
Compiler-Directed Scratchpad Memory

Management via Graph Coloring

Lian Li, Hui Feng and Jingling Xue

University of New South Wales

Scratchpad memory (SPM), a fast on-chip SRAM managed by software, is widely used in embed-
ded systems. This paper introduces a general-purpose compiler approach, called memory coloring,
to assign static data aggregates such as arrays and structs in a program to an SPM. The novelty
of this approach lies in partitioning the SPM into a pseudo register file (with interchangeable
and aliased registers), splitting the live ranges of data aggregates to create potential data transfer
statements between SPM and off-chip memory, and finally, adapting an existing graph coloring
algorithm for register allocation to assign the data aggregates to the pseudo register file. Our
experimental results using a set of 10 C benchmarks from MediaBench and MiBench show that
our methodology is capable of managing SPMs efficiently and effectively for large embedded appli-
cations. In addition, our SPM allocator can obtain close to optimal solutions when evaluated and
compared against an existing heuristics-based SPM allocator and an ILP-based SPM allocator.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
optimization; B.3.2 [Memory Structures]: Design Styles—Primary memory; C.3 [Special-
Purpose And Application-Based Systems]: Real Time and Embedded Systems

General Terms: Algorithms, Languages, Experimentation, Performance

Additional Key Words and Phrases: Scratchpad memory, software-managed cache, memory allo-
cation, graph coloring, memory coloring, live range splitting, register coalescing

1. INTRODUCTION

Scratchpad memory (SPM) is a fast on-chip SRAM managed by software (the
application and/or compiler). Compared to hardware-managed cache, it offers a
number of advantages. First, SPMs are more energy-efficient and cost-efficient than
caches since they do not need complex tag-decoding logic. Second, in embedded
applications with regular data access patterns, an SPM can outperform a cache
memory since software can better choreograph the data movements between SPM
and off-chip memory. Finally, such a software-managed strategy guarantees better
timing predictability, which is critical in hard real-time systems. Given these ad-
vantages, SPMs have been increasingly incorporated in modern embedded systems.
In some embedded processors such as Motorola Dragonball, Infineon XC166 and
TI TMS370CX7X, SPMs are used as an alternative to caches. In other embedded
processors like ARM10E and ColdFire MCF5, both caches and SPMs are included
in order to obtain the best of both worlds. In this work, SPMs should be seen
in a general context. For example, in stream processors such as Imagine [Kapasi

Authors’ address: Programming Languages and Compilers Group, School of Computer Science
and Engineering, University of New South Wales, Sydney, NSW 2052, Australia. The first and
last authors are also affiliated with National ICT Australia (NICTA).

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



2 · L. Li, H. Feng and J. Xue

et al. 2002], a software-managed stream register file (SRF) is used to stage data to
and from off-chip memory. In IBM’s Cell architecture, each co-processor (known as
SPE) has a software-managed local store for keeping both instructions and data.
For SPM-based systems, the programmer or compiler must schedule explicit data

transfers between SPM and off-chip memory. The effectiveness of such an SPM
management affects critically the performance and energy cost of an application.
In today’s industry, this task is largely accomplished manually. The programmers
often spend a lot of time on partitioning data and inserting explicit data transfers
required between SPM and off-chip memory. Such a manual approach is often time-
consuming and error-prone. Moreover, the hand-crafted code is not portable since
it is usually customized to a particular architecture.
To overcome these limitations, we propose a general-purpose compiler approach,

called memory coloring, to determining the dynamic allocation and deallocation of
static data aggregates such as global and stack-allocated arrays and structs in a
C-like program so as to maximize the performance of the program. Whenever we
speak of arrays in this paper, we mean both kinds of data aggregates. An array
whose size exceeds that of the SPM under consideration cannot be placed entirely
in the SPM. Such arrays can be tiled into smaller “arrays” by means of loop tiling
[Xue 2000; Wolfe 1989] and data tiling [Kandemir et al. 2001]. In the proposed
approach, the continuous space of an SPM is partitioned into a pseudo register file
(with interchangeable and aliased registers). The data aggregates are the register
candidates to be assigned to the SPM via a generalized graph coloring allocator,
which can be any traditional graph coloring allocator generalized as described in
[Smith et al. 2004] to handle interchangeable and aliased registers. Unlike scalars,
data aggregates typically have longer live ranges. So live range splitting may be used
beneficially to split their live ranges into smaller pieces. The splitting points are
the places to insert all required data transfers between SPM and off-chip memory.
During the coloring phase, register coalescing is applied to reduce unnecessary data
transfers that would otherwise have been introduced into the final program.
In summary, this paper makes the following contributions. First, we introduce a

memory coloring methodology, by which the SPM management problem is mapped
into the well-known classic register allocation problem. This includes a scheme to
partition an SPM into a pseudo register file, an interprocedural liveness analysis
for data aggregates, and an algorithm to split the live ranges for data aggregates.
Second, we have implemented this work in the SUIF and MachSUIF compilation
framework. Our experimental results using a set of 10 C benchmarks from Me-
diaBench and MiBench show that our methodology is capable of managing SPMs
efficiently and effectively for large embedded applications. In addition, our SPM al-
locator can obtain close to optimal solutions when evaluated and compared against
an existing heuristics-based SPM allocator and an ILP-based SPM allocator.

2. GRAPH COLORING SPM ALLOCATION

The basic idea is to formulate the SPM management problem as the classic regis-
ter allocation problem. Figure 1 depicts an instantiation of our memory coloring
methodology in the SUIF and MachSUIF compilation framework, where the four
components of our methodology (highlighted in grey) are described below.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



Compiler-Directed Scratchpad Management via Graph Coloring · 3

Profiling Collection Liveness Analysis

Fig. 1. An implementation of memory coloring in SUIF/MachSUIF.

Array Size (Bytes)

d 72
wt 80
dp 240

Array Class Size (Bytes)

{d, wt} 80
{dp} 240

SPM Size = 320 Bytes

R80,0 R80,1

R240,0

R80,2 R80,3

240 Bytes

80 Bytes

(a) Arrays and their sizes (b) Array classes (ALIGN UNIT=16B) (c) Pseudo register file

Fig. 2. An illustration of our SPM partitioning scheme.

In this work, we apply memory coloring to embedded programs that are often
written in C or other C-like languages, in which arrays tend to be global or passed
as parameters. Therefore, our instantiation is interprocedural by operating on one
interference graph for a program.
Like garbage collectors, SPM allocators require some similar restrictions in pro-

grams, particularly those embedded programs written in C or C-like languages.
Programming practices that disguise pointers such as casts between pointers and
integers are forbidden. In addition, only portable pointer arithmetic operations
on pointers and arrays are allowed. In general, C programs that rely on the rel-
ative positions of two arrays in memory are not portable. Indeed, comparisons
(e.g., < and 6) and subtractions on pointers to different arrays are undefined or
implementation-defined. Also, if n is an integer, p± n is well-defined only if p and
p ± n point to the same array. Fortunately, these restrictions are usually satisfied
for static arrays and associated pointers in portable ANSI-compliant C programs.

2.1 SPM Partitioning

This component will partition the continuous space of an SPM into a pseudo register
file (with interchangeable and aliased registers). This is the key to allowing us to
map the SPM allocation problem into the classic register allocation problem.
The sizes of arrays in a program considered for SPM allocation are aligned to

a pre-defined constant value, ALIGN UNIT, in bytes. All arrays with a common
aligned size are clustered into a common equivalent class called an array class. For
each array class of a particular size, the SPM is partitioned into a register class such
that each register in the class can hold exactly one array of that size. A detailed
algorithm that formalizes one partitioning scheme can be found in [Li et al. 2005].
Figure 2 illustrates this partitioning scheme for a program if ALIGN UNIT = 16

is assumed. For the three arrays given in Figure 2(a), the two array classes as given

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



4 · L. Li, H. Feng and J. Xue

in Figure 2(b) are obtained. Therefore, the SPM is partitioned into two register
classes shown in Figure 2(c). Note that R240,0 is aliased with R80,0, R80,1 and R80,2.

2.2 Liveness Analysis

We have extended the traditional intraprocedural liveness analysis for scalars to
compute the liveness information for arrays interprocedurally. Our analysis will be
applied to a program twice, once before live range splitting to identify the liveness
information to be used during the splitting process and once just before memory
coloring to build the interference graph for the program.

The liveness analysis for arrays is conducted on the interprocedural CFG of a
program (ICFG), which is constructed in the standard manner. By convention, the
CFG of a function has a unique entry block, denoted ENTRY, and a unique exit block,
denoted EXIT. In the CFG of each individual function, every call statement forms
a basic block by itself and has a unique successor basic block called return block.
The ICFG consists of the CFGs for all functions in the program and all possible
interprocedural flow edges across the CFGs added conservatively as follows. At
each call block (site), a directed edge is added from the call block to the ENTRY

block of every possible callee function that may be invoked at the call site and a
directed edge is added from the EXIT block of every such a callee function to the
corresponding return block. In the presence of nonlocal control transfers such as
setjmp/longjmp and exception handling, all possible interprocedural flow edges are
also added to the ICFG. For example, exception propagation on the call stack from
a callee to a caller results in additional interprocedural flow edges in the ICFG. The
effect of these interprocedural flow edges is to force all data-flow analyses to safely
approximate the control flow effects of these constructs.

The notion of liveness for arrays is interprocedural. An array is live at a program
point if some of its elements may be used (or read) later on a control flow path in
the ICFG of the program before all its elements are defined (or killed) on the path.
The predicates, DEF and USED, local to a basic block B for an array A are defined
as follows. USEDA(B) returns true iff some elements of A are read (possibly via
pointers) in B. DEFA(B) returns true iff A is killed entirely in block B, i.e., if every
element of A is killed. In general, it is difficult to identify whether an array is killed
or not at compile time. So we assume conservatively that an array that appears
originally in a program is killed only at its definition block, i.e., the entry block of
the scope where the array is defined. In addition, for every array copy statement
introduced by Split and Copy in live range splitting (Section 2.3), the array that
appears at its left-hand side is killed. Finally, for every edge connecting a call block
and an ENTRY block, we assume the existence of a pseudo block C on the edge
such that DEFA(C) returns true iff A is neither global nor passed by a parameter
at the corresponding call site and USEDA(C) always returns false. This makes our
analysis context-sensitive since if A is a local array passed by a parameter in one
calling context to a callee, then its liveness information obtained at that calling
context will not be propagated into the others for the same callee function.

Given the above definitions of DEF and USED, the liveness information for an
arrayA can be computed interprocedurally on the ICFG of the program by applying

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



Compiler-Directed Scratchpad Management via Graph Coloring · 5

the standard data-flow equations to the entry and exit of every block B:

LIVEINA(B) = (LIVEOUTA(B) ∧ ¬DEFA(B)) ∨ USEDA(B)

LIVEOUTA(B) =
∨

S∈succ(B)

LIVEINA(S) (1)

where succ(B) denotes the set of all successor blocks of B in the ICFG.

2.3 Live Range Splitting

Live range splitting splits an array live range into several subranges, each of which
can be assigned to a different pseudo register. In an embedded program, most
of its execution time is spent in loops and most of its array accesses are made in
loops. Therefore, we use an algorithm that is simple yet effective to split arrays
only around frequently executed, i.e., hot loops. In particular, we only split the live
range of an array in a loop if code rewriting required by splitting the array can be
realized efficiently at the pre-header and exits of the loop.
A loop L is splittable only if L is reducible (in its containing function) and has (di-

rectly or indirectly) no nonlocal transfers such as setjmp/longjmp and exception-
handling statements. This can be tested from the ICFG of the program. (L is
not reducible in the presence of setjmp and exception-catching statements and the
presence of longjmp and exception-throwing statements would complicate the code
rewriting required in live range splitting.) Our experience indicates that the hot
loops that appear in embedded C programs are generally splittable.
An array A accessed in a loop L that is contained in a function F is splittable if

two conditions are met. First, if A is a global array, then A cannot be accessed in
a function that may be called from both inside and outside L. Otherwise, A must
be defined in F . Second, all pointers that may point to A in L are scalar pointers
(which are pointers that point directly to A). This implies that A in L cannot
be pointed to by fields in aggregates such as heap objects or arrays of pointers or
indirectly by scalar pointers to pointers. As a result, the extra code inserted at
the pre-header and exits of L due to splitting can be executed efficiently. In all
embedded C benchmarks we have dealt with, static arrays are generally splittable.
Figure 3 gives an algorithm, Live Range Splitting, for splitting an array in a loop.

All loops in a program are processed outside in when their containing functions in
the call graph of the program are processed in topological order (lines 2 and 3).
As a result, preference is given to split a global array at an outer loop. Recursion
is rare in embedded C programs. So the call graph is simply made acyclic from a
DFS traversal. Only splittable arrays are examined (line 4). An array A in a loop
L will not be split again if it was done earlier in an enclosing loop (line 5).
In lines 8 - 17, we conduct a cost-benefit analysis to see if A can be split in L

beneficially. Our cost model takes into account the access frequency of A and the
data transfer cost between SPM and off-chip memory. The cost of communicating
n bytes between SPM and off-chip memory is approximated by Cs+Ct×n (cycles),
where Cs is the startup cost and Ct is the transfer cost per byte. Mspm (Mmem)
denotes the cycle count required per element access to the SPM (off-chip memory).
The code rewriting procedure Split and Copy splits the live range of A in L

contained in function F and rewrite L so that the split live ranges are all accessed

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



6 · L. Li, H. Feng and J. Xue

1 Procedure Live Range Splitting()
2 for every function F in the call graph used for building the ICFG of the program

in topological order (make the call graph acyclic by removing the back edges
in a DFS traversal on the call graph when recursion is found in the program)

3 for every splittable loop L in the loop hierarchy of function F in outside-in order
4 for every array A accessed and splittable inside L

5 if A has already been split in an enclosing loop of L in the ICFG continue

6 if SplitBenefit(F, L,A) ≤ SplitCost(F, L, A) continue

7 Split and Copy(F, L, A)

8 int Function SplitCost(F, L,A)
9 copy freq atPreheader = the execution frequency at the pre-header of L in function F

where a copy statement A′ = A is inserted
10 copy freq atExits = the sum of execution frequencies at all exits of L in function F

where a copy statement A = A′ is inserted at each exit
11 copy freq = copy freq atPreheader + copy freq atExits
12 split cost = (Cs + Ct ×A.size)× copy freq
13 return split cost

14 int Function SplitBenefit(F, L,A)
15 access freq = access frequency of A in L contained in function F

16 split benefit = access freq ×(Mmem −Mspm)
17 return split benefit

18 Procedure Split and Copy(F, L,A)

19 Create a new array A′ with the same aligned size as A

20 Add A′ = A at the pre-header of L in function F

21 Let PA be the set of scalar pointers that may point (directly) to A and accessed in L

22 for every pointer P in PA

23 Add the following code at the pre-header of L in function F

if P points to A

Set offsetA = P−(base address of A)
Set P to point to (base address of A′ + offsetA)

24 Replace every direct access of A in L by an access to A′

25 if A may be modified in L

26 Add A = A′ at every exit of L in function F where A is live
27 for every pointer P in PA

28 Add the following code at every loop exit where P is live

if P points to A′

Set offsetA′ = P−(base address of A′)
Set P to point to (base address of A+ offsetA′)

Fig. 3. An algorithm for splitting the live range of an array in a loop.

correctly. All accesses to A in L are redirected to A′. At the header of L, we add
code to deal with every scalar pointer P that may (directly) point to A in L (lines
22 and 23). A runtime test is added to find out the unique target that P points
to during program execution. If the target is A (identifiable easily at compile time
since A is either global or local), then the offset of P relative to the beginning of A
is dynamically computed. Then P is modified to point to the split live range A′ at
the same offset. At each loop exit (lines 27 and 28), P is restored to point to the
correct position of the original array A if P is still live at the exit.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



Compiler-Directed Scratchpad Management via Graph Coloring · 7

2.4 Memory Coloring

Given the register file and array candidates defined in SPM Partitioning (including
also the new arrays introduced by Live Range Splitting), this component deter-
mines which arrays should reside in which parts of the SPM by adapting an existing
graph coloring algorithm for scalars that is generalized as described in [Smith et al.
2004] to deal with interchangeable and aliased registers. Instead of George and Ap-
pel’s iterative-coalescing algorithm [George and Appel 1996] that we used earlier [Li
et al. 2005], we have opted to use Park and Moon’s optimistic-coalescing algorithm
[Park and Moon 2004] since it is more aggressive in eliminating unnecessary live
range splits and thus achieves better results in our experiments.

Build Coalesce Simplify
Potential

Spill
Select

Actual

Spill

Undo

Coalescing

Fig. 4. Memory coloring via Park and Moon’s optimistic-coalescing.

Figure 4 depicts the phase ordering of all phases in memory coloring using Park
and Moon’s optimistic-coalescing framework [Park and Moon 2004]. Below only
some pertinent changes made to this framework are described.
In graph coloring register allocation, a live range is spilled to memory by inserting

a load (store) instruction at every read (write) reference of the live range. At each
of these insertion points, a new live range is introduced. As a result, the interference
graph for a function needs to be rebuilt. In our case, an array candidate is spilled
so that it will be accessed directly from the off-chip memory. No spill code and
thus no new live ranges will ever be introduced. Therefore, the Build phase is only
executed once in memory coloring and the interference graph for a program can be
incrementally updated by simply removing the spilled live range from the graph.
The updated interference graph will continue to be colored.
In the Coalesce phase, all split live ranges are coalesced. When a coalesced node

cannot be colored in the Select phase, the Undo Coalescing phase will split it into a
set of smaller live ranges so that some or all of these may be colored. All split live
ranges that originate from a live range are treated as move-related nodes with its
original live range. When some move-related nodes are coalesced, the corresponding
data transfer operations will be eliminated accordingly.

3. EXPERIMENTAL RESULTS

Table I gives 10 embedded C benchmarks used in our experiments, where the first
eight are from MediaBench and the last two from MiBench. The memory objects
that are declared but not used in a benchmark are not counted. In our implemen-
tation depicted in Figure 1, all programs are compiled into assembly programs and
then translated into binaries on a DEC Alpha 20264 architecture. The profiling
information for MediaBench is obtained using the second data set available in the

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



8 · L. Li, H. Feng and J. Xue

Array Data Set Size of IG Compile Time
Benchmark #Lines #Arrays Size (KBytes) #Nodes #Edges (secs)

toast 6031 62 17.8 101 2750 0.244
untoast 6031 62 17.8 79 1787 0.221

rawcaudio 741 5 2.9 9 20 0.005
rawdaudio 741 5 2.9 9 20 0.005

pegwitencode 7138 121 226.7 230 17934 1.231
pegwitdecode 7138 121 226.7 224 17262 1.063
mpeg2encode 8304 62 9.2 108 1426 1.042
mpeg2decode 9832 76 21.8 101 1482 0.922

lame 18612 220 552.5 410 43863 4.299
rsynth 5713 75 44.6 91 3679 0.268

Table I. Benchmarks (where IG stands for interference graph).

0

20

40

60

80

100

to
as
t

un
to
as
t

ra
w
ca
ud
io

ra
w
da
ud
io

pe
gw
ite
nc
od
e

pe
gw
itd
ec
od
e

m
pe
g2
en
co
de

m
pe
g2
de
co
de

La
m
e

rs
yn
th

 A
rr
a
y
 A
c
c
e
s
s
e
s
 (
%
)

Fig. 5. Percentage of array accesses to all SPM-allocatable arrays over total memory accesses.

MediaBench website. These benchmarks are evaluated using the data sets that
come with their source files. The profiling for the other benchmarks is obtained
using inputs different from those when they are actually evaluated.
In embedded C programs, recursion is rarely used. All 10 benchmarks except

rsynth are recursion-free. In rsynth, recursion is detected but no arrays are defined
in any recursive function called directly or indirectly. Otherwise, a local array
defined in a function can be callee-saved if it is found to be residing in SPM at a
callee function. In addition, all associated pointers to the array to be redirected to
the saved copy. These pointers should be scalar pointers for efficiency reasons.
In our experiments, ALIGN UNIT is set to 16 bytes (Figure 2). We have com-

pared the performance results obtained when ALIGN UNIT takes four different val-
ues ranging from 8 bytes, 16 bytes, 32 bytes to 64 bytes. No significant perfor-
mance variations are observed in all the 10 benchmarks used when ALIGN UNIT is
decreased from the default 16 bytes to 8 bytes. However, some performance slow-
downs are observed in some benchmarks when ALIGN UNIT is increased from 16
bytes to 32 bytes and 64 bytes, respectively. In these benchmarks, the negative
impact on the utilization of the SPM space seems to be dominant. The positive
impact on performance due to reduced register classes and aliases appears to be
insignificant. Based on our experimental results, ALIGN UNIT=16 appears to be a
good default value (at least for the benchmarks used in our experiments).
We have modified SimpleScalar in order to carry out the performance evaluations

for this work. There are four parameters involved in our cost model (Section 2.3).

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



Compiler-Directed Scratchpad Management via Graph Coloring · 9

Their values are set as Cs = 100, Ct = 1, Mmem = 100 and Mspm = 1.
In this work, we are concerned with assigning static data aggregates in a program

to an SPM. So the scalars and heap objects in a program are ignored. However,
our approach can be applied to deal with scalars in at least two ways. After
register allocation for scalars has been performed, all spilled scalars are known. In
one scheme, both memory-resident scalars (including spilled ones) are processed
together with arrays by treating the scalars as a special case of arrays. In another
scheme as described in Cooper and Harvey [1998], the memory-resident scalars
can be assigned to a small portion reserved in the SPM. In our experiments, the
accesses to all memory-resident scalars in lame represent only about 0.66% of its
total memory accesses. This is the worst case among all benchmarks used. So only
arrays are considered for SPM allocation in our experiments.
In toast and untoast, we have manually replaced a frequently used heap object

with a global array so that it can be assigned to the SPM. For recursive functions
in a program, we have extended memory coloring to handle the SPM-resident local
arrays defined and used in recursive functions by using a callee-save mechanism.
Figure 5 shows the percentage of the array accesses to all arrays considered

for SPM allocation over all memory accesses in a benchmark. For toast, untoast,
rawcaudio, rawdaudio, pegwitencode and pegwitdecode, the majority of memory
accesses are array accesses. For mpeg2decode, lame and rsynth, about 40% of all
memory accesses are array accesses. There are varying reasons behind. For rsynth,
more than 50% of the non-array memory accesses are generated by caller-callee
register savings and some others are accesses to heap objects. For mpeg2decode

and lame, the majority of the non-array memory accesses are made to heap objects.
For mpeg2encode, its array accesses are not many since the most frequently accessed
memory objects are heap objects rather than arrays.
Below we present and analyze the experimental results. In Section 3.1, we show

that our approach is practically efficient. In Section 3.2, we evaluate its effectiveness
in placing data in the SPM by comparing an SPM-based system with the one in
which the SPM is not used. In Section 3.3, we compare our approach against
two existing ones that rely on heuristics and integer linear programming (ILP),
respectively. Our experimental results show that our SPM allocator can obtain
close to optimal solutions for the 10 benchmarks used.

3.1 Compile Times

Table I gives the sizes of interference graphs and the average compile times (calcu-
lated across all SPM sizes considered on a 2.66GHz Pentium 4 with 2GB memory).
These data suggest that our SPM allocator is efficient for all benchmarks used. Of
all benchmarks, lame has the largest interference graph. Even in this worst case,
the average compile time is only 4.299 secs.

3.2 Performance Improvements

Since we are concerned with placing arrays in SPM, we will evaluate the effectiveness
of our approach in improving the utilization of SPM for all the arrays considered for
SPM allocation. To this end, the concept of array hit rate is introduced. The array
hit rate for a program is defined to be the percentage of array accesses hit in the
SPM over the total array accesses considered for SPM allocation in the benchmark.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



10 · L. Li, H. Feng and J. Xue

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

A
rr

a
y
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

toast

untoast

rawcaudio

rawdaudio

pegwitencode

pegwitdecode

mpeg2encode

mpeg2decode

lame

rsynth

Fig. 6. Array hit rates.

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

S
P

M
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

toast

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

S
P

M
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

untoast

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

S
P

M
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

rawcaudio

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

S
P

M
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

rawdaudio

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

S
P

M
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

pegwitencode

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

S
P

M
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

pegwitdecode

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

S
P

M
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

mpeg2encode

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

S
P

M
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

mpeg2decode

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

S
P

M
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

lame

 0

 20

 40

 60

 80

 100

32K16K8K4K2K1K512256

S
P

M
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

rsynth

600
400

200

100

50

20

10

1
32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 i
n
 L

o
g
 S

c
a
le

 (
%

)

SPM Size (bytes)

600
400

200

100

50

20

10

1
32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 i
n
 L

o
g
 S

c
a
le

 (
%

)

SPM Size (bytes)

600
400

200

100

50

20

10

1
32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 i
n
 L

o
g
 S

c
a
le

 (
%

)

SPM Size (bytes)

600
400

200

100

50

20

10

1
32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 i
n
 L

o
g
 S

c
a
le

 (
%

)

SPM Size (bytes)

600
400

200

100

50

20

10

1
32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 i
n
 L

o
g
 S

c
a
le

 (
%

)

SPM Size (bytes)

600
400

200

100

50

20

10

1
32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 i
n
 L

o
g
 S

c
a
le

 (
%

)

SPM Size (bytes)

600
400

200

100

50

20

10

1
32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 i
n
 L

o
g
 S

c
a
le

 (
%

)

SPM Size (bytes)

600
400

200

100

50

20

10

1
32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 i
n
 L

o
g
 S

c
a
le

 (
%

)

SPM Size (bytes)

600
400

200

100

50

20

10

1
32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 i
n
 L

o
g
 S

c
a
le

 (
%

)

SPM Size (bytes)

600
400

200

100

50

20

10

1
32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 i
n
 L

o
g
 S

c
a
le

 (
%

)

SPM Size (bytes)

Fig. 7. Performance improvements on a system with SPM over the one without.

As in previous work [Kandemir et al. 2001; Avissar et al. 2002; Udayakumaran
et al. 2006; Verma et al. 2004b], we will compare results obtained on a system
incorporated with an SPM over the one in which the SPM is removed.
Figure 6 plots the array hit rates for the 10 benchmarks. For toast, untoast,

rawcaudio, rawdaudio and rsynth, an SPM of 4K bytes is sufficient to hold all the
arrays that are frequently accessed at any time during program execution. No sig-
nificant hit rate increase is observed when a larger SPM is used. For pegwitencode,
pegwitdecode, mpeg2encode and mpeg2decode, an SPM of 32K bytes is sufficient.
As for lame, an SPM of 128K bytes is needed in order to keep all frequently ac-
cessed arrays in the SPM in all program regions. When the SPM size increases as
shown in Figure 6, all the benchmarks exhibit non-decreasing array hit rate im-
provements. Each arrives at its peak at one of the SPM sizes used, where all its
frequently accessed arrays can be found in the SPM throughout program execution.
The performance improvement of a program depends on (among others) the

percentage of array accesses over the total memory accesses in the program, the
SPM and memory access latencies and the DMA cost. Figure 7 gives the SPM,
i.e., cache hit rates for all the benchmarks and the performance improvements
of the benchmarks for the experimental settings described earlier. These results
allow us to develop an informed understanding about the performance speedups
achievable due to improved SPM hit rates. The best speedups (by a factor of over

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



Compiler-Directed Scratchpad Management via Graph Coloring · 11

400%) are achieved for toast, untoast, rawcaudio and rawdaudio. But only small
performance improvements are observed for mpeg2encode.
The varying performance improvements across the 10 benchmarks can be under-

stood by examining their array access percentages given in Figure 5 and their SPM
hit rates given in Figure 7. For mpeg2encode, its array accesses represent only a
small fraction of its memory accesses. So its performance speedups will not be im-
pressive. When the SPM size increases as shown in Figure 7, the SPM hit rate for a
benchmark keeps increasing until after the SPM size has exceeded a certain value.
Then any further increase in the SPM size will have little positive impact on the
SPM hit rate. As can be observed in Figure 5, the SPM hit rate for a program will
eventually approach the array access percentage for the program, at which time all
frequently accessed arrays in any program region are all found in the SPM.
The array copy costs between SPM and off-chip memory are less than 0.20%

of the execution times for all benchmarks. In addition, optimistic-coalescing has
successfully eliminated all array copy operations between pseudo registers.

3.3 Compared with Two Existing SPM Allocators

We compare our dynamic approach with two existing dynamic ones, which are
drastically different in the sense that one resorts to integer linear programming
(ILP) to search for optimal solutions and one relies on heuristics to obtain good
solutions efficiently. The ILP-based approach, denoted ILP, is formulated based
on the work described in [Verma et al. 2004b]. The heuristics-based approach,
denoted HA, is the allocation scheme described in [Udayakumaran et al. 2006].
We present our results for ILP first in order to shed some light on the inherent time
complexities of performing SPM allocation for our benchmark programs.

3.3.1 Compared with ILP. An ILP-based approach for solving our SPM alloca-
tion problem optimally can be formulated in the standard manner. An example of
how to do so for a slightly different SPM allocation problem can be found in [Verma
et al. 2004b]. So only the key steps involved are explained below.
The ILP-based allocator is formulated to solve exactly the same problem as our

memory coloring allocator. So the same live range splitting algorithm is applied.
Linear constraints are introduced to keep track of which live ranges are in SPM
or off-chip memory and whether a copy operation is needed in a move-related live
range (due to splitting). Each live range is associated with an offset variable to
identify its location in SPM if it happens to be assigned to SPM. For interfering
live ranges, linear constraints are introduced to make sure that they will be assigned
non-overlapping SPM spaces based on their associated offset variables. Finally, the
objective function is to maximize the number of cycles saved on accessing the arrays
(since they are assigned to SPM instead of off-chip memory) under consideration
minus the number of cycles spent in array copy operations.
Table II presents the performance improvements that we can optimally expect

from an ILP-based allocator over our memory coloring allocator. We used the com-
mercial ILP solver, CPLEX 10.1, which is one of the fastest available in the market.
By examining also Table I, we find that our allocator can achieve close to optimal
results efficiently for all benchmarks across all configurations. Let us examine the
performance results of ILP with respect to Table I and Figure 5. For rawcaudio

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



12 · L. Li, H. Feng and J. Xue

Benchmark
Speedups (%) under Eight Different SPM Sizes (Bytes)

256 512 1024 2048 4096 8192 16384 32768

toast – – – 0.1/3m 0.5/2m 0.0/11m 0.0/31m 0.0/4m
untoast – – – 0.6/21s 0.2/24s 0.0/4s 0.0/3s 0.0/3s

rawcaudio 0.0/0.1s 0.0/0.1s 0.0/0.1s 0.0/0.1s 0.0/0.1s 0.0/0.1s 0.0/0.1s 0.0/0.1s
rawdaudio 0.0/0.1s 0.0/0.1s 0.0/0.4s 0.0/0.1s 0.0/0.1s 0.0/0.1s 0.0/0.1s 0.0/0.1s

pegwitencode – – – – – – – –
pegwitdecode – – – – – – – –
mpeg2encode 0.0/6s 0.0/1m – 0.1/18h 0.1/15h 0.1/4h 0.0/1h 0.0/30m
mpeg2decode – 0.0/1s – 0.0/1m 0.0/1m 0.0/14s 0.0/14s 0.0/24s

lame – – – – – – – –
rsynth – – – – 0.1/18m – 0.3/6m 0.1/22m

Table II. Performance improvements of ILP over memory coloring. For each configuration, X/Y
means that ILP achieves an (optimal) speedup of X% over memory coloring with a solution time
of Y on a 2.66GHz Pentium 4 with 2GB memory (where s stands for secs, m for mins and h for
hours). A ’–’ for a configuration indicates that CPLEX cannot run to completion within 24 hours.

and rawdaudio, the number of arrays in each benchmark is small. So ILP termi-
nates quickly and both allocators achieve the same results in all configurations. For
mpeg2encode and mpeg2decode, the number of arrays in each benchmark is not as
small but only a few of these are frequently accessed. In three configurations, ILP
does not terminate. For the remaining ones, our allocator achieves nearly the same
results as ILP. But ILP can take up to 18 hours to produce a solution that is only
0.1% better for mpeg2encode when the SPM size is 2K bytes. For pegwitencode,
pegwitdecode, lame and rsynth, each has a large number of frequently accessed
arrays, all of which must be explicitly dealt with in the ILP formulation. So ILP
cannot run to completion in most of the configurations tested. Finally, for toast
and untoast, ILP cannot terminate in the first few configurations.
In summary, ILP can yield optimal solutions efficiently in some configurations

for certain benchmarks. However, its overall performance is unpredictable and may
not run to completion within a given time limit. On the other hand, our allocator
can obtain nearly optimal solutions efficiently in almost all cases.

3.3.2 Compared with HA. For the HA allocator introduced in [Udayakumaran
et al. 2006], a set of heuristics are used to partition a program into a set of regions
including procedures, loops, if statements and switch statements. A set of time
stamps are assigned to the start point and end point of a region to represent the
time(s) when the region is executed relative to the others. Then all the regions
(their entries and exits to be precise) are processed according to the partial order
of their time stamps. When each boundary point is processed, a set of heuristics
are applied to determine which arrays will be copied to or evicted from SPM at
that point. Finally, every SPM-resident array at a boundary point of a region is
mapped to an SPM location. This may involve inserting array copy operations to
compact, i.e., relocate the existing arrays in SPM at the point to create enough
continuous memory blocks to store all SPM-resident arrays live at the point.
Figure 8 compares both allocators in terms of how effective they are in improving

the array hit rate of a benchmark (defined in Section 3.2) and shows the result-
ing performance improvements of our approach over HA. For five benchmarks,

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



Compiler-Directed Scratchpad Management via Graph Coloring · 13

-5

 0

 5

 10

 15

 20

 25

 30

32K16K8K4K2K1K512256

In
c
re

a
s
e
d
 A

rr
a
y
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

toast

-5

 0

 5

 10

 15

 20

 25

 30

32K16K8K4K2K1K512256

In
c
re

a
s
e
d
 A

rr
a
y
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

untoast

-5

 0

 5

 10

 15

 20

 25

 30

32K16K8K4K2K1K512256

In
c
re

a
s
e
d
 A

rr
a
y
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

pegwitencode

-5

 0

 5

 10

 15

 20

 25

 30

32K16K8K4K2K1K512256

In
c
re

a
s
e
d
 A

rr
a
y
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

pegwitdecode

-5

 0

 5

 10

 15

 20

 25

 30

32K16K8K4K2K1K512256

In
c
re

a
s
e
d
 A

rr
a
y
 H

it
 R

a
te

s
 (

%
)

SPM Size (bytes)

lame

-5

 0

 5

 10

 15

 20

32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 (

%
)

SPM Size (bytes)

-5

 0

 5

 10

 15

 20

32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 (

%
)

SPM Size (bytes)

-5

 0

 5

 10

 15

 20

32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 (

%
)

SPM Size (bytes)

-5

 0

 5

 10

 15

 20

32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 (

%
)

SPM Size (bytes)

-5

 0

 5

 10

 15

 20

32K16K8K4K2K1K512256

S
p
e
e
d
u
p
s
 (

%
)

SPM Size (bytes)

Fig. 8. Performance improvements of memory coloring over HA.

rawcaudio, rawdaudio, mpeg2encode, mpeg2decode and rsynth, both allocators
achieve nearly the same array hit rates and thus nearly the same performance re-
sults in all SPM configurations tested. For the first four benchmarks, the reason
behind is exactly the same as why our allocator and the ILP allocator also achieves
nearly the same results in these cases, as explained in Section 3.3.1. For rsynth,
both allocators happen to yield nearly the same performance results. So we dis-
cuss below only our experimental results for the remaining five benchmarks, toast,
untoast, pegwitencode, pegwitdecode and lame.
As shown in Figure 8, our approach achieves better array hit rates than HA in

most configurations for all the five benchmarks, which will translate into the perfor-
mance speedups shown in the same graph. The largest performance improvement,
a speedup of 13%, is achieved for untoast when the SPM size is 1K. This is possibly
because HA may introduce array copy operations to compact SPM so as to create
enough free blocks to store all SPM-resident arrays at a region entry or exit. On
the other hand, memory coloring relies on optimistic coalescing to eliminate un-
necessary live range splits and thus avoids unnecessary array copy operations. As
discussed in Section 3.2, optimistic-coalescing has successfully eliminated all array
copy operations within the SPM for all the 10 benchmarks used.

4. RELATED WORK

Earlier methods on assigning program data such as arrays or scalars [Avissar et al.
2002; Hiser and Davidson 2004; Sjödin and von Platen 2001; Steinke et al. 2002] to
SPM are static in the sense that an array or scalar will reside either in SPM or in
off-chip memory throughout program execution. In [Hiser and Davidson 2004], the
authors provide an easily re-targetable compiler method for assigning data to many
different types of memories. Steinke et al. [2002] propose a method that can place
both data and code in SPM. In [Avissar et al. 2002; Sjödin and von Platen 2001],
the static SPM allocation problem is formulated as an integer linear programming
(ILP) program and the authors have shown that an optimal static SPM allocation
scheme can be achieved for certain embedded applications.
Dynamic SPM allocation methods enable program data to be copied into and out

of SPM during program execution. It has been demonstrated that a dynamic allo-
cation scheme can often outperform an optimal static allocation scheme [Udayaku-
maran et al. 2006]. There are a few dynamic methods around [Kandemir et al.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



14 · L. Li, H. Feng and J. Xue

2001; Udayakumaran et al. 2006; Verma et al. 2004b]. In [Kandemir et al. 2001],
loop and data transformations are exploited but the proposed technique is applied
to individual loop kernels in isolation. Udayakumaran et al. [2006] use a set of
heuristics to guide their decision in deciding how to copy program data between
SPM and off-chip memory during program execution. The ILP-based approach
introduced in [Verma et al. 2004b] can yield optimal solutions for some programs
but can be expensive when applied to others as reported in [Ravindran et al. 2005].
In [Udayakumaran et al. 2006; Steinke et al. 2002; Ravindran et al. 2005; Verma

et al. 2004a], the authors show that it is also beneficial to place portions of program
codes in SPM. In [Panda et al. 2000; 1997a; Verma et al. 2004a], researchers target
a hybrid system with both cache and SPM. Therefore, their main objective is to
place data in SPM to achieve better SRAM hit rates. In [Panda et al. 2000; 1997a;
1997b], solutions are proposed to map the variables that are likely to cause cache
conflicts to SPM. In [Verma et al. 2004a], the authors propose a generic cache-aware
scratchpad allocation algorithm to use scratchpad for storing instructions.
Graph coloring has been studied extensively in global register allocation [Chaitin

1982; Briggs et al. 1994; George and Appel 1996; Lueh et al. 2000; Park and Moon
2004]. Based on Chaintin’s original formulation [Chaitin 1982], George and Appel
[1996] introduced their well-known iterative-coalescing algorithm. Later, Smith
et al. [2004] generalized this to handle irregular architectures with register classes
and aliases, which is adopted here to assign data aggregates to an SPM. Genius
[1998] applies graph coloring to reduce cross-interference cache misses caused by
arrays accessed in loops.
The idea of live range splitting represents an important advance in the field

of graph coloring register allocation. The live ranges of variables can be split
into smaller pieces with copy instructions inserted to connect these pieces [Chow
and Hennessy 1990; Appel and George 2001]. This may allow some or all smaller
live ranges to be colored. A register allocator will typically be equipped with a
coalescing phase to eliminate all redundant copies or moves introduced due to live
range splitting. A number of coalescing approaches have been proposed [George
and Appel 1996; Park and Moon 2004; Briggs et al. 1994]. In this work, we have
relied on live range splitting to identify the program points at which arrays can
be swapped in and out of an SPM. We have therefore relied on existing coalescing
techniques to eliminate all redundant array copies (introduced due to live range
splitting).

5. CONCLUSION

We have presented a new methodology for automatically assigning static data ag-
gregates in a program to an SPM. The basic idea is to map the SPM management
problem for data aggregates into the well-understood register allocation problem
for scalars. We have instantiated our methodology in SUIF and MachSUIF and
evaluated its usefulness in handling static arrays and structs for a set of 10 em-
bedded C benchmarks from MediaBench and MiBench. Our experimental results
show that memory coloring can solve the SPM management problem efficiently and
effectively. In particular, by combining our splitting strategy and Park and Moon’s
optimistic-coalescing algorithm, we can obtain a practical compiler-directed ap-

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



Compiler-Directed Scratchpad Management via Graph Coloring · 15

proach to assigning static data aggregates in embedded applications to SPMs.

6. ACKNOWLEDGEMENT

The authors would like to thank all reviewers for their comments and suggestions.
This work is supported by an Australian Research Council grant DP0881330.

REFERENCES

Appel, A. W. and George, L. 2001. Optimal spilling for CISC machines with few registers.
In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on Programming language
design and implementation. ACM Press, New York, NY, USA, 243–253.

Avissar, O., Barua, R., and Stewart, D. 2002. An optimal memory allocation scheme for
scratch-pad-based embedded systems. Trans. on Embedded Computing Sys. 1, 1, 6–26.

Briggs, P., Cooper, K. D., and Torczon, L. 1994. Improvements to graph coloring register
allocation. ACM Trans. Program. Lang. Syst. 16, 3, 428–455.

Chaitin, G. J. 1982. Register allocation & spilling via graph coloring. In SIGPLAN ’82: Pro-
ceedings of the 1982 SIGPLAN symposium on Compiler construction. ACM Press, New York,
NY, USA, 98–101.

Chow, F. C. and Hennessy, J. L. 1990. The priority-based coloring approach to register alloca-
tion. ACM Trans. Program. Lang. Syst. 12, 4, 501–536.

Cooper, K. D. and Harvey, T. J. 1998. Compiler-controlled memory. In ASPLOS-VIII: Proceed-
ings of the eighth international conference on Architectural support for programming languages
and operating systems. ACM Press, New York, NY, USA, 2–11.

Genius, D. 1998. Handling cross interferences by cyclic cache line coloring. In PACT ’98:
Proceedings of the 1998 International Conference on Parallel Architectures and Compilation
Techniques. IEEE Computer Society, Washington, DC, USA, 112.

George, L. and Appel, A. W. 1996. Iterated register coalescing. ACM Trans. Program. Lang.
Syst. 18, 3, 300–324.

Hiser, J. D. and Davidson, J. W. 2004. Embarc: an efficient memory bank assignment algorithm
for retargetable compilers. In LCTES ’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools. ACM Press, 182–191.

Kandemir, M., Ramanujam, J., Irwin, J., Vijaykrishnan, N., Kadayif, I., and Parikh, A.

2001. Dynamic management of scratch-pad memory space. In DAC ’01: Proceedings of the
38th conference on Design automation. ACM Press, 690–695.

Kapasi, U., Dally, W. J., Rixner, S., Owens, J. D., and Khailany, B. 2002. The Imagine
stream processor. In Proceedings 2002 IEEE International Conference on Computer Design.
282–288.

Li, L., Gao, L., and Xue, J. 2005. Memory coloring: A compiler approach for scratchpad memory
management. In PACT ’05: Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques. IEEE Computer Society, Washington, DC, USA,
329–338.

Lueh, G.-Y., Gross, T., and Adl-Tabatabai, A.-R. 2000. Fusion-based register allocation.
ACM Trans. Program. Lang. Syst. 22, 3, 431–470.

Panda, P. R., Dutt, N. D., and Nicolau, A. 1997a. Architectural exploration and optimization
of local memory in embedded systems. In ISSS ’97: Proceedings of the 10th international
symposium on System synthesis. IEEE Computer Society, 90–97.

Panda, P. R., Dutt, N. D., and Nicolau, A. 1997b. Efficient utilization of scratch-pad memory
in embedded processor applications. In Proceedings of the 1997 European conference on Design
and Test. IEEE Computer Society, 7.

Panda, P. R., Dutt, N. D., and Nicolau, A. 2000. On-chip vs. off-chip memory: the data
partitioning problem in embedded processor-based systems. ACM Trans. Design Autom. Electr.
Syst. 5, 3, 682–704.

Park, J. and Moon, S.-M. 2004. Optimistic register coalescing. ACM Trans. Program. Lang.
Syst. 26, 4, 735–765.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.



16 · L. Li, H. Feng and J. Xue

Ravindran, R. A., Nagarkar, P. D., Dasika, G. S., Marsman, E. D., Senger, R. M., Mahlke,

S. A., and Brown, R. B. 2005. Compiler managed dynamic instruction placement in a low-
power cod e cache. In Proceedings of the 3rd IEEE/ACM International Symposium on Code
G eneration and Optimization (CGO’03). 179–190.

Sjödin, J. and von Platen, C. 2001. Storage allocation for embedded processors. In CASES ’01:
Proceedings of the 2001 international conference on Compilers, architecture, and synthesis for
embedded systems. ACM Press, 15–23.

Smith, M. D., Ramsey, N., and Holloway, G. 2004. A generalized algorithm for graph-coloring
register allocation. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation. ACM Press, 277–288.

Steinke, S., Wehmeyer, L., Lee, B., and Marwedel, P. 2002. Assigning program and data
objects to scratchpad for energy reduction. In DATE ’02: Proceedings of the conference on
Design, automation and test in Europe. IEEE Computer Society, Washington, DC, USA, 409.

Udayakumaran, S., Dominguez, A., and Barua, R. 2006. Dynamic allocation for scratch-pad
memory using compile-time decisions. Trans. on Embedded Computing Sys. 5, 2, 472–511.

Verma, M., Wehmeyer, L., and Marwedel, P. 2004a. Cache-aware scratchpad allocation algo-
rithm. In DATE’04: Proceedings of the conference on Design, automation and test in Europe.
IEEE Computer Society, Washington, DC, USA, 21264.

Verma, M., Wehmeyer, L., and Marwedel, P. 2004b. Dynamic overlay of scratchpad memory
for energy minimization. In CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis. ACM Press,
New York, NY, USA, 104–109.

Wolfe, M. 1989. Iteration space tiling for memory hierarchies. In Proceedings of the Third SIAM
Conference on Parallel Processing for Scientific Computing. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 357–361.

Xue, J. 2000. Loop Tiling for Parallelism. Kluwer Academic Publishers.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, September 2009.


