AccuLock: Accurate and Efficient Detection of Data Races

Xinwei Xie'2, Jingling Xué*, Jie Zhang

I Programming Languages and Compilers Group, School of Cten@cience and Engineering,
University of New South Wales, NSW, Australia 2052
2 School of Computer Science, National University of Defenskritdogy Changsha, Hunan 410073, China
3 College of Information Science and Technology, Beijing Birsity of Chemical Technology, Beijing, China

SUMMARY

This paper introduces a new dynamic data race detectrjUAOCK, to detect data races in Java programs.
AccuLock is the first hybrid detector that combines lockset apdch-basedhappens-before for race
detection. ALCULOCK analyzes a program execution by reasoning about the subtfet bappens-before
relation observed with lock acquires and releases exclutfedeby making it less sensitive to thread
interleaving than pure happens-before detectors. Whenréitéixed happens-before relation is violated,
AccuLock applies a new lockset algorithm to verify the locking disicie by distinguishing reads
and writes, thereby making it more immune to false positittesn pure lockset detectors. In addition,
AccuLock is designed to achieve these design objectives by maintgaiodbmparable instrumentation
overheads (in both time and space) asFTRACK, the fastest happens-before detector available (at least
for Java programs). All these properties of@uLoCK have been validated and confirmed by comparing
it against RSTTRACK and five other (pure happens-before, pure lockset or hybigtdctors, which are
implemented in Jikes RVM using a collection of large benctnmograms from a variety of applications.
Furthermore, porting AcuLock and FASTTRACK to a different platform, RoadRunner, and repeating our
experiments yields similar observations in terms of thé@ativeness in race detection and instrumentation
overheads. Copyrigh®©) 2011 John Wiley & Sons, Ltd.

KEY WORDS: data races, happens before, lockset, dynamigsisa

1. INTRODUCTION

Multithreading has become a common programming technique due to the widésplaation of
multicore processors. However, reasoning about the behaviour@anetmess of multithreaded
programs is notoriously difficult due to non-deterministic thread interlea@ogcurrent accesses
to shared data must be synchronized properly; otherwise concarrerd will unavoidably emerge.
A data raceoccurs in a multithreaded program when at least two different threagssithe same
memory location without an ordering constraint enforced between thessesesuch that at least
one of the accesses is a writd.[Data races themselves are not necessarily errors; but they often
introduce serious hard-to-find, crash-causing concurrencietetaftware defects. Therefore, tools
for automatic detection of data races are invaluable. Ultimately, data raadd fiecdetected with a
range of tools used in stages, including both static and dynamic detectdisaftdysis techniques
can be made (statically) souri¢g] B, 4, 5, 6, 7] but the resulting solutions are imprecise (by producing
many false positives). In contrast, dynamic analysis techniges [LO, 11, 12, 13, 14, 15, 16|
produce false negatives but can be precise or imprecise.

*Correspondence to: Programming Languages and Compilers Gsohppl of Computer Science and Engineering,
University of New South Wales, NSW, Australia 2052
TEmail: jingling@cse.unsw.edu.au

Dynamic race detection comes in three flavougmir¢) happens-beforgpure) locksetand
some hybrid of both approaches. Happens-before race detecti&n thechappens-before relation
[17], a causal relationship induced by program order and synchromizataer during a program
execution. Earlier examples include ARE [14] and DaiT+ [18]. Happens-before race detection is
sensitive to thread interleaving as it is dynamically sound and precise éopanticular execution
only, As a result, happens-before detectors reponteall (or actual) raceswith no false positives
in the underlying thread interleaving revealed by one particular test rum&y miss races despite
repeated test runs. Lockset race detection, as exemplifiedRbg#R [9], analyzes a program by
verifying the locking discipline and reportgpatential racef two threads access a shared memory
location without holding a common lock. A race thus flagged is said to be potasti@inay or may
not feasibly occur in a program execution. By ignoring the orderingrehts during a test run, not
only can ERASERfind real races that occur in its underlying thread interleaving, it canrafsort
potential data racegorresponding to other test runs, some of which can be identified to be rea
races by some further analysis. Thus, lockset detectors are lessitivesio thread interleaving but
can be imprecise when many potential races reported turn out to be faitegm

Traditionally, vector clocks (VCs) have been used to represent theehagbefore relation. As
a result, VC-based happens-before detectors run more slowly thasetodktectors. Recently,
FASTTRACK [12] has reduced most VC-based operations frafn) to O(1), wheren is the number
of threads, i.e., size of a vector clock, by using scalar clocks calpmthswhenever possible.

In their implementation 2], FASTTRACK achieves about the same performance a&a$ER
Therefore, RSTTRACK has improved the performance of VC-based happens-before dstbator
still retained their precision and sensitivity to thread interleaving. In cOptEEBASER is less
sensitive to thread interleaving but suffers from reporting excelgdivgh false positives.

In this paper, we introduce a new dynamic race detectaCWLOCK, to detect data races in
Java programs. &CULOCK is a hybrid detector that hunts for data races by combining lockset
and happens-before.c&uLock will report all real races reported byABTTRACK in a program
execution as well as some potential races that may be real races in somgrogram executions.
There are already some hybrid detectors reported, including™RACE [18], HYBRID [19]
and RACETRACK [10]. However, these earlier attempts are all VC-based, suffering fronereith
excessive analysis overhead as vl RACE and HyBRID or precision loss as in RCETRACK,
as confirmed by their authors, evaluated in Sectiand further discussed in SectiénUnlike these
existing hybrids, ZcuLock combines a new lockset analysis with an epoch-based happens-before
analysis in a novel way, enabling it to strike a better balance betweenipreeisd coverage at
comparable performance as$TTRACK. Validation using benchmarks in production-quality Java
virtual machines shows thatdcuLock can find more real races than pure happens-before detectors
(more easily) while reporting significantly fewer false positives than Idatsgectors.

Thread T1 Thread T2

synchr oni zed(queue) {
. /'l not access to
synchr oni zed(queue) { ... Il lastcheckPoi nt
| ast checkPoi nt = currentTi ne; }
} i f(lastcheckPoint > 0){

}

Race fieldwebl ech. spi der. Spi der. j ava: | ast checkPoi nt

Figure 1. Data race in the real-world prograsbl ech.

Figure 1 illustrates a real data race on the fi¢ldst checkPoi nt in the methodr un of the
classSpi der found in the real-world benchmaskebl ech. This race can always be detected by
AccuLock but infrequently by any happens-before detector likesFTRACK. In this program,
threadsT1l and T2 share the sameun method and the two code fragments are two different
parts ofrun. T1 tries to write tol ast checkPoi nt exclusively once it has acquired the lock

2

Thread T1 Thread T2 Thread T1 Thread T2 Thread T3
=X @ lock
lock I, 'Ofk lock I lock I lock I,
=X)L(JrTIockl :X® =X X:
unlocki, ! unlocki, unlocki, unlocki,
unlocki;

(@) Race (A, B) always
reported by AcuLock but

(b) Race (A, B) aways reported
by AccuLock but possbly by

possibly by FASTTRACK. FASTTRACK.

Thread T1 Thread T2 Thread T1 Thread T2
lock i, Il create the list of lock {;
=x @ lock! /I new nodes inistl @& list2 = channel
unlockis = lock i, unlocki;
lock i, unlockl channel = listl Il process the nodes
=X ! unlocki; // data inlist2
unlocki;

(c) Race (A, B) reported by
AccuLock if and only if
reported by RSTTRACK.

(d) A false positive, (A, B)always reported
by AccuLock but never by FASTTRACK,
caused by shared channel$]|

Figure 2. An illustration of the design philosophy behind@uLock compared to ESTTRACK given the
same thread interleaving.

gueue. However, T2 mistakenly tries to read from the variable without attempting to acquire
the same lock. This race will occur whéi acquires the lockjueue after T2 has released it,

but not conversely. By tracking the happens-before order (inajuttie synchronization order),
FASTTRACK will detect the race when it is actually seen but this rarely happens intespasst
runs. In contrast, AcuLock does not track the synchronization order. When the read and write to
| ast checkPoi nt are unordered by écuLock's relaxed notion of the happens-before relation
(introduced in Sectior3.1), AccuLock proceeds to verify the locking discipline, succeeding in
detecting the race in each test run (independently of thread interleavingsrgered).

1.1. Overview of the Idea

1.1.1. MotivationDue to ASTTRACK, an epoch-based happens-before detector has nearly closed
the performance gap with a lockset detector. This has motivated us to desigorid detector
that combines happens-before and lockset to obtain improved precisiboozerage, under the
conditions that the detector achieves comparable performanesa3 RACK and limits the number
of false positives reported compared tRASER ACCULOCK is the first such a solution.

The four design objectives for @cuLocCK, as illustrated in Figur@ and explained below, are
given as follows:

1. To increase coverage of data races in a happens-before ddigaetecting also races in
alternate thread interleavings when analyzing a particular programtexecu

2. To reduce the sensitivity of a happens-before detector to threakbantierg caused by thread
scheduling policies used, even when a program is analyzed with varymyers of threads
at different test runs (as illustrated in Figue

3. To limit false positives incurred in a controlled manner;

3

4. To achieve comparable instrumentation overheads (in time and space}BERACK, the
fastest happens-before detector (that we know for Java programs)

The motivations for these design objectives are discussed in Sdcfidtbelow. Note that the
rationale behind Objective (2) is discussed earlier using the example ineFHiglio elaborate on
this objective further for now, we have testedsF TRACK onxal an from DaCapo. FASTTRACK
reports a particular race, as discussed in Secti@rl, depending on thread interleavings caused
by using varying numbers of threads. For exampkes H RACK never reports the race in 500 runs
tested when the number of threads is 8, batcAiLock catches it in all 500 runs.

1.1.2. SolutionAccuLock leverages the framework ofABTTRACK but with this new set of
design objectives to meetABTTRACK is dynamically sound and precise since it uses the true

happens-before relation, denotéd, induced by program order and synchronization order. Let us
compare and contrast the two detectors using the four examples giverune Eig
FASTTRACK reports all and only real races detected in the thread interleaving induyced

given program execution. In (a) and (c),Ti2 acquires lockl; beforeT1 does, the racy pairA(

B) is reported since % A does not hold. If the lock acquisition order is reversed, theA%

B becomes true. In this alternative thread interleavingsT RACK will be silent asA and B

do not race. In (b), there are six possible thread interleavings ambng2 and T3. When the
underlying thread interleaving is eith&t — T2 — T3 or T3 — T2 — T1, FASTTRACK will not
report the racy pairA, B) that will occur only in one of the remaining four thread interleavings. In
(d), FASTTRACK will never report a race. The middle two examples provide an abstractitireof
mul tiple protecting |ock idi omwhereby a memory location suchasnay be protected
by some locks from a collection of multiple locks at its different accesseslalkt example provides
an abstraction ofhar ed channel s [19], in which accesses tohannel are synchronized but
accesses to the transmitted data (i.e., the nodes in the two lists) need not be.

AccuLock achieves the four design objectives by (1) usﬁﬁféﬂ (defined in Sectior.1),

a thread-interleaving-less-sensitivaibset of 2%, obtained with all lock acquires and releases
excluded and (2) applying a new lockset algorithm that distinguishes thks |ootecting reads
and writes when enforcing the locking disciplinec@uLock finds all real races thatdASTTRACK
does during one test run as well as some potential data races that maylypeckeaces in other
test runs. Let us consider FiguPeagain. ACCULOCK always reports the races in (a) and (b) since
the two unordered accesseés®ndB in each case are not protected by a common lock (to satisfy
Objectives (1) and (2)). In (c), écuLoCK behaves exactly the same assFTRACK (to achieve
Objective (4)). Otherwise, in order to catch the raseR) caused by the multiple protecting lock
idiom, any lockset algorithm may have to use sets of locksets instead of jusets®, p. 409] (to
satisfy Objective (3)), but this can be costly and useful only occaalyoas validated empirically in
Section3.5. In addition, AccuLock also tries to fulfill Objective (4) by leveraging the lightweight

epoch representation ef“=" 1o provide constant-time fast paths for most reads and writes in
program order, as inASTTRACK and by avoidingD(n) vector clock operations on lock acquires

and releases (due to the use-8£“~"% rather than’%). In (d), ACCULOCK reports a potential
race betweer andB to the data transmitted via the channel, which turns out to be a false positive
(discovered only by further analysis), bus$TTRACK does not (as it only reports a race actually
seen).

We define below the potential data races thatALock is designed to find in a program.

Definition 1()-Races)

A potential data race detected between two concurrent accesses totianlacén a program
execution is called @é-raceif they do not access the locatianprotected by a common lock (i.e.,
with the set of common locks beirfj in that program execution.

We argue thaf)-races such as the one illustrated in Figa¢d) should be flagged for further
analysis due to the detrimental effects of data races on the reliability of multigaiesoftware.

4

Alternatively, such false positives can be eliminated with user annotationtkasdhe missing
happens-before relationship is thus establisiégl [

By using the new lockset algorithm proposed in this papercBLOCK is expected to report
usually only@-races in real code. In principle, when multiple protecting locks are ned,uss is
common in real code, all races reported bgLocK are -races (Theoremd). In practice, all
races reported by @CULOCK in our experiments ar@-races except for the three false warnings
that are nof)-races reported from thex| i pse benchmark.

1.2. Contributions

e We introduce a new hybrid race detectorc@uLock, with all properties discussed in
Section1.1. We describe a new lockset algorithm that enables a seamless integration of
the lockset and happens-before mechanisms in our hybrid detectori¢ve@aehfine balance
between precision and coverage of data races reported.

e We have implemented @cuLock and six other dynamic detectorsRESER [9], DJITT
[18], RACETRACK [10], MULTIRACE [18], “H YBRID" [19] and FASTTRACK [12] in Jikes
RVM and validated AcuLock’s fulfillment of its design objectives using 11 benchmarks,
the largest Java programs ever used as a collection in the dynamic analysiarige

e We have analyzed all these detectors (in terms of performance, memaryeragnt,
precision and coverage) to provide insights for further studies. Ilticpéar, ACCuLOCK is
capable of finding more real data races thasFTRACK (more easily) when looking for
(-races while maintaining comparable analysis overheads.

e We have also ported @cuLock and FASTTRAcCK from Jikes RVM to another Java
VM platform, RoadRunnerZ0]. Repeating our experiments and analysis yields similar
observations in terms of their effectiveness in race detection and anahgsiseads.

e We also introduce for the first time an epoch-based lockset detectarriMock-HB, that
uses sets of locksets instead of just locksétstq detect data races caused by the use of
multiple protecting lock idiom (Figureg(b) and (c)). Replacing the lockset algorithm used
in AccuLock with MuLTILocK-HB results in only three false warnings étl i pse to
be suppressed at the expense of a factor-of-three performanedosla (on average). This
discovery is significant for two reasons. First, the@uLock design is justified as the races
caused by the multiple protecting lock idiom are rare and thus unnecessqréypsve to
detect with MuLTILOCK-HB. Second, MiLTILOCK-HB can be selectively deployed for
certain applications (e.gecl i pse) that contain potentially such races.

The rest of this paper is organised as follows. Sectigmovides the background for this work.
Section3 introduces our AcuLockK algorithm. Sectiod evaluates our AcuLock design in Jikes
RVM. Section5 evaluates our AcuLock design further in RoadRunner. Sectiémliscusses the
related work. Sectiof@ concludes the paper.

2. BACKGROUND

We review vector clocks (VCs) and how a gene?ig:) (time and space) VC-based happens-before
detector works, where is the number of threads in the program (Secfidi). We then describe how
FASTTRACK uses epoch clocks to reduce m@gt:) VC operations ta (1) (Section2.2). Finally,

we review the basic bckseTalgorithm and touch uponf#ASER, the classic lockset algorithm, on
which many other detectors are based (Sedi@h

2.1. VCs and VC-based Happens-Before Detection

VC detectors soundly and precisely track the (true) happens-beftaton 1 petween two
operationsA and B (denoted asi LN B), where% is defined as follows:

Program order: If A executes befor® in the same thread, thef b B

5

Synchronization order: If AandB are synchronization operations from two different threads such
that A precedes3 (e.g.,A releases a lock ant subsequently acquires it), then’% B.

Transitiveclosure: If A ™% B andB % C, then4 LLNYS)

In other words, ™ for a program execution is the transitive closure of its (intra-threadjrpro
order and (inter-thread) synchronization order (induced by, e.tksfgoins, lock acquires and

releases). By trackingﬂ among all synchronization, read and write operations, VC detectors
identify concurrentaccesses to a shared variable and report a data race if one is a write.

Avector clockV C : Tid — Nat records a clock for each thread in the program. VCs are partially
ordered) point-wise with a minimum elemei, . . . , 0) and a join operatiorn.(), which is defined
to be a point-wise maximum. More specifically, we have:

ViCVa iff VEVI(E) < Va(t)
ViUV = AtmaxVi(t), Va(t))

2.1.1. Synchronization Operatiomsccesses to synchronization objedtséads locksandvolatile
variablesin Java) are always ordered and never race. Each synchroninbigst has its own clock.
Each thread keeps a vector clodak’; such that for any thread the entryC;[u] records the clock for
the last operation of that happens before the current operation of theedwitially, C,[¢] = 1 and
C:lu] = 0 if u # t. Similarly, the analysis maintains a vector clackfor each lockl and a vector
clock C, for each volatile variable. Such vector clocks are initialized {0, . . . , 0).

These VCs are updated on synchronization operations that aftedtor example, when a thread
t releases lock, the analysis updates, with C; (by copying the contents @, into C;) and then
increments the entryin ¢'s vector clock. When a threadsubsequently acquires lo¢kthe analysis
updates’; to beC; LI C;, since all subsequent operationstdfappen after that release operation.
Obviously, a join or copy takeS(n) in time and space.

2.1.2. Variable Reads and Writd=or each shared variable, i.e., memory locatipmwhich can be

an object field or an object itself depending the level of granularity ugedanalysis keeps two
vector clocks,R, andWW,, such that the entrieB,[t] andW,[t] record the clock values of the last
read and write toc by threadt, respectively. At each read, the analysis checks that prior writes
happen before the current thregsl VC, C;, by verifying W, C C; and then updateg®,[t] with
C:]t]. At each write, the analysis checks for data races with prior reads atesvy verifying

W, C C; andR, C C; and then update®’, [t] with C;[t]. Again, all these happens-before checks
takeO(n) time each.

2.1.3. ExampleConsider the code fragment given in Fig@ealepicting the relevant portion of the
instrumentation state of a VC detect6t. andC,, are the vector clocks associated with threatls
andT2, respectivelyCi andCy are the vector clocks of lodkand variabler, respectivelylV,. will
be referred to later. The state transitions with respect to the currerdtageare shown in bold.

At the writewry, the analysis update$, with the current clock”; of T1. At the release operation
unlock | the analysis updateS; with C; and increments the first entry @f,. At the acquire
operationlock I, C5 is joined with C) to obtain the up to date clock values, thus capturing the
dashed release-acquire happens-before edge as shown. Abdsgjgent writavr,, the analysis
compares the vector clocks within O(n) time and space complexity:

Cp=(1,0,...) E(1,3,...) = (s

Since the check succeeds, the two writes performed by two differergdbir@re not concurrent.
So no data race is reported. Clearly, it tak¥s:) time and space to keep track of and verify the

happens-before relatiof for n concurrent running threads.

6

Cl CQ Cl OX WX

(1,0,..) (0,3,...) (0,0,...) (0,0,..) 0@0
X= [/ wr

(1,0,...) (0,3,..) (0,0,..) (10,..) l@1

unlock!

N hb
20,.) . 03,..) (10,.) (10.) 1@1

N
N

IBckl
2,0,...) (1,3,..) (1,0,..) (1,0,.) 1@1
X=| Il wry
2,0,..) 13,..) (10.) (13.) 3@2

Figure 3. An execution trace for a happens-before detector.

Algorithm 1 Read [ASTTRACK]: threadt reads variable:

if R, # epoch(t) then {If same epoch, no actign
assert W, < G,
if |[R:] =1A R, < C; then
R, + epoch(t) {Overwrite read map
else
R, [t] < Ci[t] {Update read map
end if
end if

Algorithm 2 Write [FASTTRACK]: threadt writes variabler

if W, # epoch(t) then {If same epoch, no actign
assert W, < Cy
if |R;] < 1then
assert R, < C
else
assert R, C Gy {O(1) amortized timé
end if
R, < empty
W, < epoch(t) {Update write epoch
end if

2.2. Epochs antFASTTRACK

FASTTRACK has reduced mosd(rn) VC operations toO(1), by exploiting the following two
insights. First, in a race-free program, all writes to a variable are totallgredjbyﬂ, and on

encountering a write, all previous reads must happen before the wrif&by;econd, the analysis
must keep track of all concurrent reads since they potentially race witfbgequent write. As a
result, ARSTTRACK replaces the write vector clodk, with anepoche@t, which records the clock

valuec at which thread performed the last write to. When reads are ordered Ie{f)l?» FASTTRACK
uses an epoch for the last read. Otherwise, it uses VCs for reads.

7

Algorithm 3 Read/Write Access [QCKSET]: threadst reads or writes:

Il CL, is initialized with set of all locks
L, + set of locks held now
if z is a readhen

Ly < L, U {readers_lock} {Insert fake lock
end if
CL,+CL,NL, {Update lockset
assert CL, # 0 {Check for racep

Some notations are introduced and used later in presenting oou¥ock algorithm. The
function epoch(t) is a shorthand for@t, wherec = C;[t]. In addition,c@t < VC if and only
if ¢ < VCIt], whereVC is a vector clock. Followingl2], gray shading indicates operations that
takeO(n) time each, where is the number of threads.

For comparison purposes later withcAuLock, Algorithms 1 and 2 show the core part of
FASTTRACK in handling reads and writes but is formulated more compactly accordinglio [
In [21], read epochs and VCs are unified inteead map which maps zero or more threads to clock
values. Thus, a read map is an epoch if it has one entry, the initial statecls @@ if it has zero
entries, and a VC otherwise.

At aread, RSTTRACK does nothing if the read map, is an epoch equal to the current thread’s
time. Otherwise, it asserts that the last write happens before the cueseht®@therwise, the two
accesses race. Finally, it either replaggswith an epoch ifR, is an epoch and happens before the
current read or updatg®,’s ¢ entry.

At a write, FASTTRACK also does nothing if the variable’s write epoch is the same as the thread’s
epoch. Otherwise, it checks to see if the current write races with the tast ®inally, it checks for
races with prior reads and clears the read map.A8THFRACK, the read map is cleared this way
because for each prior read in the read map, one of the following statehwdaits (1) it races with
the current write, in which case, the race has been detected and cgpoii2) it happens before the
current write, in which case, both accesses do not race. The shaderd take®(|R.|) < O(n)
time, which is proportional to the number of entries inserted iRfoby prior reads, but it is
amortized over the lasgiR,.| analysis steps that tak®(1) time each. By being able to clear the
read map, ESTTRACK can adaptively switch between epochs and VCs so that the numb¥r.pf
VC operations is greatly reduced.

Let us revisit the example in FiguB W, denotes the write epoch of variahleand is initialized
to 0@0. At the first writevr; to z, FASTTRACK updatesV, with 1@1. Then ASTTRACK proceeds
as discussed earlier to analyze the lock release and acquire operationk b At the second write
wry t0 z, FASTTRACK compares¥V, with the current thread@2’s VC in O(1) time:

W, =1@1< (1,3,...) = Cs

As the check passes, the second wiite happens after the first writer,. ThenW,, is updated
with 3@2 to indicate that the last write is performedT®/when its clock value is 3.

2.3. Locksets an#RASER

The basic lockseTalgorithm, as depicted in Figufe detects violations of the locking discipline
without considering the happens-before informatiooCk SET requires that every shared location
be protected consistently by at least one common lock on each accebsr(vedte) to it.

For each thread L, holds the set of all locks acquired bt any time. For each shared location
z, the candidate setCL,, records the set of all locks, known bxcksef that have consistently
protected every access 10so far. The use of a “fake lock” inlB], denotedreaderslock, serves
to suppress false warnings on concurrent readswithout holding a common lock. However, any
write to z will causereaderslock to be removed fronC' L.

Consider the execution trace illustrated in Figutedepicting the relevant portion of the
instrumentation state of &CKsSET. Initially, C'L, contains the set of all possible locks. At the

8

Thread T1 Thread T2 Lt1 Lo CL,

=X Ilrdy {readers_lock} {readers_lock}
lock 1 {i;} {readers_lock}
X= [lwr {11} {0} (false warning)
unlocki; {0} {0}
lock I {l2} {0}
=X [lrdy {l2} {0} (race!)
unlockly {0}

Figure 4. An execution trace ofdCKSET.

first readrd; performed byT1, L1, which represents the set of locks held Ty, is updated to
{readers_lock} andCL, is updated by intersecting itself adg to find z’s locksetC'L,,. At the
subsequent writevr; performed also byl, CL, = (). So LOCKSETissues a warning to indicate
that variabler is not consistently protected by a common lock. However, this is a false goaiiv

LocksETdoes not considef?. At the readrd, performed byr2, CL, = (). So LOCKSETissues
another warning, which turns out to be a real data race.

In this example, the three accesses tare executed in the order off;, wr; andrds as shown.
If the two reads are executed before the write instead, then using thl&ke-caders_lock} will
avoid the false positive that would otherwise be reported betwéeandrd,. In addition, the real
race betweend, andwr; will still be detected.

By ignoring b LOCKSET may result in excessive false positives. To alleviate thisp &ER[9]
uses a state machine to handle thread-local and read-shared dataeH dwehandling is unsound.
Consider Figurel again. RASER will classify the two operationsd; andwr; performed byT1
as “thread-local” because variablehas been exclusively accessedTiyso far. As a result, the
ERASERIinstrumentation state is flagged as “thread-local”. At the secondri@adoy T2, ERASER
realizes that has now escaped into a different thread and may be accessed ewntigutrereafter.
So the instrumentation state transits to “shared”. From now ®ASER behaves identically as
LocKsET. The price paid by EASER for unsoundly reducing false positives this way is that the
racy pair (ury, rds) is missed.

In practice, we find that EAsERfails to find a number of real races in the benchmarks tested due
to the reasons discussed above. Take, for exarptix listed in Tablel. ERASERcannot find one
real race that can be found by bothdF TRACK and ACCULOCK.

3. ACCULOCK

Algorithms 4 — 13 give the algorithmic core of 8cuLock, with Algorithms 10 and 11 being
AccuLockK's counterparts of KSTTRACK's Algorithms 1 and 2, respectively. The notations,
epoch(t) (the current epoch of threagl, < (on an epoch and a VC) and (on two VCs), as in
FASTTRACK, andL; as in LOCKSET, are used identically as before.

Below we introduce the components ofcduLockK by functionality. We explain the design
decisions and tradeoffs made in order for@uLOCK to meet its design objectives. Sectidrl

discusses how to track™“~"", Section3.2 describes how AcuLock approximates the lock-
subset condition 18, 19] to both eliminate some redundant race checks and catch more data
races than KSTTRACK. Section3.3 contains the key contribution of the work. It describes how

AccuLock detects data races by combining our new lockset algorithm%H8"% tracked with
lightweight epochs. SectioB.4 characterizes the data races reported loyBLOCK with respect

9

to FASTTRACK. Section3.5evolves AccuLock into a more powerful but more expensive detector
by using MuLTILOCK-HB, which detects data races using sets of locksets instead of justteckse

Algorithm 4 Acquire: threadt acquires lockn
Lt — Lt U {m}

Algorithm 5 Release: threadt releases lockn
Lt < Lt — {m}

Cilt] + Cift] +1

Algorithm 6 Fork: threadt forks threadu
L, < empty
Cy + C, UG
Cilt] + Ceft] +1

Algorithm 7 Join: threadt joins threadu
Ct — Ct L Cu

Algorithm 8 Notify: threadt notifies thread:
Cy, < C,UC,

Algorithm 9 NotifyAll: threadt wakes up all waiting threads

for all threads: waiting for threadt do
Cy + C, UC

end for

Cilt] «+— Ceft] +1

Algorithm 10 Read: threadt reads variable:
if epoch(t) & {R.[t].epoch, W, .epoch} then {If same epoch, no actign
R [t].epoch + epoch(t) {Update read epog¢h
R:[t].lockset < Ly {Update read locksgt
if W,.epoch £ Cy then
assert R, [t].lockset " W, lockset # () {Check with prior writg
end if
end if

accu—hb

3.1. Tracking————
Like all happens-before detectorsc8uLock keeps a vector clock; for every thread. However,
AccuLock uses these vector clocks to traé“="% rather than’%.

10

Algorithm 11 Write: threadt writes variabler
if epoch(t) # W,.epoch then {If same epoch, no actign
if W,.epoch £ Cy then
W, lockset < W,.lockset N Ly

assert W,.lockset # () {Check with prior writé
else
W, lockset < Ly {Update write lockset
end if
W,..epoch <+ epoch(t) {Update write epoch
for all threadg’ in read magR,, do {O(1) amortized timé
if R.[t'].epoch % C; then
assert R, [t'].lockset N Ly #0 {Check with prior reads
end if
end for
R, + empty {ClearR,}
end if
Algorithm 12 Volatile Read: thread reads volatile variable
Ct — Ct L CI
Algorithm 13 Volatile Write: thread writes volatile variabler
Cyp <+ Cp UC

In Algorithms6 — 9, AccuLock tracks the inter-thread synchronization order induceélidnyk,
join,notifyandnotifyAl | asinJavaaswell asthe intra-thread program order by incrementing
clock Cy's t entry or updating’,,. Note that lock acquires and releases in Algorithhasid5 do not
affect the synchronization order. However, in a lock release, th& dbthreadt is incremented to
start a new epoch merely to facilitate the lock-subset optimization describegtiinss3.2

The shaded (n) VC operations for tracking the synchronization order induceéidnk, j oi n,
notify andnoti fyAl | are needed in all happens-before detectors. However, these bappen
infrequently compared to lock acquires and releases, whose relegqsiecaedges are tracked as

accu—hb

part of ™% in O(n) time and space inASTTRACK but ignored in——— used in ACCULOCK.
As for volatile reads and writes, there are two choices, depending a sliapgd for a
particular program. If Algorithmd.2 and 13 are incorporated, then @&cuLock behaves exactly

accu—hb

as FASTTRACK by including the effects of volatile variables eh——. Otherwise, ACULOCK
proceeds by treating volatile variables just as lock objects.

3.2. Approximating the Lock-Subset Condition

Traditionally, the lock-subset optimizatiorif, 19 serves to reduce the number of accesses
participating for race checks. Recall that a lockset for an access $ethud locks protecting it.

Definition 2(Redundant Accesses)

Let there be two accessesandb to a shared locatiom made by a thread. Let ¢ be any future
access to the same locatioimade in a different threafl,. When looking for racy accessesitdy
T, andTy, b is said to beedundantwith respect ta: if ¢ races witha whenever races withb.

As a result, according to this definition, redundant accesses sutltas be ignored when
detecting data races between two threads. Based on the lock-subset amim[z8, 19|, the
following theorem provides a theoretical basis by which redundansaesecan be eliminated for a
program with any number of concurrently running threads.

11

Thread T1 Thread T2
lock I,
=X @
unlocki;

fork T2

lock I,

lock i, lock i3
=x ® X= ©
unlockis unlocklis
unlocki,

Figure 5. Aniillustration of Theorerhas to whya andb are required not to be separated by a synchronization
operation that induces af“““~"% edge.

Theorem XLock-Subset-based Elimination of Redundant Accesses)
Let there be two accessesandb to the same shared locatianmade by a thread such that the

accu—hb

two accesses are not separated by any synchronization operati@mngeém ——— edge with
another thread. Thelis redundant with respect toif (1) a« andb are both reads; andb are both
writes, ora is a write and is a read, and (2)'s lockset is a subset éfs lockset.

Proof

Let c be a future access tomade inT; that happens after the accessemdb made inTy, where

Ty + T». As there does not exist a synchronization operatiofijithat induces a%“~"% edge

during the two accessesandb betweerl; andTs, ¢ must be concurrent witlhhandb, and thus may
potentially race withw andb. Given Conditions (1) — (3), we conclude thataces witha whenever

c races withh. By Definition 2, b is redundant with respect to O

In Theoreml, the two accesses and b in a thread are required not to be separated by a

accu—hb

synchronization operation in the thread if the synchronization operatiatésdan——- edge
with another thread. Otherwise, as illustrated in Figyriemay not necessarily be redundant. In this

accu—hb

casea andb satisfy Conditions (1) — (3). Sinate———— ¢, a andc do not race with each other.
Sinceb andc are concurrent, the two accesses race as they are not protectedroynaic lock.

However, applying Theorem directly to eliminate all redundant checks would be counter-
productive as subset operations are costly as validated in our exp&sim&ectiorb. ACCULOCK
approximates the lock-subset condition so that an elimination of some ratawt®sses serves to
both bring a performance gain and increase the number of data racetedete

Note that in Algorithmst and5, the vector clockC; in threadt ticks only at a lock release but
not at a lock acquire. Thus, the results stated in Corolldresd2 are immediate from Theorefin

Corollary 1 (Redundant Reads in@cULOCK)
Let P, be the epoch of a prior access (read or write} tdf P, = epoch(t), then a future read at
epoch(t) is redundant (with respect to the prior access).

Corollary 2 (Redundant Writes in BCULOCK)
Let P, be the epoch of a prior write to. If P, = epoch(¢), then a future write agpoch(¢) is
redundant (with respect to the prior write)

Consider threadll in Figure2(a). If P, represents the epoch of the first read ia the code, then
the second read tois redundant by Theorefn(with respect to the first) and also by Corolldras
both are in the same epoch. Consider threhth Figure2(c). The second read tois not redundant

12

CodeinaThread CodeinaThread

lock [, lock 1;

=X //rdy X= /] wr
lock I, lock 5

=X // rdy X= /] wrg
unlockis unlockli,
lock s lockl;
=X//7"d3 X= //’lUT'g
unlockis unlockls
unlocki; unlocki;

(a) Corollaryl (b) Corollary?2

Figure 6. An illustration of the nonnecessity of the locleset conditions stated in Corollariésand 2 to
enable for the lock-subset optimization.

(with respect to the first read t9 and also concluded so by Corollatyas both reads have different
epochs.

However, the lock-subset condition in either corollary is sufficient btihecessary, as illustrated
in Figure 6. To see why the condition in Corollaryis not necessary, consider the code sequence
executed in a thread given in Figus@). The last two reads¢, andrds, are redundant with respect
to the first read-d; by Theoreml. However, in ACCULOCK, rd; shares the same epochrals but
that epoch is different from the epochsaf;. So AcCULOCK can ignorerds but must analyzeds.
The nonnecessity of the stronger lock-subset condition in Coralldsyillustrated similarly using
Figure6(b).

In summary, AACULOCK removes some redundant accesse® () time in order to keep its
performance comparable as$TTRACK. How such redundancy elimination also helpsuLock
detect more races will be clear as descried in the following section.

3.3. Detecting Data Races

accu—hb

We are now ready to introduce our new———-aware lockset algorithm and examine how
AccuLock applies it to detect three kinds of data races for concurrent acc@gitesespect to

accu—hb,). write-read (a write concurrent with a later readyrite-write (a write concurrent with a
later write) andead-write(a read concurrent with a later write).
The core part of &cuLock for race detection is given in Algorithni®and11. Asin LOCKSET,
L; holds the set of all locks acquired by threadt any time, according to Algorithmé andb5.
AccuLock maintains the following two metadata structures for each shared location

e R, is a read map that maps zero or more threadszpoch, lockset) pairs for all concurrent

accu—hb

reads tar (with respect to———) with at most one read from each thread. For each thread
t, R..epoch is the epoch for the last non-redundant read in thre@wlith some redundant
reads tor being removed by Corollary) andR . .lockset is the lockset protecting in thread
t.

o W, is a single(epoch, lockset) pair, whereW,.lockset records the lockset far that has

accu—hb

consistently protected all concurrent writes #o(with respect to———) so far and
W,..epoch gives the epoch for the last non-redundant write tamong all threads (with some
redundant writes ta being removed by Corollarg).

3.3.1. Write-Read RaceAt a read in a thread, as shown in Algorithml0, AccuLock does
nothing if the current read is redundant (Corolld)y Otherwise, ACULOCK records the epoch
and lockset of the current read Ry, for threadt, by overwriting the prior read, if any. As a result,

13

R. keeps theepoch,lockset)’s for all concurrent reads to to be checked for races with a later
write to z.

If the current read is not ordered with the last write madé/atepoch, then the assert statement is
evaluated. In this case,duLOCK checks to see if the current read races with one of the prior writes
implicitly represented by their common locksedn, .lockset. A data race warning is reported when
the current read and one of the prior writes are not protected by a cotagion

3.3.2. Write-Write and Read-Write Racés a write in a thread, as in Algorithm11, ACCULOCK
does nothing if the current write is redundant by CorollaryOtherwise, ALcuLock checks for
a potential race with a prior write. If the current write and the last write mad#&,acpoch are

accu—hb

unordered (by———), AccuLocCK updates/V,.lockset and reports a race (between the current
write and one of the prior writes) whetw,..lockset becomes empty. If both writes are ordered, then

the current write happens after the last one éb‘?ﬂ) In this caseW, .lockset is reset toL,,
i.e., the lockset protecting the current write. In either ca®¥g,epoch is updated with the current
epoch (for the current write).

Afterwards, AccuLock checks for races by looping over all reads R, that happen

accu—hb

concurrently with the current write protected by the lockse{with respect to———). As in
Algorithm 2 of FASTTRACK, thisfor loop takesDO(|R,|) < O(n) time but is amortized over the last
|R.| analysis steps that take(1) amortized time each, using the efficient lockset implementation

[9, 10Q]. If no races are detected, the current write happens after all nied@is(in the sense oﬂ).
In both cases (whether the current write races with any prior readtiyrRgis cleared. Resetting
R. this way helps AcuLock to achieve comparable performance asFTRACK. On the other
hand, some real races caused by the multiple protecting lock idiom may gteatsebut this
should happen rarely according #7] and our empirical validation described in Sectibh. Indeed,
no such races are found in a large collection of real-world benchmagd im our experiments,
which represents a variety of applications in practice.

3.3.3. Exampled_et us revisit the four examples given in Figuteto compare and contrast
AccuLock and FASTTRACK in terms of how they detect the data races in these programs.

Figure2(a). If T1 acquires locK; beforeT2, thenA 2% B holds. So 4, B) is not racy according to
FASTTRACK. However, the two accesses will be flagged bycdLock as being potentially
racy, which turns out to be true if the lock acqusition order is reversetheifirst read to
in T1, AccuLock stores the current epoch and the empty lockset for the readRipol]
so thatR . [T1].lockset = (). The second read is redundant and thus ignored. When the write
in T2 is analyzed, its protecting locksetisz = {l1}. SOW,.lockset is updated to b, }.
AccuLock detects the race\(B) becauseéR ,[T1].lockset N L1, = @, implying thatx is not
consistently locked by a common lock. If the lock acquisition order is redersmvever, 4,

B) is racy and will be detected by bothc&uLock and FASTTRACK.

Figure 2(b). The race betweeA and B does not occur if and only if the thread interleaving is
Tl -T2 =+ T3 or T3 — T2 — T1. So FASTTRACK will report it when it is actually seen
in a thread interleaving. In contrast,CAULOCK reports it each time as a potential race.

accu—hb

ConsidelTl — T2 — T3. The two reads i1 andT2 are concurrent by——— (but not by

ﬂ), R, records the epochs and locksets for the two reads s@&tfjat].lockset = {l5} and
R.[T2].lockset = {l1,15}. Atthe later write inT3, Lts = {l;} holds. AccuLock detects the
race as the accessesndB are not protected by a common lock.

Figure 2(c). AccuLock behaves exactly asABTTRACK in order to be fast and avoid false
warnings as explained below. Both detectors regard the two readétd1 as happening
in program order. IfT2 acquires lock; beforeT1, both detectors will discover the raca, (
B). If the lock acquisition order is reversed, both detectors keep onlyettensl read (lines 4
and 6 in Algorithml and lines 2 and 3 in Algorithr0). So both will miss the race.

14

Figure 2(d). AccuLock detects thig)-race similarly as in Figur@(a), except that it is a false
warning, confirmed later only by the programmer or other means. HowExeL TRACK
does not. We argued earlier that such warning should be issued tioefanalysis.

3.3.4. AccuLocK's Lockset MechanisnTo satisfy its design objectives stated in Sectibf,

.accu—hb

AccuLock exploits the program order included iH——— to mimic FASTTRACK whenever
necessary. In Algorithni0O, only the last non-redundant read in each thread is recordé€d,in
In Algorithm 11, only the last non-redundant write among all threads is recordesi,inand in

addition, on seeing two writes in a row that are orderediﬁw, AccuLocKresetsV, . lockset
to L; (line 6). Moreover, AcCULOCK also exploits implicitly the synchronization order induced
by lock acquires and releases by cleariRg at each write tor to improve both time and space
efficiency. This is because the current write either races with some ofriberpads inR, or

happens after all of them in the sense 8§, Finally, by distinguishing the locks protecting reads
and writes usingR ., andW, and approximating the lock-subset condition efficientlzAILOCK
performs the amortize®(1) lockset operations in thi®r loop of Algorithm 11 only infrequently,
i.e., on a write wherk, hasO(n) entries.

3.4. Characterizing Data Races

We give a few properties aboutc&uLock to show its fulfillment of our design requirements. We
supplement this analysis by providing experimental evidence in Settion

Theorem ZCompared with [OCKSET)
AccuLOCK reports no more data races thaodkseTin any thread interleaving.

Proof
Let M, (M) be the set of shared memory locations checked for racesdmuAOCK (LOCKSET).

Due to the use of““~"% (and also™ in Algorithm 11) in AccuLock, thenM, C M; holds. For
anyx € M,, if AccuLockdetects a race to, so will LOCKSET, because AcuLock distinguishes
reads and writes to but LockseTdoes not when finding the common locks heldfor d

However, ACCULOCK may report some real data races thatABER does not since the latter is
unsound in its handling of thread-local and read-shared data, asskstin our experiments.

AccuLocK misses no real races detected 3sFTRACK when looking for potential races that
may occur in alternate thread interleavings.

Theorem JCompared with ESTTRACK)

Consider a fixed program execution (with the same thread interleavingAsifTRACK reports a
pair of racy accesses on a shared locatiaturing this execution, AcuLock will also report a
(not necessarily identical) pair of racy accesses.on

Proof

Let there be a racy paifa, b) on x from FASTTRACK (implying that eithera or b is a write).
Thena andb are not ordered byﬁg, and consequently, not by“% Leta' (V') bea (b) or
an earlier non-redundant access in the same epoch. Being racydmyf RACK, a andb are not
protected by a common lock. Nor agéandd’ according to Corollaries and2. So(a/,?’) is racy
by AccuLock. O

In the absence of multiple protecting locksc@uLOCK reports only the potential races that it is
designed to find.

Theorem 4()-Races)
Suppose each location is protected by a fixed lock (or none). Tle&ruAOCK reports onlyj-races.

Proof
Suppose that 8cuLoCK detects a pair of racy accesses to a shared location. Then one of the two

15

Thread T1 Thread T2

lock I, lock
ﬁnlocklg lock iz
|0Ckl1 X=
_y @ unlockl,

unlocki;
unlocki;

Figure 7. An illustration of a false warnind\(B) that is not arf}-race reported by BCULOCK.

accesses must not be protected by a common lock using a simple case anhbysest of the proof
follows from Definition1. O

3.5. Multiple Protecting Locks

In the presence of multiple protecting locksgcAuLOCK may miss some real races when they are
not identified as potential races just lika$TTRACK (as illustrated in Figur@(c)) and report false
warnings that are ndtraces just like lockseTand ERASER(as illustrated in Figur&). Given that
the idiom is rarely used and costly to handle, we are now in a better positiordeysiand how
and why AccuLock behaves this way in order to meet its design objectives. To overcome both
problems, we will see clearly the need to keep track of sets of locksets thémejust locksets for
a shared location. Unfortunately, doing so is expensive in both time arne.syé& introduce for
the first time an epoch-based lockset solutionyuvl Lock-HB, to achieve this. In Sectiob, the
cost-effectiveness of the@cuLock design is justified empirically and the practical benefits of its
adaptation with MULTILOCK-HB are evaluated.

Let us look at the two problems mentioned above withcAiLock with examples:

Figure 2(c): Missing Data Races. Consider this example with the underlying thread interleaving
beingT1 — T2, in which caseA andB do not race. ACULOCK, just like FASTTRACK,
does not flag4, B) as a potential race, even though this actually occurs, for example, when
the thread interleaving i52 — T1. Consider how AcuLock works givenT1l — T2. There
are two reads made to by T1. After the second read is process&l,[T1] keeps only the
information for the second read. As a res@t,[T1].lockset = {l; }, which is the lockset for
the second read, rather thak}. On encountering the write im2 later, ACCULOCK has
lost the information for the first read il and thus cannot detect the raée B). To avoid
producing this false negative, the locksets for the two read4 imust be recorded.

Figure 7: Reporting false Warnings. Consider now this program that is adapted from Figi{
so that (1) the first read t® in T1 is now a write instead and (2) the write foin T2
is guarded by not only; but alsols. Suppose that the write ilm2 is made between the
two accesses il in the modified program. After the two write®),.lockset = {l5}. At
the read inT1, AccuLock will report a false warning, A, B) for x, since its lockset is
R[T1].lockset = {l1}, implying thatR . [T1].lockset N W, lockset = (). This false warning
is not an(-race as the second readTit and the write inT2 are protected by the lock.
The lockset intersection)V,..lockset < W,.lockset N L;, performed in Algorithml1 is the
culprit for such false warnings. To avoid producing the false positivehis example, the
locksets for the two writes i1 andT2 must be recorded explicitly.

Our MuLTILocCK-HB design, given in Algorithmd4 — 25, avoids the two aforesaid problems
by providing a fully-fledged implementation of the lock-subset optimization stat€deoreml (at
significantly higher analysis overheads). Unlike@uLock, MULTILOCK-HB relies on a different
notion of epoch. In MuLTILOCK-HB, a trace of memory accesses in a threack divided into sub-

accu—hb

traces by————-inducing synchronization operationstirPrecisely, two accesses in a threade
in the same epoch if and only if they are not separated by—%ﬁﬁ%ﬂ-inducing synchronization

16

operation int. Thus, the epochs in a thread are formed simply by letting the thread tick its clock

accu—hb

value at each———-inducing synchronization operation as in Algorithi®— 19, 24 and 25.

Note that in Algorithms24 and25, we have included the effects of volatile variables &§“—"%.
Otherwise, MiLTILOCK-HB proceeds by treating volatile variables just as lock objects.

Unlike AccuLock, MuLTILock-HB now keeps sets of locksets instead of just locksets in the
two metadata structures for each shared locatias follows:

e R.[t] records a set of(epoch,lockset) pairs for each thread, where each pair
(epoch, lockset) is associated with a prior read madetiwhent’s clock value is given by
epoch and the set of protecting locks for the read is giveridoy:set.

Algorithm 14 Acquire [MuLTILOCK-HB |: threadt acquires lockn
Lt — Lt U {m}

Algorithm 15 Release [MiLTILOCK-HB]: threadt releases lockn
Lt < Lt — {m}

Algorithm 16 Fork [MuLTILoCK-HB]: threadt forks threadu
Cy + C, UGy

Algorithm 17 Join [MULTILOCK-HB]: threadt joins threadu

Cy + CrUC,

Algorithm 18 Notify [M ULTILOCK-HB]: threadt notifies thread:

Cy,+ C,UC
Cyulu] = Cylul +1

Algorithm 19 NotifyAll [M uLTILOCK-HB]: threadt wakes up all waiting threads

for all threads: waiting for threadt do
Cy + C, LGy
Cylu] + Cylu] +1

end for

Cilt] + Cylt] +1

e W, [t] is similarly maintained for the writes te.

Furthermore, MILTIL OCK-HB always maintains the invariant that, andV,. keeps track of all
prior reads and writes to except the redundant ones removable by TheateRor convenience,
this invariant is referred to below as tR&F-invariant(short for redundant-access-free invariant).

Let us first consider how a read, to a shared location made in thread is analyzed in
Algorithm 20. Recall thatC; and L; are the VC and (currently held) locksetigirespectively. This

17

Algorithm 20 Read [MULTILOCK-HB]:

threadt reads variable:

Updateon.read®.[t], W, [t])
for all threads’ in write mapW, do
for all (epochy ,locksety) € W,[t'] do
if epochy 4 C; then
assert L; Nlocksety # ()
end if
end for
end for

{Update and remove redundant repds

{Check with prior write$

Algorithm 21 Write [MuLTILOCK-HBJ:

threadt writes variabler

Updateon.write(R , [t], W, [t])
for all threads’ in write mapW, do
for all (epochy,lockset,) € W, [t'] do
if epochy 4 C; then
assert L; Nlocksety #)
end if
end for
end for
for all threadg’ in read mapR, do
for all (epochy ,locksety) € R, [t'] do
if epochy 4 C; then
assert L; Nlocksety # ()
end if
end for
end for

{Update and remove redundant reads and wyites

{Check with prior write$

{Check with prior reads

Algorithm 22 Updateon_read [MULTILOCK-HB]:

Update and remove redundant reads

for all (epoch, lockset) € (R[t] UW,[t]) do
if epoch = Cy[t] Alockset C Ly then
return
else
Ralt] « Re[t] U{(Clt], L) }
end if
end for
for all (epoch, lockset) € R, [t] do
if epoch = Cy[t] A Ly C lockset then
Ra[t] + Ra[t] — {(epoch,lockset)}
end if
end for

{lgnore current read

{Remove prior reaf

means that’,[¢] and L, are the epoch and lockset of the current r&bleing analyzed. There are
two steps. In the first step, Update read given in Algorithn22is called to updat® . [¢t] so that the
RAF-invariant is maintained. If there existspoch, lockset) € (R.[t] UW,[t]) for a prior read or
write access, wherepoch = C,[t], such thatockset C L;, thenR is redundant with respect to the
prior access by Theorem In this caseR,[t] and W, [t] remain unchanged. Otherwise, we insert
(Ci[t], L:) associated with the current re&dnto R, [t] and remove evergepoch, lockset) € R, [t],
whereepoch = Cy[t], such thatL; C lockset since the corresponding prior read is redundant with
respect to the current redtlby Theoreml. In the second step, we check for data races between the
current read? and every concurrent write recorded previously. We report awdemever the two
accesses are not protected by a common lock, i.e., when the intersectieir &dcksets is empty.

18

Algorithm 23 Updateon write [MuULTILOCK-HB]:

Update and remove redundant reads/writes

for all (epoch, lockset) € W, [t] do
if epoch = Cy[t] Alockset C Ly then
return
else
Wi [t] = W [t] U{(Cilt], Le) }
end if
end for
for all (epoch, lockset) € R,[t] do
if epoch = Ci[t] A Ly C lockset then
R:[t] < R.[t] — {(epoch,lockset)}
end if
end for
for all (epoch, lockset) € W, [t] do
if epoch = Ci[t] A Ly C lockset then
W, [t] <= Wy [t] — {(epoch, lockset)}
end if
end for

{lgnore current writg

{Remove prior reag

{Remove prior writé

Algorithm 24 \olatile Read [MuLTILOCK-HB]:

threadt reads volatile variable

Ct — Ct |_|C1-
Cilt] + Ceft] +1

Algorithm 25 Volatile Write [MuLTILOCK-HB]:

threadt writes volatile variable:

Cy,+ C, UG,
Cilt] < Cft] +1

Similarly, in Algorithm 21, a write W to a shared locatiom made in thread is analyzed. There
are also two steps. In the first step, Updatewrite given in Algorithm23is called to update both
R.[t] andW,[t] so that the RAF-invariant is maintained. If there exigigoch, lockset) € W, [t]
for a prior write, whereepoch = C4]t], such thatockset C L, thenW is redundant with respect
to the prior write by Theoreni. In this case;R,[t] and W, [t] remain unchanged. Otherwise,
we insert(Cy[t], L;) associated with the current writ into W, [t] and, in addition, remove
every (epoch, lockset) € (Ry[t] U Wyt]), whereepoch = C,[t], such thatL; C lockset since the
corresponding read or write made earlier is redundant with respdét tiy Theoreml. In the
second step, we check for data races between the currentiWrdaed every concurrent write or

read made earlier.

Let us examine how MLTILock-HB has avoided the two aforesaid problems:

Figure 2(c). Consider this example again with the thread interlea¥ihg- T2. After the two reads
are executed i1, we haveR,[T1] = {(1@L, {l2}), (1@1, {l1})}. When the write inT2 is
analyzedCr, = (0,1) and Ltz = {i1}. So the write is concurrent with the two reads. The
race @, B) is detected as the two accessemndB are not protected by a common lock.

Figure7. Consider this example assuming as before that the writE2iils made between the
two accesses iml. After the two writes are executed, we have,[T1] = {(1@1, {l2})}
andWwW,[T2] = {(1@1, {l1,12})}. When the second read i1 is analyzedCt; = (1,0) and
L1 = {l1}. The second read happens after the first read as both are medeéHowever, the
second read is concurrent with the writeTia. The false positiveA, B) that would otherwise
be reported by AcuLock is avoided ag\ andB are protected by a common lodk,

19

Theorem F(-Races Only Warnings)
All race warnings reported by M_.TILock-HB are(j-races.

Proof

In MuLTILocK-HB, all concurrent reads and writes to a shared locaticare recorded iR,

and W, except the redundant ones by Theor&nWhether two concurrent accesses race or not
are checked to see if they share a common lock. By Definitioall warnings reported must be
(-races. O

4. EXPERIMENTAL EVALUATION IN JIKES RVM

We validate the fulfillment of its design objectives bgduLock by comparing it against six other
dynamic race detectors in the Jikes RVM using 11 Java benchmarks, tlestlarggrams ever
used as a collection in the literature. (We did not inclug®l ech illustrated in Figurel since it
cannot compile successfully under Jikes RVM.) The six other detecter&ERASER [9] (a well-
known imprecise detector based oadksET), RACETRACK [10] (an imprecise hybrid lockset/VC
detector), “HrBRID” [19] (a hybrid Lockset/VC detector), DT+ [18] (a high-performance VC-
based detector), MLTIRACE [18] (a hybrid Lockset/DITT detector), and ASTTRACK [12] (the
fastest happens-before detector known to use for Java programs).

Our experimental results show thatAuLocK is capable of reporting more (real) data races
than ARSTTRACK, while maintaining comparable analysis overhead (in performance and memory
overhead) and limiting the data races reported to be mésthges (Definitiorl). In addition, none
of the other detectors meet all our design objectives.

4.1. Implementation

Our implementation is based on the publicly available source codeAoeE®[21]. In order to
ensure reliable comparisons, all race detection algorithms were implementeg oh EMPTY

as similarly as possible so as to reuse the same data structures such asleekgrreadmaps

and locksets. EPTY performs no analysis and is used to measure the instrumentation overhead
at compile time as well as the overhead of associating metadata with each mooljgetdand
synchronization object at run time. It is implemented inside the Jikes RVMi¢ve81.0), a high-
performance Java-in-Java virtual machine. The performance of B&& is competitive with
commercial VMs when compared in November 2009 based obdhapo benchmark suité.

4.1.1. MetadataThere are three kinds of metadata foc@uLoCk concerning reads/writes, VCs
and locksets. We handle reads/writes and VCs asaAlteR [21] except for some differences as
described below. We handle locksets as RnEER[9] and RACETRACK [10].

e Two wordsare added to the header of each object. The first word points to an a@frray
per-field read/write metadata. For each instrumented fiel®, andW, are recorded. We
therefore trade off memory for speed so that the read/write metadata fostaamented
field are accessed directly, without having to go through a hashing ggdes in RCER).
The second points to the synchronization data, i.e., its VC for a synchtiomzzbject. As
PACER is sampling-based, its sampling-related code is suppressed and thusdan asy
detector examined in our experiments. Similarly, a word is added per statiodietebid/write
metadata. If volatile variables are handled by applying Algoritirsand 13, a word per
(object or static) volatile field is also added for synchronization metadata.

e As in ERASERand RACETRACK, a lockset table is used to record all distinct locksets ever
created and to identify a lockset uniquely by its index into the table. Lookujeitable are
lock-free while inserts are serialized.

thtt p: // dacapo. anu. edu. au/ r egr essi on/ per f/ 2006- 10- MR2. ht m

20

The other six detectors are implemented similarly.

4.1.2. InstrumentatiorThere are two dynamic compilers to translate Java bytecode into native code
in the Jikes RVM. Initially, the baseline compiler compiles each method it firstuertecs into non-
optimized code. When a method becomes hot based on the profiling informatioered by the
Jikes RVM, the optimizing compiler re-compiles it into more optimized code to actelpragram
execution. Our implementation modifies both compilers to add instrumentation ainéaasting
program point, such as a synchronization operation, read or write. tBalgpplication code of a
program loaded at run time is instrumented. In the optimizing compiler, we use itdyrstatic
intraprocedural escape analysis to filter out thread-local accesses.

4.1.3. Reporting RaceAll detectors report at most one race for each field monitored. The racy
pairs reported for a shared location by different detectors may beeatiffe

4.2. Methodology

4.2.1. PlatformWe performed all experiments on a 3.0GHz quad-core Intel Xeon maalinéig
Redhat Enterprise Linux 5 (kernel version is 2.6.18) with 16GB of memory.

4.2.2. Benchmark Configuratiowe have selected 11 benchmarks that expose different runtime
structures and patterns in the following way. We have used all four multdbce@rograms in
the latest release of thBaCapo benchmark suite9(12- bach) [23] that can compile under
the Jikes RVM:xal an, a test tool for the xerces library to transform XML documents into
HTML, | usear ch, a benchmark usingucene to index a set of documentsyr or a, a simulator
running AVR microcontrollers, andunf | ow, a render processing images using a ray-tracing
algorithm. We also include the two multithreaded programs in an older versioaGafpo (version
2006- 10- MR2): hsqgl db, a JDBCbench-like in-memory benchmark asd i pse, a (non-GUI)
JDT performance test tool for the Eclipse IDE. The other five benchsnaré:hedc, a tool to
access astrophysics data from Interdgj [nt r t , @ multithreaded ray-tracing program from SPEC
JVMB98, j spi der, a highly configurable and customizable web spider endgg tache4j, a
cache system for Java objects with a simple APl and fast implementaghmpdj cs, a distributed
caching systemZg].

For the sixDaCapo benchmarks, the inputs with default sizes were used (as some of these
benchmarks run out of memory on larger sizes). iart , the largest input size was enabled with
the option “ s100”. For j spi der, it was set up to run on a randomly chogéRL usinggoogl e.
Forcache4j andj cs, their benchmark inputs were used.

4.2.3. Computing Time and Space Overhedtiese measurements are the average of 10 runs. The
time spent on analyzing a program by a detector does not include the tineeéwdimg and printing

the stack traces for each racy pair of accesses reported. Thenehshmarked with * in Tabld

are not compute-bound and are excluded when computing the averégenamce slowdown for a
detector.

4.2.4. Counting Race Warning3ynamically detecting races is challenging as some races occur
infrequently. For each program, we report all distinct warnings fdaorte 10 runs by a detector to
ensure a reliable comparison with others.

4.2.5. Analysis ConfiguratioMccuLock provides a number of analysis switches, controlling
whether to analyze memory locations at the level of fields or objects, whigthistinguish the

accu—hb

elements of an array or not, and whether to include the events of volatils/wedds in———
or not.

In this paper, we restrict ourselves to the fine-grain analysis perforabeatie field level.
Volatile variables are handled by Algorithri® and13. Finally, all array elements are individually

21

monitored. We used the default generational mark-region collector withptiiteng as Xnmx4000M
- X: processors=al | .

4.3. Results and Analysis

Tablel lists the size, the number of classes, the number of methods, the numberaafsttared
uninstrumented running times for each program examined. In addition, ikgd¢imented Times”
columns show the running times of each program under each of the deteefmrted as the ratio to
the uninstrumented running time. The variations in slowdowns for diffen@grams are common
for different dynamic detectors. The “#Race Warnings” columns giwe rtimber of warning
produced by each detector. LikeRESER, both HYBRID and RACETRACK suppress “initialization
warnings” using BASERs unsound state machine in handling thread-local and read-shared data
To achieve an apples-to-apples comparison with the other four detebtars;, MULTIRACE,
FASTTRACK and ACCULOCK, class initializers and object constructors are not instrumented.
Otherwise, all initialization warnings reported are given inside the brackets

Here are some observations about the following four detectors whenatethfp ACCULOCK
directly or indirectly:

DJuT*. Like FASTTRACK, ACCULOCK is faster than DiT+, which always reports the same
warning as BSTTRACK as both differ only in how the happens-before relation is represented
(by VCs vs. VCs + epochs).

MULTIRACE. This detector has about the same overhead and behaves exactly thesdaume a
except that only accesses with an empty lockset concluded&bgErRare checked using VC
operations. Due to RASERS unsound state machine used as discussed belaw NRACE
may miss real races and report false warnings, as already discugdéetl in

HYBRID. This detector uses what is similar 88°“~"% to filter out some potential races from

accu—hb

ERASER that are ordered by———. While being effective in some programs, such as
ecl i pse and avrora, HYBRID can be up to & (in sunfl ow) slower than BASER

and inherits the same imprecise state machine framadER The aggressive lock-subset
optimization [L8, 19] used in HrBRID for removing redundant accesses can be expensive for
some programs.

RACETRACK. By making the opposite tradeoff asyHRID, this detector runs as fast aRESER
but can be very imprecise since it starts looking for races on a memory locatlg after
it has “observed” some racy evidence or missed some racy accegaedimg the location.
By comparing the “RCETRACK” and “FASTTRACK” columns tallying the warnings found
(even they may represent different warnings)), we find that®I'RACK often detects only
a small subset of races detected ysFTRACK in a program (e.gsunf | ow). On the other
hand, AccuLock detects all what KSTTRACK does (by Theorerfi and in practice).

Given the above discussions, it suffices to analyze our results by comp®ccuLock and
FASTTRACK. Afterwards, we compare @cuLoCK and ERASERonly briefly.

4.3.1. FASTTRACK ComparisonWe first compare the instrumentation overheads incurred by
FASTTRACK and AccuLock and then examine both detectors in terms of extra race conditions
discovered by ACULOCK.

Instrumentation Overheads Table | shows that &AcuLock has slightly higher analysis
overhead (about 5.8% on average more) thasTH RACK, when implemented in the sameBTY
framework. Note that AcuLock is slightly faster forl usear ch and sunfl ow. ACCULOCK
achieves such comparable performance by leveraging the lightweigth eporesentation of VCs
as in FASTTRACK and the fast lockset operations as iRASER As shown in Tabld, ERASER
remains the fastest of all detectors evaluated.

22

€c

#Instrumented Times (Slowdowns) #Race Warnings
: i8] : g1 3 | 3
Base| & s a € & S g1 & | e o & S
Size |#Classes#Methods Time| & 2 3] & J'r: g o 0 2 3] & +': g % 3
. = o < > oy < 9] o < > < O
Program|| (LOC) | Loaded|Compiled| #Threads|(secs) W u 04 T [a) = L < w 04 T [a] = e <
xalan 265,897 360 2,199 64 465|234| 481 | 459 | 10.19| 14.1| 142|558 | 6.03| 24 | 24 | 24 | 6[16] | 6[16] 6[16] 36[29]
lusearch|| 110,960{ 100 505 64 6.89| 2.05| 426 | 3.76 | 5.04 | 6.24| 6.37| 3.84| 3.75| O 0 0 1[12] | 1[12] 1[12] 1[12]
hsqldb 148,481| 113 1,012 16 274|336 782 | 7.78 | 1592| - - 7.73| 8.24 9 6 5 - - 3[4] 3[4]
eclipse | 165,366| 1,230 9,580 16 27.1| 3.06| 10.06 | 10.24| 184 | - - 19.29|962| 139 | 53 | 87 - - 17[3] 67[30]
avrora 136,756 397 1,785 6 13.6| 1.69| 355 | 348 | 466 | 45 | 452|3.23| 34 || 37| 2 3 3 3 3 4[1]
sunflow || 108,962 121 986 16 5.56| 5.05| 41.27| 41.67| 102.8| 79.6| 80.1| 54.1| 51.9| 4 3 4 19[7] | 19[7] 19[7] 19[24]
mtrt 11,317 38 243 20 153|2.73| 495 | 483 | 831 | 15.8| 15.8| 4.81| 4.88|| 12 | 6 5 6[1] 6[1] 6[1] 6[1]
cachedj | 5,061 9 65 64 49.1|1.32| 229 | 224 | 3.69 | 427 | 428|247 |247| 1 1 1 2 2 2 2
jcs 66,944 70 364 64 324| 17| 40 | 3.83 | 871 |8.03|792|469|483| 3 3 3 3 3 3 5[3]
hedc* 24,924 38 140 30 1.24|1.06| 1.07 | 1.08 | 1.07 | 1.08| 1.08| 1.08| 1.09|| 2 0 1 3[2] 1 3[2] 3[2]
jspider* | 18,826 | 304 1,630 15 334|105| 1.08 | 1.08 | 1.07 | 1.08 | 1.08 | 1.07 | 1.08| 8 2 6 7[4] 7[4] 7[4] 7[4]
Average 26 | 92 9.1 | 20.0 | 18.9| 19.0| 10.3| 10.9
Total 239 | 100 | 139 | 92[42] | 88[42] | 119[49] | 257[130]

Table 1. Benchmark results under Jikes RVM. The two marketi i1 are not compute-bound and are thus excluded when caimgaverage slowdowns. dr and
MULTIRACE ran out of memory omsqgl db andecl i pse due to the 4GB heap limitation in Jikes JVM. The extra wargiigide the brackets are generated if class
initializers and object constructors are also instrumente

Program Mzﬁwsoery Memory Overhead
(MB) ERASER | FASTTRACK | ACCULOCK

xalan 106.5 3.98 4.79 4.79
lusearch 73.1 4.89 4.48 4.19
hsqgldb 94.1 6.84 6.87 6.9
eclipse 156.5 5.21 5.39 5.54
avrora 48.1 4.89 4.63 5
sunflow 48.1 10.25 7.72 7.75
mtrt 48.5 5.93 6.94 6.7
cache4j 34.1 2.52 2.62 2.21
jcs 59.7 2.36 2.67 2.71
hedc 19.7 1.42 1.43 1.46
jspider 37.8 1.28 1.28 1.28

| Average| 66.0 | 451 | 4.44 | 447 |

Table II. Comparing memory overhead, which is the ratio efrtteximum heap space used during analysis
to the maximum heap space used under uninstrumented exe¢sitiown in Column 2).

Tablell shows that AcuLock has more or less the same memory overheadaads FRACK.
Compared with RASER, both detectors also have similar memory requirements.

Both AccuLock and FASTTRACK keep the same set of instrumentation states for a location
There are three states for reads:$&me-Epoch, (2) Exclusive when|R,| = 1in FASTTRACK or
|R.;| = 1in AccuLock, and (3)Read-Shared when|R,| > 1 or |[R;| > 1. There are two states
for writes: (1) Same-Epoch and (2)Exclusive (with |W,| =1 in FASTTRACK or [W,| =1 in
AcCcuLOCK always).

Table Il gives the number of times each state is entered by all instrumented locations in
FASTTRACK and the number ofD(n) VC operations performed on synchronization objects.
Table IV presents similar statistics for&cuLoCK, together with those for lockset operations.
AccuLock checks more frequently for races between a write and earlier contugads than

FASTTRACK (as shown in the “Exclusive” columns in the two tables) because lock acqou

release ordering events are ignoredi“~"% (but included in""%). On the other hand, as shown

in the “#VC Ops on Sync Objects” columns,CAULOCK reduces significantly the number of
O(n) VC operations on synchronization objects performed BgHRACK. In j cs, nearly all
synchronization events are volatile reads. Such reduction can be nmareupiced on affecting
their relative analysis times when the number of threagdB)creases.

In general, ALcuLoOCK is slightly slower than ESTTRACK in analyzing a program when the
number of lockset operations or the number of times the instrumented locatigria sheRead-
Shared state or both are relatively high (asxal an andhsql db). For the ray-tracing application
sunfl ow, AccuLOCKIs faster ASTTRACK since ACCULOCK stays in the same epoch more often.
Note that AccuLock needs to record the lockset for each non-redundant read. Fordteathing
applicationscache4j andj cs, the extra overhead incurred bycAuLocK over FASTTRACK is
slightly higher inj cs thancache4j as AccuLoOcCK stays in theRead-Shared state more often
in j cs. Finally, AccuLock is slightly faster than ESTTRACK on| usear ch because the ratio of
the number ofO(n) VC operations performed on synchronization objects A3 H RACK to the
number of lockset operations performed bg@uLock is relatively high.

Effectiveness of Data Race Detection AccuLock is more effective than ASTTRACK in the
sense that (1) it detects all real races reported AyTH RACK on every benchmark used (over 10
runs), as shown in the last three columns of Tabl€2) it reports onlyf-races in 10 out of the 11

24

#INSTRUMENTATION STATES ENTERED #VC OpPs
Program READS WRITES ON SYNC
SAME EXCLUSIVE READ SAME EXCLUSIVE OBJECTS
EPOCH SHARED || EPOCH | [R,|=1 [[R,|>1 [O(n)]
xalan 0.43B 0.16B 43.8M 27.8M 46.3M 4 8.94M
lusearch|| 0.76B 0.11B 9.84M 0.23B 49.2M 0 3.51M
hsqldb 80.6M 0.13B 47430 1.85M 24.8M 18 9.71M
eclipse 3.3B 0.34B 99.8M 0.75B 0.14B 352 4.9M
avrora 0.82B 0.11B 5.03M 0.34B 42.1M 0.1M 3.8M
sunflow 1.2B 0.22B 2.36B 0.35B 0.35B 6 1642
mtrt 0.17B 3.0M 1.11M 6.34M 18.5M 41 9626
cache4j | 29.5M 0.13B 9.5M 0 71.1M 65 44.8M
jcs 26.5M 0.14B 0.32B 29.2M 0.11B 66 0.22B
hedc 32712 37462 1717 7995 2312 0 528
jspider 0.65M 0.11M 5984 0.26M 55633 11 4035
Table Ill. Statistics aboutASTTRACK analysis operations.
INSTRUMENTATION STATES ENTERED #VC Ops #LOCKSETOPS
Program READS WRITES ON SYNC
SAME READ | SAME EXCLUSIVE OBJECTS
EPOCH EXcLUsIVE SHARED|| EPOCH[[R.| = 1[|R.] > 1] [O(n)] L—SFC’);(-|§g§$s INSERTS

xalan 0.45B 0.16B 22.3M | 26.9M| 46.1M | 0.03M 131 |0.28B| 5.42M| 0.02M
lusearch| 0.73B 0.14B 4.14M || 0.23B| 51.6M 65 0.85M |6.61M| 446 1094
hsgldb || 79.8M 0.14B 2.85M || 1.74M| 25.0M | 0.02M 3.07M |0.14B| 0.34M| 2652
eclipse || 3.38B 0.33B 11.7M || 0.75B| 0.14B | 0.01M 1.25M |23.4M| 0.26M | 8412
avrora || 0.82B 0.11B 7.0M || 0.34B| 40.3M | 0.22M 0.43M | 8.27 | 3.61M 10

sunflow || 2.85B 0.23B 0.87M | 0.35B| 0.35B 4 34 1.62M| 498 18
mtrt 0.19B 3.94M 0.07M || 7.92M | 16.5M 42 27 1.61M| 194 22
cachedj|| 29.4M| 61.1M 79.9M 0 71.8M | 0.02M 64 0.16B| 14.6M 3

jcs 0.14B 87.5M 0.26B | 29.2M| 0.11B | 1.42M 0.21B | 533 | 0.21B 13
hedc 0.03M| 0.03M 789 7746 | 2296 0 154 396 38 67
jspider || 0.69M| 0.11M 3746 | 0.28M| 55633 20 1047 |0.16M| 16 240

Table IV. Statistics about &cuLock analysis operations.

benchmarks used, and (3) it finds more real races among the extraaauags reported (relative
to FASTTRACK).

By Theorem3, AccuLocK always finds a superset of races found l\sFTRACK under the
condition that both detectors analyze a program execution with the samd thtedeaving. This
condition may or may not hold if each detector is run once on a given progrmwever, this
theorem holds for the 11 benchmarks used in our experiments (as sho@olbmn “—F” in

accu—hb

TableV), as AccuLock uses———, which is less sensitive to thread interleaving tHAn.

We have analyzed the extra warnings reported by BLock (in the “+F” columns) forxal an,
ecl i pse,avroraandj cs using MuLTILock-HB for 10 runs. Only three fogcl i pse are found
to be false warnings that are removable using sets of locksets asimMock-HB (rather than
just locksets as in BcuLocCK). All the rest ard)-races (Definitiorl), which are the potential races
that AccuLock is designed to flag for further analysis, as motivated in Sedtitn

Let us examine th@-races listed in the last column of Table First of all, AccuLock and
FASTTRACK report the same set of real races in seven of the 11 programs testednghihat
AccuLock is usually precise by refraining from reporting false warnings. We maaaually

25

+E +F
Program| -E |5 | 0-races FIep | 0-races TRA
xalan 0 0 19 0] O 30 2
lusearch| O 0 1 OO 0 0
hsqldb 3 0 0 0| O 0 3
eclipse | 108 | 3 50 0] 3 41 14
avrora 34| 0 3 OO 1 3
sunflow 0 0 22 0[]0 0 4
mtrt 5 0 1 OO 0 7
cache4j 0 0 1 OO 0 3
jcs 0 0 2 O] O 2 2
hedc 1 0 4 0|0 0 0
jspider 3 0 2 OO 0 5

-E/+E: fewer/more than RASER -F/+F: fewer/more than &STTRACK
FP: false positives (warnings) removable using sets of locksetsinst@ast mcksets
+FA: real races missed byRASERbut found by both ESTTRACK and ACCULOCK

Table V. Comparing AcuLock with ERASERand FASTTRACK in terms of data races reported.

analyzed all)-races reported in three of the remaining four benchmadsan, avr or a andj cs,
as follows:

j cs. Both are false warnings that warrant such further analysis in orddmtinate all potential
software defects. One warning is related to unprotected accesses telthediche of an
j cs object. Both are synchronized by an intervening user-defined béotiewed by a lock
acquire. The other is caused by accesses to thedidald of a CacheEl ement object via
object pooling, for the same reason as demonstrated in Fi{dje Both warnings can be
suppressed with user annotations touLocK. How to automate detection of idioms such
as object pooling and shared channels remains open.

avrora. This is a real race on some elements of an array
Medi un$Transmi tter$Ti cker:transm ssion. data, which is always detected by
AccuLock using both the default input (6 threads) and the large input (26 thredoajever,
the race is missed byASTTRACK (and also by RCER [21], another implementation of
FASTTRACK with its sampling rate set at 100%) when the default input is used but is ditecte
only with the large input, due to its sensitivity to thread interleaving.

xal an. All these are false warnings on 26 object fields, including the fieldast Fet ched
of an objectLocPat hl t er at or, due to the use of a sharéder at or pool, which is
synchronized itself.

However, there is a real race on the fielct t r s of an objectEl enDesc that is detected
in all 10 runs by AccuLock but only in 4 of the 10 runs by ASTTRACK, despite that the
race is counted for &STTRACK in Tablel. (Thus, this race is not included in the B@aces
shown in the last column for this benchmark.) FigBrdemonstrates further thatt®uLock
is significantly less sensitive to thread interleaving tharsH RACK in hunting this race
condition. In addition, in a separate experiment runniagan with 8 threads for 500 runs,
FASTTRACK fails to detect the race in all the runs but&uLocCkK succeeds in reporting it in
all 500 runs.

4.3.2. ERASERComparisonWhile being the fastest among all seven detectors compared inlTable
ERASERIs known to issue more warnings and also miss real races due to its unsanaith of
thread-local and read-shared data. Looking at Tablgain, RASERdoes not produce many false
warnings compared to@cuLock in a few benchmarks. This is becauseASERhas succeeded in

26

’+ FASTTRACK —e— ACCULOCK

10

#Races in 10 Runs

oON O ®

|
10 20 30 40 50 60 70 80 90 10
Number of Threads

Figure 8. Sensitivity of £AcuLock and ARSTTRACK to thread interleaving on the racy accesses to the field
mat t r s of an objectl emDesc in xal an.

suppressing many false warnings that would have otherwise beernceby LOCKSET. However,
this is done unsoundly as many real races are also suppressed aselisicalow.

TableV also gives the extra race warnings reported lyCALOCK relative to ERASERin the
“+E” columns. AccuLock happens to also report only three race warnings that arné ramtes (for
ecl i pse). In addition, RASERdid not report the two real races found by duLock discussed
above inavr or a andxal an. Finally, the “+FA’" column gives the number of real races missed by
ErRAsERbut found by both ESTTRACK and ACCULOCK.

5. EXPERIMENTAL EVALUATION IN ROADRUNNER

Dynamic race detectors are known to be sensitive to not only the threal@aviegs occurring at
run time but also the instrumentation frameworks used at compile time. In this sesgoshow
that porting AccuLock and FASTTRACK to a different dynamic analysis framework, RoadRunner
[20], and repeating our experiments done previously for Jikes RVM yields simidaervations
about the two detectors. In addition, puttinguMriLocKk-HB in action in RoadRunner reveals
the cost-effectiveness ofdcuLock and validates again its design objectives. Unlike Jikes RVM,
RoadRunner is a framework designed for developing dynamic analgsesdltithreaded Java
programs at the bytecode level and has been extended for implementarglsBinamic analysis
tools [27, 12, 28]. As RoadRunner is a well designed tool for reuse, it is relatively dttbogvard
to port our three analysis algorithms from Jikes RVM.

We have carried our experiments using@ULOCK, FASTTRACK and MULTILOCK-HB in
RoadRunner exactly as in Jikes RVM. The benchnearki pse is not used since it failed to run.
Instead, we have replaced it witkbl ech, which is another web crawler often used in the literature.

Performance Slowdowns Table VI gives the “Instrumented Times” (as the ratios to the
uninstrumented running times) and race warnings reported. Compared wahTRACK,
AccuLockK's exhibits similar analysis overheads across these benchmarks as inRVk&s

In particular, AccuLock is still able to analyzel usearch slightly more efficiently than
FASTTRACK. On average, ACULOCK is about 6.5% slower than ABTTRACK. These
results demonstrate further thacAuLock achieves comparable performance asFTRACK.
Meanwhile, MULTILOCK-HB is nearly three times as slow a&B8uULOCK (on average) as the lock
subset operations can be costly.

Memory Overhead The memory overheads for the three analysis algorithms are compared in
TableVIl. As in Jikes RVM, AccuLock and FRASTTRACK exhibit similar memory requirements

27

#Instrumented Times (Slowdowng) #Race Warnings

T T

% X ¥ X

o8 8 o5 8

o et - o purt -

Base| = | 3 5 c13]E

Time 2 8 3 2 8 =

Program ||(secs)| L < = w | < =

xalan 4.65| 11.07| 12.58 27.27 6 | 36| 36

lusearch || 6.89| 9.17 | 9.03 19.14 1|1 1

hsqldb 2.74 | 20.13| 23.49 51.7 3] 3 3

weblech* || 1.4 || 1.08 | 1.09 1.09 4 | 4 4

avrora 13.6| 3.75 | 4.46 65.14 3|4 4

sunflow || 5.56 | 39.93| 40.02 98.56 5118 | 18

mtrt 153 18.31| 18.92 38.12 6 | 6 6

cachedj | 49.1| 3.04 | 4.50 9.49 2| 2 2

jcs 32.4| 5.86 | 6.02 16.72 3|5 5

hedc* 1.24| 1.08 | 1.09 1.09 3] 3 3

jspider* 33.4| 1.07 | 1.07 1.09 77 7
Average 139 | 14.8 40.7

Total 43 | 89 89

Table VI. Benchmark results under RoadRunner. The threehmearks marked with * are not compute-
bound and are thus excluded when computing average sloveddvne warnings are generated with class
initializers and object constructors not being instrureent

in RoadRunner. However, the amount of memory consumed by ock-HB has more than
doubled on average as WTILock-HB has to keep track of a lot more information about
concurrent accesses made in the past.

Program Mzﬁfc?ry Memory Overhead
(MB) FASTTRACK | ACCULOCK | MuULTILOCK-HB
xalan 814 4.36 4.77 7.76
lusearch|| 2076 4.75 4.39 5.47
hsqldb 393 3.85 4.15 12.69
weblech 109 2.81 2.84 2.84
avrora 143 251 2.67 21.83
sunflow 1003 1.90 2.42 6.36
mtrt 299 5.89 5.50 15.89
cachedj 549 1.99 2.16 4.13
jcs 551 1.20 1.24 4.13
hedc 132 151 15 1.52
jspider 125 2.69 2.76 2.79
| Average | 563.1 | 300 | 313 | 7.06 |

Table VII. Comparing memory overhead under RoadRunneriwisithe ratio of the maximum heap space
used during analysis to the maximum heap space used uncdestrumented execution (in Column 2).

28

Race Warnings The race warnings reported by the three detectors are listed in the last thre
columns of Table/I (with “initialization warnings” excluded). Some observations are in order:

e MuLTILOCK-HB reports exactly the same set of warnings ascALock for each
benchmark tested. According to Theoré&mall warnings reported must lferaces, the type
of races that AcuLock s designed to catch. For these benchmarks, using sets of locksets as
in MuLTILocK-HB is not cost-effective as the multiple protecting lock idiom occurs rarely
in read-world programs. So@cuLOCK appears to make a good tradeoff between efficiency
and precision in detecting data races in practice.

e ACCULOCK reports a superset of race warnings comparedasTFRACK (Theorem3).
Comparing Tables and VI, we find that AAcuLoCK and FASTTRACK report somewhat
different race warnings forsunfl ow due to the differences in thread interleavings
encountered and compiler framework used. For all the other commonrarihused, each
detector reports exactly the same race warnings in RoadRunner as iRVikes

e ACCULOCK is less sensitive to thread interleaving thansFTRACK. For the data race
illustrated earlier foxal an in Figure8, similar results are observed. In particular, when the
program is executed with the number of threads being 16, 32 and 6é¢ctsty, ACCULOCK
can find the race in each of the 10 runs in each of the three configurtigtesl. In contrast,
FASTTRACK only finds the race in 2, 3, 6 of the 10 runs in each of the three casethd-or
data race of theebl ech benchmark discussed in FiguteAccuLOCK succeeds in finding
the race in each of the 10 runs. HowevexsFTRACK only catches the race in 6 of the 10
runs.

6. RELATED WORK

We supplement our review of related work in Sectidoy focusing only on dynamic race detection.
All dynamic analysis algorithms proposed in the literature are based on tamkkappens-before
or a combination of both. They can be classified into the four categoriew.belo

Lockset Race Detection The basic idea is to verify the locking discipling fhat a common lock
should be consistently held on each access to a particular shared menadigniand report a
warning otherwise. This underpins the lockset algorithm introduced ®fitst time in ERASER
[9, 10]. False positives are unavoidable when some synchronization mechaistiems do not
follow the locking discipline. Praun et al. proposebject race detectioll] that can improve
the lockset algorithm’s performance by applying escape analysis to filtéh@mad-local data and
detecting data races at the object level instead of the field level. Unfeetyrereduction in analysis
time can lead to even more false positives reported due to its coarser agadygitarity.

Happens-Before Race Detection The basic idea here is to verify theppens-beforeelation,
a causal relationship induced by program order and synchronizatuer auring a program
execution, represented using vector clocks (VA [L3, 14, 15, 16]. Unlike lockset, happens-
before can therefore be precise by reporting no false positivesehuires repeated test runs to
increase its coverage. Two earlier analysis algorithms reported asdDERL4] and DaiT+ [1§].
VCs are expensive to implement, exhibitiagn) complexity in both time and space, whetds
the number of threads.ABTTRACK [12] reduces it fromO(n) to O(1) for the majority of the
VC operations in a program execution. As a resuksFTRACK and ERASER are comparable
in performance overheads for the benchmarks tested in this work. Koweach VC update at a
synchronization operation is stilt) and can thus be costly for programs with many synchronization
operations. In contrast, ZCULOCK does not track the release-acquire edges at synchronization
operations. Instead of making VC updatesULOCK relies on a new lockset algorithm to detect
more data races.

Goldilocks P9 represents a somewhat different solution. In this detector, the hafifare
relation is captured using a unified lockset containing locks, threadsedaitiley variables. Although

29

itis dynamically sound and precise, the overhead of traversing its ghphehsonization list is much
higher than BSTTRACK in a high-performance JVM, as shown it?].

Hybrid Techniques In the pre-ARSTTRACK era, there were two kinds of attempts on combining
lockset and happens-before race detection to detect data fid;e9[18, 29). One is to use the
lockset information to improve the efficiency of VCs, as iruMiIRACE [18], by limiting VC
operations to accesses to a shared location with an empty lockset. The dthesésthe happens-
before information to reduce false positives in a lockset detector likeSER “HYBRID” [19]
does this by reporting the same true positives aa$ER while RACETRACK [10] may report
less to trade precision for efficiency. However, these earlier hybtetters are often much slower
than lockset and happens-before detectors as VCs are expensiantain. The only exception
is that RRCETRACK has about the same performance &\EERbut is less precise. These results
are validated by their authors, partly in thedgTRACK work [12] and more extensively in our
experiments discussed in this paper.

This paper has improved our earlier work(] in two principal directions. First, we have re-
implemented AcuLock and FASTTRACK in RoadRunner and confirmed agairc&uLOCK’S
fulfillment of its design objectives. This second evaluation is important aardimrace detectors
are often sensitive to thread interleavings exercised and compiler fratkewsed. Second, we
have introduced for the first time, BM.TILOCK-HB, a hew epoch-based lockset detector that uses
sets of locksets rather than just locksets to detect data races causesl lisetiof the multiple
protecting lock idiom. Replacing this new lockset algorithm usedacBLoCcK with MULTILOCK-

HB results in only three false warningseéel! i pse to be suppressed. However, the price paid for
this is nearly a factor-of-three performance slowdown on averagtéf0+ benchmarks tested.
Two conclusions can be drawn immediately. First, thecALOCK design is justified as the races
caused by the multiple protecting lock idiom are rare and thus unnecessaelysve to detect with
MuLTILock-HB. Second, MiLTILOCK-HB can be selectively deployed for certain applications
(e.g.,ecl i pse) that contain potentially such races.

THREADSANITIZER [22] has also recently been developed to combine lockset and happens-
before to dynamically detect data races for x86 binaries. However,fédrslifrom AccuLock
in two key aspects. First, HREADSANITIZER still uses VCs to reason about happens-before
while AccuLock adopts lightweight epochs. SecondHREADSANITIZER keeps track of
multiple locksets for concurrent writes to a shared location (one per thusadike for reads)
to increase its chances in detecting races caused by the multiple protectingdioak In
contrast, ALCULOCK maintains only the lockset for the last write. However, according to the
authors of HREADSANITIZER [22] and our experimental validation and analysis assisted by
MuLTILocK-HB, such races rarely occur in real-world programs. Due to the aiavdifferences,
THREADSANITIZER suffers no less analysis overhead than earlier hybrid detectors stittB&1D
and MULTIRACE. Using caching in VC-based detectors can speed up only some VC opsratio
caching is not overhead-free and all VC operations on cold and dotdlitie misses are still(n).
Given that the multiple protecting lock idiom is rarely used;JLock is not only efficient but
also can accurately pinpoint where a race occurs even if reads #@ad ane handled asymmetrically
(implied in the proof of Theorerf).

Sampling By sampling only a subset of memory accesses, asImERACE [31] and RACEZ
[32], certain data races can still be found at significantly reduced instrutientverheads. &ER
[21] improves the prior work by mathematically guaranteeing that the possibility dihfna data
race is proportional to the sampling rate. However, as data races amegofte difficult to catch,
sampling-based detectors must be run repeatedly to increase theirssatessn finding data races.

30

7. CONCLUSION

This paper presents a new dynamic race detector that can detect maoraceatthan KSTTRACK,
the fastest happens-before detector, while maintaining comparablemanite as KSTTRACK.
The key innovation is to leverage the lightweight epoch representation abrvelocks in
FASTTRACK and deploy a new lockset algorithm to achieve a fine balance of covanagerecision
in race detection. These design objectives are met as validated agesTSIHFACK and six other

dynamic detectors in Jikes RVM and RoadRunner using a collection of éanvdnimarks.

The basic idea behind@cuLock s not tied to the epoch-based happens-befaieTF RACK; it
can be incorporated into any future faster happens-before deteettowoa good balance between
speed, memory requirement, coverage and precision to be made.

ACKNOWLEDGEMENT

Thanks to the anonymous reviewers for their feedback onwtioik. This research is supported by the
Australian Research Council (ARC) grants (DP0665581 an@98P236) a China Scholarship Council
(CSC) grant, and an International Science and Technologp&mation Program of China (2011DFG13000).

10.

11.
12.
13.

14.

15.
16.

17.

REFERENCES

. Netzer RH, Miller BP. What are Race Conditions? - Some IssuBammalizationsACM Letters on Programming

Languages and Systerh892;1:74-88.

. Pratikakis P, Foster JS, Hicks M. Locksmith: Context-Seresi@orrelation Analysis for Race DetectidALDI

'06: Proceedings of the 2006 ACM SIGPLAN Conference on Rmogning Language Design and Implementation
ACM: New York, NY, USA, 2006; 320-331, doi:http://doi.acmg$l0.1145/1133981.1134019.

. Flanagan C, Freund SN. Type-based Race Detection for Baid.'00: Proceedings of the ACM SIGPLAN 2000

conference on Programming Language Design and Implemenfa&CM: New York, NY, USA, 2000; 219-232,
doi:http://doi.acm.org/10.1145/349299.349328.

. Sasturkar A, Agarwal R, Wang L, Stoller SD. Automated Typsdal Analysis of Data Races and AtomicRiPoPP

'05: Proceedings of the tenth ACM SIGPLAN Symposium on Piiegignd Practice of Parallel Programming
ACM: New York, NY, USA, 2005; 83-94, doi:http://doi.acm.6t§.1145/1065944.1065956.

. Engler D, Ashcraft K. Racerx: Effective, Static Detect@rRace Conditions and Deadlocl&GOPS Oper. Syst.

Rev.2003;37(5):237-252.

. Naik M, Aiken A, Whaley J. Effective Static Race Detectiam §ava.PLDI '06: Proceedings of the 2006 ACM

SIGPLAN Conference on Programming Language Design and imgsigation ACM: New York, NY, USA, 2006;
308-319, doi:http://doi.acm.org/10.1145/1133981.11840

. Voung JW, Jhala R, Lerner S. Relay: Static Race Detection dliois of Lines of Code.ESEC-FSE '07:

Proceedings of the 6th Joint Meeting of the European Soévngineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Enginee®@M: New York, NY, USA, 2007; 205-214, doi:
http://doi.acm.org/10.1145/1287624.1287654.

. Dinning A, Schonberg E. Detecting Access Anomalies in Rnogrwith Critical SectionsSIGPLAN Not1991;

26(12):85-96, doi:http://doi.acm.org/10.1145/127695 7672

. Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson T. Erds®ynamic Data Race Detector for

Multithreaded Program#&CM Transactions on Computer Syst&897;15(4):391-411.

Yu Y, Rodeheffer T, Chen W. Racetrack: Efficient Detattid Data Race Conditions via Adaptive Trackii@DSP
'05: Proceedings of the twentieth ACM Symposium on Oper&ygiems PrincipleACM: New York, NY, USA,
2005; 221-234, doi:http://doi.acm.org/10.1145/10958095832.

von Praun C, Gross TR. Object Race Detect@®@PSLA '01: Proceedings of the 16th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, andcagiphs 2001; 70-82.

Flanagan C, Freund S. FastTrack: Efficient and Preciserbignaace DetectionPLDI '09: Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Desidriraplementatiodun 2009; .

Pozniansky E, Schuster A. Efficient On-the-fly Data Race@n in Multithreaded C++ Programi3PoPP '03:
Proceedings of the ninth ACM SIGPLAN Symposium on PrinciplesPaactice of Parallel Programming003;
179-190, doi:http://doi.acm.org/10.1145/781498.781529

Christiaens M, De Bosschere K. TRaDe, a Topological Appréa®©n-the-fly Race Detection in Java Programs.
JVM'01: Proceedings of the 2001 Symposium on JavaTM Virtuadhifee Research and Technology Symposium
USENIX Association: Berkeley, CA, USA, 2001; 15-24.

Schonberg E. On-the-fly detection of access anom&d31'89: In Proceedings of the SIGPLAN 1989 Conference
on Programming Language Design and Implementati®98; 285-297.

Min SL, Choi JD. An Efficient Cache-based Access Anomaly DitecScheme Proceedings of the fourth
International Conference on Architectural Support for Pragrming Languages and Operating SysteA&PLOS-

1V, ACM: New York, NY, USA, 1991; 235-244, doi:http://dote.org/10.1145/106972.106996.

Lamport L. Time, Clocks, and the Ordering of Events in a Dhated SystemCommunications of the ACNO78;
21(7):558-565, doi:http://doi.acm.org/10.1145/359549583.

31

18.

19.

20.

21.

22.

23.

24,

25.
26.

27.
28.
29.

30.
31.

32.

Pozniansky E, Schuster A. MultiRace: Efficient On-the-fgtdRace Detection in Multithreaded C++ Programs:
Research ArticlesConcurrency and Computation: Practice and Experie087;19(3):327-340, doi:http://dx.
doi.org/10.1002/cpe.v19:3.

O’Callahan R, Choi JD. Hybrid Dynamic Data Race Detecti®dRoPP '03: Proceedings of the ninth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Raogning ACM: New York, NY, USA, 2003;
167-178, doi:http://doi.acm.org/10.1145/781498.781528

Flanagan C, Freund SN. The RoadRunner Dynamic Analysisidwark for Concurrent Program®ASTE
'10: Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop ag@m Analysis for Software Tools and
Engineering ACM: New York, NY, USA, 2010; 1-8, doi:http://doi.acm.old.1145/1806672.1806674.

Bond MD, Coons KE, McKinley KS. Pacer: Proportional Dx¢iten of Data Races?LDI '10: Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language DesidriraplementationACM: New York, NY,
USA, 2010; 255268, doi:http://doi.acm.org/10.1145/50%1806626.

Serebryany K, Iskhodzhanov T. ThreadSanitizer: Datae Ratection in PracticeProceedings of the Workshop
on Binary Instrumentation and Applicationg/BIA '09, ACM: New York, NY, USA, 2009; 62-71, doi:http:
/ldoi.acm.org/10.1145/1791194.1791203.

Blackburn S, Garner R, Hoffmann C. The DaCapo Benchmarka:Bemchmarking Development and Analysis.
OOPSLA '06: Proceedings of the 21st ACM SIGPLAN Conferenc®lgjact-Oriented Programming, Systems,
Languages, and Applicatioan 2006; .

JavaCodingnet. JSpider, A Highly Configurable and Custditéza Web Spider Engine.
http://j-spider.sourceforge. net/ 2003.

Stepovoy Y. Cache4j, Cache for Java Objetts.p: / / cache4j . sour cef or ge. net/ 2006.

Foundation AS. Jcs, a Distributed Caching System Writtenva.dat p: //j akart a. apache. org/j cs/
2009.

Flanagan C, Freund SN, Yi J. Velodrome: a Sound and Completarbic Atomicity Checker for Multithreaded
Programs. 2008; 293-303, doi:http://doi.acm.org/10.113#3581.1375618.

Flanagan C, Freund SN. Adversarial Memory for DetectingtiDetive RacesSIGPLAN Not2010;45(6):244—
254, doi:http://doi.acm.org/10.1145/1809028.1806625.

Elmas T, Qadeer S, Tasiran S. Goldilocks: a Race and Tramsastiare Java RuntimBLDI '07: Proceedings of
the 2007 ACM SIGPLAN Conference on Programming LanguagegBesid ImplementatigrACM: New York,
NY, USA, 2007; 245-255, doi:http://doi.acm.org/10.114%/0734.1250762.

Xie X, Xue J. Acculock: Accurate and Efficient DetectiorDafta RacesCGO’11: Proceedings of the sixth annual
IEEE/ACM International Symposium on Code Generation andr@ptition 2011; 201-212.

Marino D, Musuvathi M, Narayanasamy S. LiteRace: EffecBanpling for Lightweight Data-race Detection.
PLDI '09: Proceedings of the 2009 ACM SIGPLAN conference angimming language design and
implementation2009; 134-143, doi:http://doi.acm.org/10.1145/154285462491.

Sheng T, Vachharajani N, Eranian S, Hundt R, Chen W, ZhW&hdraceZ: a Lightweight and Non-invasive
Race Detection Tool for Production Applicatio®roceeding of the 33rd International Conference on Software
Engineering ICSE '11, ACM: New York, NY, USA, 2011; 401-410.

32

http://j-spider.sourceforge.net/
http://cache4j.sourceforge.net/
http://jakarta.apache.org/jcs/

	1 Introduction
	1.1 Overview of the Idea
	1.1.1 Motivation
	1.1.2 Solution

	1.2 Contributions

	2 Background
	2.1 VCs and VC-based Happens-Before Detection
	2.1.1 Synchronization Operations
	2.1.2 Variable Reads and Writes
	2.1.3 Example

	2.2 Epochs and FastTrack
	2.3 Locksets and Eraser

	3 Acculock
	3.1 Tracking accu-hb
	3.2 Approximating the Lock-Subset Condition
	3.3 Detecting Data Races
	3.3.1 Write-Read Races
	3.3.2 Write-Write and Read-Write Races
	3.3.3 Examples
	3.3.4 Acculock's Lockset Mechanism

	3.4 Characterizing Data Races
	3.5 Multiple Protecting Locks

	4 Experimental Evaluation in Jikes RVM
	4.1 Implementation
	4.1.1 Metadata
	4.1.2 Instrumentation
	4.1.3 Reporting Races

	4.2 Methodology
	4.2.1 Platform
	4.2.2 Benchmark Configuration
	4.2.3 Computing Time and Space Overheads
	4.2.4 Counting Race Warnings
	4.2.5 Analysis Configuration

	4.3 Results and Analysis
	4.3.1 FastTrack Comparison
	4.3.2 Eraser Comparison

	5 Experimental Evaluation in Roadrunner
	6 Related Work
	7 Conclusion

