
ACCULOCK: Accurate and Efficient Detection of Data Races

Xinwei Xie12, Jingling Xue1∗, Jie Zhang3

1 Programming Languages and Compilers Group, School of Computer Science and Engineering,
University of New South Wales, NSW, Australia 2052

2 School of Computer Science, National University of Defense Technology Changsha, Hunan 410073, China
3 College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China

SUMMARY

This paper introduces a new dynamic data race detector, ACCULOCK, to detect data races in Java programs.
ACCULOCK is the first hybrid detector that combines lockset andepoch-basedhappens-before for race
detection. ACCULOCK analyzes a program execution by reasoning about the subset of the happens-before
relation observed with lock acquires and releases excluded, thereby making it less sensitive to thread
interleaving than pure happens-before detectors. When this relaxed happens-before relation is violated,
ACCULOCK applies a new lockset algorithm to verify the locking discipline by distinguishing reads
and writes, thereby making it more immune to false positivesthan pure lockset detectors. In addition,
ACCULOCK is designed to achieve these design objectives by maintaining comparable instrumentation
overheads (in both time and space) as FASTTRACK, the fastest happens-before detector available (at least
for Java programs). All these properties of ACCULOCK have been validated and confirmed by comparing
it against FASTTRACK and five other (pure happens-before, pure lockset or hybrid)detectors, which are
implemented in Jikes RVM using a collection of large benchmark programs from a variety of applications.
Furthermore, porting ACCULOCK and FASTTRACK to a different platform, RoadRunner, and repeating our
experiments yields similar observations in terms of their effectiveness in race detection and instrumentation
overheads. Copyrightc© 2011 John Wiley & Sons, Ltd.

KEY WORDS: data races, happens before, lockset, dynamic analysis

1. INTRODUCTION

Multithreading has become a common programming technique due to the widespread adoption of
multicore processors. However, reasoning about the behaviour and correctness of multithreaded
programs is notoriously difficult due to non-deterministic thread interleaving.Concurrent accesses
to shared data must be synchronized properly; otherwise concurrenterrors will unavoidably emerge.
A data raceoccurs in a multithreaded program when at least two different threads access the same
memory location without an ordering constraint enforced between the accesses, such that at least
one of the accesses is a write [1]. Data races themselves are not necessarily errors; but they often
introduce serious hard-to-find, crash-causing concurrency-related software defects. Therefore, tools
for automatic detection of data races are invaluable. Ultimately, data races should be detected with a
range of tools used in stages, including both static and dynamic detectors. Static analysis techniques
can be made (statically) sound [2, 3, 4, 5, 6, 7] but the resulting solutions are imprecise (by producing
many false positives). In contrast, dynamic analysis techniques [8, 9, 10, 11, 12, 13, 14, 15, 16]
produce false negatives but can be precise or imprecise.

∗Correspondence to: Programming Languages and Compilers Group,School of Computer Science and Engineering,
University of New South Wales, NSW, Australia 2052
†Email: jingling@cse.unsw.edu.au

1

Dynamic race detection comes in three flavours: (pure) happens-before, (pure) locksetand
some hybrid of both approaches. Happens-before race detection tracks the happens-before relation
[17], a causal relationship induced by program order and synchronization order during a program
execution. Earlier examples include TRADE [14] and DJIT+ [18]. Happens-before race detection is
sensitive to thread interleaving as it is dynamically sound and precise for one particular execution
only, As a result, happens-before detectors report allreal (or actual) raceswith no false positives
in the underlying thread interleaving revealed by one particular test run but may miss races despite
repeated test runs. Lockset race detection, as exemplified by ERASER [9], analyzes a program by
verifying the locking discipline and reports apotential raceif two threads access a shared memory
location without holding a common lock. A race thus flagged is said to be potentialas it may or may
not feasibly occur in a program execution. By ignoring the ordering of events during a test run, not
only can ERASER find real races that occur in its underlying thread interleaving, it can alsoreport
potential data racescorresponding to other test runs, some of which can be identified to be real
races by some further analysis. Thus, lockset detectors are less insensitive to thread interleaving but
can be imprecise when many potential races reported turn out to be false positives.

Traditionally, vector clocks (VCs) have been used to represent the happens-before relation. As
a result, VC-based happens-before detectors run more slowly than lockset detectors. Recently,
FASTTRACK [12] has reduced most VC-based operations fromO(n) toO(1), wheren is the number
of threads, i.e., size of a vector clock, by using scalar clocks calledepochswhenever possible.
In their implementation [12], FASTTRACK achieves about the same performance as ERASER.
Therefore, FASTTRACK has improved the performance of VC-based happens-before detectors but
still retained their precision and sensitivity to thread interleaving. In contrast, ERASER is less
sensitive to thread interleaving but suffers from reporting excessively high false positives.

In this paper, we introduce a new dynamic race detector, ACCULOCK, to detect data races in
Java programs. ACCULOCK is a hybrid detector that hunts for data races by combining lockset
and happens-before. ACCULOCK will report all real races reported by FASTTRACK in a program
execution as well as some potential races that may be real races in some other program executions.
There are already some hybrid detectors reported, including MULTI RACE [18], HYBRID [19]
and RACETRACK [10]. However, these earlier attempts are all VC-based, suffering from either
excessive analysis overhead as in MULTI RACE and HYBRID or precision loss as in RACETRACK,
as confirmed by their authors, evaluated in Section4 and further discussed in Section6. Unlike these
existing hybrids, ACCULOCK combines a new lockset analysis with an epoch-based happens-before
analysis in a novel way, enabling it to strike a better balance between precision and coverage at
comparable performance as FASTTRACK. Validation using benchmarks in production-quality Java
virtual machines shows that ACCULOCK can find more real races than pure happens-before detectors
(more easily) while reporting significantly fewer false positives than lockset detectors.

Thread T1 Thread T2

synchronized(queue){
lastcheckPoint = currentTime;

}

synchronized(queue){
... // not access to
... // lastcheckPoint

}
if(lastcheckPoint > 0){

...
}

Race field:weblech.spider.Spider.java:lastcheckPoint

Figure 1. Data race in the real-world programweblech.

Figure 1 illustrates a real data race on the fieldlastcheckPoint in the methodrun of the
classSpider found in the real-world benchmarkweblech. This race can always be detected by
ACCULOCK but infrequently by any happens-before detector like FASTTRACK. In this program,
threadsT1 and T2 share the samerun method and the two code fragments are two different
parts ofrun. T1 tries to write tolastcheckPoint exclusively once it has acquired the lock

2

Thread T1 Thread T2
= x A
lock l1
= x
unlockl1

lock l1
x = B
unlockl1

Thread T1 Thread T2 Thread T3

lock l2
= x A
unlockl2

lock l1
lock l2
= x
unlockl2
unlockl1

lock l1
x = B
unlockl1

(a) Race (A, B) always
reported by ACCULOCK but
possibly by FASTTRACK.

(b) Race (A, B) always reported
by ACCULOCK but possibly by
FASTTRACK.

Thread T1 Thread T2
lock l2
= x A
unlockl2
lock l1
= x
unlockl1

lock l1
x = B
unlockl1

Thread T1 Thread T2
// create the list of
// new nodes inlist1 A
lock l1
channel = list1
unlockl1

lock l1
list2 = channel
unlockl1
// process the nodes
// data inlist2 B

(c) Race (A, B) reported by
ACCULOCK if and only if
reported by FASTTRACK.

(d) A false positive, (A, B),always reported
by ACCULOCK but never by FASTTRACK,
caused by shared channels [19].

Figure 2. An illustration of the design philosophy behind ACCULOCK compared to FASTTRACK given the
same thread interleaving.

queue. However,T2 mistakenly tries to read from the variable without attempting to acquire
the same lock. This race will occur whenT1 acquires the lockqueue after T2 has released it,
but not conversely. By tracking the happens-before order (including the synchronization order),
FASTTRACK will detect the race when it is actually seen but this rarely happens in repeated test
runs. In contrast, ACCULOCK does not track the synchronization order. When the read and write to
lastcheckPoint are unordered by ACCULOCK’s relaxed notion of the happens-before relation
(introduced in Section3.1), ACCULOCK proceeds to verify the locking discipline, succeeding in
detecting the race in each test run (independently of thread interleavings encountered).

1.1. Overview of the Idea

1.1.1. MotivationDue to FASTTRACK, an epoch-based happens-before detector has nearly closed
the performance gap with a lockset detector. This has motivated us to designa hybrid detector
that combines happens-before and lockset to obtain improved precision and coverage, under the
conditions that the detector achieves comparable performance as FASTTRACK and limits the number
of false positives reported compared to ERASER. ACCULOCK is the first such a solution.

The four design objectives for ACCULOCK, as illustrated in Figure2 and explained below, are
given as follows:

1. To increase coverage of data races in a happens-before detectorby detecting also races in
alternate thread interleavings when analyzing a particular program execution;

2. To reduce the sensitivity of a happens-before detector to thread interleaving caused by thread
scheduling policies used, even when a program is analyzed with varying numbers of threads
at different test runs (as illustrated in Figure8);

3. To limit false positives incurred in a controlled manner;

3

4. To achieve comparable instrumentation overheads (in time and space) as FASTTRACK, the
fastest happens-before detector (that we know for Java programs).

The motivations for these design objectives are discussed in Section1.1.2below. Note that the
rationale behind Objective (2) is discussed earlier using the example in Figure 1. To elaborate on
this objective further for now, we have tested FASTTRACK on xalan from DaCapo. FASTTRACK

reports a particular race, as discussed in Section4.3.1, depending on thread interleavings caused
by using varying numbers of threads. For example, FASTTRACK never reports the race in 500 runs
tested when the number of threads is 8, but ACCULOCK catches it in all 500 runs.

1.1.2. SolutionACCULOCK leverages the framework of FASTTRACK but with this new set of
design objectives to meet. FASTTRACK is dynamically sound and precise since it uses the true

happens-before relation, denotedhb−→, induced by program order and synchronization order. Let us
compare and contrast the two detectors using the four examples given in Figure2.

FASTTRACK reports all and only real races detected in the thread interleaving inducedby a
given program execution. In (a) and (c), ifT2 acquires lockl1 beforeT1 does, the racy pair (A,

B) is reported sinceB hb
−→ A does not hold. If the lock acquisition order is reversed, thenA

hb
−→

B becomes true. In this alternative thread interleaving, FASTTRACK will be silent asA and B
do not race. In (b), there are six possible thread interleavings amongT1, T2 andT3. When the
underlying thread interleaving is eitherT1→ T2→ T3 or T3→ T2→ T1, FASTTRACK will not
report the racy pair (A, B) that will occur only in one of the remaining four thread interleavings. In
(d), FASTTRACK will never report a race. The middle two examples provide an abstraction ofthe
multiple protecting lock idiom, whereby a memory location such asx may be protected
by some locks from a collection of multiple locks at its different accesses. The last example provides
an abstraction ofshared channels [19], in which accesses tochannel are synchronized but
accesses to the transmitted data (i.e., the nodes in the two lists) need not be.

ACCULOCK achieves the four design objectives by (1) usingaccu−hb
−−−−−→ (defined in Section3.1),

a thread-interleaving-less-sensitivesubset of hb
−→, obtained with all lock acquires and releases

excluded and (2) applying a new lockset algorithm that distinguishes the locks protecting reads
and writes when enforcing the locking discipline. ACCULOCK finds all real races that FASTTRACK

does during one test run as well as some potential data races that may be likely real races in other
test runs. Let us consider Figure2 again. ACCULOCK always reports the races in (a) and (b) since
the two unordered accessesA andB in each case are not protected by a common lock (to satisfy
Objectives (1) and (2)). In (c), ACCULOCK behaves exactly the same as FASTTRACK (to achieve
Objective (4)). Otherwise, in order to catch the race (A, B) caused by the multiple protecting lock
idiom, any lockset algorithm may have to use sets of locksets instead of just locksets [9, p. 409] (to
satisfy Objective (3)), but this can be costly and useful only occassionally as validated empirically in
Section3.5. In addition, ACCULOCK also tries to fulfill Objective (4) by leveraging the lightweight

epoch representation ofaccu−hb
−−−−−→ to provide constant-time fast paths for most reads and writes in

program order, as in FASTTRACK and by avoidingO(n) vector clock operations on lock acquires

and releases (due to the use ofaccu−hb
−−−−−→ rather than hb

−→). In (d), ACCULOCK reports a potential
race betweenA andB to the data transmitted via the channel, which turns out to be a false positive
(discovered only by further analysis), but FASTTRACK does not (as it only reports a race actually
seen).

We define below the potential data races that ACCULOCK is designed to find in a program.

Definition 1(∅-Races)
A potential data race detected between two concurrent accesses to a location x in a program
execution is called a∅-race if they do not access the locationx protected by a common lock (i.e.,
with the set of common locks being∅) in that program execution.

We argue that∅-races such as the one illustrated in Figure2(d) should be flagged for further
analysis due to the detrimental effects of data races on the reliability of multithreaded software.

4

Alternatively, such false positives can be eliminated with user annotations sothat the missing
happens-before relationship is thus established [19].

By using the new lockset algorithm proposed in this paper, ACCULOCK is expected to report
usually only∅-races in real code. In principle, when multiple protecting locks are not used, as is
common in real code, all races reported by ACCULOCK are∅-races (Theorem4). In practice, all
races reported by ACCULOCK in our experiments are∅-races except for the three false warnings
that are not∅-races reported from theeclipse benchmark.

1.2. Contributions

• We introduce a new hybrid race detector, ACCULOCK, with all properties discussed in
Section1.1. We describe a new lockset algorithm that enables a seamless integration of
the lockset and happens-before mechanisms in our hybrid detector to achieve a fine balance
between precision and coverage of data races reported.

• We have implemented ACCULOCK and six other dynamic detectors, ERASER [9], DJIT+

[18], RACETRACK [10], M ULTI RACE [18], “H YBRID” [19] and FASTTRACK [12] in Jikes
RVM and validated ACCULOCK’s fulfillment of its design objectives using 11 benchmarks,
the largest Java programs ever used as a collection in the dynamic analysis literature.

• We have analyzed all these detectors (in terms of performance, memory requirement,
precision and coverage) to provide insights for further studies. In particular, ACCULOCK is
capable of finding more real data races than FASTTRACK (more easily) when looking for
∅-races while maintaining comparable analysis overheads.

• We have also ported ACCULOCK and FASTTRACK from Jikes RVM to another Java
VM platform, RoadRunner [20]. Repeating our experiments and analysis yields similar
observations in terms of their effectiveness in race detection and analysisoverheads.

• We also introduce for the first time an epoch-based lockset detector, MULTI LOCK-HB, that
uses sets of locksets instead of just locksets [9] to detect data races caused by the use of
multiple protecting lock idiom (Figures2(b) and (c)). Replacing the lockset algorithm used
in ACCULOCK with MULTI LOCK-HB results in only three false warnings ineclipse to
be suppressed at the expense of a factor-of-three performance slowdown (on average). This
discovery is significant for two reasons. First, the ACCULOCK design is justified as the races
caused by the multiple protecting lock idiom are rare and thus unnecessarily expensive to
detect with MULTI LOCK-HB. Second, MULTI LOCK-HB can be selectively deployed for
certain applications (e.g.,eclipse) that contain potentially such races.

The rest of this paper is organised as follows. Section2 provides the background for this work.
Section3 introduces our ACCULOCK algorithm. Section4 evaluates our ACCULOCK design in Jikes
RVM. Section5 evaluates our ACCULOCK design further in RoadRunner. Section6 discusses the
related work. Section7 concludes the paper.

2. BACKGROUND

We review vector clocks (VCs) and how a genericO(n) (time and space) VC-based happens-before
detector works, wheren is the number of threads in the program (Section2.1). We then describe how
FASTTRACK uses epoch clocks to reduce mostO(n) VC operations toO(1) (Section2.2). Finally,
we review the basic LOCKSETalgorithm and touch upon ERASER, the classic lockset algorithm, on
which many other detectors are based (Section2.3).

2.1. VCs and VC-based Happens-Before Detection

VC detectors soundly and precisely track the (true) happens-before relation hb
−→ between two

operationsA andB (denoted asA hb
−→ B), where hb

−→ is defined as follows:

Program order: If A executes beforeB in the same thread, thenA hb
−→ B.

5

Synchronization order: If A andB are synchronization operations from two different threads such

thatA precedesB (e.g.,A releases a lock andB subsequently acquires it), thenA hb
−→ B.

Transitive closure: If A hb
−→ B andB hb

−→ C, thenA hb
−→ C.

In other words, hb−→ for a program execution is the transitive closure of its (intra-thread) program
order and (inter-thread) synchronization order (induced by, e.g., forks, joins, lock acquires and

releases). By trackinghb−→ among all synchronization, read and write operations, VC detectors
identify concurrentaccesses to a shared variable and report a data race if one is a write.

A vector clockV C : T id→ Nat records a clock for each thread in the program. VCs are partially
ordered (⊑) point-wise with a minimum element(0, . . . , 0) and a join operation (⊔), which is defined
to be a point-wise maximum. More specifically, we have:

V1 ⊑ V2 iff ∀t.V1(t) ≤ V2(t)
V1 ⊔ V2 = λt.max(V1(t), V2(t))

2.1.1. Synchronization OperationsAccesses to synchronization objects (threads, locksandvolatile
variablesin Java) are always ordered and never race. Each synchronizationobject has its own clock.
Each threadt keeps a vector clockCt such that for any threadu, the entryCt[u] records the clock for
the last operation ofu that happens before the current operation of threadt. Initially, Ct[t] = 1 and
Ct[u] = 0 if u 6= t. Similarly, the analysis maintains a vector clockCl for each lockl and a vector
clockCv for each volatile variablev. Such vector clocks are initialized to(0, . . . , 0).

These VCs are updated on synchronization operations that affecthb
−→. For example, when a thread

t releases lockl, the analysis updatesCl with Ct (by copying the contents ofCt into Cl) and then
increments the entryt in t’s vector clock. When a threadt subsequently acquires lockl, the analysis
updatesCt to beCt ⊔ Cl, since all subsequent operations oft happen after that release operation.
Obviously, a join or copy takesO(n) in time and space.

2.1.2. Variable Reads and WritesFor each shared variable, i.e., memory locationx, which can be
an object field or an object itself depending the level of granularity used,the analysis keeps two
vector clocks,Rx andWx, such that the entriesRx[t] andWx[t] record the clock values of the last
read and write tox by threadt, respectively. At each read, the analysis checks that prior writes
happen before the current threadt’s VC, Ct, by verifying Wx ⊑ Ct and then updatesRx[t] with
Ct[t]. At each write, the analysis checks for data races with prior reads and writes by verifying
Wx ⊑ Ct andRx ⊑ Ct and then updatesWx[t] with Ct[t]. Again, all these happens-before checks
takeO(n) time each.

2.1.3. ExampleConsider the code fragment given in Figure3, depicting the relevant portion of the
instrumentation state of a VC detector.C1 andC2 are the vector clocks associated with threadsT1
andT2, respectively.Cl andCx are the vector clocks of lockl and variablex, respectively.Wx will
be referred to later. The state transitions with respect to the current operation are shown in bold.

At the writewr1, the analysis updatesCx with the current clockC1 of T1. At the release operation
unlock l, the analysis updatesCl with C1 and increments the first entry ofC1. At the acquire
operationlock l, C2 is joined withCl to obtain the up to date clock values, thus capturing the
dashed release-acquire happens-before edge as shown. At the subsequent writewr2, the analysis
compares the vector clocks with⊑ in O(n) time and space complexity:

Cx = (1, 0, . . .) ⊑ (1, 3, . . .) = C2

Since the check succeeds, the two writes performed by two different threads are not concurrent.
So no data race is reported. Clearly, it takesO(n) time and space to keep track of and verify the

happens-before relationhb−→ for n concurrent running threads.

6

C1

(1,0,...)

(1,0,...)

(2,0,...)

(2,0,...)

(2,0,...)

C2

(0,3,...)

(0,3,...)

(0,3,...)

(1,3,...)

(1,3,...)

Cl

(0,0,...)

(0,0,...)

(1,0,...)

(1,0,...)

(1,0,...)

Cx

(0,0,...)

(1,0,...)

(1,0,...)

(1,0,...)

(1,3,...)

Wx

0@0

1@1

1@1

1@1

3@2

x = // wr1

unlockl

lock l

x = // wr2

hb
−→

Figure 3. An execution trace for a happens-before detector.

Algorithm 1 Read [FASTTRACK]: threadt reads variablex

if Rx 6= epoch(t) then {If same epoch, no action}
assert Wx 4 Ct

if |Rx| = 1 ∧Rx 4 Ct then
Rx ← epoch(t) {Overwrite read map}

else
Rx[t]← Ct[t] {Update read map}

end if
end if

Algorithm 2 Write [FASTTRACK]: threadt writes variablex

if Wx 6= epoch(t) then {If same epoch, no action}
assert Wx 4 Ct

if |Rx| 6 1 then
assert Rx 4 Ct

else
assert Rx ⊑ Ct {O(1) amortized time}

end if
Rx ← empty
Wx ← epoch(t) {Update write epoch}

end if

2.2. Epochs andFASTTRACK

FASTTRACK has reduced mostO(n) VC operations toO(1), by exploiting the following two

insights. First, in a race-free program, all writes to a variable are totally ordered by hb
−→, and on

encountering a write, all previous reads must happen before the write byhb
−→. Second, the analysis

must keep track of all concurrent reads since they potentially race with a subsequent write. As a
result, FASTTRACK replaces the write vector clockWx with anepochc@t, which records the clock

valuec at which threadt performed the last write tox. When reads are ordered byhb−→, FASTTRACK

uses an epoch for the last read. Otherwise, it uses VCs for reads.

7

Algorithm 3 Read/Write Access [LOCKSET]: threadst reads or writesx

// CLx is initialized with set of all locks
Lt ← set of locks held now
if x is a readthen

Lt ← Lt ∪ {readers lock} {Insert fake lock}
end if
CLx ← CLx ∩ Lt {Update lockset}
assert CLx 6= ∅ {Check for races}

Some notations are introduced and used later in presenting our ACCULOCK algorithm. The
function epoch(t) is a shorthand forc@t, wherec = Ct[t]. In addition,c@t 4 V C if and only
if c 6 V C[t], whereV C is a vector clock. Following [12], gray shading indicates operations that
takeO(n) time each, wheren is the number of threads.

For comparison purposes later with ACCULOCK, Algorithms 1 and 2 show the core part of
FASTTRACK in handling reads and writes but is formulated more compactly according to [21].
In [21], read epochs and VCs are unified into aread map, which maps zero or more threads to clock
values. Thus, a read map is an epoch if it has one entry, the initial state is epoch 0@t if it has zero
entries, and a VC otherwise.

At a read, FASTTRACK does nothing if the read mapRx is an epoch equal to the current thread’s
time. Otherwise, it asserts that the last write happens before the current read. Otherwise, the two
accesses race. Finally, it either replacesRx with an epoch ifRx is an epoch and happens before the
current read or updatesRx’s t entry.

At a write, FASTTRACK also does nothing if the variable’s write epoch is the same as the thread’s
epoch. Otherwise, it checks to see if the current write races with the last write. Finally, it checks for
races with prior reads and clears the read map. In FASTTRACK, the read map is cleared this way
because for each prior read in the read map, one of the following statementsholds: (1) it races with
the current write, in which case, the race has been detected and reported, or (2) it happens before the
current write, in which case, both accesses do not race. The shadedassert takesO(|Rx|) 6 O(n)
time, which is proportional to the number of entries inserted intoRx by prior reads, but it is
amortized over the last|Rx| analysis steps that takeO(1) time each. By being able to clear the
read map, FASTTRACK can adaptively switch between epochs and VCs so that the number ofO(n)
VC operations is greatly reduced.

Let us revisit the example in Figure3. Wx denotes the write epoch of variablex and is initialized
to 0@0. At the first writewr1 tox, FASTTRACK updatesWx with 1@1. Then FASTTRACK proceeds
as discussed earlier to analyze the lock release and acquire operations on lock l. At the second write
wr2 to x, FASTTRACK comparesWx with the current threadT2’s VC in O(1) time:

Wx = 1@14 (1, 3, . . .) = C2

As the check passes, the second writewr2 happens after the first writewr1. ThenWx is updated
with 3@2 to indicate that the last write is performed byT2 when its clock value is 3.

2.3. Locksets andERASER

The basic LOCKSETalgorithm, as depicted in Figure3, detects violations of the locking discipline
without considering the happens-before information. LOCKSET requires that every shared location
be protected consistently by at least one common lock on each access (read or write) to it.

For each threadt, Lt holds the set of all locks acquired byt at any time. For each shared location
x, the candidate set, CLx, records the set of all locks, known aslockset, that have consistently
protected every access tox so far. The use of a “fake lock” in [18], denotedreaderslock, serves
to suppress false warnings on concurrent reads tox without holding a common lock. However, any
write tox will causereaderslock to be removed fromCLx.

Consider the execution trace illustrated in Figure4, depicting the relevant portion of the
instrumentation state of LOCKSET. Initially, CLx contains the set of all possible locks. At the

8

Thread T1

= x // rd1

lock l1

x = // wr1

unlockl1

Thread T2

lock l2

= x // rd2

unlockl2

LT1

{readers lock}

{l1}

{l1}

{∅}

LT2

{l2}

{l2}

{∅}

CLx

{readers lock}

{readers lock}

{∅} (false warning)

{∅}

{∅}

{∅} (race!)

Figure 4. An execution trace of LOCKSET.

first readrd1 performed byT1, LT1, which represents the set of locks held byT1, is updated to
{readers lock} andCLx is updated by intersecting itself andLT1 to find x’s locksetCLx. At the
subsequent writewr1 performed also byT1, CLx = ∅. So LOCKSET issues a warning to indicate
that variablex is not consistently protected by a common lock. However, this is a false positive as

LOCKSETdoes not considerhb−→. At the readrd2 performed byT2, CLx = ∅. So LOCKSET issues
another warning, which turns out to be a real data race.

In this example, the three accesses tox are executed in the order ofrd1, wr1 andrd2 as shown.
If the two reads are executed before the write instead, then using the fakelock {readers lock} will
avoid the false positive that would otherwise be reported betweenrd1 andrd2. In addition, the real
race betweenrd2 andwr1 will still be detected.

By ignoring hb
−→, LOCKSETmay result in excessive false positives. To alleviate this, ERASER [9]

uses a state machine to handle thread-local and read-shared data. However, this handling is unsound.
Consider Figure4 again. ERASER will classify the two operationsrd1 andwr1 performed byT1
as “thread-local” because variablex has been exclusively accessed byT1 so far. As a result, the
ERASER instrumentation state is flagged as “thread-local”. At the second readrd2 by T2, ERASER

realizes thatx has now escaped into a different thread and may be accessed concurrently thereafter.
So the instrumentation state transits to “shared”. From now on, ERASER behaves identically as
LOCKSET. The price paid by ERASER for unsoundly reducing false positives this way is that the
racy pair (wr1, rd2) is missed.

In practice, we find that ERASERfails to find a number of real races in the benchmarks tested due
to the reasons discussed above. Take, for example,hedc listed in TableI. ERASERcannot find one
real race that can be found by both FASTTRACK and ACCULOCK.

3. ACCULOCK

Algorithms 4 – 13 give the algorithmic core of ACCULOCK, with Algorithms 10 and 11 being
ACCULOCK’s counterparts of FASTTRACK’s Algorithms 1 and 2, respectively. The notations,
epoch(t) (the current epoch of threadt), 4 (on an epoch and a VC) and⊔ (on two VCs), as in
FASTTRACK, andLt as in LOCKSET, are used identically as before.

Below we introduce the components of ACCULOCK by functionality. We explain the design
decisions and tradeoffs made in order for ACCULOCK to meet its design objectives. Section3.1

discusses how to trackaccu−hb
−−−−−→. Section3.2 describes how ACCULOCK approximates the lock-

subset condition [18, 19] to both eliminate some redundant race checks and catch more data
races than FASTTRACK. Section3.3 contains the key contribution of the work. It describes how

ACCULOCK detects data races by combining our new lockset algorithm andaccu−hb
−−−−−→ tracked with

lightweight epochs. Section3.4 characterizes the data races reported by ACCULOCK with respect

9

to FASTTRACK. Section3.5evolves ACCULOCK into a more powerful but more expensive detector
by using MULTI LOCK-HB, which detects data races using sets of locksets instead of just locksets.

Algorithm 4 Acquire: threadt acquires lockm

Lt ← Lt ∪ {m}

Algorithm 5 Release: threadt releases lockm

Lt ← Lt − {m}
Ct[t]← Ct[t] + 1

Algorithm 6 Fork: threadt forks threadu

Lu ← empty
Cu ← Cu ⊔ Ct

Ct[t]← Ct[t] + 1

Algorithm 7 Join: threadt joins threadu

Ct ← Ct ⊔ Cu

Algorithm 8 Notify: threadt notifies threadu

Cu ← Cu ⊔ Ct

Ct[t]← Ct[t] + 1

Algorithm 9 NotifyAll: thread t wakes up all waiting threads

for all threadsu waiting for threadt do
Cu ← Cu ⊔ Ct

end for
Ct[t]← Ct[t] + 1

Algorithm 10 Read: threadt reads variablex

if epoch(t) 6∈{Rx[t].epoch,Wx.epoch}then {If same epoch, no action}
Rx[t].epoch← epoch(t) {Update read epoch}
Rx[t].lockset← Lt {Update read lockset}
ifWx.epoch 64 Ct then

assert Rx[t].lockset ∩Wx.lockset 6= ∅ {Check with prior write}
end if

end if

3.1. Tracking
accu−hb
−−−−−→

Like all happens-before detectors, ACCULOCK keeps a vector clockCt for every threadt. However,

ACCULOCK uses these vector clocks to trackaccu−hb
−−−−−→ rather thanhb

−→.

10

Algorithm 11 Write: threadt writes variablex

if epoch(t) 6=Wx.epoch then {If same epoch, no action}
ifWx.epoch 64 Ct then
Wx.lockset←Wx.lockset ∩ Lt

assertWx.lockset 6= ∅ {Check with prior write}
else
Wx.lockset← Lt {Update write lockset}

end if
Wx.epoch← epoch(t) {Update write epoch}
for all threadst′ in read mapRx do {O(1) amortized time}

if Rx[t
′].epoch 64 Ct then

assert Rx[t
′].lockset ∩ Lt 6=∅ {Check with prior reads}

end if
end for
Rx ← empty {ClearRx}

end if

Algorithm 12 Volatile Read: threadt reads volatile variablex

Ct ← Ct ⊔ Cx

Algorithm 13 Volatile Write: threadt writes volatile variablex

Cx ← Cx ⊔ Ct

Ct[t]← Ct[t] + 1

In Algorithms6 – 9, ACCULOCK tracks the inter-thread synchronization order induced byfork,
join, notify andnotifyAll as in Java as well as the intra-thread program order by incrementing
clockCt’s t entry or updatingCu. Note that lock acquires and releases in Algorithms4 and5 do not
affect the synchronization order. However, in a lock release, the clock of threadt is incremented to
start a new epoch merely to facilitate the lock-subset optimization described in Section3.2.

The shadedO(n) VC operations for tracking the synchronization order induced byfork, join,
notify andnotifyAll are needed in all happens-before detectors. However, these eventshappen
infrequently compared to lock acquires and releases, whose release-acquire edges are tracked as

part of hb
−→ in O(n) time and space in FASTTRACK but ignored in accu−hb

−−−−−→ used in ACCULOCK.
As for volatile reads and writes, there are two choices, depending a client’s need for a

particular program. If Algorithms12 and13 are incorporated, then ACCULOCK behaves exactly

as FASTTRACK by including the effects of volatile variables onaccu−hb
−−−−−→. Otherwise, ACCULOCK

proceeds by treating volatile variables just as lock objects.

3.2. Approximating the Lock-Subset Condition

Traditionally, the lock-subset optimization [18, 19] serves to reduce the number of accesses
participating for race checks. Recall that a lockset for an access is theset of locks protecting it.

Definition 2(Redundant Accesses)
Let there be two accessesa andb to a shared locationx made by a threadT1. Let c be any future
access to the same locationx made in a different threadT2. When looking for racy accesses tox by
T1 andT2, b is said to beredundantwith respect toa if c races witha wheneverc races withb.

As a result, according to this definition, redundant accesses such asb can be ignored when
detecting data races between two threads. Based on the lock-subset optimization [18, 19], the
following theorem provides a theoretical basis by which redundant accesses can be eliminated for a
program with any number of concurrently running threads.

11

Thread T1 Thread T2
lock l1
= x a
unlockl1

fork T2

lock l1
lock l2
= x b
unlockl2
unlockl1

lock l3
x = c
unlockl3

accu-hb

Figure 5. An illustration of Theorem1 as to whya andb are required not to be separated by a synchronization

operation that induces anaccu−hb
−−−−−−→ edge.

Theorem 1(Lock-Subset-based Elimination of Redundant Accesses)
Let there be two accessesa andb to the same shared locationx made by a thread such that the

two accesses are not separated by any synchronization operation inducing an accu−hb
−−−−−→ edge with

another thread. Thenb is redundant with respect toa if (1) a andb are both reads,a andb are both
writes, ora is a write andb is a read, and (2)a’s lockset is a subset ofb’s lockset.

Proof
Let c be a future access tox made inT2 that happens after the accessesa andb made inT1, where

T1 6= T2. As there does not exist a synchronization operation inT1 that induces aaccu−hb
−−−−−→ edge

during the two accessesa andb betweenT1 andT2, c must be concurrent witha andb, and thus may
potentially race witha andb. Given Conditions (1) – (3), we conclude thatc races witha whenever
c races withb. By Definition2, b is redundant with respect toa.

In Theorem1, the two accessesa and b in a thread are required not to be separated by a

synchronization operation in the thread if the synchronization operation induces anaccu−hb
−−−−−→ edge

with another thread. Otherwise, as illustrated in Figure5, b may not necessarily be redundant. In this

case,a andb satisfy Conditions (1) – (3). Sincea accu−hb
−−−−−→ c, a andc do not race with each other.

Sinceb andc are concurrent, the two accesses race as they are not protected by a common lock.
However, applying Theorem1 directly to eliminate all redundant checks would be counter-

productive as subset operations are costly as validated in our experiments in Section5. ACCULOCK

approximates the lock-subset condition so that an elimination of some redundant accesses serves to
both bring a performance gain and increase the number of data races detected.

Note that in Algorithms4 and5, the vector clockCt in threadt ticks only at a lock release but
not at a lock acquire. Thus, the results stated in Corollaries1 and2 are immediate from Theorem1.

Corollary 1 (Redundant Reads in ACCULOCK)
Let Px be the epoch of a prior access (read or write) tox. If Px = epoch(t), then a future read at
epoch(t) is redundant (with respect to the prior access).

Corollary 2 (Redundant Writes in ACCULOCK)
Let Px be the epoch of a prior write tox. If Px = epoch(t), then a future write atepoch(t) is
redundant (with respect to the prior write)

Consider threadT1 in Figure2(a). IfPx represents the epoch of the first read tox in the code, then
the second read tox is redundant by Theorem1 (with respect to the first) and also by Corollary1 as
both are in the same epoch. Consider threadT1 in Figure2(c). The second read tox is not redundant

12

Code in a Thread Code in a Thread
lock l1
= x // rd1
lock l2
= x // rd2
unlockl2
lock l3
= x // rd3
unlockl3
unlockl1

lock l1
x = // wr1
lock l2
x = // wr2
unlockl2
lock l3
x = // wr3
unlockl3
unlockl1

(a) Corollary1 (b) Corollary2

Figure 6. An illustration of the nonnecessity of the lock-subset conditions stated in Corollaries1 and2 to
enable for the lock-subset optimization.

(with respect to the first read tox) and also concluded so by Corollary1 as both reads have different
epochs.

However, the lock-subset condition in either corollary is sufficient but not necessary, as illustrated
in Figure6. To see why the condition in Corollary1 is not necessary, consider the code sequence
executed in a thread given in Figure6(a). The last two reads,rd2 andrd3, are redundant with respect
to the first readrd1 by Theorem1. However, in ACCULOCK, rd1 shares the same epoch asrd2 but
that epoch is different from the epoch ofrd3. So ACCULOCK can ignorerd2 but must analyzerd3.
The nonnecessity of the stronger lock-subset condition in Corollary2 is illustrated similarly using
Figure6(b).

In summary, ACCULOCK removes some redundant accesses inO(1) time in order to keep its
performance comparable as FASTTRACK. How such redundancy elimination also helps ACCULOCK

detect more races will be clear as descried in the following section.

3.3. Detecting Data Races

We are now ready to introduce our newaccu−hb
−−−−−→-aware lockset algorithm and examine how

ACCULOCK applies it to detect three kinds of data races for concurrent accesses(with respect to
accu−hb
−−−−−→): write-read(a write concurrent with a later read),write-write (a write concurrent with a
later write) andread-write(a read concurrent with a later write).

The core part of ACCULOCK for race detection is given in Algorithms10and11. As in LOCKSET,
Lt holds the set of all locks acquired by threadt at any time, according to Algorithms4 and5.
ACCULOCK maintains the following two metadata structures for each shared locationx:

• Rx is a read map that maps zero or more threads to(epoch, lockset) pairs for all concurrent

reads tox (with respect toaccu−hb
−−−−−→) with at most one read from each thread. For each thread

t, Rx.epoch is the epoch for the last non-redundant read in threadt (with some redundant
reads tox being removed by Corollary1) andRx.lockset is the lockset protectingx in thread
t.

• Wx is a single(epoch, lockset) pair, whereWx.lockset records the lockset forx that has

consistently protected all concurrent writes tox (with respect to accu−hb
−−−−−→) so far and

Wx.epoch gives the epoch for the last non-redundant write tox among all threads (with some
redundant writes tox being removed by Corollary2).

3.3.1. Write-Read RacesAt a read in a threadt, as shown in Algorithm10, ACCULOCK does
nothing if the current read is redundant (Corollary1). Otherwise, ACCULOCK records the epoch
and lockset of the current read inRx for threadt, by overwriting the prior read, if any. As a result,

13

Rx keeps the(epoch, lockset)’s for all concurrent reads tox to be checked for races with a later
write tox.

If the current read is not ordered with the last write made atWx.epoch, then the assert statement is
evaluated. In this case, ACCULOCK checks to see if the current read races with one of the prior writes
implicitly represented by their common lockset inWx.lockset. A data race warning is reported when
the current read and one of the prior writes are not protected by a commonlock.

3.3.2. Write-Write and Read-Write RacesAt a write in a threadt, as in Algorithm11, ACCULOCK

does nothing if the current write is redundant by Corollary2. Otherwise, ACCULOCK checks for
a potential race with a prior write. If the current write and the last write made at Wx.epoch are

unordered (byaccu−hb
−−−−−→), ACCULOCK updatesWx.lockset and reports a race (between the current

write and one of the prior writes) whenWx.lockset becomes empty. If both writes are ordered, then

the current write happens after the last one (byaccu−hb
−−−−−→). In this case,Wx.lockset is reset toLt,

i.e., the lockset protecting the current write. In either case,Wx.epoch is updated with the current
epoch (for the current write).

Afterwards, ACCULOCK checks for races by looping over all reads inRx that happen

concurrently with the current write protected by the locksetLt (with respect to accu−hb
−−−−−→). As in

Algorithm 2 of FASTTRACK, thisfor loop takesO(|Rx|) 6 O(n) time but is amortized over the last
|Rx| analysis steps that takeO(1) amortized time each, using the efficient lockset implementation

[9, 10]. If no races are detected, the current write happens after all readsinRx (in the sense ofhb−→).
In both cases (whether the current write races with any prior read or not), Rx is cleared. Resetting
Rx this way helps ACCULOCK to achieve comparable performance as FASTTRACK. On the other
hand, some real races caused by the multiple protecting lock idiom may go undetected but this
should happen rarely according to [22] and our empirical validation described in Section3.5. Indeed,
no such races are found in a large collection of real-world benchmarks used in our experiments,
which represents a variety of applications in practice.

3.3.3. ExamplesLet us revisit the four examples given in Figure2 to compare and contrast
ACCULOCK and FASTTRACK in terms of how they detect the data races in these programs.

Figure 2(a). If T1 acquires lockl1 beforeT2, thenA hb
−→ B holds. So (A, B) is not racy according to

FASTTRACK. However, the two accesses will be flagged by ACCULOCK as being potentially
racy, which turns out to be true if the lock acqusition order is reversed. At the first read tox
in T1, ACCULOCK stores the current epoch and the empty lockset for the read intoRx[T1]
so thatRx[T1].lockset = ∅. The second read is redundant and thus ignored. When the write
in T2 is analyzed, its protecting lockset isLT2 = {l1}. SoWx.lockset is updated to be{l1}.
ACCULOCK detects the race (A, B) becauseRx[T1].lockset ∩ LT2 = ∅, implying thatx is not
consistently locked by a common lock. If the lock acquisition order is reversed, however, (A,
B) is racy and will be detected by both ACCULOCK and FASTTRACK.

Figure 2(b). The race betweenA andB does not occur if and only if the thread interleaving is
T1→ T2→ T3 or T3→ T2→ T1. So FASTTRACK will report it when it is actually seen
in a thread interleaving. In contrast, ACCULOCK reports it each time as a potential race.

ConsiderT1→ T2→ T3. The two reads inT1 andT2 are concurrent byaccu−hb
−−−−−→ (but not by

hb
−→),Rx records the epochs and locksets for the two reads so thatRx[T1].lockset = {l2} and
Rx[T2].lockset = {l1, l2}. At the later write inT3, LT3 = {l1} holds. ACCULOCK detects the
race as the accessesA andB are not protected by a common lock.

Figure 2(c). ACCULOCK behaves exactly as FASTTRACK in order to be fast and avoid false
warnings as explained below. Both detectors regard the two reads tox in T1 as happening
in program order. IfT2 acquires lockl1 beforeT1, both detectors will discover the race (A,
B). If the lock acquisition order is reversed, both detectors keep only the second read (lines 4
and 6 in Algorithm1 and lines 2 and 3 in Algorithm10). So both will miss the race.

14

Figure 2(d). ACCULOCK detects this∅-race similarly as in Figure2(a), except that it is a false
warning, confirmed later only by the programmer or other means. However,FASTTRACK

does not. We argued earlier that such warning should be issued for further analysis.

3.3.4. ACCULOCK’s Lockset MechanismTo satisfy its design objectives stated in Section1.1,

ACCULOCK exploits the program order included inaccu−hb
−−−−−→ to mimic FASTTRACK whenever

necessary. In Algorithm10, only the last non-redundant read in each thread is recorded inRx.
In Algorithm 11, only the last non-redundant write among all threads is recorded inWx, and in

addition, on seeing two writes in a row that are ordered byaccu−hb
−−−−−→, ACCULOCK resetsWx.lockset

to Lt (line 6). Moreover, ACCULOCK also exploits implicitly the synchronization order induced
by lock acquires and releases by clearingRx at each write tox to improve both time and space
efficiency. This is because the current write either races with some of the prior reads inRx or

happens after all of them in the sense ofhb
−→. Finally, by distinguishing the locks protecting reads

and writes usingRx andWx and approximating the lock-subset condition efficiently, ACCULOCK

performs the amortizedO(1) lockset operations in thefor loop of Algorithm11 only infrequently,
i.e., on a write whenRx hasO(n) entries.

3.4. Characterizing Data Races

We give a few properties about ACCULOCK to show its fulfillment of our design requirements. We
supplement this analysis by providing experimental evidence in Section4.

Theorem 2(Compared with LOCKSET)
ACCULOCK reports no more data races than LOCKSET in any thread interleaving.

Proof
LetMa (Mf) be the set of shared memory locations checked for races by ACCULOCK (LOCKSET).

Due to the use ofaccu−hb
−−−−−→ (and alsohb

−→ in Algorithm 11) in ACCULOCK, thenMa ⊆Mf holds. For
anyx ∈Ma, if A CCULOCK detects a race tox, so will LOCKSET, because ACCULOCK distinguishes
reads and writes tox but LOCKSETdoes not when finding the common locks held forx.

However, ACCULOCK may report some real data races that ERASER does not since the latter is
unsound in its handling of thread-local and read-shared data, as discussed in our experiments.

ACCULOCK misses no real races detected by FASTTRACK when looking for potential races that
may occur in alternate thread interleavings.

Theorem 3(Compared with FASTTRACK)
Consider a fixed program execution (with the same thread interleaving). IfFASTTRACK reports a
pair of racy accesses on a shared locationx during this execution, ACCULOCK will also report a
(not necessarily identical) pair of racy accesses onx.

Proof
Let there be a racy pair(a, b) on x from FASTTRACK (implying that eithera or b is a write).

Thena and b are not ordered byhb−→, and consequently, not byaccu−hb
−−−−−→. Let a′ (b′) be a (b) or

an earlier non-redundant access in the same epoch. Being racy by FASTTRACK, a andb are not
protected by a common lock. Nor area′ andb′ according to Corollaries1 and2. So(a′, b′) is racy
by ACCULOCK.

In the absence of multiple protecting locks, ACCULOCK reports only the potential races that it is
designed to find.

Theorem 4(∅-Races)
Suppose each location is protected by a fixed lock (or none). Then ACCULOCK reports only∅-races.

Proof
Suppose that ACCULOCK detects a pair of racy accesses to a shared location. Then one of the two

15

Thread T1 Thread T2
lock l2
x =
unlockl2
lock l1
= x A
unlockl1

lock l1
lock l2
x = B
unlockl2
unlockl1

Figure 7. An illustration of a false warning (A, B) that is not an∅-race reported by ACCULOCK.

accesses must not be protected by a common lock using a simple case analysis. The rest of the proof
follows from Definition1.

3.5. Multiple Protecting Locks

In the presence of multiple protecting locks, ACCULOCK may miss some real races when they are
not identified as potential races just like FASTTRACK (as illustrated in Figure2(c)) and report false
warnings that are not∅-races just like LOCKSETand ERASER(as illustrated in Figure7). Given that
the idiom is rarely used and costly to handle, we are now in a better position to understand how
and why ACCULOCK behaves this way in order to meet its design objectives. To overcome both
problems, we will see clearly the need to keep track of sets of locksets rather than just locksets for
a shared location. Unfortunately, doing so is expensive in both time and space. We introduce for
the first time an epoch-based lockset solution, MULTI LOCK-HB, to achieve this. In Section5, the
cost-effectiveness of the ACCULOCK design is justified empirically and the practical benefits of its
adaptation with MULTI LOCK-HB are evaluated.

Let us look at the two problems mentioned above with ACCULOCK with examples:

Figure 2(c): Missing Data Races. Consider this example with the underlying thread interleaving
beingT1 → T2, in which case,A andB do not race. ACCULOCK, just like FASTTRACK,
does not flag (A, B) as a potential race, even though this actually occurs, for example, when
the thread interleaving isT2→ T1. Consider how ACCULOCK works givenT1→ T2. There
are two reads made tox by T1. After the second read is processed,Rx[T1] keeps only the
information for the second read. As a result,Rx[T1].lockset = {l1}, which is the lockset for
the second read, rather than{l2}. On encountering the write inT2 later, ACCULOCK has
lost the information for the first read inT1 and thus cannot detect the race (A, B). To avoid
producing this false negative, the locksets for the two reads inT1 must be recorded.

Figure 7: Reporting false Warnings. Consider now this program that is adapted from Figure2(c)
so that (1) the first read tox in T1 is now a write instead and (2) the write tox in T2
is guarded by not onlyl1 but alsol2. Suppose that the write inT2 is made between the
two accesses inT1 in the modified program. After the two writes,Wx.lockset = {l2}. At
the read inT1, ACCULOCK will report a false warning, (A, B) for x, since its lockset is
Rx[T1].lockset = {l1}, implying thatRx[T1].lockset ∩Wx.lockset = ∅. This false warning
is not an∅-race as the second read inT1 and the write inT2 are protected by the lockl1.
The lockset intersection,Wx.lockset←Wx.lockset ∩ Lt, performed in Algorithm11 is the
culprit for such false warnings. To avoid producing the false positive inthis example, the
locksets for the two writes inT1 andT2 must be recorded explicitly.

Our MULTI LOCK-HB design, given in Algorithms14 – 25, avoids the two aforesaid problems
by providing a fully-fledged implementation of the lock-subset optimization statedin Theorem1 (at
significantly higher analysis overheads). Unlike ACCULOCK, MULTI LOCK-HB relies on a different
notion of epoch. In MULTI LOCK-HB, a trace of memory accesses in a threadt are divided into sub-

traces byaccu−hb
−−−−−→-inducing synchronization operations int. Precisely, two accesses in a threadt are

in the same epoch if and only if they are not separated by anyaccu−hb
−−−−−→-inducing synchronization

16

operation int. Thus, the epochs in a thread are formed simply by letting the thread tick its clock

value at eachaccu−hb
−−−−−→-inducing synchronization operation as in Algorithms16 – 19, 24 and25.

Note that in Algorithms24 and25, we have included the effects of volatile variables onaccu−hb
−−−−−→.

Otherwise, MULTI LOCK-HB proceeds by treating volatile variables just as lock objects.
Unlike ACCULOCK, MULTI LOCK-HB now keeps sets of locksets instead of just locksets in the

two metadata structures for each shared locationx as follows:

• Rx[t] records a set of(epoch, lockset) pairs for each threadt, where each pair
(epoch, lockset) is associated with a prior read made int when t’s clock value is given by
epoch and the set of protecting locks for the read is given bylockset.

Algorithm 14 Acquire [MULTI LOCK-HB]: threadt acquires lockm

Lt ← Lt ∪ {m}

Algorithm 15 Release [MULTI LOCK-HB]: threadt releases lockm

Lt ← Lt − {m}

Algorithm 16 Fork [MULTI LOCK-HB]: threadt forks threadu

Cu ← Cu ⊔ Ct

Ct[t]← Ct[t] + 1

Algorithm 17 Join [MULTI LOCK-HB]: threadt joins threadu

Ct ← Ct ⊔ Cu

Ct[t]← Ct[t] + 1

Algorithm 18 Notify [M ULTI LOCK-HB]: threadt notifies threadu

Cu ← Cu ⊔ Ct

Ct[t]← Ct[t] + 1
Cu[u]← Cu[u] + 1

Algorithm 19 NotifyAll [M ULTI LOCK-HB]: threadt wakes up all waiting threads

for all threadsu waiting for threadt do
Cu ← Cu ⊔ Ct

Cu[u]← Cu[u] + 1
end for
Ct[t]← Ct[t] + 1

• Wx[t] is similarly maintained for the writes tox.

Furthermore, MULTI LOCK-HB always maintains the invariant thatRx andWx keeps track of all
prior reads and writes tox except the redundant ones removable by Theorem1. For convenience,
this invariant is referred to below as theRAF-invariant(short for redundant-access-free invariant).

Let us first consider how a read,R, to a shared locationx made in threadt is analyzed in
Algorithm 20. Recall thatCt andLt are the VC and (currently held) lockset oft, respectively. This

17

Algorithm 20 Read [MULTI LOCK-HB]: threadt reads variablex

Updateon read(Rx[t],Wx[t]) {Update and remove redundant reads}
for all threadst′ in write mapWx do

for all (epocht′ , locksett′) ∈ Wx[t
′] do

if epocht′ 64 Ct then
assert Lt ∩ locksett′ 6= ∅ {Check with prior writes}

end if
end for

end for

Algorithm 21 Write [MULTI LOCK-HB]: threadt writes variablex

Updateon write(Rx[t],Wx[t]) {Update and remove redundant reads and writes}
for all threadst′ in write mapWx do

for all (epocht′ , locksett′) ∈ Wx[t
′] do

if epocht′ 64 Ct then
assert Lt ∩ locksett′ 6= ∅ {Check with prior writes}

end if
end for

end for
for all threadst′ in read mapRx do

for all (epocht′ , locksett′) ∈ Rx[t
′] do

if epocht′ 64 Ct then
assert Lt ∩ locksett′ 6= ∅ {Check with prior reads}

end if
end for

end for

Algorithm 22 Updateon read [MULTI LOCK-HB]: Update and remove redundant reads

for all (epoch, lockset) ∈ (Rx[t] ∪Wx[t]) do
if epoch = Ct[t] ∧ lockset ⊆ Lt then

return {Ignore current read}
else
Rx[t]← Rx[t] ∪ {(Ct[t], Lt)}

end if
end for
for all (epoch, lockset) ∈ Rx[t] do

if epoch = Ct[t] ∧ Lt ⊆ lockset then
Rx[t]← Rx[t]− {(epoch, lockset)} {Remove prior read}

end if
end for

means thatCt[t] andLt are the epoch and lockset of the current readR being analyzed. There are
two steps. In the first step, Updateon read given in Algorithm22is called to updateRx[t] so that the
RAF-invariant is maintained. If there exists(epoch, lockset) ∈ (Rx[t] ∪Wx[t]) for a prior read or
write access, whereepoch = Ct[t], such thatlockset ⊆ Lt, thenR is redundant with respect to the
prior access by Theorem1. In this case,Rx[t] andWx[t] remain unchanged. Otherwise, we insert
(Ct[t], Lt) associated with the current readR intoRx[t] and remove every(epoch, lockset) ∈ Rx[t],
whereepoch = Ct[t], such thatLt ⊆ lockset since the corresponding prior read is redundant with
respect to the current readR by Theorem1. In the second step, we check for data races between the
current readR and every concurrent write recorded previously. We report a racewhenever the two
accesses are not protected by a common lock, i.e., when the intersection of their locksets is empty.

18

Algorithm 23 Updateon write [MULTI LOCK-HB]: Update and remove redundant reads/writes

for all (epoch, lockset) ∈ Wx[t] do
if epoch = Ct[t] ∧ lockset ⊆ Lt then

return {Ignore current write}
else
Wx[t]←Wx[t] ∪ {(Ct[t], Lt)}

end if
end for
for all (epoch, lockset) ∈ Rx[t] do

if epoch = Ct[t] ∧ Lt ⊆ lockset then
Rx[t]← Rx[t]− {(epoch, lockset)} {Remove prior read}

end if
end for
for all (epoch, lockset) ∈ Wx[t] do

if epoch = Ct[t] ∧ Lt ⊆ lockset then
Wx[t]←Wx[t]− {(epoch, lockset)} {Remove prior write}

end if
end for

Algorithm 24 Volatile Read [MULTI LOCK-HB]: threadt reads volatile variablex

Ct ← Ct ⊔ Cx

Ct[t]← Ct[t] + 1

Algorithm 25 Volatile Write [MULTI LOCK-HB]: threadt writes volatile variablex

Cx ← Cx ⊔ Ct

Ct[t]← Ct[t] + 1

Similarly, in Algorithm21, a writeW to a shared locationx made in threadt is analyzed. There
are also two steps. In the first step, Updateon write given in Algorithm23 is called to update both
Rx[t] andWx[t] so that the RAF-invariant is maintained. If there exists(epoch, lockset) ∈Wx[t]
for a prior write, whereepoch = Ct[t], such thatlockset ⊆ Lt, thenW is redundant with respect
to the prior write by Theorem1. In this case,Rx[t] andWx[t] remain unchanged. Otherwise,
we insert(Ct[t], Lt) associated with the current writeW into Wx[t] and, in addition, remove
every (epoch, lockset) ∈ (Rx[t] ∪Wx[t]), whereepoch = Ct[t], such thatLt ⊆ lockset since the
corresponding read or write made earlier is redundant with respect toW by Theorem1. In the
second step, we check for data races between the current writeW and every concurrent write or
read made earlier.

Let us examine how MULTI LOCK-HB has avoided the two aforesaid problems:

Figure 2(c). Consider this example again with the thread interleavingT1→ T2. After the two reads
are executed inT1, we haveRx[T1] = {(1@1, {l2}), (1@1, {l1})}. When the write inT2 is
analyzed,CT2 = (0, 1) andLT2 = {l1}. So the write is concurrent with the two reads. The
race (A, B) is detected as the two accessesA andB are not protected by a common lock.

Figure 7. Consider this example assuming as before that the write inT2 is made between the
two accesses inT1. After the two writes are executed, we haveWx[T1] = {(1@1, {l2})}
andWx[T2] = {(1@1, {l1, l2})}. When the second read inT1 is analyzed,CT1 = (1, 0) and
LT1 = {l1}. The second read happens after the first read as both are made inT1. However, the
second read is concurrent with the write inT2. The false positive (A, B) that would otherwise
be reported by ACCULOCK is avoided asA andB are protected by a common lock,l1.

19

Theorem 5(∅-Races Only Warnings)
All race warnings reported by MULTI LOCK-HB are∅-races.

Proof
In MULTI LOCK-HB, all concurrent reads and writes to a shared locationx are recorded inRx

andWx except the redundant ones by Theorem1. Whether two concurrent accesses race or not
are checked to see if they share a common lock. By Definition1, all warnings reported must be
∅-races.

4. EXPERIMENTAL EVALUATION IN JIKES RVM

We validate the fulfillment of its design objectives by ACCULOCK by comparing it against six other
dynamic race detectors in the Jikes RVM using 11 Java benchmarks, the largest programs ever
used as a collection in the literature. (We did not includeweblech illustrated in Figure1 since it
cannot compile successfully under Jikes RVM.) The six other detectors are: ERASER [9] (a well-
known imprecise detector based on LOCKSET), RACETRACK [10] (an imprecise hybrid lockset/VC
detector), “HYBRID” [19] (a hybrid Lockset/VC detector), DJIT+ [18] (a high-performance VC-
based detector), MULTI RACE [18] (a hybrid Lockset/DJIT+ detector), and FASTTRACK [12] (the
fastest happens-before detector known to use for Java programs).

Our experimental results show that ACCULOCK is capable of reporting more (real) data races
than FASTTRACK, while maintaining comparable analysis overhead (in performance and memory
overhead) and limiting the data races reported to be mostly∅-races (Definition1). In addition, none
of the other detectors meet all our design objectives.

4.1. Implementation

Our implementation is based on the publicly available source code for PACER [21]. In order to
ensure reliable comparisons, all race detection algorithms were implemented ontop of EMPTY
as similarly as possible so as to reuse the same data structures such as vectorclocks, readmaps
and locksets. EMPTY performs no analysis and is used to measure the instrumentation overhead
at compile time as well as the overhead of associating metadata with each monitoredobject and
synchronization object at run time. It is implemented inside the Jikes RVM (version 3.1.0), a high-
performance Java-in-Java virtual machine. The performance of JikesRVM is competitive with
commercial VMs when compared in November 2009 based on theDacapo benchmark suite.†

4.1.1. MetadataThere are three kinds of metadata for ACCULOCK concerning reads/writes, VCs
and locksets. We handle reads/writes and VCs as in PACER [21] except for some differences as
described below. We handle locksets as in ERASER [9] and RACETRACK [10].

• Two wordsare added to the header of each object. The first word points to an arrayof
per-field read/write metadata. For each instrumented fieldx, Rx andWx are recorded. We
therefore trade off memory for speed so that the read/write metadata for aninstrumented
field are accessed directly, without having to go through a hashing process (as in PACER).
The second points to the synchronization data, i.e., its VC for a synchronization object. As
PACER is sampling-based, its sampling-related code is suppressed and thus not used in any
detector examined in our experiments. Similarly, a word is added per static field for read/write
metadata. If volatile variables are handled by applying Algorithms12 and 13, a word per
(object or static) volatile field is also added for synchronization metadata.

• As in ERASER and RACETRACK, a lockset table is used to record all distinct locksets ever
created and to identify a lockset uniquely by its index into the table. Lookups inthe table are
lock-free while inserts are serialized.

†http://dacapo.anu.edu.au/regression/perf/2006-10-MR2.html

20

The other six detectors are implemented similarly.

4.1.2. InstrumentationThere are two dynamic compilers to translate Java bytecode into native code
in the Jikes RVM. Initially, the baseline compiler compiles each method it first encounters into non-
optimized code. When a method becomes hot based on the profiling information gathered by the
Jikes RVM, the optimizing compiler re-compiles it into more optimized code to accelerate program
execution. Our implementation modifies both compilers to add instrumentation at eachinteresting
program point, such as a synchronization operation, read or write. Onlythe application code of a
program loaded at run time is instrumented. In the optimizing compiler, we use its mostly static
intraprocedural escape analysis to filter out thread-local accesses.

4.1.3. Reporting RacesAll detectors report at most one race for each field monitored. The racy
pairs reported for a shared location by different detectors may be different.

4.2. Methodology

4.2.1. PlatformWe performed all experiments on a 3.0GHz quad-core Intel Xeon machine running
Redhat Enterprise Linux 5 (kernel version is 2.6.18) with 16GB of memory.

4.2.2. Benchmark ConfigurationWe have selected 11 benchmarks that expose different runtime
structures and patterns in the following way. We have used all four multithreaded programs in
the latest release of theDaCapo benchmark suite (9.12-bach) [23] that can compile under
the Jikes RVM:xalan, a test tool for the xerces library to transform XML documents into
HTML, lusearch, a benchmark usinglucene to index a set of documents,avrora, a simulator
running AVR microcontrollers, andsunflow, a render processing images using a ray-tracing
algorithm. We also include the two multithreaded programs in an older version ofDaCapo (version
2006-10-MR2): hsqldb, a JDBCbench-like in-memory benchmark andeclipse, a (non-GUI)
JDT performance test tool for the Eclipse IDE. The other five benchmarks are:hedc, a tool to
access astrophysics data from Internet [11], mtrt, a multithreaded ray-tracing program from SPEC
JVM98, jspider, a highly configurable and customizable web spider engine [24], cache4j, a
cache system for Java objects with a simple API and fast implementation [25], andjcs, a distributed
caching system [26].

For the sixDaCapo benchmarks, the inputs with default sizes were used (as some of these
benchmarks run out of memory on larger sizes). Formtrt, the largest input size was enabled with
the option “-s100”. For jspider, it was set up to run on a randomly chosenURL usinggoogle.
Forcache4j andjcs, their benchmark inputs were used.

4.2.3. Computing Time and Space OverheadsThese measurements are the average of 10 runs. The
time spent on analyzing a program by a detector does not include the time for recording and printing
the stack traces for each racy pair of accesses reported. The benchmarks marked with ‘*’ in TableI
are not compute-bound and are excluded when computing the average performance slowdown for a
detector.

4.2.4. Counting Race WarningsDynamically detecting races is challenging as some races occur
infrequently. For each program, we report all distinct warnings foundin the 10 runs by a detector to
ensure a reliable comparison with others.

4.2.5. Analysis ConfigurationACCULOCK provides a number of analysis switches, controlling
whether to analyze memory locations at the level of fields or objects, whetherto distinguish the

elements of an array or not, and whether to include the events of volatile reads/writes in accu−hb
−−−−−→

or not.
In this paper, we restrict ourselves to the fine-grain analysis performedat the field level.

Volatile variables are handled by Algorithms12 and13. Finally, all array elements are individually

21

monitored. We used the default generational mark-region collector with the options as-Xmx4000M
-X:processors=all.

4.3. Results and Analysis

Table I lists the size, the number of classes, the number of methods, the number of threads and
uninstrumented running times for each program examined. In addition, the “Instrumented Times”
columns show the running times of each program under each of the detectors, reported as the ratio to
the uninstrumented running time. The variations in slowdowns for different programs are common
for different dynamic detectors. The “#Race Warnings” columns give the number of warning
produced by each detector. Like ERASER, both HYBRID and RACETRACK suppress “initialization
warnings” using ERASER’s unsound state machine in handling thread-local and read-shared data.
To achieve an apples-to-apples comparison with the other four detectors,DJIT+, MULTI RACE,
FASTTRACK and ACCULOCK, class initializers and object constructors are not instrumented.
Otherwise, all initialization warnings reported are given inside the brackets.

Here are some observations about the following four detectors when compared to ACCULOCK

directly or indirectly:

DJIT+. Like FASTTRACK, ACCULOCK is faster than DJIT+, which always reports the same
warning as FASTTRACK as both differ only in how the happens-before relation is represented
(by VCs vs. VCs + epochs).

MULTIRACE. This detector has about the same overhead and behaves exactly the same as DJIT+

except that only accesses with an empty lockset concluded by ERASERare checked using VC
operations. Due to ERASER’s unsound state machine used as discussed below, MULTI RACE

may miss real races and report false warnings, as already discussed in[12].

HYBRID. This detector uses what is similar asaccu−hb
−−−−−→ to filter out some potential races from

ERASER that are ordered byaccu−hb
−−−−−→. While being effective in some programs, such as

eclipse and avrora, HYBRID can be up to 3× (in sunflow) slower than ERASER

and inherits the same imprecise state machine from ERASER. The aggressive lock-subset
optimization [18, 19] used in HYBRID for removing redundant accesses can be expensive for
some programs.

RACETRACK. By making the opposite tradeoff as HYBRID, this detector runs as fast as ERASER

but can be very imprecise since it starts looking for races on a memory location only after
it has “observed” some racy evidence or missed some racy accesses regarding the location.
By comparing the “RACETRACK” and “FASTTRACK” columns tallying the warnings found
(even they may represent different warnings)), we find that RACETRACK often detects only
a small subset of races detected by FASTTRACK in a program (e.g.,sunflow). On the other
hand, ACCULOCK detects all what FASTTRACK does (by Theorem3 and in practice).

Given the above discussions, it suffices to analyze our results by comparing ACCULOCK and
FASTTRACK. Afterwards, we compare ACCULOCK and ERASERonly briefly.

4.3.1. FASTTRACK ComparisonWe first compare the instrumentation overheads incurred by
FASTTRACK and ACCULOCK and then examine both detectors in terms of extra race conditions
discovered by ACCULOCK.

Instrumentation Overheads Table I shows that ACCULOCK has slightly higher analysis
overhead (about 5.8% on average more) than FASTTRACK, when implemented in the same EMPTY

framework. Note that ACCULOCK is slightly faster forlusearch and sunflow. ACCULOCK

achieves such comparable performance by leveraging the lightweight epoch representation of VCs
as in FASTTRACK and the fast lockset operations as in ERASER. As shown in TableI, ERASER

remains the fastest of all detectors evaluated.

22

#Instrumented Times (Slowdowns) #Race Warnings

Program

Size

(LOC)

#Classes

Loaded

#Methods

Compiled #Threads

Base

Time

(secs) E
M

P
T

Y

E
R

A
S

E
R

R
A

C
E
T

R
A

C
K

H
Y

B
R

ID

D
J

IT
+

M
U

LT
IR

A
C

E

FA
S

T
T

R
A

C
K

A
C

C
U
L

O
C

K

E
R

A
S

E
R

R
A

C
E
T

R
A

C
K

H
Y

B
R

ID

D
J

IT
+

M
U

LT
IR

A
C

E

FA
S

T
T

R
A

C
K

A
C

C
U
L

O
C

K

xalan 265,897 360 2,199 64 4.65 2.34 4.81 4.59 10.19 14.1 14.2 5.58 6.03 24 24 24 6[16] 6[16] 6[16] 36[29]

lusearch 110,960 100 505 64 6.89 2.05 4.26 3.76 5.04 6.24 6.37 3.84 3.75 0 0 0 1[12] 1[12] 1[12] 1[12]

hsqldb 148,481 113 1,012 16 2.74 3.36 7.82 7.78 15.92 – – 7.73 8.24 9 6 5 – – 3[4] 3[4]

eclipse 165,366 1,230 9,580 16 27.1 3.06 10.06 10.24 18.4 – – 9.29 9.62 139 53 87 – – 17[3] 67[30]

avrora 136,756 397 1,785 6 13.6 1.69 3.55 3.48 4.66 4.5 4.52 3.23 3.4 37 2 3 3 3 3 4[1]

sunflow 108,962 121 986 16 5.56 5.05 41.27 41.67 102.8 79.6 80.1 54.1 51.9 4 3 4 19[7] 19[7] 19[7] 19[24]

mtrt 11,317 38 243 20 1.53 2.73 4.95 4.83 8.31 15.8 15.8 4.81 4.88 12 6 5 6[1] 6[1] 6[1] 6[1]

cache4j 5,061 9 65 64 49.1 1.32 2.29 2.24 3.69 4.27 4.28 2.47 2.47 1 1 1 2 2 2 2

jcs 66,944 70 364 64 32.4 1.7 4.0 3.83 8.71 8.03 7.92 4.69 4.83 3 3 3 3 3 3 5[3]

hedc* 24,924 38 140 30 1.24 1.06 1.07 1.08 1.07 1.08 1.08 1.08 1.09 2 0 1 3[2] 1 3[2] 3[2]

jspider* 18,826 304 1,630 15 33.4 1.05 1.08 1.08 1.07 1.08 1.08 1.07 1.08 8 2 6 7[4] 7[4] 7[4] 7[4]

Average 2.6 9.2 9.1 20.0 18.9 19.0 10.3 10.9

Total 239 100 139 92[42] 88[42] 119[49] 257[130]

Table I. Benchmark results under Jikes RVM. The two marked with ‘*’ are not compute-bound and are thus excluded when computing average slowdowns. DJIT+ and
MULTI RACE ran out of memory onhsqldb andeclipse due to the 4GB heap limitation in Jikes JVM. The extra warnings inside the brackets are generated if class

initializers and object constructors are also instrumented.

23

Program
Base

Memory Overhead
Memory

(MB) ERASER FASTTRACK ACCULOCK

xalan 106.5 3.98 4.79 4.79
lusearch 73.1 4.89 4.48 4.19
hsqldb 94.1 6.84 6.87 6.9
eclipse 156.5 5.21 5.39 5.54
avrora 48.1 4.89 4.63 5
sunflow 48.1 10.25 7.72 7.75
mtrt 48.5 5.93 6.94 6.7
cache4j 34.1 2.52 2.62 2.21
jcs 59.7 2.36 2.67 2.71
hedc 19.7 1.42 1.43 1.46
jspider 37.8 1.28 1.28 1.28

Average 66.0 4.51 4.44 4.47

Table II. Comparing memory overhead, which is the ratio of the maximum heap space used during analysis
to the maximum heap space used under uninstrumented execution (shown in Column 2).

TableII shows that ACCULOCK has more or less the same memory overhead as FASTTRACK.
Compared with ERASER, both detectors also have similar memory requirements.

Both ACCULOCK and FASTTRACK keep the same set of instrumentation states for a locationx.
There are three states for reads: (1)Same-Epoch, (2) Exclusive when|Rx| = 1 in FASTTRACK or
|Rx| = 1 in ACCULOCK, and (3)Read-Shared when|Rx| > 1 or |Rx| > 1. There are two states
for writes: (1) Same-Epoch and (2)Exclusive (with |Wx| = 1 in FASTTRACK or |Wx| = 1 in
ACCULOCK always).

Table III gives the number of times each state is entered by all instrumented locations in
FASTTRACK and the number ofO(n) VC operations performed on synchronization objects.
Table IV presents similar statistics for ACCULOCK, together with those for lockset operations.
ACCULOCK checks more frequently for races between a write and earlier concurrent reads than
FASTTRACK (as shown in the “Exclusive” columns in the two tables) because lock acquire and

release ordering events are ignored inaccu−hb
−−−−−→ (but included in hb

−→). On the other hand, as shown
in the “#VC Ops on Sync Objects” columns, ACCULOCK reduces significantly the number of
O(n) VC operations on synchronization objects performed by FASTTRACK. In jcs, nearly all
synchronization events are volatile reads. Such reduction can be more pronounced on affecting
their relative analysis times when the number of threads,n, increases.

In general, ACCULOCK is slightly slower than FASTTRACK in analyzing a program when the
number of lockset operations or the number of times the instrumented locations stay in theRead-
Shared state or both are relatively high (as inxalan andhsqldb). For the ray-tracing application
sunflow, ACCULOCK is faster FASTTRACK since ACCULOCK stays in the same epoch more often.
Note that ACCULOCK needs to record the lockset for each non-redundant read. For the two caching
applications,cache4j andjcs, the extra overhead incurred by ACCULOCK over FASTTRACK is
slightly higher injcs thancache4j as ACCULOCK stays in theRead-Shared state more often
in jcs. Finally, ACCULOCK is slightly faster than FASTTRACK onlusearch because the ratio of
the number ofO(n) VC operations performed on synchronization objects in FASTTRACK to the
number of lockset operations performed by ACCULOCK is relatively high.

Effectiveness of Data Race Detection ACCULOCK is more effective than FASTTRACK in the
sense that (1) it detects all real races reported by FASTTRACK on every benchmark used (over 10
runs), as shown in the last three columns of TableV, (2) it reports only∅-races in 10 out of the 11

24

Program

#INSTRUMENTATION STATES ENTERED #VC OPS
READS WRITES ON SYNC

SAME
EXCLUSIVE

READ SAME EXCLUSIVE OBJECTS

EPOCH SHARED EPOCH |Rx| = 1 |Rx| > 1 [O(n)]

xalan 0.43B 0.16B 43.8M 27.8M 46.3M 4 8.94M
lusearch 0.76B 0.11B 9.84M 0.23B 49.2M 0 3.51M
hsqldb 80.6M 0.13B 47430 1.85M 24.8M 18 9.71M
eclipse 3.3B 0.34B 99.8M 0.75B 0.14B 352 4.9M
avrora 0.82B 0.11B 5.03M 0.34B 42.1M 0.1M 3.8M
sunflow 1.2B 0.22B 2.36B 0.35B 0.35B 6 1642
mtrt 0.17B 3.0M 1.11M 6.34M 18.5M 41 9626
cache4j 29.5M 0.13B 9.5M 0 71.1M 65 44.8M
jcs 26.5M 0.14B 0.32B 29.2M 0.11B 66 0.22B
hedc 32712 37462 1717 7995 2312 0 528
jspider 0.65M 0.11M 5984 0.26M 55633 11 4035

Table III. Statistics about FASTTRACK analysis operations.

Program
INSTRUMENTATION STATES ENTERED #VC OPS #LOCKSETOPS
READS WRITES ON SYNC

SAME
EXCLUSIVE

READ SAME EXCLUSIVE OBJECTS LOOK INTER INSERTS
EPOCH SHARED EPOCH |Rx| = 1 |Rx| > 1 [O(n)] -UPS -SECTS

xalan 0.45B 0.16B 22.3M 26.9M 46.1M 0.03M 131 0.28B 5.42M 0.02M
lusearch 0.73B 0.14B 4.14M 0.23B 51.6M 65 0.85M 6.61M 446 1094
hsqldb 79.8M 0.14B 2.85M 1.74M 25.0M 0.02M 3.07M 0.14B 0.34M 2652
eclipse 3.38B 0.33B 11.7M 0.75B 0.14B 0.01M 1.25M 23.4M 0.26M 8412
avrora 0.82B 0.11B 7.0M 0.34B 40.3M 0.22M 0.43M 8.27 3.61M 10
sunflow 2.85B 0.23B 0.87M 0.35B 0.35B 4 34 1.62M 498 18
mtrt 0.19B 3.94M 0.07M 7.92M 16.5M 42 27 1.61M 194 22
cache4j 29.4M 61.1M 79.9M 0 71.8M 0.02M 64 0.16B 14.6M 3
jcs 0.14B 87.5M 0.26B 29.2M 0.11B 1.42M 0.21B 533 0.21B 13
hedc 0.03M 0.03M 789 7746 2296 0 154 396 38 67
jspider 0.69M 0.11M 3746 0.28M 55633 20 1047 0.16M 16 240

Table IV. Statistics about ACCULOCK analysis operations.

benchmarks used, and (3) it finds more real races among the extra racewarnings reported (relative
to FASTTRACK).

By Theorem3, ACCULOCK always finds a superset of races found by FASTTRACK under the
condition that both detectors analyze a program execution with the same thread interleaving. This
condition may or may not hold if each detector is run once on a given program. However, this
theorem holds for the 11 benchmarks used in our experiments (as shown by Column “−F” in

TableV), as ACCULOCK uses accu−hb
−−−−−→, which is less sensitive to thread interleaving thanhb

−→.
We have analyzed the extra warnings reported by ACCULOCK (in the “+F” columns) forxalan,

eclipse, avrora andjcs using MULTI LOCK-HB for 10 runs. Only three foreclipse are found
to be false warnings that are removable using sets of locksets as in MULTI LOCK-HB (rather than
just locksets as in ACCULOCK). All the rest are∅-races (Definition1), which are the potential races
that ACCULOCK is designed to flag for further analysis, as motivated in Section1.1.

Let us examine the∅-races listed in the last column of TableV. First of all, ACCULOCK and
FASTTRACK report the same set of real races in seven of the 11 programs tested, showing that
ACCULOCK is usually precise by refraining from reporting false warnings. We havemanually

25

Program -E +E -F +F +FA
FP ∅-races FP ∅-races

xalan 0 0 19 0 0 30 2
lusearch 0 0 1 0 0 0 0
hsqldb 3 0 0 0 0 0 3
eclipse 108 3 50 0 3 41 14
avrora 34 0 3 0 0 1 3
sunflow 0 0 22 0 0 0 4
mtrt 5 0 1 0 0 0 7
cache4j 0 0 1 0 0 0 3
jcs 0 0 2 0 0 2 2
hedc 1 0 4 0 0 0 0
jspider 3 0 2 0 0 0 5

-E/+E: fewer/more than ERASER -F/+F: fewer/more than FASTTRACK

FP: false positives (warnings) removable using sets of locksetsinstead of just locksets
+FA: real races missed by ERASERbut found by both FASTTRACK and ACCULOCK

Table V. Comparing ACCULOCK with ERASERand FASTTRACK in terms of data races reported.

analyzed all∅-races reported in three of the remaining four benchmarks,xalan, avrora andjcs,
as follows:

jcs. Both are false warnings that warrant such further analysis in order to eliminate all potential
software defects. One warning is related to unprotected accesses to the field cache of an
jcs object. Both are synchronized by an intervening user-defined barrierfollowed by a lock
acquire. The other is caused by accesses to the fieldattr of a CacheElement object via
object pooling, for the same reason as demonstrated in Figure2(d). Both warnings can be
suppressed with user annotations to ACCULOCK. How to automate detection of idioms such
as object pooling and shared channels remains open.

avrora. This is a real race on some elements of an array
Medium$Transmitter$Ticker:transmission.data, which is always detected by
ACCULOCK using both the default input (6 threads) and the large input (26 threads). However,
the race is missed by FASTTRACK (and also by PACER [21], another implementation of
FASTTRACK with its sampling rate set at 100%) when the default input is used but is detected
only with the large input, due to its sensitivity to thread interleaving.

xalan. All these are false warnings on 26 object fields, including the fieldm lastFetched
of an objectLocPathIterator, due to the use of a sharediterator pool, which is
synchronized itself.

However, there is a real race on the fieldm attrs of an objectElemDesc that is detected
in all 10 runs by ACCULOCK but only in 4 of the 10 runs by FASTTRACK, despite that the
race is counted for FASTTRACK in TableI. (Thus, this race is not included in the 30∅-races
shown in the last column for this benchmark.) Figure8 demonstrates further that ACCULOCK

is significantly less sensitive to thread interleaving than FASTTRACK in hunting this race
condition. In addition, in a separate experiment runningxalan with 8 threads for 500 runs,
FASTTRACK fails to detect the race in all the runs but ACCULOCK succeeds in reporting it in
all 500 runs.

4.3.2. ERASERComparisonWhile being the fastest among all seven detectors compared in TableI,
ERASER is known to issue more warnings and also miss real races due to its unsound handling of
thread-local and read-shared data. Looking at TableI again, ERASERdoes not produce many false
warnings compared to ACCULOCK in a few benchmarks. This is because ERASERhas succeeded in

26

10 20 30 40 50 60 70 80 90 100
0
2
4
6
8

10

Number of Threads
#R

ac
es

in
10

R
un

s

FASTTRACK ACCULOCK

Figure 8. Sensitivity of ACCULOCK and FASTTRACK to thread interleaving on the racy accesses to the field
m attrs of an objectElemDesc in xalan.

suppressing many false warnings that would have otherwise been produced by LOCKSET. However,
this is done unsoundly as many real races are also suppressed as discussed below.

TableV also gives the extra race warnings reported by ACCULOCK relative to ERASER in the
“+E” columns. ACCULOCK happens to also report only three race warnings that are not∅-races (for
eclipse). In addition, ERASER did not report the two real races found by ACCULOCK discussed
above inavrora andxalan. Finally, the “+FA” column gives the number of real races missed by
ERASERbut found by both FASTTRACK and ACCULOCK.

5. EXPERIMENTAL EVALUATION IN ROADRUNNER

Dynamic race detectors are known to be sensitive to not only the thread interleavings occurring at
run time but also the instrumentation frameworks used at compile time. In this section, we show
that porting ACCULOCK and FASTTRACK to a different dynamic analysis framework, RoadRunner
[20], and repeating our experiments done previously for Jikes RVM yields similar observations
about the two detectors. In addition, putting MULTI LOCK-HB in action in RoadRunner reveals
the cost-effectiveness of ACCULOCK and validates again its design objectives. Unlike Jikes RVM,
RoadRunner is a framework designed for developing dynamic analyses for multithreaded Java
programs at the bytecode level and has been extended for implementing several dynamic analysis
tools [27, 12, 28]. As RoadRunner is a well designed tool for reuse, it is relatively straightforward
to port our three analysis algorithms from Jikes RVM.

We have carried our experiments using ACCULOCK, FASTTRACK and MULTI LOCK-HB in
RoadRunner exactly as in Jikes RVM. The benchmarkeclipse is not used since it failed to run.
Instead, we have replaced it withweblech, which is another web crawler often used in the literature.

Performance Slowdowns Table VI gives the “Instrumented Times” (as the ratios to the
uninstrumented running times) and race warnings reported. Compared with FASTTRACK,
ACCULOCK’s exhibits similar analysis overheads across these benchmarks as in JikesRVM.
In particular, ACCULOCK is still able to analyzelusearch slightly more efficiently than
FASTTRACK. On average, ACCULOCK is about 6.5% slower than FASTTRACK. These
results demonstrate further that ACCULOCK achieves comparable performance as FASTTRACK.
Meanwhile, MULTI LOCK-HB is nearly three times as slow as ACCULOCK (on average) as the lock
subset operations can be costly.

Memory Overhead The memory overheads for the three analysis algorithms are compared in
TableVII . As in Jikes RVM, ACCULOCK and FASTTRACK exhibit similar memory requirements

27

#Instrumented Times (Slowdowns)#Race Warnings

Program

Base
Time
(secs) FA

S
T
T

R
A

C
K

A
C

C
U

L
O

C
K

M
U

LT
IL

O
C

K
-H

B

FA
S

T
T

R
A

C
K

A
C

C
U

L
O

C
K

M
U

LT
IL

O
C

K
-H

B

xalan 4.65 11.07 12.58 27.27 6 36 36
lusearch 6.89 9.17 9.03 19.14 1 1 1
hsqldb 2.74 20.13 23.49 51.7 3 3 3
weblech* 1.4 1.08 1.09 1.09 4 4 4
avrora 13.6 3.75 4.46 65.14 3 4 4
sunflow 5.56 39.93 40.02 98.56 5 18 18
mtrt 1.53 18.31 18.92 38.12 6 6 6
cache4j 49.1 3.04 4.50 9.49 2 2 2
jcs 32.4 5.86 6.02 16.72 3 5 5
hedc* 1.24 1.08 1.09 1.09 3 3 3
jspider* 33.4 1.07 1.07 1.09 7 7 7

Average 13.9 14.8 40.7
Total 43 89 89

Table VI. Benchmark results under RoadRunner. The three benchmarks marked with * are not compute-
bound and are thus excluded when computing average slowdowns. The warnings are generated with class

initializers and object constructors not being instrumented.

in RoadRunner. However, the amount of memory consumed by MULTI LOCK-HB has more than
doubled on average as MULTI LOCK-HB has to keep track of a lot more information about
concurrent accesses made in the past.

Program
Base

Memory Overhead
Memory

(MB) FASTTRACK ACCULOCK MULTI LOCK-HB

xalan 814 4.36 4.77 7.76
lusearch 2076 4.75 4.39 5.47
hsqldb 393 3.85 4.15 12.69
weblech 109 2.81 2.84 2.84
avrora 143 2.51 2.67 21.83
sunflow 1003 1.90 2.42 6.36
mtrt 299 5.89 5.50 15.89
cache4j 549 1.99 2.16 4.13
jcs 551 1.20 1.24 4.13
hedc 132 1.51 1.5 1.52
jspider 125 2.69 2.76 2.79

Average 563.1 3.00 3.13 7.06

Table VII. Comparing memory overhead under RoadRunner, which is the ratio of the maximum heap space
used during analysis to the maximum heap space used under uninstrumented execution (in Column 2).

28

Race Warnings The race warnings reported by the three detectors are listed in the last three
columns of TableVI (with “initialization warnings” excluded). Some observations are in order:

• MULTI LOCK-HB reports exactly the same set of warnings as ACCULOCK for each
benchmark tested. According to Theorem5, all warnings reported must be∅-races, the type
of races that ACCULOCK is designed to catch. For these benchmarks, using sets of locksets as
in MULTI LOCK-HB is not cost-effective as the multiple protecting lock idiom occurs rarely
in read-world programs. So ACCULOCK appears to make a good tradeoff between efficiency
and precision in detecting data races in practice.

• ACCULOCK reports a superset of race warnings compared to FASTTRACK (Theorem3).
Comparing TablesI and VI , we find that ACCULOCK and FASTTRACK report somewhat
different race warnings forsunflow due to the differences in thread interleavings
encountered and compiler framework used. For all the other common benchmarks used, each
detector reports exactly the same race warnings in RoadRunner as in JikesRVM.

• ACCULOCK is less sensitive to thread interleaving than FASTTRACK. For the data race
illustrated earlier forxalan in Figure8, similar results are observed. In particular, when the
program is executed with the number of threads being 16, 32 and 64, respectively, ACCULOCK

can find the race in each of the 10 runs in each of the three configurationstested. In contrast,
FASTTRACK only finds the race in 2, 3, 6 of the 10 runs in each of the three cases. Forthe
data race of theweblech benchmark discussed in Figure1, ACCULOCK succeeds in finding
the race in each of the 10 runs. However, FASTTRACK only catches the race in 6 of the 10
runs.

6. RELATED WORK

We supplement our review of related work in Section1 by focusing only on dynamic race detection.
All dynamic analysis algorithms proposed in the literature are based on lockset or happens-before
or a combination of both. They can be classified into the four categories below.

Lockset Race Detection The basic idea is to verify the locking discipline [8] that a common lock
should be consistently held on each access to a particular shared memory location and report a
warning otherwise. This underpins the lockset algorithm introduced for the first time in ERASER

[9, 10]. False positives are unavoidable when some synchronization mechanismsor idioms do not
follow the locking discipline. Praun et al. proposedobject race detection[11] that can improve
the lockset algorithm’s performance by applying escape analysis to filter out thread-local data and
detecting data races at the object level instead of the field level. Unfortunately, a reduction in analysis
time can lead to even more false positives reported due to its coarser analysisgranularity.

Happens-Before Race Detection The basic idea here is to verify thehappens-beforerelation,
a causal relationship induced by program order and synchronization order during a program
execution, represented using vector clocks (VCs) [12, 13, 14, 15, 16]. Unlike lockset, happens-
before can therefore be precise by reporting no false positives but requires repeated test runs to
increase its coverage. Two earlier analysis algorithms reported are TRADE [14] and DJIT+ [18].
VCs are expensive to implement, exhibitingO(n) complexity in both time and space, wheren is
the number of threads. FASTTRACK [12] reduces it fromO(n) to O(1) for the majority of the
VC operations in a program execution. As a result, FASTTRACK and ERASER are comparable
in performance overheads for the benchmarks tested in this work. However, each VC update at a
synchronization operation is still(n) and can thus be costly for programs with many synchronization
operations. In contrast, ACCULOCK does not track the release-acquire edges at synchronization
operations. Instead of making VC updates, ACCULOCK relies on a new lockset algorithm to detect
more data races.

Goldilocks [29] represents a somewhat different solution. In this detector, the happens-before
relation is captured using a unified lockset containing locks, threads and volatile variables. Although

29

it is dynamically sound and precise, the overhead of traversing its global synchronization list is much
higher than FASTTRACK in a high-performance JVM, as shown in [12].

Hybrid Techniques In the pre-FASTTRACK era, there were two kinds of attempts on combining
lockset and happens-before race detection to detect data races [19, 10, 18, 29]. One is to use the
lockset information to improve the efficiency of VCs, as in MULTI RACE [18], by limiting VC
operations to accesses to a shared location with an empty lockset. The other isto use the happens-
before information to reduce false positives in a lockset detector like ERASER. “H YBRID” [19]
does this by reporting the same true positives as ERASER while RACETRACK [10] may report
less to trade precision for efficiency. However, these earlier hybrid detectors are often much slower
than lockset and happens-before detectors as VCs are expensive tomaintain. The only exception
is that RACETRACK has about the same performance as ERASER but is less precise. These results
are validated by their authors, partly in the FASTTRACK work [12] and more extensively in our
experiments discussed in this paper.

This paper has improved our earlier work [30] in two principal directions. First, we have re-
implemented ACCULOCK and FASTTRACK in RoadRunner and confirmed again ACCULOCK’s
fulfillment of its design objectives. This second evaluation is important as dynamic race detectors
are often sensitive to thread interleavings exercised and compiler frameworks used. Second, we
have introduced for the first time, MULTI LOCK-HB, a new epoch-based lockset detector that uses
sets of locksets rather than just locksets to detect data races caused by the use of the multiple
protecting lock idiom. Replacing this new lockset algorithm used in ACCULOCKwith MULTI LOCK-
HB results in only three false warnings ineclipse to be suppressed. However, the price paid for
this is nearly a factor-of-three performance slowdown on average forthe 10+ benchmarks tested.
Two conclusions can be drawn immediately. First, the ACCULOCK design is justified as the races
caused by the multiple protecting lock idiom are rare and thus unnecessarily expensive to detect with
MULTI LOCK-HB. Second, MULTI LOCK-HB can be selectively deployed for certain applications
(e.g.,eclipse) that contain potentially such races.

THREADSANITIZER [22] has also recently been developed to combine lockset and happens-
before to dynamically detect data races for x86 binaries. However, it differs from ACCULOCK

in two key aspects. First, THREADSANITIZER still uses VCs to reason about happens-before
while ACCULOCK adopts lightweight epochs. Second, THREADSANITIZER keeps track of
multiple locksets for concurrent writes to a shared location (one per threadjust like for reads)
to increase its chances in detecting races caused by the multiple protecting lockidiom. In
contrast, ACCULOCK maintains only the lockset for the last write. However, according to the
authors of THREADSANITIZER [22] and our experimental validation and analysis assisted by
MULTI LOCK-HB, such races rarely occur in real-world programs. Due to the abovetwo differences,
THREADSANITIZER suffers no less analysis overhead than earlier hybrid detectors such as HYBRID

and MULTI RACE. Using caching in VC-based detectors can speed up only some VC operations as
caching is not overhead-free and all VC operations on cold and conflict cache misses are stillO(n).
Given that the multiple protecting lock idiom is rarely used, ACCULOCK is not only efficient but
also can accurately pinpoint where a race occurs even if reads and writes are handled asymmetrically
(implied in the proof of Theorem3).

Sampling By sampling only a subset of memory accesses, as in LITERACE [31] and RACEZ
[32], certain data races can still be found at significantly reduced instrumentation overheads. PACER

[21] improves the prior work by mathematically guaranteeing that the possibility of finding a data
race is proportional to the sampling rate. However, as data races are often quite difficult to catch,
sampling-based detectors must be run repeatedly to increase their success rates in finding data races.

30

7. CONCLUSION

This paper presents a new dynamic race detector that can detect more dataraces than FASTTRACK,
the fastest happens-before detector, while maintaining comparable performance as FASTTRACK.
The key innovation is to leverage the lightweight epoch representation of vector clocks in
FASTTRACK and deploy a new lockset algorithm to achieve a fine balance of coverageand precision
in race detection. These design objectives are met as validated against FASTTRACK and six other
dynamic detectors in Jikes RVM and RoadRunner using a collection of Java benchmarks.

The basic idea behind ACCULOCK is not tied to the epoch-based happens-before FASTTRACK; it
can be incorporated into any future faster happens-before detector toallow a good balance between
speed, memory requirement, coverage and precision to be made.

ACKNOWLEDGEMENT

Thanks to the anonymous reviewers for their feedback on thiswork. This research is supported by the
Australian Research Council (ARC) grants (DP0665581 and DP0987236) a China Scholarship Council
(CSC) grant, and an International Science and Technology Cooperation Program of China (2011DFG13000).

REFERENCES

1. Netzer RH, Miller BP. What are Race Conditions? - Some Issues and Formalizations.ACM Letters on Programming
Languages and Systems1992;1:74–88.

2. Pratikakis P, Foster JS, Hicks M. Locksmith: Context-Sensitive Correlation Analysis for Race Detection.PLDI
’06: Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and Implementation,
ACM: New York, NY, USA, 2006; 320–331, doi:http://doi.acm.org/10.1145/1133981.1134019.

3. Flanagan C, Freund SN. Type-based Race Detection for Java.PLDI ’00: Proceedings of the ACM SIGPLAN 2000
conference on Programming Language Design and Implementation, ACM: New York, NY, USA, 2000; 219–232,
doi:http://doi.acm.org/10.1145/349299.349328.

4. Sasturkar A, Agarwal R, Wang L, Stoller SD. Automated Type-based Analysis of Data Races and Atomicity.PPoPP
’05: Proceedings of the tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
ACM: New York, NY, USA, 2005; 83–94, doi:http://doi.acm.org/10.1145/1065944.1065956.

5. Engler D, Ashcraft K. Racerx: Effective, Static Detectionof Race Conditions and Deadlocks.SIGOPS Oper. Syst.
Rev.2003;37(5):237–252.

6. Naik M, Aiken A, Whaley J. Effective Static Race Detection for Java.PLDI ’06: Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language Design and Implementation, ACM: New York, NY, USA, 2006;
308–319, doi:http://doi.acm.org/10.1145/1133981.1134018.

7. Voung JW, Jhala R, Lerner S. Relay: Static Race Detection on Millions of Lines of Code.ESEC-FSE ’07:
Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ACM: New York, NY, USA, 2007; 205–214, doi:
http://doi.acm.org/10.1145/1287624.1287654.

8. Dinning A, Schonberg E. Detecting Access Anomalies in Programs with Critical Sections.SIGPLAN Not.1991;
26(12):85–96, doi:http://doi.acm.org/10.1145/127695.122767.

9. Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson T. Eraser: A Dynamic Data Race Detector for
Multithreaded Programs.ACM Transactions on Computer System1997;15(4):391–411.

10. Yu Y, Rodeheffer T, Chen W. Racetrack: Efficient Detection of Data Race Conditions via Adaptive Tracking.SOSP
’05: Proceedings of the twentieth ACM Symposium on OperatingSystems Principles, ACM: New York, NY, USA,
2005; 221–234, doi:http://doi.acm.org/10.1145/1095810.1095832.

11. von Praun C, Gross TR. Object Race Detection.OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, 2001; 70–82.

12. Flanagan C, Freund S. FastTrack: Efficient and Precise Dynamic Race Detection.PLDI ’09: Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design and ImplementationJun 2009; .

13. Pozniansky E, Schuster A. Efficient On-the-fly Data Race Detection in Multithreaded C++ Programs.PPoPP ’03:
Proceedings of the ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2003;
179–190, doi:http://doi.acm.org/10.1145/781498.781529.

14. Christiaens M, De Bosschere K. TRaDe, a Topological Approach to On-the-fly Race Detection in Java Programs.
JVM’01: Proceedings of the 2001 Symposium on JavaTM Virtual Machine Research and Technology Symposium,
USENIX Association: Berkeley, CA, USA, 2001; 15–24.

15. Schonberg E. On-the-fly detection of access anomalies.PLDI’89: In Proceedings of the SIGPLAN 1989 Conference
on Programming Language Design and Implementation, 1998; 285–297.

16. Min SL, Choi JD. An Efficient Cache-based Access Anomaly Detection Scheme.Proceedings of the fourth
International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS-
IV, ACM: New York, NY, USA, 1991; 235–244, doi:http://doi.acm.org/10.1145/106972.106996.

17. Lamport L. Time, Clocks, and the Ordering of Events in a Distributed System.Communications of the ACM1978;
21(7):558–565, doi:http://doi.acm.org/10.1145/359545.359563.

31

18. Pozniansky E, Schuster A. MultiRace: Efficient On-the-fly Data Race Detection in Multithreaded C++ Programs:
Research Articles.Concurrency and Computation: Practice and Experience2007;19(3):327–340, doi:http://dx.
doi.org/10.1002/cpe.v19:3.

19. O’Callahan R, Choi JD. Hybrid Dynamic Data Race Detection.PPoPP ’03: Proceedings of the ninth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM: New York, NY, USA, 2003;
167–178, doi:http://doi.acm.org/10.1145/781498.781528.

20. Flanagan C, Freund SN. The RoadRunner Dynamic Analysis Framework for Concurrent Programs.PASTE
’10: Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, ACM: New York, NY, USA, 2010; 1–8, doi:http://doi.acm.org/10.1145/1806672.1806674.

21. Bond MD, Coons KE, McKinley KS. Pacer: Proportional Detection of Data Races.PLDI ’10: Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design and Implementation, ACM: New York, NY,
USA, 2010; 255–268, doi:http://doi.acm.org/10.1145/1806596.1806626.

22. Serebryany K, Iskhodzhanov T. ThreadSanitizer: Data Race Detection in Practice.Proceedings of the Workshop
on Binary Instrumentation and Applications, WBIA ’09, ACM: New York, NY, USA, 2009; 62–71, doi:http:
//doi.acm.org/10.1145/1791194.1791203.

23. Blackburn S, Garner R, Hoffmann C. The DaCapo Benchmarks: Java Benchmarking Development and Analysis.
OOPSLA ’06: Proceedings of the 21st ACM SIGPLAN Conference onObject-Oriented Programming, Systems,
Languages, and ApplicationsJan 2006; .

24. JavaCodingnet. JSpider, A Highly Configurable and Customizable Web Spider Engine.
http://j-spider.sourceforge.net/ 2003.

25. Stepovoy Y. Cache4j, Cache for Java Objects.http://cache4j.sourceforge.net/ 2006.
26. Foundation AS. Jcs, a Distributed Caching System Written in Java. http://jakarta.apache.org/jcs/

2009.
27. Flanagan C, Freund SN, Yi J. Velodrome: a Sound and Complete Dynamic Atomicity Checker for Multithreaded

Programs. 2008; 293–303, doi:http://doi.acm.org/10.1145/1375581.1375618.
28. Flanagan C, Freund SN. Adversarial Memory for Detecting Destructive Races.SIGPLAN Not.2010;45(6):244–

254, doi:http://doi.acm.org/10.1145/1809028.1806625.
29. Elmas T, Qadeer S, Tasiran S. Goldilocks: a Race and Transaction-aware Java Runtime.PLDI ’07: Proceedings of

the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation, ACM: New York,
NY, USA, 2007; 245–255, doi:http://doi.acm.org/10.1145/1250734.1250762.

30. Xie X, Xue J. Acculock: Accurate and Efficient Detection ofData Races.CGO’11: Proceedings of the sixth annual
IEEE/ACM International Symposium on Code Generation and Optimization, 2011; 201–212.

31. Marino D, Musuvathi M, Narayanasamy S. LiteRace: EffectiveSampling for Lightweight Data-race Detection.
PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference on Programming language design and
implementation, 2009; 134–143, doi:http://doi.acm.org/10.1145/1542476.1542491.

32. Sheng T, Vachharajani N, Eranian S, Hundt R, Chen W, ZhengW. RaceZ: a Lightweight and Non-invasive
Race Detection Tool for Production Applications.Proceeding of the 33rd International Conference on Software
Engineering, ICSE ’11, ACM: New York, NY, USA, 2011; 401–410.

32

http://j-spider.sourceforge.net/
http://cache4j.sourceforge.net/
http://jakarta.apache.org/jcs/

	1 Introduction
	1.1 Overview of the Idea
	1.1.1 Motivation
	1.1.2 Solution

	1.2 Contributions

	2 Background
	2.1 VCs and VC-based Happens-Before Detection
	2.1.1 Synchronization Operations
	2.1.2 Variable Reads and Writes
	2.1.3 Example

	2.2 Epochs and FastTrack
	2.3 Locksets and Eraser

	3 Acculock
	3.1 Tracking accu-hb
	3.2 Approximating the Lock-Subset Condition
	3.3 Detecting Data Races
	3.3.1 Write-Read Races
	3.3.2 Write-Write and Read-Write Races
	3.3.3 Examples
	3.3.4 Acculock's Lockset Mechanism

	3.4 Characterizing Data Races
	3.5 Multiple Protecting Locks

	4 Experimental Evaluation in Jikes RVM
	4.1 Implementation
	4.1.1 Metadata
	4.1.2 Instrumentation
	4.1.3 Reporting Races

	4.2 Methodology
	4.2.1 Platform
	4.2.2 Benchmark Configuration
	4.2.3 Computing Time and Space Overheads
	4.2.4 Counting Race Warnings
	4.2.5 Analysis Configuration

	4.3 Results and Analysis
	4.3.1 FastTrack Comparison
	4.3.2 Eraser Comparison

	5 Experimental Evaluation in Roadrunner
	6 Related Work
	7 Conclusion

