchmarks, the input graphs used to collect profiling information (i.e.,
the probabilities of memory dependences) are different from the input graphs used in simulation.
For Irreg, an input graph with 131072 nodes and 3538944 edges is used in simulation. About 1
billion instructions are simulated after about 5 billion instructions have been fast-forwarded. For
Nbf, an input graph with 87808 nodes and 2370816 edges is used in simulations. About 1 billion
instructions are simulated after about 3 billion instructions have been skipped.
Wave5 and Fma3d are two kernel loops from SPEC95 and SPEC2000 benchmarks, respectively.

Wave5 solves Maxwell’s equations and particle equations of motion on a Cartesian mesh with
a variety of field and particle boundary conditions. We have selected loop 120 in subroutine
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parmvr and will refer to it as Wave5-120 from now on. To model the fact that there are tens
of thousands of calls to parmvr, an outer loop with an iteration count of 4000 is added for this
kernel loop. Fma3d is a 3D inelastic, transient dynamic response simulation code based on finite
element analysis. The loop selected, named Fma3d-NUMP4, is the one with the upper bound NUMP4

in subroutine SCATTER ELEMENT NODAL FORCE PLATD, which has 721 invocations. The inner loop,
which has eight iterations, are fully unrolled. To simulate these many subroutine invocations, an
outer loop with an iteration count of 20 has been added. For these two SPEC benchmark loops,
the train inputs are used to collect profiling information while the reference inputs are used in
simulations. Wave5a-120 and Fma3d-NUMP4 are simulated for about 0.5 billion instructions each
after 12 and 15 million instructions have been skipped, respectively.

Bulkgmres, Classical-gs, Reference, Naive-ilu and Long-vector are taken from
SparseBench [1]. SparseBench is a benchmark suite of iterative solvers for sparse linear systems
used in numerical analysis. SparseBench comes with several different matrix storage formats,
preconditioners and iterative methods. All our Sparsebench benchmarks use the Diagonal storage
format, the ILU preconditioner, and two iterative methods for sparse systems of linear equations:
the GMRES (Generalized Minimum Residual) method and the CG (Conjugate Gradients)
method. Reference is the reference code. Naive-ilu is similar to Reference except that a naive
coding for a regular ILU solver is used. Long-vector provides a contiguous storage of diagonals
in regular storage (a generalization of diagonal storage). In these three benchmarks, the CG
method is employed. On the other hand, Bulkgmres and Classical-gs use the GMRES method
with different GMRES orthogonalization algorithms: the former uses QR factorization after
building a Krylov subspace while the latter uses the classical Gram-Schmidt orthogonalization.
The parallelized loops reside in the preconditioners of these benchmarks. For all five benchmarks,
a 403 × 403 matrix is used in simulations and a 383 × 383 matrix is used to collect profiling
information. All SparseBench benchmarks are simulated for about 100 million instructions after
about 2.2 billion instructions have been skipped initially.

Note that all the loops being parallelized except those in Naive-ilu have one single basic
block each. Therefore, existing whole-program techniques such as [11, 22] will parallelize them
by mapping their loop iterations directly into threads as Par does. Naive-ilu consists of four
control-intensive loops. Existing whole-program techniques may parallelize it as Par does due to
the high dependence probability between adjacent loop iterations or in the same way as LRT
does if they use the cost model introduced in this work for LRT. Once again, value prediction
is ineffective for all these applications since memory accesses are made mostly via subscripted
subscripts and there are no obvious patterns among the values accessed. Furthermore, in each
loop nest being parallelized, no DOALL loops are found.

Note that for all simulations in this work, each program is run for the same set of (consecutive)
iterations of the threaded loops generated by three different methods, LRT, Par and SPT, as
discussed in Section 5.3. As a result, a fair comparison for their performance results can be made.

5.3. Methods Compared

We evaluate the performance improvements of LRT over two methods, Par and SPT as described
in Section 1. We will also give the speedups of LRT over sequential programs (denoted by Non).
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Table I. Configuration of SpMT architecture.

Parameter Value

Fetch, Issue, Commit bandwidth 4, out-of-order issue
LD/ST queue 32/32
Function Units 4 int, 2 fp, 1 branch
Branch Prediction 2K BTB, mispred. penalty 11 cycles
L1 I-Cache 16KB, 4-way, 1 cycle (hit)
L1 D-Cache 16KB, 4-way, 3 cycles (hit)
MDT [14] 16KB, 4-way, 2 cycles (L1 to MDT)
L2 Cache (shared) 1MB, 4-way, 12 cycles (hit), 80 cycles (miss)
Local Register File 1 cycle
Interconnect Latency 3 cycles
Spawn Overhead 5 cycles
Squash Overhead 15 cycles

For Par and LRT, the pre-fork region of a parallelized loop serves only to compute the value of
the loop variable for the successor thread. On the other hand, SPT may keep more instructions
in the pre-fork region to further reduce misspeculation penalties as described in [7].

In our simulation of SPT, full rather than partial re-execution is used. in [7], SPT is guided by
a misspeculation cost model to parallelize a given loop. In particular, the ratio of pre-fork/post-
fork is a user-controlled rather than compiler-determined parameter. In our experiments, the best
solutions it could ideally generate for all nine programs are experimentally found and used. For
Irreg, Nbf, Bulkgmres, Classical-gs, Reference, Naive-ilu and Long-vector, SPT generates
the same parallelized loops as Par. In each case, the pre-fork region serves only to compute
the value of loop variable for the successor thread. Therefore, the results for SPT and Par as
depicted in Figures 13 and 15(c) – (i) are identical. For Wave5-120, there are six sections of code
exhibiting the same dependence patterns as those in our motivating example (given in Figure 2).
SPT achieves the best result when the ratio of pre-fork/post-fork is 1/5, in which case about half
of a code section in two of the six sections are moved into the pre-fork region. For Fma3d-NUMP4,
the number of code sections with similar dependence patterns as those in the motivating example
is 12. The four of these code sections end up each being split evenly in the pre-fork and post-fork
regions. So the ratio of pre-fork/post-fork also happens to be 1/5.

5.4. SpMT Architecture Simulated

We consider a multicore SpMT system where all cores are connected through a unidirectional
ring-type network. Each core has its private function units, register file, L1 instruction data and
L1 data cache. All the cores share a common L2 unified cache. Each core is capable of executing
the Alpha ISA with the main parameters of the architecture listed in Table I.

The register dependences are synchronized by asynchronous communication through the ring
bus between two cores as in Voltron’s queue model [33]. As in Section 2, a pair of post and
wait instructions is inserted by the compiler to communicate a register value defined in the
post-fork region between adjacent cores. The interconnect latency is 3 cycles: 1 for post, 1 per
hop to transmit the value and 1 for wait. The fork instruction uses the same queue model for
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forwarding inter-iteration register values. A latency of 5 cycles for “Spawn Overhead” is assumed
for the spawning of a thread. This suffices for LRT and Par since fork forwards only the value of
the loop variable to the successor core but may be an underestimate for SPT for some loops.

In our simulator (developed based on SimpleScalar), we detect misspeculated dependences using
the memory disambiguation table (MDT) [14], which sits between the L1 data cache and L2
cache. When there is a memory-based data dependence violation, MDT will detect the violation
and notify the misspeculated thread to be squashed. The latency for accomplishing this is 15
cycles as given in Table I, including the time on sending a squash signal to the misspeculated
thread, the time on flushing its speculative writes and related entries in the MDT, the time on
squashing all more speculative threads, and the time on restoring the machine state for thread
re-execution (with some of these being done in parallel). When a thread commits, any dirty line
that has not been displaced from the corresponding private L1 cache is flushed. So the commit
overhead includes the overhead for updating the system state and writing such lines to the L2
cache.

Before a loop is executed, the registers holding all live-in values for the loop are copied to all
cores. This happens only once for a loop since the inter-iteration register dependences in a loop
are synchronized. The time spent on this single copy operation associated with a loop is negligible
compared to the total execution time of the loop.

6. Experimental Results

We first compare all methods by presenting some static and dynamic statistics about our
benchmarks. We then demonstrate and analyze the performance advantages of LRT over Par and
SPT under two squash mechanisms described in Section 2. The performance results are obtained
and compared on two-, four-, six- and eight-core systems. In the figures presented below, L stands
for LRT, P for Par, S for SPT, N for Non, EA for “Eager Squash”, and LA for “Lazy Squash”.

6.1. Benchmark Statistics

6.1.1. Compiler-Time Statistics

Table II presents some compile-time statistics about the nine benchmarks used in our experiments.
Columns 2 – 5 are concerned with the time complexity of LRT while Columns 6 – 9 compare
all the methods in terms of their misspeculation probabilities. As expected, Nreg is small for
all nine benchmarks. For Irreg, Nbf, Bulkgmres, Classical-gs, Reference, Naive-ilu, and
Long-vector, CAB(G) is empty. So the numbers of flow networks built for each of these seven
benchmarks is no larger than Nreg + 1 = 4. For Wave5-120 and Fma3d-NUMP4, the number of flow
networks built by LRT is 12288 each. However, by applying the pruning strategy discussed in
Sections 4.1.4 and 4.2, LRT is efficient in finding the optimal solution in each case. The compile
times by LRT for Wave5-120, Fma3d-NUMP4, Irreg, Nbf, Bulkgmres, Classical-gs, Reference,
Naive-ilu, and Long-vector are 54.93, 33.25, 1.71, 1.83, 7.04, 7.02, 7.03, 3.26 and 7.02 msecs,
respectively. So our algorithm is efficient for handling loops in real applications.

According to Columns 6 – 9, the misspeculation probabilities P(D) of the original loops in the
nine benchmarks are high. While Par never changes P(D), SPT is effective only for Wave5-120.
On the other hand, LRT has significantly reduced P(D) for each benchmark. To get a feel about
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Table II. Compile-time statistics for benchmarks.

Benchmark #Nodes #Edges |CAB(G)| Nreg
P(D) P(D̂)

Non LRT SPT Par

Wave5-120 796 1572 12 2 0.82 0.05 0.76 0.82
Fmda3d 868 1864 12 2 0.99 0.00 0.99 0.99

Irreg 85 173 0 2 0.85 0.19 0.85 0.85
Nbf 80 189 0 2 0.87 0.04 0.87 0.87

Bulkgmres 178 610 0 3 1 0.28 1 1
Classical-gs 178 610 0 3 1 0.28 1 1
Reference 178 610 0 3 1 0.28 1 1
Naive-ilu 89 223 0 3 0.97 0.33 0.97 0.97

Long-vector 175 605 0 3 1 0.27 1 1

the optimal loop partitions found for the nine benchmarks, the size of Gtop (relative to that of a
single iteration) is 47% for Wave5-120, 67% for Fma3d-NUMP4, 28% for Irreg, 11% for Nbf, 76%
for Bulkgmres, 76% for Classical-gs, 76% for Reference, 81% for Naive-ilu, and 76% for
Long-vector.

6.1.2. Runtime Statistics

Figure 13 compares the thread squash ratios of a program parallelized by LRT, Par and SPT under
the LA and EA squash mechanisms. The squash ratio of a program is referred to as the percentage
of the number of squashed threads over the total number of spawned threads. In each benchmark,
a thread is squashed mainly due to data dependence violations. However, some threads are also
squashed when the back edge of a parallelized loop is violated, which is the only form of control
dependence violations in this work.

6.1.2.1. Misspeculation As mentioned in Section 5.3, the pre-fork region of a loop parallelized
by LRT and Par serves only to compute the value of its loop variable for the successor thread. So
the squash ratio difference between LRT and Par represents a rough estimate of the misspeculation
possibility dynamically reduced by LRT for the loop. This degree of runtime reduction is consistent
with the misspeculation possibility statically reduced by LRT for the loop given in Table II.

The parallelized loops for Fma3d-NUMP4, Irreg, Nbf, Bulkgmres, Classical-gs, Reference,
Naive-ilu, and Long-vector by LRT are free of inter-thread memory dependences. Thus, LRT has
the smallest squash ratio among all methods compared under either squash scheme. In addition,
its squash ratios (due to mainly control misspeculations) are relatively small in all programs. The
largest LRT squash ratio are in Nbf, which attracts a squash ratio of 4% with two cores and
of 20% when eight cores are used. These squashes are caused by control misspeculations since
the iteration count of the parallelized loop, which is nested inside two other loops, is small. In
general, Par suffers the highest squash ratios for all programs in all configurations. Note that Par
and SPT have parallelized Nbf, Irreg, Bulkgmres, Classical-gs, Reference, Naive-ilu, and
Long-vector in exactly the same way, as explained earlier.
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Figure 13: Misspeculation penalties of LRT, Par and SPT.

6.1.2.2. Synchronization Initially, all sequential loops in our benchmarks are free of inter-
iteration register dependences. Therefore, there are no synchronized register dependences in the
parallelized loops generated by Par and SPT. So these two algorithms need not to be analyzed.

In all the nine benchmarks except Fma3d-NUMP4, LRT has transformed some intra-iteration
register dependences into inter-iteration register dependences. Figure 14 shows the synchronization
costs incurred by LRT. Fma3d-NUMP4 is synchronization-free. The synchronization costs in
Wave5-120, Irreg and Nbf are small, representing less than 4.3% of their total execution
times. In the remaining five benchmarks, Bulkgmres, Classical-gs, Reference, Naive-ilu

and Long-vector, relatively larger synchronization costs are observed. In each of these five
benchmarks, LRT has introduced an inter-iteration register dependence with a relatively large
weight (indicating the desired synchronization delay) in order to avoid speculating some inter-
iteration memory dependences in the original loop that always or nearly always happen. Despite
the large synchronization costs incurred in these five benchmarks, LRT outperforms Par and SPT
as discussed shortly below due to the excessive misspeculation overhead successfully eliminated
by LRT (Figure 13). These results show that the optimal solution found by LRT for a program
tends to minimize the total synchronization and speculation overhead for the program.

The results under both squash schemes are similar for LRT due to similar misspeculation
statistics observed.
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Figure 14: Per-thread synchronization penalties for LRT.

6.2. Speedups and Analysis

6.2.1. Speedups

Figure 15 compares all the methods in terms of their performance results. All the execution times
are normalized with respect to LRT. So the execution time for a particular method represents
the speedup of LRT over that method. As a result, when comparing the execution time bars of a
pair of methods in a configuration, the method with a lower bar generates faster code and is thus
better than the other method.

First of all, we observe that LRT improves scalably the execution time of every sequential
program. Note that the performance improvements (of LRT over Non) under both squash
mechanisms are nearly the same. Thus, the normalized execution times presented in Figure 15
happen to also allow us to find out how well a particular method works for a program under the
two different squash mechanisms.

Next, let us take a look at the performance improvements of LRT over Par. For every benchmark,
the speedup of LRT over Par under each squash scheme generally increases as the number of cores
increases. In general, Par performs better under EA than under LA. In the case of Wave5-120 and
Fma3d-NUMP4, Par has almost degenerated into Non. In the case of Bulkgmres, Classical-gs,
Reference, Naive-ilu and Long-vector, the dependences that cause most misspeculations are
located at the end of each parallelized loop. Therefore, the Par results under EA and LA are nearly
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Figure 15: Normalized execution times (with respect to LRT).

the same for these five benchmarks. However even when EA is assumed, LRT outperforms Par in
nearly all configurations. The speedups of LRT over Par on an eight-core system for Wave5-120,
Fma3d-NUMP4. Irreg, Nbf, Bulkgmres, Classical-gs, Reference, Naive-ilu and Long-vector

are 1.68, 1.59, 3.69, 3.55, 1.21, 1.18, 1.17, 1.06 and 1.32, respectively. Due to cache effects (as
explained in Section 6.2.2), some slight performance slowdowns are observed when Fma3d-NUMP4

is run on two- and four-core systems.
Finally, let us examine the performance improvements of LRT over SPT. SPT achieves nearly

the same results for all the nine programs except Nbf under both squash mechanisms. When LA
is used, the speedups of LRT over SPT on an eight-core system for Wave5-120, Fma3d-NUMP4,
Irreg, Nbf, Bulkgmres, Classical-gs, Reference, Naive-ilu and Long-vector are 1.70, 1.59,
3.74, 3.88, 1.21, 1.18, 1.17, 1.06 and 1.32 respectively. If EA is used instead, these numbers
become 1.54, 1.59, 3.69, 3.55, 1.21, 1.18, 1.17, 1.06 and 1.32, respectively. Again, due to cache
effects, some slight performance slowdowns are observed when Fma3d-NUMP4 is run on two- and
four-core systems.
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Figure 16: L1 data cache misses of Fma3d-NUMP4.

6.2.2. Cache Effects

When Fma3d-MUMP4 is run on two- and four-core systems, LRT performs equally as or slightly
worse than Par under EA and than SPT under both LA and EA. As mentioned in Section 5.2, the
Fma3d-MUMP4 loop is parallelized only after its eight-iteration inner loop has been fully unrolled.
This creates possibly accesses to all fields of eight different structure elements of an array, named
FORCE. In contrast with Par and SPT, LRT forms a new loop iteration from the instructions in
two adjacent iterations in the Fma3d-MUMP4 loop. As a result, LRT has happened to decrease the
amount of spatial reuse among these accesses in the L1 data cache private to each core. The
performance slowdowns of LRT in two- and four-core cases are due to increased L1 data cache
misses shown in Figure 16. As the number of cores increases, LRT outperforms Par and SPT
since the more parallelism exposed by LRT has significantly more than offset the cache effects.
The lack of sufficient cores makes it difficult to harness the amount of parallelism exposed by
our loop recreation technique, as indicated in Figure 14. We have verified that LRT will slightly
outperform Par and SPT if the extra L1 cache misses had not occurred in the two- and four-core
configurations.

6.2.3. Eager Squashes vs Lazy Squashes

Now, let us examine the impact of two squash mechanisms on the performance of all nine
benchmarks in Figure 15. Let us consider Wave5-120 first. Recall that its loop body can be divided
into six sections with each sharing the same dependence characteristics as the motivating loop
given in Figure 2(b). LRT has parallelized each section as shown in Figure 2(e). As a result, LRT
performs similarly under both squash mechanisms since misspeculations are infrequent (as shown
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in Figure 13). This fact can be deduced in Figure 15, where the two N bars in each configuration
have the same height (up to two decimal points). In the case of Par, the loop body of its parallelized
loop consists of a frequently occurring memory dependence in each of its six above-mentioned code
sections (as illustrated in Figure 2(c)). Therefore, Par suffers frequent misspeculations under LA
(as shown in Figure 13) to the extent that the threads are nearly sequentialized (as shown in
Figure 15). From Figure 13, we can see that by squashing misspeculated threads earlier for
Wave5-120 under EA, the squash ratio has been reduced in the two-core case but suffers a
slight increase when eight cores are used. In either case, by squashing misspeculated threads
and restarting them earlier, more parallelism can be attained. The parallelized Wave5-120 from
Par runs 1.97 (3.95) faster under EA than under LA in the two-core (eight-core) configuration.
In the case of SPT, the ratio of pre-fork/post-fork is 1/5. Due to this delay in spawning threads,
speculated memory dependences behave similarly in both squash schemes. So the performance
variations in both cases are small.

The situation for Fma3d-NUMP4 is similar to that for Wave5-120.

For Irreg and Nbf, LRT behaves identically under both squash schemes since its parallelized
loops for both programs are free of inter-thread memory dependences. Both Par and SPT generate
the same parallelized code. So their performance results for each program are identical. Let us
examine Par. The dependence violations for Irreg usually happen at the end of a loop iteration. So
small performance variations are observed under both squash schemes. The dependence violations
for Nbf happen slightly earlier in a loop iteration. As a result, Par performs better under EA than
under LA for Nbf. The performance results for Bulkgmres, Classical-gs, Reference, Naive-ilu
and Long-vector are similar to that for Irreg.

7. Related Work

Loop recreation works on any architecture that provides hardware support for speculative
multithreading (SpMT). Therefore, we will review only some compiler techniques related to
this work. The seminal work known as Multiscalar on SpMT started more than one decade [8].
Since then, a large amount of research work has been done to exploit parallelism from sequential
programs. We first review loop-oriented speculative parallelization techniques and then general-
purpose ones. To the best of our knowledge, most existing loop-oriented techniques such as
[7, 24, 25, 30, 32, 31, 34] turn loop iterations into different speculative threads. For SpMT
systems that support value synchronization, frequently occurring dependences are synchronized
[24, 32, 31]. The post and wait instructions associated with a synchronized dependence are
moved as close as possible. As a result, the time for communicating the required values can be
reduced. In this work, we have adopted the technique described in [32] to insert the post and
wait instructions required for synchronized register dependences.

Loop transformations and optimizations may be applied to uncover the loop-level parallelism
hindered by some inter-iteration dependences. The SPT compiler [7] attempts to pre-compute
some inter-iteration dependences by moving the producer instructions of the dependences into
the pre-fork region (subject to their cost model), thereby reducing squashes caused by frequently
occurring inter-thread dependences. In [34], some loop transformations such as loop fission are
employed to remove, isolate or pre-compute the inter-iteration dependences that are likely to be
misspeculated. In [24, 31], the researchers optimize speculative threads by move the instructions
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associated with a frequently occurring inter-iteration dependence as close as possible. However,
all these transformations and optimizations do not attempt to alter the nature of a dependence.
This means that whether a dependence is an intra- or inter-iteration dependence is not changed.

The work of [28] (Speculative DSWP) represents a different way to extract threads from loops.
It pipelines one single loop iteration across multiple cores so that same code slice of all loop
iterations (a pipeline stage) forms a long-running thread. Misspeculated long-running threads are
rolled back by means of checkpointing and versioned memory. Hence, load balance is crucial for
their technique. By allowing a pipeline stage itself to be parallelized, their later work [23] alleviates
part of the load balancing problem for non-speculative parallelization. In [4], an extension of
their parallel-stage DSWP to SpMT is briefly mentioned, but the required hardware support
on misspeculation detection and recovery is much more complicated than that introduced in
[28]. Sequential and parallel stages have to be handled differently due to the acyclic dependences
assumed among the sequential stages and the round-robin distribution of the instances of a parallel
stage. Furthermore, parallel stages may need to be grouped together if more than one stage is
parallelized. Note that LRT can also be used to improve the speculative parallelism inherent in
their parallel stages if they are allowed to be speculatively parallelized. In general, as mentioned
earlier, LRT is typically used as a prepass or postpast to further improve such existing TLS
techniques.

Some general-purpose compiler techniques [3, 11, 22, 29, 16, 13] can walk through the CFG of
a program and form threads at the boundaries of control flow edges. Let us examine how loops
are handled. The earlier algorithm used in the Multiscalar project [29] forms threads only at
loop boundaries. The follow-up work [3, 16, 13] may allow large loop iterations to be sliced into
multiple threads but loop boundaries remain to be thread boundaries. The Mitosis compiler [22]
and the work [11] may turn some basic blocks in a loop into a thread. But they are not designed
to specifically maximize the speculative parallelism in loops. For instance, when a loop has one
single basic block, they will still restrict threads to loop boundaries.

Both loop-oriented or general-purposed speculative parallelization techniques may be
augmented by some TLS enhancement techniques. Value prediction techniques [7, 22, 16, 13] are
used to predicate some live-in values for a thread to reduce misspeculation penalties. For example,
once a thread is created, the Mitosis compiler [22] will generate a piece of code (called P-slice)
to predict the live-in values for each speculative thread. P-slices are not necessarily part of the
original program and the values they produce do not have to be correct. However, these techniques
may not be effective for irregular applications accessing arrays via pointers and indirection arrays.

Helper threads [6, 15, 17, 35] are used to speculatively execute of a code region to prefetch
some expensive instructions (i.e. instructions with large latency value) in the region. A helper
thread for a loop may be formed from any of its instructions in any order since the helper thread
does not have to be concerned with program correctness. However, as a loop transformation, loop
recreation is correctness-preserving.

8. Conclusion

The development of speculative parallelization techniques for improving the performance of
sequential programs is very challenging. In this paper, we present a new compiler technique,
called loop recreation, for restructuring a loop into a prologue, a kernel loop, an epilogue so that
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the kernel can yield higher speculative loop-level parallelism than the original loop on SpMT
architectures. We present an algorithm for finding an optimal loop recreation transformation
with respect to a simple cost model. We demonstrate significant performance advantages of loop
recreation over some recent techniques using nine representative irregular applications. Our work
is orthogonal to many existing TLS techniques and can thus be implemented as a prepass or
postpass to enhance these existing techniques.
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APPENDIX A. Optimality of LRTmem

Lemma 3. Let Gf = (Vf , Ef , Cf ) ∈ F . If {Vtop, Vbot} is a legal loop recreation for G, then
(Vtop ∪ {s}, Vbot ∪ {t}) is a s-t cut that is free of ∞-weighted cut edges in Gf , and conversely.

Proof. By Lemma 1, Gf is constructed so that if u → v is an intra-iteration dependence in G (or
equivalently in Gln), Cf (v, u) = ∞ (line 8). Hence, “=⇒” holds. To prove “⇐=”, we note further
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that no s-t cut (S, T ) in Gf that is free of ∞-weighted cut edges can include v → u as a cut edge.
In other words, u → v 6∈ (T, S) holds. Hence, {S \ {s}, T \ {t}} is legal for G. 2

Theorem 1. In LRTmem, {Sopt \ {s}, Topt \ {t}} returned by Process FN is optimal.

Proof. LRTmem is developed under the assumption that D = Dmem. Due to (5) and Lemma 3,
finding an optimal loop recreation in G amounts to solving min-cut problems for the flow networks
in F . Let Gf ∈ F a flow network. Let G′

f be defined in line 3 of Process FN. It suffices to show
that no inter-iteration dependence has had its weight counted more than once in (Sopt, Topt),
which is the minimum cut found, say, in Gopt ∈ F . Assume to the contrary that there exists a
dependence, u → v, that is multiply counted, which must happen as shown in Figure 6(a.4) or
(b.4). For reasons of symmetry, let us assume the former is the case. Then (Sopt, Topt) must
include both s → v and u → t. Let G′

opt ∈ F be another flow network that is the same as
Gopt except that u → v is duplicated as shown in Figure 6(b.4). Then (S′

opt, T
′
opt), which is

derived from (Sopt, Topt) with its s → v and u → t removed and u → v added, must be an s-
t cut as illustrated in Figure 6(b.3). This implies that (S′

opt, T
′
opt) has a smaller capacity than

(Sopt, Topt), i.e., CAP(S′
opt, T

′
opt) < CAP(Sopt, Topt) since the weight of every duplicated edge

is positive by Definition 3. A contradiction has been reached. Therefore, The loop recreation
{Sopt \ {s}, Topt \ {t}} returned by Process FN is optimal. 2

APPENDIX B. Optimality of LRT

Theorem 2. In LRT, {Sopt \ {s}, Topt \ {t}} returned by Process FN is optimal.

Proof. Applying Lemma 1 and proceeding exactly as in the proof of Theorem 1, we find that every
memory dependence in D̂mem has exactly one copy in (Sopt, Topt). Let (Sopt, Topt) be a minimum cut
found in a flow network contained in F li . It suffices to show that li is the smallest synchronization
delay incurred. Assume to contrary that there exists another minimum cut (S′

opt, T
′
opt) in some

F lj satisfying CAP(S′
opt, T

′
opt) < CAP(Sopt, Topt) such that lj < li. If this were the case, then

(S′
opt, T

′
opt) would have been returned as the optimal solution by Process FN. 2
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