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A lifetime optimal algorithm, called MC-PRE, is presented for the first time that performs
speculative PRE based on edge profiles. In addition to being computationally optimal in the
sense that the total number of dynamic computations for an expression in the transformed code is
minimized, MC-PRE is also lifetime optimal since the lifetimes of introduced temporaries are also
minimized. The key in achieving lifetime optimality lies not only in finding a unique minimum cut
on a transformed graph of a given CFG but also in performing a data-flow analysis directly on the
CFG to avoid making unnecessary code insertions and deletions. The lifetime optimal results are
rigorously proved. We evaluate our algorithm in GCC against three previously published PRE algo-
rithms, namely, MC-PREcomp (Qiong and Xue’s computationally optimal version of MC-PRE),
LCM (Knoop, Rüthing and Steffen’s lifetime optimal algorithm for performing non-speculative
PRE) and CMP-PRE (Bodik, Gupta and Soffa’s PRE algorithm based on code-motion preventing
(CMP) regions, which is speculative but not computationally optimal). We report and analyze
our experimental results, obtained from both actual program execution and instrumentation, for
all 22 C, C++ and FORTRAN 77 benchmarks from SPECcpu2000 on an Itanium 2 computer
system. Our results show that MC-PRE (or MC-PREcomp) is capable of eliminating more partial
redundancies than both LCM and CMP-PRE (especially in functions with complex control flow),
and in addition, MC-PRE inserts temporaries with shorter lifetimes than MC-PREcomp. Each of
both benefits has contributed to the performance improvements in benchmark programs at the
costs of only small compile-time and code-size increases in some benchmarks.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
optimization; F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-numerical
algorithms and problems; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms;
network problems

General Terms: Algorithms, Languages, Experimentation, Performance

Additional Key Words and Phrases: Partial redundancy elimination, classic PRE, speculative
PRE, computational optimality, lifetime optimality, data flow analysis

1. INTRODUCTION

TACO, 3(2):115-155, 2006.

Partial redundancy elimination (PRE) is a powerful and widely used optimiza-
tion technique aimed at removing computations that are redundant due to recom-
puting previously computed values [Morel and Renvoise 1979]. PRE is attractive
because by targeting computations that are redundant only along some paths in
a CFG, it encompasses global common subexpression elimination (GCSE), loop-
invariant code motion (LICM), and more. As a result, PRE is an important
component in global optimizers. Traditionally, PRE has been implemented as a
profile-independent optimization. For example, GCC 3.4.3 consists of a pass for
performing PRE, which is based on the well-known algorithm called lazy code mo-
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tion (LCM) [Knoop et al. 1994]. As another example, Open64 conducts PRE in
static single assignment (SSA) form [Cytron et al. 1991]) using the SSAPRE algo-
rithm described in [Kennedy et al. 1999]. These classic PRE algorithms guarantee
both computationally and lifetime optimal results: the number of computations
cannot be reduced any further by safe code motion [Kennedy 1972] and the life-
times of introduced temporaries are minimized. Under such a safety constraint,
they remove partial redundancies along some paths but never introduce additional
computations along any path that did not contain them originally.

In real programs, some points (nodes or edges) in a CFG are executed more
frequently than others. If we have their execution frequencies available and if we
know that an expression cannot cause an exception, we can perform code motion
transformations missed by the classic PRE algorithms. The central idea is to use
control speculation (i.e., unconditional execution of an expression that is otherwise
executed conditionally) to enable the removal of partial redundancies along some
more frequently executed paths at the expense of introducing additional compu-
tations along some less frequently executed paths. Such a speculative PRE may
potentially insert computations on paths that did not execute them in the original
program. As a result, the safety criterion enforced in classic PRE is relaxed.

There are three computationally optimal algorithms for solving the speculative
PRE problem [Bodik 1999; Cai and Xue 2003; Scholz et al. 2004]. However, none of
them is also lifetime optimal. Bodik et al. [1998] have also introduced a speculative
PRE algorithm, which is referred to as CMP-PRE in this paper, based on code-
motion-preventing (CMP) regions. They show that CMP-PRE can eliminate more
partially redundant computations than LCM despite its being non-computationally
optimal. This paper presents the first algorithm that achieves both computational
and lifetime optimal results simultaneously. Presently, many existing compiler
frameworks have incorporated and used profiling information to support control
speculation (and data speculation [Lin et al. 2003]). As increasingly more aggres-
sive profile-guided optimizations are being employed, the profiling overhead can be
better amortized (or shared). However, profile-guided speculative PRE algorithms
are yet to be incorporated into existing compiler frameworks. As mentioned above,
GCC supports LCM (which is non-speculative) while Open64 embraces SSAPRE
(which, combined with the extension described in [Lo et al. 1998], can promote
register reuse by performing speculative loads and stores).

In summary, this paper makes the following contributions:

Lifetime Optimality. We present the first lifetime optimal algorithm, MC-PRE
(the “MC” stands for Min-Cut), for performing speculative PRE from edge profiles.
In addition to being computationally optimal, MC-PRE is also lifetime optimal.
The key in achieving the lifetime optimality lies not only in finding a unique mini-
mum cut on a transformed graph of a given CFG but also in performing a data-flow
analysis on the CFG to avoid making unnecessary code insertions and replacements
for isolated computations. The lifetime optimal results are rigorously proved.

Algorithm. Our computationally optimal algorithm described in [Cai and Xue
2003] assumes single statement blocks. This paper presents our lifetime optimal
algorithm in terms of standard basic blocks so that it is directly implementable.

Implementations. We have implemented MC-PRE in GCC (GNU Compiler Col-
lection) 3.4.3. We make use of the bit-vector routines in GCC to perform our data-
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flow analysis passes. This is also the same framework used by the LCM algorithm
implemented in GCC. In performing the min-cut part of our algorithm, we use Gold-
berg’s push-relabel HIPR algorithm [Goldberg 2003] and his implementation, which
is one of the fastest implementations available [Chekuri et al. 1997]. As a result,
we have also obtained an implementation of our earlier PRE algorithm [Cai and
Xue 2003] in GCC. This precursor of MC-PRE, denoted MC-PREcomp, is computa-
tionally optimal but not lifetime optimal. For comparison purposes, we have also
implemented Bodik, Gupta and Soffa’s CMP-PRE algorithm [Bodik et al. 1998],
which uses a non-Boolean lattice with three values. The data-flow analyses required
by CMP-PRE are carried out using modified versions of GCC’s bit-vector routines.

Eliminated Computations. We evaluate MC-PRE against LCM and CMP-PRE
using all 22 SPECcpu2000 benchmarks on Itanium 2 in terms of redundant com-
putations eliminated. MC-PRE eliminates more non-full (i.e., strictly partial)
redundancies than LCM and more non-full redundancies that are only specula-
tively removable (i.e., that are not removable by LCM) than CMP-PRE. This
is particularly pronounced for functions with complex control flow. In the case
of SPECint2000, MC-PRE removes between 31.39% and 147.56% (an average of
90.13%) more non-full redundancies than LCM and between 0.52% and 280.47% (an
average of 58.15%) more non-full redundancies that are only speculatively remov-
able than CMP-PRE. In the case of SPECfp2000, these percentage increases are
0.10% – 264.67% (33.84%) over LCM and 0.00% – 89.98% (15.23%) over CMP-PRE.

Lifetimes of Introduced Temporaries. MC-PRE uses insertions with shorter life-
times than MC-PREcomp in all 22 benchmarks used. In addition, MC-PRE is
comparable with or better than LCM and CMP-PRE in terms of this criterion in
these benchmarks despite that these two previous PRE algorithms are not compu-
tationally optimal for solving the speculative PRE problem.

Performance Improvements. By eliminating more redundant computations than
LCM and CMP-PRE and using insertions with the shortest lifetimes possible
(shorter than MC-PREcomp), MC-PRE achieves nearly the same or better perfor-
mance results than the other three PRE algorithms in all 22 benchmarks. By keep-
ing the lifetimes of introduced temporaries to a minimum, MC-PRE yields faster
codes than MC-PREcomp in 19 of these benchmarks. In the case of SPECint2000,
MC-PRE outperforms MC-PREcomp, LCM and CMP-PRE in nearly all its 12
benchmarks. In the case of SPECfp2000, LCM has succeeded in eliminating over
80% of the non-full redundancies in nine out of its 10 benchmarks. However,
MC-PRE still achieves nearly the same or better performance results in these bench-
marks than the other three algorithms. MC-PRE is optimal since it can eliminate all
partial (full and non-full) redundancies by using temporaries with the shortest life-
times possible as long as they can be eliminated profitably (with respect to a given
edge profile). As a result, MC-PRE can potentially achieve better performance than
LCM and CMP-PRE even in programs where LCM and CMP-PRE have eliminated
most of their non-full redundancies. This has happened to mesa and sixtrack in
the SPECfp2000 suite. For sixtrack, MC-PRE achieves a speedup of 7.03% over
LCM since all non-full redundancies that MC-PRE eliminates but LCM does not
are from its hottest functions. For mesa, MC-PRE achieves a speedup of 5.75%
(5.73%) over LCM (CMP-PRE) since MC-PRE has eliminated redundant compu-
tations from a number of expensive expressions that both LCM and CMP-PRE
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have failed to remove in one of its hottest functions.

Low Compilation Overhead. Conventional wisdom suggests that a min-cut solver
may be too expensive to be practically useful in our setting. Instead of directly
operating on CFGs, a min-cut solver operates on significantly reduced subgraphs of
CFGs. As a result, MC-PRE incurs only small extra compilation overheads relative
to LCM. By replacing LCM with MC-PRE, GCC has only moderate increases in
compile times across 22 SPECcpu2000 benchmark programs. The compile times
from MC-PRE, MC-PREcomp and CMP-PRE do not differ significantly.

Low Space Overhead. A PRE algorithm inserts and deletes computations in a
program. As a result, it may cause the static code size in a program to be increased
or decreased. MC-PRE are comparable with LCM and CMP-PRE in terms of this
criterion while MC-PREcomp results in slightly larger binaries in some benchmarks.

PRE is almost universally used in optimizing compilers. The experimental results
as summarized above show that MC-PRE can be practically employed as a PRE
pass in a profile-guided optimizing compiler framework.

We illustrate the basic idea of our algorithm using an example given in Figure 1
by focussing on one single PRE candidate expression, a + b. After the local PRE
pass has been performed within basic blocks, there are only two kinds of candidate
computations of a + b to be dealt with by the global PRE pass:

UB = {2, 4, 10, 11, 13}
DB = {6, 11}

(1)

where UB is the set of blocks where a + b is upwards exposed and DB is the set of
blocks where a + b is both downwards exposed and preceded by assignments to a

or b. (Note that UB and DB are not symmetrically defined in this paper.)
MC-PRE starts with by performing two standard data-flow analyses — the for-

ward availability and the backward partial anticipatability — on the CFG given in
Figure 1(a) to identify all non-essential edges and nodes. Figure 1(b) duplicates
the CFG given in Figure 1(a) with all the non-essential edges and nodes being de-
picted in dashes. By removing these non-essential edges and nodes from the given
CFG, we obtain the reduced graph as shown in Figure 1(c). This reduced graph is
then transformed into the so-called essential flow graph (EFG), which is an s-t flow
network given in Figure 1(d). We apply a min-cut algorithm to the EFG to obtain
the minimum cut as illustrated in Figure 1(d). Let C1 denote this minimum cut:

C1 = {(1, 2), (3, 4), (5, 7)}

At this stage, the following transformation, CO1, is computationally optimal:

U-INSCO1
= C1 = {(1, 2), (3, 4), (5, 7)}

U-DELCO1
= UB = {2, 4, 10, 11, 13}

D-INSDELCO1
= DB = {6, 11}

(2)

This transformation would be lifetime optimal if insertions and deletions for isolated
computations were allowed. Thus, such an almost-lifetime optimal transformation
corresponds to the Almost LCM transformation in classic PRE [Knoop et al. 1992;
1994]. For illustration purposes, Figure 1(e) depicts the transformed code, which is
not actually generated. The first two sets prescribe the insertions and replacements
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Fig. 1. A running example illustrating our optimal algorithm.
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for the upwards exposed computations in UB , respectively. The last set specifies
the insertions and replacements for the downwards exposed computations in DB .

This work recognizes that finding a special minimum cut alone is not sufficient
to guarantee lifetime optimality for speculative PRE. In the transformed program
shown in Figure 1(e), there are three isolated computations. The upwards exposed
computation a + b in block 2 is isolated since the definition h = a + b inserted on
the edge (1, 2) is used only in block 2 and becomes dead at its exit. The upwards
exposed computation a + b in block 4 is also isolated similarly. The downwards
exposed computation a + b in block 11 is isolated because the definition h = a + b

inserted inside the block is dead at its exit. To avoid making these unnecessary
insertions and associated deletions, MC-PRE performs a third data-flow analysis
pass on the original CFG given in Figure 1(a). As a result, the unique lifetime
optimal transformation, LO, found by MC-PRE is:

U-INSLO = {(5, 7)}
U-DELLO = {10, 11, 13}

D-INSDELLO = {6}
(3)

Performing this code motion on the CFG in Figure 1(a) leads to the optimally
transformed code shown in Figure 1(f). The dynamic number of computations for
a + b has been reduced optimally from 2850 to 1900. (For the same expression, the
reduction by the profile-independent LCM would be from 2850 to 2450.)

The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 gives some background information and introduces the notions of
computational optimality and lifetime optimality for speculative PRE. Section 4
presents the MC-PRE algorithm in a style that can be directly and efficiently
implemented in a compiler, while stating some lemmas with proofs. In Section 5, we
discuss some theoretical aspects of the algorithm and prove rigorously its correctness
and optimality. In Section 6, we evaluate MC-PRE against MC-PREcomp, LCM
and CMP-PRE using SPECcpu2000 on an Itanium 2 computer system. Section 7
concludes the paper and discusses some future work.

2. RELATED WORK

PRE originated from the seminal work of Morel and Renvoise [Morel and Renvoise
1979] and was soon realized as an important optimization technique that subsumes
GCSE and LICM. Morel and Renvoise’s data-flow framework is imperfect: it is bidi-
rectional, provides no assurance for lifetime optimality and is profile-independent.
In the past two decades, their work has undergone a number of refinements and
extensions [Briggs and Cooper 1994; Chow 1983; Click 1995; Dhamdhere 1991;
Dhamdhere et al. 1992; Drechsler and Stadel 1993; Hosking et al. 2001; Kennedy
et al. 1999; Knoop 1998; Knoop et al. 1992; 1994; Rosen et al. 1988; Rüthing et al.
2000; Simpson 1996]. In particular, Knoop et al. [1994] describe a uni-directional
bit-vector formulation, known as LCM, that is optimal by the criteria of computa-
tional optimality and lifetime optimality, and more recently, Kennedy et al. [1999]
present an SSA-based framework that shares the same two optimality properties.
In addition, Knoop et al. [2000] extend the LCM algorithm to handle predicated
code. Hailperin [1998] generalizes LCM so that the generalized version also per-
forms constant propagation and strength reduction. Kennedy et al. [1998] extend
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the SSAPRE algorithm to perform strength reduction and linear function test re-
placement. Steffen et al. [1990] present a PRE algorithm achieving computational
optimality with respect to the Herbrand interpretation and later [1991] a less pow-
erful but more efficient variant together with an extension to uniformly cover also
strength reduction. By combining global reassociation and global value numbering
[Alpern et al. 1988], Briggs and Cooper [1994] can also eliminate redundancies for
certain semantically-identical expressions. However, these previous research efforts
are restricted by the safety code motion criterion [Kennedy 1972] and insensitive
to the execution frequencies of a program point in a given CFG.

Horspool and Ho [1997] and Gupta et al. [1998] introduce the first two algo-
rithms on performing profile-guided speculative PRE. Due to the local heuristics
used, both algorithms are not computationally optimal. Later, computationally
optimal results are achieved by the three different algorithms described in [Bodik
1999; Cai and Xue 2003; Scholz et al. 2004], which all rely on finding a minimum
cut to obtain the required insertion points. However, none of these three algo-
rithms is also lifetime optimal due to the arbitrary minimum cuts chosen in their
algorithms. Bodik [1999] suggested to achieve lifetime optimal results by choosing
cut edges as close as possible to the sinks of his flow network; but the details of this
suggestion are missing. In order to reduce the lifetimes of introduced temporaries,
Bodik [1999] used a non-optimal algorithm (presented earlier in [Bodik et al. 1998]
and denoted CMP-PRE here) to perform speculative PRE based on code-motion-
preventing (CMP) regions. They show that CMP-PRE can eliminate more non-full
redundancies than LCM despite its being non-computationally optimal.

In this paper, we extend our earlier algorithm [Cai and Xue 2003] so that the
new algorithm, MC-PRE, can also achieve lifetime optimality for the first time. As
a result, MC-PRE introduces temporary registers only when necessary, with the
shortest lifetimes possible. The lifetime optimality is achieved by finding not only
a special minimum cut and but also performing one additional data-flow analysis
to avoid making insertions and replacements for isolated computations.

Bodik et al. [1998] apply control flow restructuring as an alternative to specu-
lation to enable code motion. They implemented their algorithm in the IMPACT
compiler [Chang et al. 1991] and evaluated its effectiveness using SPEC95. They
found that the number of redundancies that cannot be removed by speculation alone
is negligible. In addition, such a negligible number of redundancies is eliminated at
the cost of over 30% code explosion for most benchmarks. Steffen [1996] eliminates
all partial redundancies in a program essentially by unrolling the program as far as
necessary and then attempting to minimize the potentially exponential code-size
explosion by collapsing nodes that are so-called bisimilar. In this paper, MC-PRE
achieves a complete removal of all partial redundancies removable by using control
speculation from edge profiles at negligible space overheads.

Lo et al. [1998] extend the SSAPRE algorithm to handle control speculation and
register promotion. Their algorithm performs no worse than if speculation is not
used but is not optimal. Lin et al. [2003] incorporate alias profiling information to
support data speculation in the SSAPRE framework.
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3. PRELIMINARIES

Section 3.1 recalls some concepts and results about directed graphs, flow networks
and defines the notion of minimum cut used. In Section 3.2, we introduce control
flow graphs (CFGs) and the local predicates used in our data-flow analysis. In
Section 3.3, we formulate speculative PRE as a code motion transformation and
define its correctness, computational optimality and lifetime optimality.

3.1 Directed Graphs and Flow Networks

Let G = (N, E) be a directed graph with the node set N and the edge set E. The
notation pred(G, n) represents the set of all immediate predecessors of a node n and
succ(G, n) the set of all its immediate successors in G:

pred(G, n) = {m | (m, n) ∈ E}
succ(G, n) = {m | (n, m) ∈ E}

(4)

A node m is a predecessor of a node n if m is an immediate predecessor of n or if m

is a predecessor of an immediate predecessor of n. A path of G is a finite sequence
of nodes n1, . . . , nk such that ni ∈ succ(ni−1), for all 1 < i 6 k, and the length of
the path is k. In this case, we write 〈n1, . . . , nk〉 and refer to the sequence as a path
from n1 to nk (inclusive). Any subsequence of a path is referred to as a subpath.

A directed graph G = (N, E) is a flow network if it has two distinguished nodes,
a source s and a sink t, and a nonnegative capacity (or weight) c(n, m) > 0 for
each edge (n, m) ∈ E. If (n, m) 6∈ E, it is customary to assume that c(n, m) = 0
[Cormen et al. 1990]. For convenience, every node is assumed to lie on some path
from the source s to the sink t. Thus, a flow network is connected (from s to t).

Let S and T = N −S be a partition of N such that s ∈ S and t ∈ T . We denote
by (S, T ) the set of all (directed) edges with tail in S and head in T :

(S, T ) = {(n, m) ∈ E | n ∈ S, m ∈ T} (5)

A cut separating s from t is any edge set (C, C), where s ∈ C, C = N − C is the
complement of C and t ∈ C. The capacity of this cut, denoted by cap(C, C), is the
sum of the capacities of all the edges in the cut (called cut edges):

cap(C, C) =
∑

(m,n)∈(C, C)

c(m, n) (6)

By a minimum cut, we mean a cut separating s from t with minimum capacity.

3.2 Control Flow Graphs

A control flow graph (CFG) is a directed graph annotated with an edge profile. We
represent a CFG as a weighted graph G = (N, E, W ), where N is the set of basic
blocks, E the set of control flow edges, and W : E 7→ IN is the set of non-negative
integers representing the execution frequencies of all flow edges. In addition, s ∈ N

denotes the unique entry block without any predecessors and t ∈ N the unique exit
block without any successors. Furthermore, every block is assumed to lie on some
path from s to t. For convenience, we also write W (n) to represent the execution
frequency of a block n ∈ N . Nodes and (basic) blocks are interchangeable.

The profiling information input to a profile-guided algorithm provides only an
approximation of actual execution frequencies. Therefore, an edge or node with a
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Fig. 2. Profitability in partial redundancy elimination by using control speculation. Although
being partially redundant, a+b in block 5 will not be eliminated since it is not profitably removable.

zero frequency is interpreted as least frequently rather than never executed at all.

Assumption 3.1. For every node or edge x in G, its execution frequency is as-
sumed to be nonzero, i.e., W (x) > 0.

Assumption 3.2. The following assumption about an edge profile is made:

W (n) =
∑

m∈pred(G,n)

W (m, n) =
∑

m∈succ(G,n)

W (n, m) (7)

In all example CFGs used for illustrations, variables with distinct names are
consistently meant to be distinct (i.e., not aliased to each other).

3.2.1 Basic Blocks. A basic block is a sequence of consecutive statements or
instructions in which flow of control enters only at the beginning and leaves only at
the end. To avoid using a highly parameterized notation, we present our algorithm
for a generic CFG G = (N, E, W ) and a generic expression π. An assignment
to some operand of π is called a modification to π. It is understood that a PRE
problem is defined by both a CFG and an expression. Thus, two PRE problems on
the same CFG are distinct if their corresponding expressions are distinct.

3.2.2 Partial, Full and Non-Full Redundancies. An expression is partially re-
dundant if the value computed by the expression is available on some control flow
paths reaching that expression. A partially redundant expression becomes fully re-
dundant if the value of the expression is available on all control flow paths reaching
that expression. The redundancies that are partial but not full are referred to as
non-full redundancies in this paper (and as strictly partial redundancies elsewhere).
The proposed PRE algorithm aims at removing all partial (full or non-full) redun-
dancies as long as they can be removed profitably by using control speculation.

A computation of π in G = (N, E, W ) is said to be profitably removable if it is
partially redundant and its elimination can reduce the total number of evaluations
of π with respect to W . For example, no code motion should be performed for the
example given in Figure 2 since the partially redundant computation a+ b in block
5 is not profitably removable. However, a PRE algorithm must eliminate all partial
redundancies that are profitably removable in order to be computationally optimal.
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3.2.3 Local Redundancies and Local Predicates. PRE is a global optimization
for removing partial redundancies across the basic blocks. Standard techniques
such as local common subexpression elimination (LCSE) are assumed to have been
carried out on basic blocks. Thus, two consecutive occurrences of a given expression
π in the same block must be separated by at least one modification to π.

For each block n, the four local predicates for a given expression π are used in the
normal manner. ANTLOC(n) is true iff π is locally anticipatable on entry to block
n. AVLOC(n) is true iff π is locally available on exit from block n. TRANSP(n) is
true iff block n is transparent to π, i.e., block n does not contain any modification
to π. Finally, KILL(n) = ¬TRANSP(n). We call n a kill node if KILL(n) = true.

Definition 3.3. A block n is called a U-block if ANTLOC(n) = true. The set of
all U-blocks in a CFG G = (N, E, W ) is denoted by:

UB = {n ∈ N | ANTLOC(n)} (8)

Definition 3.4. A block n is called a D-block if AVLOC(n)∧KILL(n) = true. The
set of all D-blocks in a CFG G = (N, E, W ) is denoted by:

DB = {n ∈ N | AVLOC(n) ∧ KILL(n)} (9)

By definition, a block n can be both a U-block and a D-block. In this case, n must
be a kill block and contains two distinct PRE candidate computations of π. If a
single computation of π is both upwards and downwards exposed in a block n, then
n cannot be a kill block. In this case, n is called a U-block but not also a D-block.

The entry block s is assumed to have an (imaginary) definition for every variable,
which precedes all existing statements, to represent whatever value the variable may
have when s is entered. Note that the entry and exit blocks need not be empty.

Assumption 3.5. For the entry block s, it is assumed that KILL(s) = true and
ANTLOC(s) = false for every PRE candidate expression.

3.2.4 Critical Edges. Our algorithm reasons about insertions on edges specula-
tively. As a result, it is directly applicable to any CFG even if it contains critical
edges, i.e., the edges leading from nodes with more than one immediate successor
to nodes with more than one immediate predecessor [Knoop et al. 1994]. Thus,
there is no need to split them before our algorithm is applied.

3.3 Speculative PRE

When eliminating redundant computations for an expression π, code insertions of
the form hπ = π, where hπ is a distinct temporary, are introduced so that the saved
value of π in hπ can be reused later. A speculative PRE transformation, denoted
T , for an expression π in a CFG G = (N, E, W ) is characterized by three sets:

—U-DELT ⊆ UB is a set of U-blocks whose upwards exposed computations of π

(called replacement computations) are to be replaced by hπ.

—D-INSDELT ⊆ DB is a set of D-blocks such that each of these downwards exposed
computations of π (also called replacement computations) will be replaced by hπ

and immediately preceded by an insertion of hπ = π (see block 6 in Figure 1(f)).

—U-INST ⊆ E is a set of flow edges (called insertion edges) on which hπ = π will
be inserted. (The insertion will take place in a new block created on the edge.)
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For convenience, we define W (S) =
∑

x∈S W (x), where S is a set of flow edges or
blocks. Let W (T ) be the dynamic number of computations of π in the transformed
code realized by a transformation T with respect to the edge profile W :

W (T ) = W (UB) + W (DB) − benefit(T ) (10)

where benefit(W ) gives rise to the total number of eliminated computations of π:

benefit(T ) = W (U-DELT ) − W (U-INST ) (11)

Definition 3.6. Consider an expression π in G = (N, E, W ). A PRE transforma-
tion is correct if every use of hπ is identified with a definition of hπ on every path
reaching the use. CMCor denotes the set of all such correct transformations for π.

Definition 3.7. Consider an expression π in G = (N, E, W ). A PRE transfor-
mation T is said to be computationally optimal if the following statements are true:

(1) T is correct, i.e., T ∈ CMCor.

(2) W (T ) 6 W (T ′) for all T ′ ∈ CMCor.

CMCompOpt denotes the set of all computationally optimal transformations for π.

The lifetime (or live range) of a variable is the portion of a program in which
the variable’s value must be preserved. This work uses exactly the same notion
of lifetime optimality as defined in classic PRE [Knoop et al. 1994]. Informally, a
PRE transformation is lifetime optimal if (1) every computation of π that it deletes
must be deleted by every other computationally optimal transformation, and (2)
every definition of hπ that it inserts must have the shortest lifetime possible for
every use of hπ that the definition reaches. This notion of lifetime optimality is
recasted below in terms of our notations for describing a PRE transformation.

Definition 3.8. Consider an expression π in G = (N, E, W ). T ∈ CMCompOpt is
lifetime better than T ′ ∈ CMCompOpt if the following statements are true:

(1) U-DELT ⊆ U-DELT ′ .

(2) D-INSDELT ⊆ D-INSDELT ′ .

(3) Let dn
u,v be the definition of hπ inserted on an arbitrary but fixed edge (u, v) ∈

U-INST that reaches an arbitrary but fixed use of hπ in a U-block, n, along
its incoming edge (m, n) ∈ E according to T . Let dn

u′,v′ be the definition of
hπ inserted on (u′, v′) ∈ U-INST ′ that reaches the same use of hπ in the same
U-block n along the same incoming edge (m, n) according to T ′. Then the
lifetime of dn

u,v is no longer than the lifetime of dn
u′,v′ .

T ∈ CMCompOpt is lifetime optimal if T is lifetime better than all T ′ ∈ CMCompOpt.
CMLifeOpt denotes the set of all such lifetime optimal transformations for π.

Under Assumption 3.1, we shall show constructively that |CMLifeOpt| = 1.
Note that CO1 given in (2) and LO in (3) result in the transformed codes depicted

in Figures 1(e) and (f), respectively. LO is lifetime optimal but CO1 is not.

4. THE MC-PRE ALGORITHM

This section develops our algorithm in two stages. In Section 4.1, we present an
initial algorithm, called MC-PREcomp, for finding computationally optimal trans-
formations. By refining this algorithm, Section 4.2 presents our final algorithm,

11



called MC-PRE, that finds a lifetime optimal transformation for a PRE problem.
In Section 4.3, we analyze the time and space complexity of the MC-PRE algorithm.

4.1 Computationally Optimal Transformations

The MC-PREcomp algorithm given in Figure 3 takes a CFG and returns a compu-
tational optimal transformation denoted by CO. MC-PREcomp works for standard
basic blocks while our earlier algorithm [Cai and Xue 2003] assumes single state-
ment blocks. As a result, Step 3.3(a) of MC-PREcomp is new and is required to
perform a conceptual splitting for some basic blocks as illustrated in Figure 4.

We will focus on describing the parts of MC-PREcomp that are different from our
earlier algorithm and state some lemmas that will be used later for the proofs of our
lifetime optimal algorithm. Steps 1 and 2 of MC-PREcomp find D-INSDELCO and
U-DELCO trivially based on the local predicates for basic blocks. Step 3 constructs
U-INSCO by relying on two global data-flow analysis passes. We describe this step
below and illustrate it with two examples. The first example does not use Step
3.3(a) while the second is designed to illustrate the necessity of this step.

Our first example is the CFG discussed earlier in Figure 1(a). The expression π

under consideration is a + b. The UB and DB sets for this example can be found
in (1). By executing Steps 1 and 2 of MC-PREcomp, we obtain trivially:

D-INSDELCO = DB = {6, 11}
U-DELCO = UB = {2, 4, 10, 11, 13}

(12)

The construction of U-INSCO for this example is done incrementally below.

4.1.1 Steps 3.1 and 3.2: Perform the Availability and Partial Anticipatability
Analyses to Obtain a Reduced Graph. These are the same two steps used in our ear-
lier algorithm [Cai and Xue 2003] for single statement blocks. They serve to remove
all non-essential flow edges (and nodes) from a CFG since a PRE transformation
that makes code insertions on such edges cannot be computationally optimal under
Assumption 3.1. Once the two global flow analyses in Step 3.1 are done, the four
global predicates are defined on the flow edges of G in Step 3.2(a). According to
these predicates, a flow edge will be either insertion-redundant or insertion-useless
or both. As a result, a flow edge is either essential or non-essential. The forward
availability analysis detects the insertion-redundant edges while the backward par-
tial anticipatability analysis detects the insertion-useless edges. The concept of
essentiality for flow edges induces a similar concept for nodes. A node n in G is
essential if at least one of its incident edges is essential and non-essential otherwise.
In Step 3.2(b), the reduced graph Grd consists of simply all essential edges in E

and all essential nodes in N from the original graph G.
For the CFG given in Figure 1(a), Figure 1(b) depicts all the non-essential edges

and nodes in dashes. Figure 1(c) depicts the reduced graph obtained.
The following lemmas are immediate from the construction of Grd.

Lemma 4.1. A U-block n ∈ UB is in Grd if the upwards exposed computation of
π in block n is not fully redundant, i.e., ∃ m ∈ pred(G, n) : X-AVAL(m) = false.

Lemma 4.2. A D-block n ∈ (DB − UB) cannot be contained in Grd.

Both lemmas can be verified for our running example by noting the UB and
DB given in (1) and examining the reduced graph Grd shown in Figure 1(c).
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Algorithm MC-PREcomp

INPUT: a CFG G = (N, E, W ) and an expression π

OUTPUT: a computationally optimal transformation CO

1 D-INSDELCO = DB .
2 U-DELCO = UB .
3 Construct U-INSCO as follows:

3.1 Perform the availability and partial anticipatability analyses.
(a) Solve the forward availability system (initialized to true):

N-AVAL(n) =



false if n is the entry block s
V

m∈pred(G,n)
X-AVAL(m) otherwise

X-AVAL(n) = AVLOC(n) ∨ (N-AVAL(n) ∧ TRANSP(n))

(b) Solve the backward partial anticipatability system (initialized to false):

X-PANT(n) =



false if n is the exit block t
W

m∈succ(G,n) N-PANT(m) otherwise

N-PANT(n) = ANTLOC(n) ∨ (X-PANT(n) ∧ TRANSP(n))

3.2 Obtain a reduced graph Grd = (Nrd, Erd, Wrd) from G.

(a) Define the four predicates on the flow edges (m, n) ∈ E (no flow analysis):

INS-REDUND(m, n) =df X-AVAL(m)
INS-USELESS(m, n) =df ¬ N-PANT(n)

NON-ESS(m, n) =df X-AVAL(m) ∨ ¬N-PANT(n)
ESS(m, n) =df ¬NON-ESS(m, n) ≡ ¬X-AVAL(m) ∧ N-PANT(n)

(b) Grd is defined as follows:

Nrd = {n ∈ N | ∃m ∈ N : ESS(m, n) ∨ ∃m ∈ N : ESS(n, m)}
Erd = {(m, n) ∈ E | ESS(m,n)}
Wrd = W restricted to the domain Erd

3.3 Obtain a multi-source, multi-sink graph Gmm = (Nmm, Emm, Wmm) from Grd.
(a) Split a node such that its top part becomes a sink and bottom part a source:

TOP(n) =df ANTLOC(n) ∧ (∃ m ∈ pred(Grd, n) : (m, n) ∈ Erd)
BOT(n) =df KILL(n) ∧ (∃ m ∈ succ(Grd, n) : (n, m) ∈ Erd)
Let top part(n) = if TOP(n) ∧ BOT(n) → n+ else → n fi

Let bot part(n) = if TOP(n) ∧ BOT(n) → n− else → n fi
Let Γ(m,n) = (bot part(m), top part(n))

(b) Gmm is defined as follows:
Nmm = {bot part(n) | n ∈ Nrd} ∪ {top part(n) | n ∈ Nrd}
Emm = {Γ(m, n) | (m, n) ∈ Erd}
Wmm = Emm 7→ IN, where W (e) = W (Γ−1(e))

(c) Smm = {n ∈ Nmm | pred(Gmm, n) = ∅}
Tmm = {n ∈ Nmm | succ(Gmm, n) = ∅}

3.4 Obtain a single-source, single-sink EFG Gst = (Nst, Est, Wst) from Gmm.
(a) Let s′ be a new entry block and t′ a new exit block.
(b) Gst is defined as follows:

Nst = Nmm ∪ {s′ | Nmm 6= ∅} ∪ {t′ | Nmm 6= ∅}
Est = Emm ∪ {(s′, n) | n ∈ Smm} ∪ {(n, t′) | n ∈ Tmm}
Wst = Wmm (extended to Est) such that ∀ e ∈ (Est − Emm) : Wst(e) = ∞.

3.5 Find a minimum cut.
(a) C = MIN CUT(Gst).
(b) U-INSCO = Γ−1(C) // maps the edges in C back to flow edges in G

Fig. 3. An algorithm that guarantees computationally optimal results.
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By Lemma 4.1, all the five U-blocks in the example are contained in Grd. By
Lemma 4.2, the D-block 11 is contained in Grd but the D-block 6 is not.

Theorem 4.3. Grd = (Nrd, Erd, Wrd) is empty iff ∀ n ∈ UB : ∀ m ∈ pred(G, n) :
X-AVAL(m) = true, i.e., all upwards exposed computations are fully redundant.

Proof. To prove “=⇒”, we note that by Lemma 4.1, if ∃ n ∈ UB : ∃ m ∈
pred(G, n) : X-AVAL(m) = false, then n must be in Grd. This means that Grd 6= ∅,
contradicting the proof hypothesis. To prove “⇐=”, we assume to the contrary that
Grd 6= ∅. Then there must exist one essential edge (u, v) such that X-AVAL(u) =
false ∧ N-PANT(v) = true. This implies immediately that ∃ n ∈ UB : ∃ m ∈
pred(G, n) : X-AVAL(m) = false, contradicting the proof hypothesis.

4.1.2 Step 3.3: Obtain a Multi-Source, Multi-Sink Graph. In this step, the ob-
jective is to create from the reduced graph Grd a multi-source, multi-sink flow
network, where the set of sources is disjoint from the set of sinks [Cormen et al.
1990]. One minor complication is that some nodes of Grd with both incoming and
outgoing edges must be split to function as both sources and sinks, respectively.

Based on the predicates TOP and BOT defined in Step 3.3(a), a node n in Grd

is split when TOP(n) = BOT(n) = true. (Note that ∀ n ∈ DB : BOT(n) = false.)
Such a node contains some modification to π, which effectively “kills” or “blocks”
the value reuse of π across the node. In this step, we simply split every such a
node n into two new nodes n+ and n− so that n+ will serve as a sink (without
outgoing edges) and n− as a source (without incoming edges). After the splitting,
the incoming edges of n are directed into n+ and the outgoing edges of n directed
out of n−. There are no edges between n+ and n−. This splitting process results in
the graph Gmm defined in Step 3.3(b). If a node n is not split, then top part(n) =
bot part(n) = n. In 3.3(c), Smm consists of all source nodes (without incoming
edges) and Tmm of all sink nodes (without outgoing edges) in Gmm.

The following three lemmas are immediate from the construction of Grd and
Gmm. Lemma 4.4 asserts that Gmm is a multi-source, multi-sink flow network.
Lemmas 4.5 and 4.6 expose the structure of its source and sink nodes, respectively.

Lemma 4.4. Smm ∩ Tmm = ∅.

Lemma 4.5. ∀ n ∈ Nrd : KILL(n) ⇐= bot part(n) ∈ Smm.

Lemma 4.6. ∀ n ∈ Nrd : ANTLOC(n) ⇐⇒ top part(n) ∈ Tmm.

This step is irrelevant for our running example since no splitting as described in
Step 3.3(a) takes place. Thus, top part(n) = bot part(n) = n holds for every node
n. This means that Gmm = Grd. That is, the resulting multi-source, multi-sink
graph is exactly the same as the reduced graph shown in Figure 1(c). In Step 3.3(c),
we obtain Smm = {1, 5} and Tmm = {2, 4, 10, 11, 13}. By noting Assumption 3.5,
the facts stated in Lemmas 4.4 – 4.6 can be easily verified.

This step will be illustrated in Section 4.1.5 by an example given in Figure 4.

4.1.3 Step 3.4: Obtain a Single-Source, Single-Sink EFG. This is a standard
transformation [Cormen et al. 1990]. In 3.4(a), the new entry node s′ and new exit
node t′ are added. In 3.4(b), we obtain the single-source, single-sink EFG Gst, in
which all new edges introduced have the weight ∞. Hence, Gst is a s-t flow network.
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Fig. 4. An example illustrating Step 3.3 of MC-PREcomp.

In our running example, the multi-source, multi-sink graph Gmm is the same as
the reduced graph Grd depicted in Figure 1(c). Thus, Smm = {1, 5} and Tmm =
{2, 4, 10, 11, 13}. Figure 1(d) depicts the resulting EFG Gst.

4.1.4 Step 3.5: Find a Minimum Cut. U-INSCO is chosen to be any minimum
cut on the EFG Gst by applying a min-cut algorithm. The Gst for our running
example is depicted in Figure 1(d). There are two minimum cuts. If we choose

C1 = {(1, 2), (3, 4), (5, 7)} (13)

we find that

U-INSCO = Γ−1(C1) = C1 = {(1, 2), (3, 4), (5, 7)} (14)

since Gmm = Grd. The resulting transformation CO defined by (12) and (14) is the
same as CO1 given in (2). This code motion results in the transformed code shown
in Figure 1(e). The number of computations required for a + b is W (CO) = 1900,
which is the smallest possible with respect to the profile W . If we choose

C2 = {(1, 2), (1, 3), (5, 7)} (15)

U-INSCO will become:

U-INSCO = Γ−1(C2) = C2 = {(1, 2), (1, 3), (5, 7)} (16)

Let us combine (12) and (16) and denote this resulting transformation by CO2:

U-INSCO2
= C2 = {(1, 2), (1, 3), (5, 7)}

U-DELCO2 = UB = {2, 4, 10, 11, 13}
D-INSDELCO2

= DB = {6, 11}
(17)

The transformed code is the same as in Figure 1(e) except that the insertion h =
a + b made on edge (3, 4) previously is now made on edge (1,3).

4.1.5 One More Example. We illustrate Step 3.3 of MC-PREcomp using a simple
example presented in Figure 4. For the CFG given in Figure 4(a), (2, 3) and (6, 7)
are the only non-essential edges. So the reduced graph Grd is the one displayed
in Figure 4(b). In Step 3.3(a), we obtain top part(n) = bot part(n) = n for
n ∈ {1, 2, 3, 4, 6}, top part(5) = 5+ and bot part(5) = 5−. That is, block 5 is
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split into 5+ and 5− to produce in Step 3.3(b) the multi-source, multi-sink graph
Gmm depicted in Figure 4(c). The corresponding single-source, single-sink EFG
Gst is shown in Figure 4(d). In Step 3.3(c), we obtain Smm = {1, 5−} and Tmm =
{2, 5+, 6}. In this simple case, the unique minimum cut found in Step 3.5(a) for the
EFG Gst is C = {(1, 2), (1, 3), (5−, 6)}. In Step 3.5(b), we map these edges back to
the flow edges in the original CFG: U-INSCO = Γ−1(C) = (1, 2), (1, 3), (5, 6)}. This
gives rise to the following transformation:

U-INSCO = {(1, 2), (1, 3), (5, 6)}
U-DELCO = {2, 5, 6}

D-INSDELCO = ∅
(18)

It is not difficult to verify that this solution is both computationally and lifetime
optimal. The transformed code is omitted, achieving benefit(CO) = 200.

Finally, the reader may care to verify Lemmas 4.4 – 4.6 for this example.

4.2 Lifetime Optimal Transformations

This section describes our MC-PRE algorithm for finding a lifetime optimal trans-
formation, denoted LO, in G = (N, E, W ) and shows further that CMLifeOpt =
{LO} (Theorem 5.7). The minimum cuts in a flow network may not be unique.
This implies that a PRE problem may have more than one computationally op-
timal transformation: |CMCompOpt| > 1. By Definition 3.8, different solutions in
CMCompOpt may have different lifetimes. When finding a lifetime optimal solution,
we must also avoid making unnecessary code insertions and deletions for isolated
computations as we discussed in Section 1. Let Scut be the set of all minimum cuts
found in Step 3.5(a) of MC-PREcomp for a PRE problem. Let T cut be the set of
all corresponding computationally optimal transformations:

T cut =











U-INSCO = Γ−1(C),
U-DELCO = UB ,

D-INSDELCO = DB





∣

∣

∣

∣

∣

∣

C ∈ Scut







(19)

It is possible that CMLifeOpt ⊆ (CMCompOpt − T cut). So the lifetime best among
all transformations in T cut found by MC-PREcomp may not be lifetime optimal –
some code motion may have been done unnecessarily. As discussed in Section 4.1.4,
our running example has two minimum cuts in the EFG Gst:

T cut = {CO1, CO2} (20)

where CO1 is defined in (2) and CO2 in (17). For this example, the lifetime optimal
solution LO is the one given in (3) but LO 6∈ T cut .

Figure 5 gives our final algorithm, called MC-PRE, for finding a lifetime optimal
transformation, denoted LO, for a program. MC-PRE has two main parts:

(1) First, we refine MC-PREcomp to find a unique minimum cut in Gst, by applying
the “Reverse” Labelling Procedure of [Ford and Fulkerson 1962]. The corre-
sponding computationally optimal transformation is the lifetime best among
all transformations in T cut ; but it may not be lifetime optimal.

(2) Second, we perform a third data-flow analysis in the original CFG to identify
all isolated computations so as to avoid making unnecessary code motion.
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Algorithm MC-PRE

INPUT: a CFG G = (N, E, W ) and an expression π

OUTPUT: a lifetime optimal PRE transformation LO

1. Perform the two data-flow analyses as in Step 3.1 of MC-PREcomp.
2 Obtain Grd = (Nrd, Erd, Wrd) from G as in Step 3.2 of MC-PREcomp.
3 Obtain Gmm = (Nmm, Emm, Wmm) from Grd as in Step 3.3 of MC-PREcomp.
4 Obtain Gst = (Nst, Est, Wst) from Gmm as in Step 3.4 of MC-PREcomp.
5 Find a unique minimum cut in Gst.

(a) Apply any min-cut algorithm to find a maximum flow f in Gst.

(b) Let G
f
st = (Nst, E

f
st, W

f
st) be the residual network induced

by the flow f [Cormen et al. 1990, p. 588], where

E
f
st = {(u, v) ∈ Est | Wst(u, v) − f(u, v) > 0}

W
f
st = E

f
st 7→ IN, where W

f
st(u, v) = Wst(u, v) − f(u, v)

(c) Let Λ = {n ∈ Nst | there exists a path from n to the sink t′ in G
f
st}.

(d) Let Λ = Nst − Λ.

(e) Let CΛ = (Λ, Λ).
(f) Let C′

Λ = Γ−1(CΛ) // the edges in CΛ are mapped back to flow edges in G

6 Solve the backwards “live range analysis for hπ” in G:

X-LIVEΛ(n) =

8

<

:

false if n is the exit block t
_

m∈succ(G,n)

N-LIVEΛ(m) ∧ ((n, m) 6∈ C′
Λ) otherwise

N-LIVEΛ(n) = ANTLOC(n) ∨ (X-LIVEΛ(n) ∧ TRANSP(n))

7 Construct D-INSDELLO as follows:
(a) D-ISOLATEDΛ(n) =df ¬X-LIVEΛ(n)
(b) Let D-INSDELLO = {n ∈ DB | ¬D-ISOLATEDΛ(n)}.

8 Construct U-INSLO and U-DELLO as follows:
(a) U-ISOLATEDΛ(n) =df

`

KILL(n) ∨ ¬X-LIVEΛ(n)
´

∧ (∀ m∈pred(G, n) : (m,n)∈C′
Λ)

(b) Let U-DELLO = {n ∈ UB | ¬U-ISOLATEDΛ(n)}.
(c) Let U-INSLO = {(m, n) ∈ C′

Λ | ¬U-ISOLATEDΛ(n)}.

Fig. 5. An algorithm that guarantees lifetime optimal results.

Based on the results from these two parts, the lifetime optimal transformation LO
is found. Unlike MC-PREcomp, MC-PRE requires global data-flow analyses to find
not only U-INSLO but also the other two sets U-DELLO and D-INSDELLO.

We explain our algorithm using our running example shown in Figure 1. MC-PRE
runs in eight steps. By executing Steps 1 – 4 exactly as in MC-PREcomp, we obtain
the EFG Gst as before. Below we describe its Steps 5 – 8 only and explain how the
lifetime optimal solution LO in (3) for our running example is derived. The proofs
for optimality and others are deferred to Section 5.2.

4.2.1 Step 5: Find a Unique Minimum Cut. By applying essentially the “Re-
verse” Labelling Procedure of Ford and Fulkerson [1962] in Steps 5(b) – 5(e), we
find the unique minimum cut CΛ = (Λ, Λ) in Gst. In Lemma 5.6, we show that CΛ

is unique and thus invariant of the maximum flow f found in Step 5(a). In Step
5(f), C′

Λ contains these cut edges in CΛ but mapped back to the original CFG.
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Let ALO be the following computationally optimal transformation:

U-INSALO = C′
Λ = Γ−1(CΛ)

U-DELALO = UB
D-INSDELALO = DB

(21)

ALO is the lifetime best in T cut . This result is not directly proved in this paper
since ALO is not actually used; but it is implied by the proof of Theorem 5.7. In
fact, ALO corresponds to ALCM (Almost LCM) [Knoop et al. 1992; 1994].

In the case of our running example, there are only two minimum cuts C1 and C2,
which are given in (13) and (15), respectively. This step will set CΛ = C1. Hence,

C′
Λ = Γ−1(CΛ) = CΛ = C1 = {(1, 2), (3, 4), (5, 7)}

The computationally optimal transformations CO1 and CO2 corresponding to the
two minimum cuts C1 and C2 can be found in (2) and (17), respectively. Accord-
ingly, ALO = CO1 since CO1 is lifetime better than CO2.

4.2.2 Step 6: Solve the “Backward Live Range Analysis for hπ” in the Origi-
nal CFG. We perform a third data-flow analysis in the original CFG in order to
identify all isolated computations in Steps 7 and 8. Equivalently, we were actually
performing a backward live range analysis for the temporary hπ in the transformed
CFG obtained by applying ALO to the original CFG. For our running example,
the transformed CFG according to ALO = CO1 can be found in Figure 1(e).

4.2.3 Step 7: Construct D-INSDELLO. The downwards exposed computation of
π in a D-block cannot be profitably removable since it is not partially redundant
(Section 3.2.2). But it may cause other computations of π to be partially redundant
and profitably removable. The downwards exposed computation of π in a D-block
n is isolated if D-ISOLATEDΛ(n) = true. i.e. X-LIVEΛ(n) = false. The insertion
hπ = π before such an isolated computation is unnecessary since the saved value in
hπ is reused only by this computation. In comparison with Step 1 of MC-PREcomp,
MC-PRE performs the insertions and associated replacements only for non-isolated
computations. In our running example, there are two D-blocks: DB = {6, 11}. We
find that X-LIVEΛ(6) = true and X-LIVEΛ(11) = false. Thus, this step yields:

D-INSDELLO = {6} (22)

4.2.4 Step 8: Construct U-INSLO and U-DELLO. To see if an upwards exposed
computation in UB is profitably removable or not, Theorem 4.8 is used.

Lemma 4.7. Let n ∈ N . If ∀ m ∈ pred(G, n) : (m, n) ∈ C ′
Λ (i.e., all incoming

edges of n in the original CFG are in C ′
Λ), then top part(n) ∈ Tmm and n ∈ UB.

Proof. If ∀ m ∈ pred(G, n) : (m, n) ∈ C ′
Λ, then n must be contained in Grd. By

Assumptions 3.1 and 3.2,
∑

m∈pred(Gst,n) W (m, n) >
∑

m∈succ(Gst,n) W (n, m). By

Lemma 5.6, top part(n) ∈ Tmm holds. By Lemma 4.6, we have n ∈ UB .

Theorem 4.8. The upwards exposed computation of π in a U-block n ∈ UB is
not profitably removable iff ∀ m ∈ pred(G, n) : (m, n) ∈ C ′

Λ.

Proof. Lemmas 4.7 and 5.6.
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An upwards exposed computation of π that is not profitably removable may cause
other computations of π to be profitably removable. To identify such a computation,
the predicate U-ISOLATEDΛ defined in Step 8(a) is used. Given a U-block n ∈ UB ,
its upwards exposed computation of π is isolated if U-ISOLATEDΛ(n) = true. An
isolated computation cannot cause other computations to be removed profitably. If
so, the insertions of the form hπ = π on the incoming edges of n should be avoided
since the saved value hπ on these edges is reused only in block n.

Continuing our running example, where UB = {2, 4, 10, 11, 13}, we find that
U-ISOLATEDΛ holds for blocks 2 and 4. Since the a + b in block 2 and the a + b in
block 4 are isolated, we obtain in Steps 8(b) and (c):

U-INSLO = {(5, 7)}
U-DELLO = {10, 11, 13}

(23)

By combining (22) and (23), the lifetime optimal solution LO in (3) is obtained.
The transformed code that we have examined a few times is shown in Figure 1(f).

4.3 Time and Space Complexity

The overall time complexity of MC-PRE is dominated by the three uni-directional
data-flow analysis passes performed in Steps 1 and 6 and the min-cut algorithm
employed in Step 5. The three passes can be done in parallel using bit vectors
for all expressions in a CFG. However, the min-cut algorithm operates on each
expression separately (at least so in our current implementation). When MC-PRE
is applied to each expression in a CFG G = (N, E, W ) individually, the worst-case
time complexity for each bit-vector pass is O(|N |×(d+2)), where d is the maximum
number of back edges on any acyclic path in G and typically d 6 3 [Muchnick 1997].

The min-cut step of MC-PRE operates on the EFG Gst = (Nst, Est, Wst). There
are a variety of polynomial min-cut algorithms with different time complexities
[Chekuri et al. 1997]. We have used Goldberg’s push-relabel HIPR algorithm since

it is reported to be efficient with its worst-time complexity being O(|Nst|2
√

|Est|)
[Goldberg 2003]. Hence, MC-PRE has a polynomial time complexity overall.

In our implementation, we do not actually modify the original CFG G at all in
order to obtain Grd, Gmm and Gst. Rather, we generate a graph description for
Gst and feed it to the min-cut solver to find a minimum cut efficiently. The space
requirement for representing Gst in the min-cut solver is O(|Nst|).

5. THEORETICAL RESULTS

It may sound intuitive that a lifetime optimal solution can be found by finding a
special minimum cut and then removing any “unnecessary” code motion introduced
by the minimum cut solution. However, the proofs required are quite involved
and deserve a formal treatment. We develop our proofs rigorously in two stages.
Section 5.1 proves the computational optimality of CO found by MC-PREcomp.
Section 5.2 proves the lifetime optimality of LO found by MC-PRE.

We continue to focus on a PRE problem consisting of a CFG G = (N, E, W )
with respect to an expression π. Recall that CMCor denotes the set of correct
transformations, CMCompOpt the set of computationally optimal transformations
and CMLifeOpt the set of lifetime optimal transformations for the PRE problem.
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5.1 Computational Optimality

CO is arbitrarily taken from T cut . So the following theorem implies T cut ⊆ CMCor.

Theorem 5.1. CO ∈ CMCor.

Proof. In Step 1 of MC-PREcomp, D-INSDELCO = DB . This ensures trivially
that every use of hπ in a D-block is always identified with a definition of hπ that is
inserted just before the use in that D-block. In Step 2 of MC-PREcomp, U-DELCO =
UB . In Step 3 of MC-PREcomp, U-INSCO is found such that Γ(U-INSCO) is a
minimum cut in the EFG Gst. Thus, every non-fully redundant computation of π,
which must be contained in a U-block and appear in Grd by Lemmas 4.1 and 4.6,
is related with a definition of hπ on every control flow path reaching the U-block.
This implies immediately that every fully redundant computation of π in a U-block
is also related with a definition of hπ on each of its incoming control flow paths.
By Definition 3.6, CO ∈ CMCor holds.

The following lemma spells out why non-essential edges cannot be insertion edges.

Lemma 5.2. Let T ∈ CMCompOpt. Then there exists a PRE transformation,
denoted C(T ) ∈ T cut such that C(T ) ∈ CMCompOpt. In addition, both U-INST and
U-INSC(T ) must contain only essential edges such that U-INST ⊆ U-INSC(T ).

Proof. Let G = (N, E, W ) be the CFG under consideration. We set:

U-INSC(T ) = U-INST ∪ (
⋃

n∈UB−U-DELT
{(m, n) ∈ E | m ∈ pred(G, n)})

U-DELC(T ) = U-DELT ∪ {n | n ∈ UB −U-DELT } = UB
D-INSDELC(T ) = D-INSDELT ∪ {n | n ∈ DB −D-INSDELT } = DB

(24)

By construction, U-DELC(T ) = UB and D-INSDELC(T ) = DB hold. In addition,
U-INST ⊆ U-INSC(T ). Since T ∈ CMCor, we must have C(T ) ∈ CMCor. By
Assumption 3.2, W (C(T )) = W (T ). Hence, C(T ) ∈ CMCompOpt. By Assump-
tion 3.1, both U-INST and U-INSC(T ) must contain only essential edges in Grd.
Otherwise, we would be able to derive C(T )′ ∈ CMCor from C(T ) in such a way that
U-INSC(T )′ contains all and only the essential edges in U-INSC(T ). This implies that
W (C(T )′) < W (C(T )) = W (T ), contradicting the facts that T, C(T ) ∈ CMCompOpt.
Hence, Γ(U-INSC(T )) must be a minimum cut in Gst by itself. Otherwise, we would
be able to derive C(T )′′ ∈ CMCor from C(T ) in such a way that U-INSC(T )′′ ,
which is a strict subset of U-INSC(T ), must be a minimum cut in Gst. This im-
plies that W (C(T )′′) < W (C(T )) under Assumption 3.1, contradicting the fact that
C(T ) ∈ CMCompOpt. By the definition of T cut given in (19), C(T ) ∈ T cut holds.

Since CO is not fixed in T cut , the following theorem implies T cut ⊆ CMCompOpt.

Theorem 5.3. CO ∈ CMCompOpt.

Proof. By Theorem 5.1, CO ∈ CMCor. By Lemma 5.2, for any T ∈ CMCompOpt,
we can obtain C(T )∈T cut such that C(T ) ∈ CMCompOpt. Thus, W (T ) = W (C(T )).
CO ∈ T cut is arbitrarily chosen in Step 3.5 of in MC-PREcomp. So W (C(T )) =
W (CO). This implies that W (T ) = W (CO). Thus, CO ∈ CMCompOpt.

5.2 Lifetime Optimality

We prove that LO is the unique lifetime optimal solution. By Theorem 5.4, LO is
computationally optimal, i.e., LO ∈ CMCompOpt. Lemma 5.5 recalls a classic result
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from [Hu 1970] that exposes the structure of all minimum cuts in a flow network.
Based on this result, Lemma 5.6 shows that, among all minimum cuts in the EFG
Gst, the minimum cut CΛ = (Λ, Λ) found in Step 5 of MC-PRE must be such that
Λ is the smallest. Finally, Theorem 5.7 establishes that CMLifeOpt = {LO}.

The following theorem implies that LO is also a correct PRE transformation.

Theorem 5.4. LO ∈ CMCompOpt.

Proof. Let us consider the special minimum cut CΛ = (Λ, Λ) found in Step
5 of MC-PRE. By Theorem 5.3, the corresponding transformation ALO given
in (21) is computationally optimal, i.e., ALO ∈ CMCompOpt. Note that LO is
derived from ALO in Steps 6 – 8 of MC-PRE. This construction ensures that
LO ∈ CMCor and benefit(ALO) = benefit(LO), where benefit is defined in (11).
Hence, W (LO) = W (ALO). This means that LO ∈ CMCompOpt.

Next, we recall Lemma 10 from [Hu 1970] on the structure of all minimum cuts.

Lemma 5.5. If (A, A) and (B, B) are minimum cuts in an s-t flow network, then
(A ∩ B, A ∩ B) and (A ∪ B, A ∪ B) are also minimum cuts in the network.

This lemma implies immediately that a unique minimum cut (C, C) exists such
that C is the smallest, i.e., that C ⊂ C ′ for every other minimum cut (C ′, C ′). Note
that ⊂ is strict. In addition, this lemma is valid independently of any maximum
flow that one may use to enumerate all maximum cuts for the underlying network.

In fact, for the minimum cut (Λ, Λ) found by MC-PRE, Λ is the smallest.

Lemma 5.6. Let Scut be the set of all cuts in Gst = (Nst, Est, Wst) whose capac-
ities are equal to a maximum flow. Consider the minimum cut (Λ, Λ) in Gst found
by MC-PRE. Then the following statement is true:

Λ ⊆ C for all (C, C) ∈ Scut (25)

where the equality in ⊆ holds iff Λ = C.

Proof. Under Assumption 3.1, Gst is an s-t flow network with positive edge
capacities only. Thus, a cut whose capacity is equal to a maximum flow must be
a minimum cut of the form (C, C), and Scut is the set of all minimum cuts in Gst

[Hu 1970]. In Step 5 of MC-PRE, we find the minimum cut (Λ, Λ) by applying
essentially the “Reverse” Labelling Procedure of [Ford and Fulkerson 1962]. Its
construction ensures that the statement stated in (25) holds with respect to the
maximum flow f used. Lemma 5.5 implies that this “smallest minimum cut” is
independent of the maximum flow f . Hence, the validity of (25) is established.

We prove below that LO is the unique lifetime optimal transformation.

Theorem 5.7. CMLifeOpt = {LO}.

Proof. Let G = (N, E, W ) be the CFG under consideration. By Theorem 5.4,
LO ∈ CMCompOpt. We show that LO is the lifetime best among all transformations
in CMCompOpt based on Properties (1) – (3) stated in Definition 3.8.
LO is derived from the special minimum cut Γ(C ′

Λ) = CΛ = (Λ, Λ) found in
Step 5 of MC-PRE. Let T ∈ CMCompOpt be a computationally optimal transfor-
mation. Let C(T ) ∈ Tcut ⊆ CMCompOpt be as constructed in Lemma 5.2 such that
Γ(U-INSC(T )) is a minimum cut, denoted (C, C), in Gst. By Lemma 5.6, Λ ⊆ C .
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First, we prove that LO satisfies Property (1), i.e., U-DELLO ⊆ U-DELT . Let
n ∈ UB such that n ∈ U-DELLO. We show that n ∈ U-DELT . According to Step 8
of MC-PRE, we must have U-ISOLATEDΛ(n) = false, which happens when either
(a) ∃ m ∈ pred(G, n) : (m, n) ∈ C ′

Λ or (b) KILL(n) = false ∧ X-LIVEΛ(n) = true.

Case (a) ∃ m ∈ pred(G, n) : (m, n) ∈ C ′
Λ. Assume to the contrary that n 6∈ U-DELT .

Given the construction of C(T ) from T that is defined in (24), U-INSC(T ) includes
all incoming edges of n. By Lemma 5.2, all these edges are essential and must
thus be contained in Grd. As a result, n, as an essential node, must also be
contained in Grd. By Lemma 4.6, top part(n) ∈ Tmm since n ∈ UB . This
implies that Λ 6⊆ C, which is impossible by Lemma 5.6.

Case (b) KILL(n) = false ∧ X-LIVEΛ(n) = true. There must exist a path 〈n1, . . . , nk〉
in G such that (1) n = n1, (2) n2, . . . , nk−1 are neither U-blocks nor kill blocks
(nor D-blocks), (3) nk ∈ UB , and (4) ∀ 1 6 i < k : (ni, ni+1) 6∈ C′

Λ. Due
to (4), ∃ m ∈ pred(G, nk) : (m, nk) ∈ C′

Λ holds trivially. Thus, in Step 8
of MC-PRE, we find that U-ISOLATEDΛ(nk) = false, and consequently, that
nk ∈ U-DELLO. Applying the result that we have already proved in Case (a),
nk ∈ U-DELT must hold. Let us show that ∀ 1 6 i < k : (ni, ni+1) 6∈ U-INST .
Suppose that (ni, ni+1) ∈ U-INST for some 1 6 i < k. Then (ni, ni+1) must
be essential by Lemma 4.3, implying that X-AVAL(ni) = false. In particular,
X-AVAL(nk−1) = false. By Lemma 4.1, nk is contained in Grd. By Lemma 4.6,
top part(nk) ∈ Tmm since nk ∈ UB . This again implies the impossible re-
sult that Λ 6⊆ C by Lemma 5.6. Let us now assume to the contrary that
n 6∈ U-DELT . Since ∀ 1 6 i < k : (ni, ni+1) 6∈ U-INST , the value of hπ = π

must be available on entry of n. Note that W (n) > 0 under Assumption 3.1. If
n 6∈ U-DELT , then T 6∈ CMCompOpt. (Otherwise, including n in U-DELT would
give rise to a computationally better transformation.)

Next, we observe that we can prove Property (2), i.e., D-INSDELLO ⊆ D-INSDELT

if we proceed similarly as in Case (b) above.
Finally, we prove that LO satisfies Property (3). This follows immediately from

the fact that Λ ⊆ C by Lemma 5.6. The uniqueness of LO is due to the fact that
the equality in ⊆ holds iff Λ = C (also by Lemma 5.6), i.e., iff T = LO.

6. EXPERIMENTS

We evaluate this work using all the 22 C, C++ and FORTRAN 77 benchmarks
from SPECcpu2000 on an Itanium computer system equipped with a 1.0GHz Ita-
nium 2 processor and 4GB of RAM running Redhat Linux 8.0 (2.4.20). We have
implemented MC-PRE, and consequently, MC-PREcomp (our computationally op-
timal PRE algorithm [Cai and Xue 2003]) in GCC 3.4.3. We have also implemented
Bodik, Gupta and Soffa’s CMP-PRE algorithm [Bodik et al. 1998] in GCC 3.4.3.
Knoop, Rüthing and Steffen’s LCM [Knoop et al. 1994] is the default PRE pass in
in GCC 3.4.3. All benchmarks are compiled under the optimization level “-O3”.

Section 6.1 discusses the implementation details of all four PRE algorithms used
in our experiments. Section 6.2 describes the GCC framework in which this work
is validated. Section 6.3 evaluates MC-PRE against the other three algorithms in
terms of eliminated computations, lifetimes of introduced temporaries, execution
times, compile times and code sizes for all 22 benchmarks. In particular, we analyse
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the performance improvements of MC-PRE over the other three algorithms using
pfmon and the reasons behind MC-PRE’s small compile-time increases over LCM.

6.1 Implementation Details

The LCM pass in GCC is a variant of LCM [Knoop et al. 1994] that was described in
[Drechsler and Stadel 1993] except that it can reason about edge insertions [Morgan
1998]. Thus, the critical edges in a CFG are not split in GCC.

We discussed in Section 3.2.4 that MC-PRE works in the presence of critical edges
since edge insertions are used. In our implementations, we do not modify a CFG G

to obtain its Grd, Gmm, and finally, the EFG Gst. The min-cut solver we used is
based on Goldberg’s push-relabel HIPR algorithm [Goldberg 2003]; it is one of the
fastest implementations available [Chekuri et al. 1997]. For every G, we generate
a graph specification for the EFG Gst in terms of the data structure expected by
HIPR and feed it to the min-cut solver to find the unique minimum cut as defined
in Step 5 of MC-PRE. Therefore, the solver operates separately on distinct PRE
candidate expressions for a CFG, i.e., distinct PRE problems sequentially.

MC-PREcomp is actually the first part of the MC-PRE algorithm. In its Step
3.5, the minimum cut to be found is unspecified since the resulting CO is always
computationally optimal regardless. In order to evaluate the effects of minimizing
lifetimes on performance, this step is implemented to return the unique minimum
cut (Λ, Λ) by applying the (Forward) Labelling Procedure of [Ford and Fulkerson
1962]. As a result, Λ is the largest possible (Lemma 5.6). The PRE transformation
obtained using such a cut will correspond to the Busy Code Motion (BCM) as
described in [Knoop et al. 1992; 1994], resulting in the longest lifetimes possible.
Note that in all three computationally optimal algorithms for speculative PRE
[Bodik 1999; Cai and Xue 2003; Scholz et al. 2004], min-cut cuts are arbitrarily
chosen. As a result, the notion of isolated computations does not exist.

As we shall see in Section 6.5, a large number of reduced graphs Grd in a bench-
mark program are empty. If Grd = ∅, then Gmm = Gst = ∅. The minimum cut on
an empty EFG Gst is empty. In this case, Steps 3.2 – 3.4 and 3.5(a) of MC-PREcomp

serve only to set C = ∅, and similarly, Steps 2 – 5 of MC-PRE serve only to set
CΛ = C′

Λ = ∅. In our implementation, all these steps are ignored if Grd = ∅ and
the required minimum cuts are simply set to be empty. By Theorem 4.3, we detect
the emptiness of Grd by relying on the information from the availability and par-
tial anticipatability analyses. The GCC compiler maintains, for each PRE candidate
expression π, a list of all blocks in which π is upwards (downwards) exposed. In
our terminology, π is associated with a list of the U-blocks in UB (the D-blocks in
DB). So Theorem 4.3 can be applied in a straightforward manner.

In the actual implementation MC-PRE, we use a standard optimization to replace
some edge insertions prescribed by U-INSLO with so-called block insertions as is
done for D-INSDELLO. Let C′

Λ,copy = {n ∈ N | ∀ m ∈ pred(G, n) : (m, n) ∈ C ′
Λ}.

By Lemma 4.7, every block n in C ′
Λ,copy is a U-block. Instead of making an edge

insertion on each of its incoming edges, we will make one single block insertion just
before the upwards exposed computation in block n. Hence, LO becomes:

INSERTLO = U-INSLO − {(m, n) ∈ C′
Λ | n ∈ C′

Λ,copy}
DELETELO = U-DELLO − C′

Λ,copy

COPYLO = D-INSDELLO ∪ C′
Λ,copy

(26)
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Fig. 6. GCC backend with one of the four PRE algorithms being used as the PRE pass.

where DELETELO gives all partially redundant computations that can be eliminated
profitably, COPYLO gives all computations that are not redundant themselves but
cause other computations to be eliminated profitably, and INSERTLO gives all edge
insertions required to make all partially redundant computations in DELETELO to
become fully redundant. Such a simplification is not performed for MC-PREcomp

since Lemma 4.7 does not hold for MC-PREcomp.
The CMP-PRE algorithm we have implemented is described in [Bodik et al. 1998].

Given a CFG and a set of PRE candidate expressions in the CFG, CMP-PRE con-
sists of solving three bit-vector data-flow problems simultaneously for all the candi-
date expressions and performing graph traversals on the CFG separately for these
candidate expressions to identify their respective CMP (code-motion-preventing)
regions. First, both availability and anticipatability analyses are performed on a
CFG over a non-Boolean data-flow lattice with three values, MUST, MAY and NO.
Second, the CFG is traversed, once for each PRE candidate expression (i.e., once
for each PRE problem), to identify all CMP regions in the CFG. A CMP region for
an expression π consists of all connected blocks such that π is both MAY-available
and MAY-anticipatable (i.e., strictly partially available and anticipatable) on entry
to each of its blocks. As a consequence, some entry edges to a CMP region are
MUST-available (NO-available) in the sense that π is fully (not) available on exit
from the source blocks of these edges. Similarly, some exit edges from a CMP re-
gion are MUST-anticipatable (NO-anticipatable) in the sense that π is fully (not)
anticipatable on entry to the target blocks of these edges. Speculative PRE of π for
a CMP region is profitable if the total execution frequency of MUST-anticipatable
exit edges exceeds that of NO-available entry edges. In this case, hπ = π is inserted
on all the NO-available entry edges to the CMP region. Third, availability analysis
is re-run on the CFG. Finally, the CFG is transformed based on the information
from the original anticipatability analysis and the new availability analysis. No
specific algorithm was given in [Bodik et al. 1998] about how to find the CMP
regions in a CFG. In our implementation, all CMP regions in a CFG for a PRE
problem are found by using graph traversals of the CFG.

6.2 Experimental Setup

Figure 6 depicts the GCC backend in which our algorithm is implemented and eval-
uated. The backend applies numerous passes to the RTL (Register Transfer Lan-
guage) representation of a function, where the LCSE pass, i.e., the local PRE
appears before the global PRE pass.

Knoop, Rüthing and Steffen’s profile-independent LCM algorithm is the built-in
global PRE pass, called GCSE, invoked at GCC’s O2 optimization level and above.
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The LCM configuration shown represents exactly how GCC works when dynamic
profiling is not explicitly enabled. In this case, GCC compiles a program only once.
Due to the absence of dynamic profiling information, the “Branch Probabilities”
pass works by predicting the branch probabilities statically.

In our profile-guided framework, MC-PRE is the replacement for LCM. Due to
the introduction of the “Edge Profiling” pass before MC-PRE, compiling a program
requires GCC to be run twice. In the first run, we turn the switch “-profile-arcs”
on so that GCC will instrument a program to gather its dynamic profiling informa-
tion. The profiling information for all SPECcpu2000 benchmarks is always collected
using the train input data sets. In the second run, we invoke GCC by turning the
switch “-branch-probabilities” on. This instructs GCC to compute the edge pro-
files for all the functions in the program from the profiling information gathered in
the first run. The edge profiling information can then be used by MC-PRE. In this
second run, all benchmarks are executed using the reference input data sets. Im-
mediately after the MC-PRE pass, we ignore the edge profiling information. There
are two reasons for doing so. First, the GCC passes such as “Loop Optimization”
and “CFG Optimization” as shown in Figure 6 do not update profiling information
when performing some control flow restructuring transformations. This is because
in GCC, the “Edge Profiling” pass is positioned after these passes and just before
the “Branch Probabilities” pass. Such a phase ordering cannot be used for us since
MC-PRE is profile-guided. Second, even if the profiling information is correctly
updated, the “Branch Probabilities” pass will take advantage of this information to
compute the branch probabilities, giving MC-PRE an unfair advantage over LCM.

Like MC-PRE, MC-PREcomp and CMP-PRE are also profile-guided. Both are
invoked in exactly the same way as MC-PRE as described above.

In our experiments, all the four PRE algorithms use exactly the same set of
PRE candidate expressions for a function. These are the expressions identified by
GCC for its LCM pass. This way, we can have a fair evaluation about the relative
strengths and weaknesses of the four PRE algorithms. In GCC, a PRE candidate
expression is always the RHS of an assignment, where the LHS is a virtual register.
The RHS expressions that are constants or virtual registers are excluded (since no
computations are involved). So are any expressions such as call expressions with
side effects. Therefore, all PRE candidate expressions are exception-free. (In our
experiments, signed arithmetic is assumed to wrap around. This has often been
the default option for C programs since signed overflow is undefined in C.)

In all the PRE algorithms used, the same optimization passes are applied in
exactly the same order. The only difference is that the “Edge Profiling” pass is
needed to supply the edge profiles required by three speculative PRE algorithms,
MC-PRE, MC-PREcomp and CMP-PRE. In addition, MC-PRE and MC-PREcomp

use exactly the same bit-vector library used by LCM to perform their required
data-flow analysis passes (for all distinct PRE candidate expressions in a CFG in
parallel). CMP-PRE performs its data-flow analyses on the modified versions of
these bit-vector routines since it works over a non-Boolean lattice. Note that the
LCM configuration is the one from GCC 3.4.3. This provides an ideal setting for all
the four PRE algorithms to compared against each other.
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6.3 Redundancy Elimination and Performance Improvements

One important criterion for measuring the effectiveness of a PRE algorithm is to
quantify the number of non-fully redundant computations that it removes from
a program. Figure 7 evaluates the four PRE algorithms using the SPECcpu2000
benchmarks according to this criterion. MC-PRE and MC-PREcomp are on par
with each other since both are computationally optimal. LCM is the worst per-
former since it is profile-independent (and thus conservative). CMP-PRE is neither
computationally optimal nor lifetime optimal. In principle, CMP-PRE lies between
LCM and MC-PRE. MC-PRE eliminates more redundancies than both LCM and
CMP-PRE in functions with complex control structures. As a result, the effec-
tiveness of MC-PRE is more pronounced in SPECint2000 than in SPECfp2000. In
the case of 12 SPECint2000 benchmarks, MC-PRE eliminates between 31.39% and
147.56% (an average of 90.13%) more non-full redundancies than LCM and be-
tween 0.28% and 58.76% (an average of 14.39%) more non-full redundancies than
CMP-PRE. This has contributed to the performance improvements of MC-PRE
over LCM and CMP-PRE in almost all its 12 benchmarks. In the case of 10
SPECfp2000 benchmarks, LCM has successfully eliminated over 80% of the non-
full redundancies in all the benchmarks except ammp. CMP-PRE has removed most
of the remaining non-full redundancies from most of these benchmarks. However,
the non-full redundancies that LCM and CMP-PRE fail to eliminate in a program
can be from some of its hottest functions, and furthermore, these redundant compu-
tations can be occurrences of expensive PRE candidate expressions (e.g., memory
operations) in these hottest functions. In these situations (as is the case for mesa

and sixtrack), MC-PRE, which can eliminate all partial redundancies removable
by using code motion and control speculation, can still achieve performance im-
provements in such programs over LCM and CMP-PRE.

Figure 8 depicts the performance improvements (or degradations) of MC-PRE
over MC-PREcomp, LCM and CMP-PRE. The execution time of a benchmark is
taken as the arithmetic average of five runs and validated by the CPU cycles ob-
tained using the pfmon tool available for the Itanium architecture. By removing
more redundant computations and keeping the lifetimes of introduced temporaries
to a minimum, MC-PRE can achieve nearly the same performance results as or
better performance improvements than the other three algorithms in all 22 bench-
marks. The performance degradations observed in some benchmarks are small. In
general, MC-PRE improves the performance of a SPECint2000 benchmark over
LCM and CMP-PRE due to the combined effects of optimizing a number of its
hot functions. In the case of a SPECfp2000 benchmark, however, the performance
improvement tends to come from optimizing fewer hot functions (typically one or
two) in the benchmark. These results are analyzed in three separate sections below.

6.3.1 MC-PRE vs. MC-PREcomp. Figure 9 shows that MC-PREcomp introduces
temporaries with longer lifetimes than MC-PRE. Recall that every computation
of π removed by MC-PRE must also be removed by MC-PREcomp. The lifetime
of hπ for a replacement computation (i.e., a use) of hπ in a CFG is measured to
be the percentage of the basic blocks in which hπ is live in the CFG. Figure 5(a)
compares MC-PRE and MC-PREcomp in terms of the average lifetimes of their in-
troduced temporaries for non-isolated replacement computations (i.e., deletions) in
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Fig. 7. Non-fully redundant computations eliminated (in dynamic terms).
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Fig. 8. Percentage speedups of MC-PRE over MC-PREcomp, LCM and CMP-PRE.

a benchmark. The lifetimes for all benchmarks are longer under MC-PREcomp than
MC-PRE. The percentage increases range between 17.97% for eon and 110.27%
for ammp. Figure 5(b) depicts the lifetimes of temporaries for isolated computations
that are introduced by MC-PREcomp but eliminated by MC-PRE.

Comparing MC-PRE and MC-PREcomp in Figure 8, we see that minimizing
the lifetimes of introduced temporaries certainly has an overall positive effect on
performance. MC-PRE achieves the same or better performance results than
MC-PREcomp in 19 out of the 22 benchmarks used.

MC-PRE eliminates more redundancies than LCM and CMP-PRE and uses inser-
tions with shorter lifetimes than MC-PREcomp. The combined effects of MC-PRE’s
achieving both optimal results on performance will be examined below.

6.3.2 MC-PRE vs. LCM. As shown in Figure 8, MC-PRE achieves the same or
better performance results than LCM in 19 out of 22 benchmarks. Some small per-
formance losses are observed in wupwise, swim and applu. The benchmarks with
better speedups are typically those in which MC-PRE has succeeded in eliminating
more redundancies than LCM. These include gzip (3.63%), mcf (2.50%), crafty
(2.69%), vortex (1.97%), bzip (2.04%) and twolf (1.37%) in the SPECint2000
benchmark suite and mesa (5.75%), art (1.64%) and sixtrack (7.03%) in the
SPECfp2000 benchmark suite. By comparing MC-PRE and MC-PREcomp, we fur-
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(a) Non-isolated deletions (b) Isolated deletions by MC-PREcomp

Fig. 9. Lifetimes of introduced temporaries by MC-PRE and MC-PREcomp.

ther observe that minimizing the lifetimes of introduced temporaries has generally
contributed to the performance improvements in these benchmarks.

MC-PRE tends to achieve the performance improvement in a SPECInt2000
benchmark by optimizing a number of its hot functions. For example, MC-PRE
eliminates 100.84% more partial redundancies than LCM in crafty with 97.12%
of these redundant computations coming from the following hottest functions in
the benchmark: Evaluate, MakeMove, Search, UnMakeMove, GenerateCaptures,
EvaluatePawns and NextMove. The performance improvements in these individual
functions have contributed to the overall speedup of this benchmark.

The two largest speedups, 5.75% and 7.03%, are attained in the two SPECfp2000
benchmarks, mesa and sixtrack, in which LCM has already removed the major-
ity of their redundant computations. Both benchmarks serve as good examples to
demonstrate the benefits for a PRE algorithm to achieve both computationally and
lifetime optimal results in some programs. In both cases, the performance improve-
ments (over LCM and CMP-PRE) are obtained because MC-PRE can achieve the
two optimal results in one or two of their hot functions with complex control flow.

In mesa, about 55.17% of the execution time from the compiled binary un-
der LCM is spent on the three hottest functions, general textured triangle

(21.50%), gl texture pixels (11.44%) and sample 1d linear (22.23%). MC-PRE
removes only 19.55% more non-fully redundant computations than LCM (in dy-
namic terms). However, 94.7% of these are eliminated from sample 1d linear

(whose CFG consists of 83 blocks and 119 edges). This represents 1.77% of the
dynamic number of RTL instructions executed in the function. So the performance
gain in mesa mostly comes from optimizing this function. Note that the minimiza-
tion of lifetimes of introduced temporaries has also been beneficial (Figure 8).

In sixtrack, the execution time from the compiled binary under LCM is mostly
spent in its two hottest functions, thin6d (98.49%) and umlauf (0.93%). MC-PRE
removes only 7.75% more non-fully redundant computations than LCM. However,
all these redundant computations are removed from the two hottest functions:
thin6d (52.01%) and umlauf (41.77%). Most of the performance gain comes from
optimizing thin6d (with 196 blocks and 347 edges). Again Figure 8 shows clearly
that the minimization of lifetimes of introduced temporaries has also contributed
to the performance improvement in this benchmark.

MC-PRE removes more redundancies than LCM. Despite this, the average life-
times of introduced temporaries in both cases, as shown in Figure 10, are close. It
is important to point out that LCM, which is profile-independent, is not computa-
tionally optimal for solving the speculative PRE problem. Therefore, LCM is not
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Fig. 10. Lifetimes of introduced temporaries by MC-PRE and LCM.
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Fig. 11. Performance improvements of MC-PRE over LCM split into those contributed

by the individual reductions in the eight event categories. An event bar for a bench-

mark represents the performance speedup achieved by MC-PRE over LCM as a

result of reducing the cycles in that event category. All the eight event bars for a

benchmark add up to the performance speedup given in Figure 8 for that benchmark.

lifetime better than MC-PRE even though it achieves shorter lifetimes in a program
than MC-PRE (Definition 3.8). With this caveat in mind, we see from Figure 10
that MC-PRE introduces temporaries with comparable lifetimes as LCM.

Below we analyze the performance improvements of MC-PRE over LCM using
pfmon. Figure 11 breaks down the performance speedup (or degradation) of a
benchmark achieved by MC-PRE over LCM, which can be found in Figure 8, into
eight components resulting from the corresponding cycle reductions (or increases) in
the eight event categories. According to [Sverre Jarp 2002], the execution cycles of
a program can be broken into stalls and unstalled cycles. The stalls can be further
subdivided into seven categories: data cache (D-cache) stalls, branch misprediction,
instruction miss stalls, register stack engine (RSE) stalls, floating-point unit (FLP)
stalls, general register (GR) scoreboarding stalls and front-end flushes.

As shown in Figure 11, MC-PRE has reduced the unstalled cycles in 16 out
of the 22 benchmarks. The percentage reductions are particularly significant for
gzip, mcf, bzip2, twolf and sixtrack, which are benchmarks with relatively large
speedups. In the case of sixtrack, the one with the largest speedup, the decrease
in its unstalled cycles has contributed to 84.34% of its performance improvement.
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D-cache stalls and FLP unit stalls are known to be the main contributors to
the pipeline stalls for integer and floating-point benchmarks in the SPECcpu2000
benchmark suite, respectively. D-cache stalls are mainly the bubbles caused by the
latencies of integer load instructions while FLP unit stalls are the bubbles caused
by the latencies of floating-point load instructions and inter-register dependencies.

MC-PRE is applied only to the PRE candidate expressions that do not cause
runtime exceptions. These include all RTL-level exception-free memory operations
that may be eventually translated into loads. For example, (mem:m addr) rep-
resents one such a memory operation (i.e., access) at the address addr, where m

specifies the smallest addressable unit for this memory operation. By eliminating
more redundant computations – some of which are loads – than LCM, and by mini-
mizing the lifetimes of introduced temporaries, MC-PRE has succeeded in reducing
the D-cache stalls and FLP unit stalls in some benchmarks. However, since some
of these redundant computations are eliminated speculatively, compensating inser-
tions are made on the paths where those eliminated computations did not exist
before. The D-cache and FLP unit stalls in some benchmarks are increased. Look-
ing at all the benchmarks in Figure 11, we observe some relatively large reductions
in the D-cache stalls in gap, mesa and sixtrack. On the other hand, mcf and
equake suffer some visible increases. In the case of the SPECfp2000 benchmarks,
we observe 3.81%, 2.91% and 3.84% reductions in terms of the FLP unit stalls for
mesa, art and equake, respectively. In particular, mesa is the benchmark with the
second largest speedup (5.75%). Some small increases in the FLP unit stalls are
observed in wupwise, applu and sixtrack. If both D-cache and FLP unit stalls are
combined, MC-PRE will be more effective than LCM in reducing the stall cycles
in this combined category in 15 out of the 22 benchmarks.

Figure 8 shows that MC-PRE results in slightly slower binaries than LCM in
wupwise, swim and applu. In swim and applu, LCM has succeeded in removing
almost all redundant computations. In wupwise, MC-PRE eliminates 16.62% more
redundant computations than LCM with 99.04% of these redundancies being re-
moved from zgemm, the hottest function in the benchmark. However, looking at
Figure 11, the performance slowdowns in all three benchmarks are mainly caused
by some slight increases in their FLP unit stall cycles. One challenging future work
is to use a cost model that can also include a quantitative estimate of the impact
of such an entity on performance to drive the PRE optimization.

In summary, MC-PRE has reduced more unstalled cycles than LCM across most
of the benchmarks used. In addition, the speculative elimination of safe memory
operations (using temporaries with the shortest lifetimes as is possible) has an
overall positive impact on reducing D-cache and FLP unit stalls. As shown in
Figure 11, the decreases in these stall categories are responsible for the performance
improvements achieved in the SPECcpu2000 benchmarks.

6.3.3 MC-PRE vs. CMP-PRE. All the four PRE algorithms can eliminate all
fully redundant computations. MC-PRE removes optimally all non-fully redundant
computations that can be removed by using speculative code motion. LCM can only
remove some of these redundant computations non-speculatively. We measure the
effectiveness of a speculative PRE algorithm by computing how much (in percent-
age) it can eliminate speculatively from all non-full redundancies that LCM fails to
eliminate (non-speculatively). Figure 12 compares MC-PRE and CMP-PRE based
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Fig. 12. Non-fully redundant computations eliminated only speculatively by MC-PRE and
CMP-PRE(i.e., these redundant computations cannot be eliminated by LCM).
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Fig. 13. Lifetimes of introduced temporaries by MC-PRE and CMP-PRE.

on this criterion. The problem of finding computationally optimal transformations
is a min-cut problem. MC-PRE finds required insertion edges optimally while
CMP-PRE restricts its search to the NO-available entry edges to CMP regions. In
general, MC-PRE eliminates more redundancies than CMP-PRE for CFGs with
complex control structures. In the case of SPECint2000, MC-PRE eliminates be-
tween 0.52% and 280.47% (an average of 58.15%) more partial redundancies that
are only speculatively removable than CMP-PRE. In the case of SPECfp2000,
the percentage increases range from 0.00% to 89.98% with an average of 15.23%.
CMP-PRE is more effective in SPECfp2000 than in SPECint2000. This is because,
as shown in Figure 7, LCM itself (with no speculation) has successfully eliminated
over 80% of all partial redundancies in nine out of its 10 benchmarks.

Figure 13 shows that CMP-PRE uses temporaries with slightly longer lifetimes
in 17 out of the 22 benchmarks (even though it is not computationally optimal).

By eliminating more redundant computations and using temporaries with shorter
lifetimes, MC-PRE achieves the same or better performance results than CMP-PRE
in 19 out of the 22 benchmarks as shown in Figure 8. Let us look at the three bench-
marks, crafty, mesa and sixtrack, that we examined previously in Section 6.3.2.
For crafty, we mentioned earlier that MC-PRE eliminates more partially redun-
dant computations than LCM from its hottest functions: Evaluate, MakeMove,
Search, UnMakeMove, GenerateCaptures, EvaluatePawns and NextMove. As shown
in Figures 7 and 12, of all non-fully redundant computations that cannot be removed
by LCM but are completely removed by MC-PRE, CMP-PRE has eliminated only
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Fig. 14. Performance improvements of MC-PRE over CMP-PRE.

26.28% of these redundant computations. In particular, search is the only function
for which CMP-PRE has successfully removed all its partially redundant computa-
tions. So the performance improvements from optimizing these individual functions
have again resulted in the overall speedup of this benchmark. Let us now take a
look at mesa, the benchmark for which MC-PRE achieves the largest speedup over
CMP-PRE. As we discussed in Section 6.3.2, MC-PRE eliminates almost all non-
full redundancies that LCM fails to eliminate in its hot function sample 1d linear.
Figure 12 shows that only 66.67% of these redundant computations are removed by
CMP-PRE. Furthermore, MC-PRE has eliminated more redundant computations
statically than CMP-PRE and LCM. LCM removes eight partially (fully or non-
fully) redundant computations from eight distinct expressions. CMP-PRE elimi-
nates seven more partially redundant computations all from two new expressions.
However, all these operations removed by LCM and CMP-PRE are arithmetic.
MC-PRE has removed 41 more non-fully redundant computations from these ex-
isting expressions and 12 new ones on memory access, sign-extension, shift and
compare. This has resulted in the actual performance improvements of MC-PRE
over LCM and CMP-PRE. In sixtrack, we mentioned in Section 6.3.2 that among
all speculatively removable redundancies that are removed by MC-PRE, 93% are
from its two hottest functions: thin6d (52.01%) and umlauf (41.77%). CMP-PRE
has eliminated all these speculatively removable redundancies from thin6d but
nothing at all from umlauf. Since thin6d consumes the most of the execution time
in this benchmark, MC-PRE achieves only some slight performance improvement
over CMP-PRE.

Figure 14 gives an analogue of Figure 11 for CMP-PRE. As in the case of LCM,
the performance improvements of MC-PRE over CMP-PRE are generally obtained
from the cycles reductions in the same three stall categories, namely, unstalled
cycles, D-cache stalls and FLP unit stalls. Some small performance losses are
observed in twolf and wupwise due to slightly increases in D-cache stalls and FLP
unit stall and applu due to more branch mispredictions introduced.

In summary, MC-PRE can optimally exploit more optimization opportunities in
programs than a non-optimal algorithm like CMP-PRE. In the case when MC-PRE
is more effective than CMP-PRE in hot functions, which may have complex control
flow, in a program, some performance improvement is often expected.

32



0.9

0.95

1

1.05

1.1

gz
ip vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex
bz

ip
2

tw
ol

f

w
up

w
is

e
sw

im
m

gr
id

ap
pl

u
m

es
a

ar
t

eq
ua

ke
am

m
p

si
xt

ra
ck

ap
siN

o
rm

al
iz

ed
 S

ta
ti

c 
S

iz
es

MC-PRE MC-PREcomp LCM CMP-PRE

Fig. 15. Static code sizes.

6.4 Static Code Sizes

Figure 15 compares the static code sizes of all benchmarks (normalized to MC-PRE)
compiled under the four PRE algorithms. The size of a compiled benchmark is taken
as the size of the text section of its binary obtained using the UNIX command
size as suggested in [Beszedes 2003]. A PRE algorithm both inserts and deletes
computations. So it may cause some benchmarks to expand and others to shrink
in their code sizes. All four PRE algorithms are comparable in terms of this size
criterion except that MC-PREcomp results in slightly larger binaries (particularly
in the case of wupwise and applu). MC-PREcomp makes insertions and deletions
for isolated computations. As a result, the increases in code size are observed in 19
out of the 22 benchmarks. The overall increase of MC-PREcomp over MC-PRE for
all benchmarks is 1.43%. By comparing LCM and MC-PRE, we find that MC-PRE
has caused small code size expansions in only six out of the 22 benchmarks with an
overall size increase of 0.78%. Finally, CMP-PRE has resulted in slightly smaller
binaries than MC-PRE in 12 out of the 22 benchmarks. However, the overall
increase of MC-PRE over CMP-PRE for all 22 benchmarks is only 0.50%.

6.5 Compile Times

Figure 16 gives the compile times of GCC in compiling all benchmarks under the
four PRE algorithms. All compile times are normalized with respect to MC-PRE.
MC-PREcomp is generally more expensive than MC-PRE due to some unneces-
sary insertions and deletions MC-PREcomp introduces for isolated computations.
CMP-PRE is generally more expensive than LCM. This is partly because CMP-PRE
performs three bit-vector data-flow analyses over a non-Boolean lattice and partly
because CMP-PRE also needs to traverse a CFG separately for each distinct PRE
problem in order to identify its CMP regions. The compile times of MC-PRE are
slightly larger than CMP-PRE in some benchmarks but smaller in others. In com-
parison with LCM, the extra compilation overheads MC-PRE pays for achieving
the performance improvements in all the benchmarks are relatively small. In the
case of SPECint2000 benchmarks, the compile-time increases for gcc, crafty and
perlbmk are 4.50%, 8.72% and 3.63%, respectively. The increases of less than 1.86%
are observed in the remaining nine benchmarks. In the case of SPECfp2000, the
worst three benchmarks are wupwise, equake and sixtrack. Their compile-time
increases are 4.37%, 5.05% and 9.22%, respectively. Each of the remaining seven
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Fig. 16. Compile times.
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Fig. 17. Average sizes of PRE problems on CFGs and EFGs. Given a CFG, distinct PRE
candidate expressions in the CFG result in distinct PRE problems. The empty EFGs are excluded
in calculating the average number of blocks per EFG (which would be much smaller otherwise).
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Fig. 18. Empty v.s. nonempty reduced graphs (or EFGs).

benchmarks has a compile-time increase of less than 1.85%. Finally, of all the 22
benchmarks, seven compile even slightly faster under MC-PRE than LCM.

There are two reasons why MC-PRE is only slightly more expensive than LCM.
First, Figure 17 shows that the EFGs are significantly smaller than the original
CFGs across all the benchmarks. Given an EFG Gst = (Nst, Est, Wst), finding a

minimum cut for it using Goldberg’s HIPR algorithm takes O(|Nst|2
√

|Est|) [Gold-
berg 2003]. Transforming CFGs to their smaller EFGs has reduced the cost of the
algorithm significantly. Furthermore, as shown in Figure 18, the reduced graphs
for the majority of the PRE problems in nearly all benchmarks are empty. This
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means that the corresponding EFGs are also empty. The minimum cut for an
empty EFG is empty, requiring no invocation to a min-cut algorithm in our imple-
mentation (as discussed in Section 6.1). (By Lemma 4.1, if the EFG for a PRE
problem is empty, then all redundancies (if any) must be full redundancies and are
all removed by MC-PRE.) Second, nonempty EFGs are constructed efficiently. We
have modified GCC’s edge def struct so that a single traversal of a CFG in Step 3.4
of MC-PREcomp is sufficient to produce the corresponding nonempty EFG.

Le us investigate why the seven benchmarks, vpr, bzip2, swim, mgrid, applu,
art and apsi, as shown in Figure 8, compile slightly faster under MC-PRE than
LCM. These seven benchmarks contain in that order 17828, 5191, 1067, 1600,
7603, 2147 and 15490 PRE problems to be solved, respectively. LCM performs
PRE by conducting each of the four data-flow analysis passes in parallel on these
PRE problems. On the other hand, MC-PRE first applies two data-flow analysis
passes on these problems in parallel to reduce them into smaller PRE problems on
EFGs. As a result, these seven benchmarks have in that order only 4327, 1213,
188, 234, 845, 532 and 2947 nonempty EFGs, which are the PRE problems that
require the min-cut step of MC-PRE to be invoked. These nonempty EFGs are
rather small (with 9.77 blocks for vpr, 5.19 blocks for bzip2, 2.75 blocks for swim,
2.21 blocks for mgrid, 3.50 blocks for applu, 5.42 blocks for art and 9.14 for apsi
on the average). So the min-cut step completes very quickly. Then MC-PRE
performs a third data-flow analysis on all original PRE problems in parallel to
avoid insertions and deletions for isolated computations. Therefore, MC-PRE can
compile a program faster than LCM if a large number of PRE problems in the
program have empty EFGs (which require only three data-flow analysis passes)
and if the nonempty EFGs are small (so that the min-cut step completes quickly).

Finally, we examine why MC-PRE is not so much more costly than LCM in the
worst case. As shown in Figure 8, crafty and sixtrack are the two most expen-
sive benchmarks to compile. Figure 19 plots the histograms of all the nonempty
EFGs for the two benchmarks according to their sizes. Although crafty has some
relatively large EFGs, 92.46% of them have fewer than 300 blocks. On the other
hand, sixtrack has more large EFGs. There are 80.02% EFGs with fewer than 300
blocks. In the remaining EFGs, there are 1510 with 300 – 999 blocks, 1098 with
1000 – 1999 blocks and 996 with more than 1999 blocks. However, Figure 18 shows
that in sixtrack, 85.37% of EFGs are empty. Due to the first two reasons given
above and the fact that the efficiency of the min-cut algorithm used, the compile
time increase of MC-PRE over LCM in this worst-case benchmark is only 9.22%.

7. CONCLUSION

We have presented the first lifetime optimal algorithm, MC-PRE, that performs
speculative PRE by combining code motion and control speculation. We have
proved rigorously the optimality of this algorithm. MC-PRE works for the CFGs
consisting of standard basic blocks so that it can be readily implemented by re-
searchers in a compiler framework. The algorithm is conceptually simple since it is
centered around three standard bit-vector data-flow analyses and a standard min-
cut algorithm. We have implemented MC-PRE, and consequently, MC-PREcomp in
GCC 3.4.3. For comparison purposes, we have also implemented CMP-PRE, a pre-
viously reported non-optimal speculative PRE algorithm [Bodik et al. 1998], in GCC
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Fig. 19. Nonempty EFGs of crafty and sixtrack.

3.4.3. We have evaluated MC-PRE against MC-PREcomp, LCM and CMP-PRE
using the 22 C, C++ and FORTRAN 77 benchmarks in SPECcpu2000 on Itanium
2. Our experimental results show that MC-PRE is capable of eliminating more
partial redundancies than both LCM and CMP-PRE and always uses temporaries
with shorter lifetimes than MC-PREcomp. Achieving both computationally and
lifetime optimal results in a program allows MC-PRE to explore more optimization
opportunities, particularly in its functions with complex control structures. This
has led to the performance improvements in almost all of these benchmarks over the
other three algorithms at the costs of small compile-time and code-size increases in
some benchmark programs.

As profile-guided compiler optimizations are becoming increasingly more aggres-
sive, more sophisticated algorithms will likely be employed in future compile sys-
tems. In addition to the PRE optimization as discussed in this paper, the min-cut
algorithm has also been recently used in decomposing a sequential program into
speculatively parallel threads [Johnson et al. 2004].

Finally, we want to stress that PRE techniques are applicable to other areas of
optimisation such as load/store elimination by combining both control and data
speculation [Lin et al. 2003], load/store elimination for binaries [Fernández and
Espasa 2004], communication optimisation [Knoop and Mehofer 2002], and thread-
level synchronisation cost elimination [Zhai et al. 2002]. Significant performance
gains can be expected from these optimisations, leveraging the benefits of a more
application-specific PRE technique that may be derived from our algorithm. Fur-
thermore, our algorithm may find applications in some embedded applications
[Scholz et al. 2004] where performance improvements can be beneficial. One fu-
ture work is to evolve MC-PRE into a more application-specific PRE technique in
these research areas so that more significant performance gains can be obtained.
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