Comparability Graph Coloring
for Optimizing Utilization of Software-Managed
Stream Register Files for Stream Processors !

Xuejun Yang

School of Computer, National University of Defense Technology

Li Wang

School of Computer, National University of Defense Technology

Jingling Xue

School of Computer Science and Engineering, University of New South Wales
and

Qingbo Wu

School of Computer, National University of Defense Technology

The stream processors represent a promising alternative to traditional cache-based general-purpose
processors in achieving high performance in stream applications (media and some scientific ap-
plications). In a stream programming model for stream processors, an application is decomposed
into a sequence of kernels operating on streams of data. During the execution of a kernel on a
stream processor, all streams accessed must be communicated through a non-bypassing software-
managed on-chip memory, the SRF (Stream Register File). Optimizing utilization of the scarce
on-chip memory is crucial for good performance. The key insight is that the interference graphs
(IGs) formed by the streams in stream applications tend to be comparability graphs or decompos-
able into a set of comparability graphs. We present a compiler algorithm for finding optimal or
near-optimal colorings, i.e., SRF allocations in stream IGs, by computing a maximum spanning
forest of the sub-IG formed by long live ranges, if necessary. Our experimental results validate the
optimality and near-optimality of our algorithm by comparing it with an ILP solver, and show
that our algorithm yields improved SRF utilization over the First-Fit bin-packing algorithm, the
best in the literature.

1. INTRODUCTION

Hardware-managed cache has traditionally been used to bridge the ever-widening
performance gap between processor and memory. Despite this great success, some
deficiencies with cache are well-known. First, their complex hardware logic incurs

1Extension of Conference Paper. This journal paper has extended our earlier PPoPP’09
[Yang et al. 2009] in four directions:

—A general algorithm that works for any arbitrary stream IG is presented while our earlier
algorithm is limited to stream IGs decomposable into comparability graphs and a forest.
—DMore benchmarks and more experimental evaluation are included.

—A counter example is presented showing First-Fit may occasionally achieve better colorings than
our algorithm.

—All results are now rigorously proved.

high overhead in power consumption and area. Second, their simple application-
independent management strategy does not benefit from some data access charac-
teristics in many applications. For example, media applications and some scientific
applications exhibit producer-consumer locality with little global data reuse, which
are hardly fully exploited by hardware-managed cache. Finally, their uncertain
access latencies make it difficult to guarantee real-time performance.

In contrast to cache, software-managed on-chip memory has advantages in area,
cost, and access speed, etc [Banakar et al. 2002]. It is thus widely adopted in
embedded systems (known as scratchpad memory or SPM for short), stream ar-
chitectures (known as stream register file, local memory or streaming memory),
and GPUs (known as shared memory in NVIDIA’s new generation GPUs under
its CUDA programming model). In the case of supercomputers, software-managed
on-chip memory is also frequently used, especially in their accelerators. Exam-
ples include Merrimac [Dally et al. 2003], Cyclops64 [Cuvillo et al. 2005], Grape-
DR [Makino et al. 2007], Roadrunner [Koch 2006], and TianHe-1A (world’s fastest
supercomputer in TOP500 list released in November 2010).

The (programmable) stream processors, such as Imagine [Owens et al. 2002],
Raw [Taylor et al. 2002], Cell [Williams et al. 2006], Merrimac [Dally et al. 2003] and
GPUs, represent a promising alternative in achieving high performance in media
applications. In addition, stream processing is also well suited for some scientific
applications [Dally et al. 2003; Williams et al. 2006; Yang et al. 2007]. In [Yang
et al. 2007], we introduced the design and fabrication of FT64, the first 64-bit stream
processor for scientific computing. Like Imagine [Owens et al. 2002], Cell [Williams
et al. 2006] and Merrimac [Dally et al. 2003], FT64, as shown in Figure 1, can be
easily mapped to the stream virtual machine architecture described in [Labonte
et al. 2004]. Such stream processor executes applications that have been mapped
to the stream programming model: a program is decomposed into a sequence of
computation-intensive kernels that operate on streams of data elements. Kernels
are compiled to VLIW microprograms to be executed on clusters of ALUs, one at
a time. Streams are stored in a software-managed on-chip memory, called SRF
(Stream Register File).

The stream programming models, Brook [Buck et al. 2004], CUDA, StreamC/Ke-
rnelC [Das et al. 2006] and StreamlIt [Thies et al. 2001], which facilitate locality
exploitation and bandwidth optimization, have been proven to be useful for pro-
gramming stream architectures [Das et al. 2006; Yang et al. 2007; Kudlur and
Mahlke 2008]. Some other research results also demonstrate their usefulness for
general-purpose architectures [Gummaraju and Rosenblum 2005; Leverich et al.
2007; Gummaraju et al. 2008].

Research into advanced compiler technology for stream languages and architec-
tures is still at its infancy. Among several challenges posed by stream processing
for compilation [Das et al. 2006], a careful allocation of the scarce on-chip SRF
becomes imperative. SRF, the nexus of a stream processor, is introduced to cap-
ture the widespread producer-consumer locality in media applications to reduce
expensive off-chip memory traffic. Unlike conventional register files, however, SRF
is non-bypassing, namely, the input and output streams of a kernel must be all
stored in the SRF when a kernel is being executed. If the data set of a kernel is

(b)
(a) Chip layout. (b) Top and bottom views. (c¢) Basic Modules.

Fig. 1: FT64 stream processor.

too large to fit into the SRF, strip mining can be applied to segment some large
streams into smaller strips so that the kernel can then be called to operate on one
strip at a time. Alternatively, some streams can be double-buffered [Das et al. 2006]
or spilled [Wang et al. 2008] until the data set of every kernel does not exceed the
SRF capacity. Therefore, optimizing utilization of SRF is crucial for good perfor-
mance. Presently, SRF utilization is predominantly optimized by applying First-Fit
bin-packing heuristics [Das et al. 2006], which can be sub-optimal for some large
applications.

In this paper, we present a new compiler algorithm for optimizing utilization of
SRF for stream applications. The central machinery is the traditional interference
graph (IG) representation except that an IG here is a weighted (undirected) graph
formed by the streams operated on by a sequence of kernels. The key discovery
is that the IGs in many media applications are comparability graphs, enabling the
compiler to obtain optimal colorings in polynomial time. This has motivated us
to develop a new algorithm for optimizing utilization of SRF when allocating the
streams in stream IGs to the SRF by comparability graph coloring.

This paper makes the following main contributions:

—We show that stream IGs tend to be comparability graphs, which can thus be
optimally colored.

—We propose to optimize utilization of SRF by comparability graph coloring and
present a compiler algorithm for coloring arbitrary stream IGs through graph
decompositions and maximal spanning forest computation, if necessary.

—We show by experiments that our algorithm can find optimal and near-optimal
colorings efficiently for well-structured media and scientific applications that are
amenable to stream processing, by comparing with both an ILP-based approach
and a First-Fit based approach, thereby outperforming First-Fit heuristics.

The rest of this paper is organized as follows. For background information,
Section 2 introduces the stream programming model and some graph theory results

to provide a basis for understanding our approach. Section 3 describes the SRF
management problem we solve. Section 4 casts it as a comparability graph coloring
problem and presents our algorithm for solving this new formulation. Section 5
evaluates our approach. Section 6 discusses related work. Section 7 concludes the
paper.

2. BACKGROUND
2.1 Stream Programming Model

The stream programming model employed in FT64 is StreamC/KernelC, which is
also used in the Imagine processor [Das et al. 2006]. The central idea behind stream
processing is to divide an application into kernels and streams to expose its inherent
locality and parallelism. As a result, an application is split into two programs, a
stream program running on the host and a kernel program on the stream processor.
The stream program specifies the flow of streams between kernels and initiates the
execution of kernels. The kernel program executes these kernels, one at a time.

ddot(stream<double> u, stream<double> v,
UC<double> alpha)

double xmat|M*N]; double u_tmp, v_tmp;

1

2
double umat|M*N], vmat[M*N]; 3¢

4

5 double alpha_tmp;

1

2

3 double ymat[M*N], zmat[M*N];
4 UC<double> alpha;

5 stream<double> u(N), v(N);
6
7

alpha_tmp = 0;
stream<double> x(N); for (inti=0;i<N;i++) {
stream<double> y(N), z(N); u>>u_tmp;

v>>v_tmp;

8 datalnit("umatix.dat', umat);
9 datalnit('vmatrix.dat', vinat);
10 datalnit('xmatrix.dat', xmat);
11 datalnit("ymatrix.dat', ymat);

alpha_tmp += u_tmp*v_tmp;
}
alpha = sum(alpha_tmp);
}

12 for (inti=0;i<M;it++) {
13 Load(umat[i*N, (i+1)*N-1], u);
14 Load(vmat[i*N, (i+1)*N-1], v);
15 Kernel('ddot', u, v, alpha);
16 Load(xmat[i*N, (i+1)*N-1], x);
17 Load(ymat[i*N, (i+1)*N-1], y);
18 Kernel('daxpy', alpha, x, y, z);
19 Store(z, zmat[i*N, (i+1)*N-1]);
20 }

daxpy(UC<double> alpha, stream<double> x,
stream<double> y, stream<double> z)
{
double alpha_tmp;
double x_tmp, y_tmp, z_tmp;

alpha_tmp = alpha;
for (inti=0;i<N;it++) {

X>>x_tmp;

y>>y_tmp;

z_tmp = alpha_tmp*x_tmp+y_tmp;
}

z<<z_tmp;

21 dataSave('zmatrix.dat', zmat);

(a) Stream program (b) Data flow (c) Kernel program

Fig. 2: Stream and kernel programs for a computation comprising ddot and daxpy.

Figure 2 depicts the mapping of a program comprising two BLAS kernels, ddot
and daxpy to the stream programming model with F'T64 as the underlying architec-
ture. The program exhibits explicit producer-consumer locality: the output stream

from the last kernel execution is used as an input for the next kernel execution in
sequence.

Consider the stream program in Figure 2(a) first. In lines 1 — 3, five arrays of
size M = N each are declared. In line 4, a UC variable (i.e., so-called microcon-
troller variable) is declared. In stream programming, UC variables are passed to
a kernel loop as scalar arguments, which are often used in scientific algorithms as
the coefficients of math equations or the results of vector reductions. In lines 5 —
7, five streams of size IV each are declared. In lines 8 — 11, the function datalnit
is called four times to initialize arrays umat, vmat, xmat and ymat residing in the
off-chip memory with the four data files stored at the host. In line 13, the data
from the current (loop dependent) section in umat are gathered into stream u. This
will result in the loading of the data from umat in off-chip memory into the space
allocated to stream u in the SRF. In line 14, stream v is initialized from array vmat
similarly. In line 15, ddot is called to compute the dot product (inner product) of
two double precision vectors represented by streams w and v. As shown, u and v
are input streams and UC variable alpha is output. In lines 16 and 17, streams x
and y are initialized from arrays xmat and ymat, respectively. In line 18, daxpy is
called with alpha, x and y as input and z as output. After the kernel has run to
completion, the final output stream is stored from the SRF back into array zmat
in off-chip memory (line 19). In line 21, the result is saved into a data file.

Consider the kernel program given in Figure 2(c), which is executed by FT64 in
the VLIW mode. Let us examine ddot first. In line 7, a loop goes over each input
stream. In line 8, four elements from stream u are read simultaneously at a time
with each being assigned to a private temporary variable u_tmp on one of the four
clusters in FT64 [Yang et al. 2007]. In line 9, the elements of stream v are read
off similarly. In line 10, the computations on these elements are performed simul-
taneously on each cluster with the results being summed into a private temporary
variable alpha_tmp. In line 12, the partial sums on four clusters are added up, with
results being assigned to the UC variable alpha. For daxpy, the process is similar
except that the results are appended to output stream z, four at a time.

A stream program consists of a sequence of loops where each loop includes a
sequence of kernels operating on streams. In a stream compiler, all loops are con-
sidered separately in SRF allocation. For FT64 [Yang et al. 2007], the DRAM
controller supports two stream-level instructions, Load and Store, that transfer an
entire stream between off-chip memory and the SRF. In stream programs as demon-
strated in Figure 2(a), loads and stores are used to initialize some streams from the
global input data residing in off-chip memory and write certain streams to off-chip
memory, respectively.

The central machinery in our approach to allocating the streams in a loop to
the SRF is the traditional interference graph (IG) except that it is a weighted
(undirected) graph formed by the streams operated on by the kernels in the loop.
All streams accessed in the loop are identified as live ranges to be placed in the SRF.
If two live ranges interfere (i.e., overlap), they must be placed in non-overlapping
SRF spaces. The live ranges of streams are computed by extending the def/use
definitions for scalars to streams: Load defines a stream, Store uses a stream, and
a kernel call (re)defines its output streams and uses its input streams. The live range

of a stream starts from its definition and ends at its last use. To achieve better
allocation results, streams are renamed using the SSA (static single assignment)
form.

After the live ranges have been computed for a loop, its IG, denoted G, is built
in the normal manner, where a weighted node denotes a stream live range whose
weight is the size of the stream and an edge connects two nodes if their live ranges
interfere with each other.

-
§ SRF ————————p
u v T
x
daxpy z y X h
y V4
(a) The IG (b) A valid SRF
corresponding to the allocation corresponding
program in Fig. 2 (a) to the IG in (a)

Fig. 3: The interference graph and the allocation.

Consider the stream program in Figure 2 (a), its IG is depicted in Figure 3 (a),
and a valid allocation is given in Figure 3 (b).

2.2 Interval Coloring and Comparability Graph

Section 2.2 recalls the basic results about interval coloring and comparability graph
from [Golumbic 2004], which provide a basis for understanding our approach and
proving its optimality and near-optimality.

2.2.1 Basic Definitions. Given a (directed or undirected) graph G = (V, E) and
asubset A C V, the induced subgraph by Ais G(4) = (A, E(A)), where E(4) = {(=,
y) € E|z,y € A}. Asubset A CV of r nodes is a clique or r-clique if it induces a
complete subgraph. A clique is a mazimal clique if it is not contained in any other
clique.

Given an undirected graph G = (V| E) with positively integral node weights
w :V — IN, an interval coloring a of G maps each node x onto an interval I,
of a real line of width w(z) so that adjacent nodes are mapped to disjoint inter-
vals, i.e., (z,y) € E implies I, NI, = (. It is well-known that interval coloring is
NP-complete [Garey and Johnson 1979]. The total width of an interval coloring «,
Xa(G; w), is
|Ugey Iz|l. The chromatic number x(G;w) is the smallest width used to color
the nodes in G. The cliqgue number is:

w(G;w) = max{w(K) | K is a clique of G} (1)

which is the weight of a heaviest clique.
As a result, the following relation always holds:

x(G;w) = w(G;w) (2)

2.2.2 Interval Coloring vs. Acyclic Orientation. Let G= (V| E) be an undirected
graph. An orientation of G is a function « that assigns every edge a direction such
that a(z,y) € {(z,y), (y,2)} for all (z,y) € E. Let G, be the digraph obtained by
replacing each edge (x,y) € E with the arc «(x,y). An orientation « is said to be
acyclic if G, contains no directed cycles.

Every interval coloring « of G induces an acyclic orientation o’ such that (z,y) €
o' if and only if I, is to the right of I, for all (x,y) € E. Conversely, an acyclic
orientation a of G induces an interval coloring «’. For a sink node z (without
successors), let I = [0,w(z)). Proceeding inductively, for a node y with all its
successors already colored, let I, = [t, +w(y)), where t is the largest endpoint of
their intervals.

In an optimal coloring, the chromatic number x(G;w) is related to the notion of
heaviest path in an acyclic orientation of G as follows:

X(Giw) = min (max w(p)) ®3)
where A(G) is the set of all acyclic orientations of G, P(«) the set of directed paths
in an orientation o € A(G) and w(u) the total weight of the nodes of a directed
path p € P(«). In other words, the orientation whose heaviest path is the smallest
induces an optimal coloring. The heaviest-path-based formulation stated in (3) is
exploited in the development of our coloring algorithm for stream IGs.

2.2.3 Comparability Graph. For the purposes of optimizing utilization of SRF,
we examine below a class of graphs for which interval coloring can be found opti-
mally in polynomial time.

Definition 2.1. An orientation « of an undirected graph G is transitive if (z, z) €
G whenever (z,y), (y,2) € Ga.

Definition 2.2. An undirected graph G is a comparability graph if there exists a
transitive orientation of G.

A transitive orientation is acyclic but not conversely, and there does not always
exist a transitive orientation for an arbitrary graph. For example, a chordless cycle
with an odd number of edges, as shown in Figure 4, is not a comparability graph.

Fig. 4: A graph that is not a comparability graph.

Let « be a transitive orientation of a comparability graph G. Due to transitivity,
every path in G, is contained in a clique of G. In particular, the heaviest path in G,
equals to the heaviest clique in G, i.e., x(G;w) < xa(G; w) = w(G; w). By further

Go G1 G2 Gs GolG1,G2,Gsl

Fig. 5: An illustration of Definition 2.4 (n = 3).

applying (2), we conclude that x,(G; w)=x(G; w) =w(G; w) holds, as summarized
below.

THEOREM 2.3. [Golumbic 2004] For any transitive orientation o of G, the in-
terval coloring induced is optimal.

Definition 2.4. Let Gy be a graph with n nodes vy, vs,...,v, and G;,Gs,...,G,
be n disjoint graphs. These graphs may be directed or undirected. The composition
graph G = Gy[G1,Ga,...,Gy], which is illustrated pictorially in Figure 5, is formed
formally as follows: First, replace v; in Gy with G;. Second, for all 1 < i,j < n,
make each node of G; adjacent to each node of G; whenever v; is adjacent to v; in
Go. Formally, for G; = (V;, E;), we define G= (V, E) as follows:

V=Ui<i<nVi
E=Ui¢i<nEi U{(z,y) | x € Vi;,y € V; and (v;,v;) € Ep}

THEOREM 2.5. [Golumbic 2004] Let G = Gy[G1,Gze,...,Gn], where all G;’s are
disjoint undirected graphs. Then G is a comparability graph if and only if all G;’s
are comparability graphs.

Furthermore, the problems of recognizing a comparability graph G = (V, E)
and finding a transitive orientation of G can both be done in O(d- | E |) time and
O(] V| 4| E|) space, where ¢ is the maximum degree of a node in G. Based on
«, an optimal coloring of G can be obtained in linear time [Golumbic 2004].

3. PROBLEM STATEMENT

This work focuses on optimizing utilization of the SRF. So only stream programs
are relevant. Given a stream program, this paper presents an algorithm that assigns
the streams in the program to the SRF so as to minimize the total amount of space
taken by the streams. Such an algorithm can then be used by a stream compiler to
produce a final SRF allocation by combining with live range splitting, if necessary.

The SRF allocation problem can be naturally solved as an interval-coloring prob-
lem as presented in Section 2.2, allocating SRF spaces to stream live ranges in an IG
is represented by an assignment of intervals to the nodes in the IG, and minimizing
the span of intervals amounts to minimizing the required SRF size.

Let us see why our comparability graph coloring based algorithm could achieve
better SRF allocation than First-Fit, which is the approach adopted in the state-
of-the-art stream compilers. First-Fit places the streams in an IG in a certain
order. There are two popular choices, denoted First-Fit-1 and First-Fit-2. First-
Fit-1 processes streams in decreasing order of stream sizes, which is the heuristic

used in [Das et al. 2006]. First-Fit-2 processes streams according to when their
live ranges begin and then what their stream sizes are. First-Fit heuristics are not
sensitive to the structure of an IG thereby resulting in SRF fragmentation. We
examine this with two simple programs shown in Figure 6(a) and Figure 7(a), with
their dataflow graphs depicted in Figure 6(b) and Figure 7(b), respectively.

Let us consider the first example first. Figure 6(c) shows the SRF allocation
for the program in Figure 6(a) under First-Fit-1. The streams Ss, S; and Sy are
allocated first because they are the heaviest, followed by Sg, S5 and S3, resulting
in poor SRF utilization. In contrast, based on the IG and the assigned transitive
orientation in Figure 6(f), the optimal SRF allocation found by our algorithm is
shown in Figure 6(e). The gap between the two is 32 (15.4%) but can be larger in
general. Let us consider the second example. Figure 7(c) shows the SRF allocation
for the program given in Figure 7(a) under First-Fit-2. The streams S; and S
live at kernel 1 are allocated before S3 and Sy. Si, which is heavier than Sy, is
allocated first followed by So. However, since S5 is also live in kernel 2, S3, which
is heavier than S1, can only be placed after Sy. Similarly, Sy, which is heavier than
S1 + S2, can only be placed after Ss, resulting in SRF fragments. In contrast, the
assigned transitive orientation of the IG and the allocation found by our algorithm
are shown in Figures 7(f) and 7(e). The gap between the two allocations is 24
(30%). So there is a need to look for an optimal solution efficiently in practice.

As described in Section 2.2, there exists one-to-one correspondence between find-
ing an interval coloring and finding an acyclic orientation for a weighted graph.
For example, the acyclic orientation « corresponding to the allocation found by
First-Fit-1 in Figure 6(c) is shown in Figure 6(d). It is not transitive since (S5, Sg),
(S6,52) € Ga, but (S5,52) ¢ G,. Similarly, the acyclic orientation « shown in
Figure 7(d) is also not transitive since (S4, S3),(S3,52) € Go but (S4,S2) ¢ Ga.
However, the acyclic orientations 8 in Figure 6(f) and Figure 7(f) corresponding
to the optimal allocations achieved by our algorithm are transitive. Therefore,
the IGs of the programs shown in Figure 6(a) and Figure 7(a) are both compa-
rability graph. Figure 6 and Figure 7 also illustrate the relationship between the
chromatic number and the heaviest path with respect to an acyclic orientation.
In Figure 6(d), the heaviest path is S3 — S5 — S¢ — S2 with a total weight of
Xa(G; w) = 208. In Figure 6(f), the heaviest path is S¢ — S2 — S3 with a total
weight of xg(G; w) = 176. In Figure 7(d), the heaviest path is S5 — S, with a total
weight of 56. In Figure 7(f), the heaviest path is Sy — S3 — Sy — 57 with a total
weight of 80.

Our IG-based approach assumes that streams are live throughout the entire ex-
ecution of any kernel that operates on them, and it is flexible enough to accommo-
date pre-pass optimizations applied earlier to a program by the compiler such as
live range coalescing [Murthy and Bhattacharyya 2004] and live range splitting [Das
et al. 2006].

4. COMPARABILITY GRAPH COLORING SRF ALLOCATION

Section 4.1 describes our key insight drawn from a careful analysis of the structure
of stream IGs: a large number of stream IGs are comparability graphs, enabling
their optimal colorings to be found in polynomial time. In Section 4.2, we turn

10

/Iweights:

11'S1:88; S,:104;

/1 S3:165 S4:72;

/1 S5:32; S4:56
kernel('1', Sy, Ss, S3);
kernel('2', Sy, Ss, Se);
kernel('3', S, S¢, S1);

(a) Program (with (b) Data flow
loads/stores omitted)

2]
=
=
\ 4

——un],
GRERE
-
-

1

[5]
5

Kk

~
(=)
o) B B

(d) The acyclic orientation
(c) Allocation by First_Fit_1 corresponding to the
allocation in (c)

. Ss

k1 3| 5 1

3] 5 4 6 i
S
3 2 6 i 2 S,

(f) The acyclic/transitive
(e) The optimal allcation orientation corresponding
to the allocation in (e)

Se

—————],
|22]
I =
=

Fig. 6: An example demonstrating the superiority of our algorithm over First-Fit-1.

this insight into a procedure that can find optimal or near-optimal colorings for a
well-structured media and scientific application when its stream IG is decomposable
into a set of comparability graphs plus a special subgraph. There are two cases,
depending on the structure of this subgraph. In Section 4.2.1, we consider the
case when the subgraph is a forest, which is trivially a comparability graph. In
Section 4.2.2, we consider the general case when the subgraph is an arbitrary graph,
which will be completed into a comparability gragh.

4.1 Optimal Colorings of Comparability Stream IGs

In stream programs with producer-consumer locality but little global data reuse,
the live ranges of streams are also local. A typical loop in such a program consists of
a series of kernels, each producing intermediate streams to be consumed by the next
kernel in sequence. We show below that if a stream program can be characterized
as a pipeline in which each stream produced is consumed by the next actor in
the pipeline. Formally, all stream live ranges in a stream IG do not span across
more than two kernel calls, then the IG is a comparability graph and its optimal

11

/Iweights:

/] S1:16; S,: 8;
Vi 53:24; S4:32; S S, S Sy
kernel('1', Sy, Sy);
kernel('2', S, S3);
kernel('3', S3, Sq);

(a) Program (with (b) Data flow
loads/stores omitted)

sy,
2]
=
=
A 4

1
1 GBS ‘\‘/\.

K 3 4 i S, S4

(d) The acyclic orientation
(c) Allocation by First_Fit_2 corresponding to the
allocation in (c)

[1 [2] S S;

=

E SRF >
2] 1] S, Ss
N
4 3 i S: Sy

(f) The acyclic/transitive
(e) The optimal allcation orientation corresponding
to the allocation in (e)

Fig. 7: An example demonstrating the superiority of our algorithm over First-Fit-2.

coloring can thus be found in polynomial time. This result is proved easily by a
straightforward application of Theorem 2.5.

Figure 8 shows the IG for a series of three kernels, where no live range is longer
than two kernel calls. In particular, ¢ is live from kernel 1 to kernel 2, u,v and w
are live in kernels 2 and 3, and the remaining streams are only live at the kernels
where they are operated on. In this example and the proofs of our results, whether
a stream is an input or output is irrelevant.

Let Geg be the IG built from a loop containing N, kernels (numbered from 1)
such that each live range in G, is not longer than two kernels. We partition all live
ranges in G.e into the following 2N, sets:

Ky, K2, Ko, Ko3, K3, ..., K(N.,~1)Noys KN s KN 1 (4)

where K; consists of all streams accessed, i.e., live only in kernel i, and Kj(;qg1) all
streams live only in kernels ¢ and ¢ 1; Here we define i ¢ to be (i+c¢—1)%Neg +1
and i S c to be (1 —c—1)%Neg + 1.

As shown in Figure 9, all streams accessed in a kernel invoked in a loop form a

12

Load(..., p);

Kernel('1', p, q);

Load(..., r);

Load(..., s);

Load(..., t);

Kernel('2', q, 1, s, t,u, v, w);
Load(..., X);

Kernel('3',u, v, W, X, y);
store(y, ...);

Kernel 1 Kernel 2 Kernel 3
Fig. 9: Kernel-induced cliques for Figure 8.

maximal clique in the stream IG of the loop. Furthermore, the following result is
obvious.

LEMMA 4.1. The streams in Koy U K; U Kyig1y form a mazimal clique for
every kernel i.

Our main results are stated in two theorems, Theorem 4.2 applies when N, is
even and Theorem 4.3 applies when Ky 1 = (0, i.e., when cross-iteration reuse is
absent. If neither condition holds, we can apply loop unrolling once to produce a
loop with an even number of kernels so that Theorem 4.2 can be used. For stream
processors, unrolling a loop that is executed on the host does not affect negatively
program performance (since code size expansion for the host is not a concern).

THEOREM 4.2. If N¢g is even, Geg is a comparability graph.

PROOF. Let us assume first that all sets listed in (4) are not empty. By con-
struction, the live ranges in every such a set are equal. Thus, the induced subgraph
of Geg by Ki (Kj(ig1)) is a clique, denoted G; (Gi(ig1)). So we have the following
2N¢e induced cliques:

G1,G12,92,G23, 03, -, O(Noy— 1) Negs INegs INeg1 (5)

In addition, for any two sets K and K’ listed in (4), either every live range € K
interferes with every live range 2’ € K’ or there is no interference between the live
ranges in K and those in K’.

By Theorem 2.5, in Gg, if we let G; (G;ig1)) “collapse” into one node, identified

13

(b) Two orientations

Fig. 10: Two transitive orientations of Gy (Ncg = 4).

by K; (Ki(i@l)), and denote the resulting “decomposed graph” by Gj, we have:

gcg == gO[Qla G127 G27 sty chg’ chgl]

A clique is a comparability graph. Thus, all G;’s given in (5) are comparability
graphs. Then, by Theorem 2.5, G., is a comparability graph if we show that
Gy is. To achieve this, by Definition 2.2, it suffices if we can find a transitive
orientation of Gy. As shown in Figure 10, there are exactly two different transitive
orientations since Kz, Ka3, ..., K1 must alternate to be a source or a sink. To
see this, consider Kj(qg1), which is adjacent to K(io1yi, Ki, Kig1 and Kgg)ig2)-
Suppose the orientation assigned to edge (K;, Kj(ig1)) is K; — Kj(ig1). Since K;
is not adjacent to K;g1, the orientation of edge (Ki(ie}l)7Ki€91) is forced to be
Kig1 — K;ie1).- Otherwise, Gy cannot be transitive. Similarly, the orientation
of (Kim1), K(io1)(ime2)) must be Kg1)ie2) — Kie1). Since the orientation of
(Ki(i@1)7Ki@1) is Ki@l — Ki(ie)l)v the orientation of (K(iel)iaKi(i@l)) can Only
be Kic1y — Kiugr) as Kie1): is not adjacent to Kjgi. Therefore, once the
orientation of (K, Kj(g1)) is assigned, the orientations for all the other incident
edges of K1) are identically assigned, making K;(;g1) either a source or a sink.
Inductively, Ki2, Ka3, ..., Kn,1 must alternate to be a source or a sink. This is
possible since N is even.

Finally, if any set listed in (4) is empty, Go is still a comparability graph since
every induced subgraph of a comparability graph is a comparability graph. O

THEOREM 4.3. If Kn 1 = 0, Geg is a comparability graph.

PROOF. A transitive orientation of G, always exists since the“ring” as shown in
Figure 10 is broken at Kn,,1- O

In fact, Theorem 4.3 holds whenever K;(;q1) = 0 for some i.

Let us illustrate Theorem 4.3 in Figure 11 for the IG shown in Figure 8. Be-
ing a comparability graph, its optimal coloring is guaranteed. The optimality is
independent of the node weights in the graph.

The facts stated in Lemmas 4.4 and 4.5 given below are exploited in the devel-
opment of our algorithm for coloring stream IGs in Section 4.2.1.

LEMMA 4.4. Suppose Geg is a comparability graph. Let ggg be an induced sub-
graph of Geg. If Qég is connected, then it has at most eight different transitive
orientations.

Proor. If ggg is connected, there must exist two kernels ¢ and j such that
Kiio1), Kao)e2) - - - KGo2)jer), Ko, are in ggg. and that these are the only

14

K Kz

Fig. 11: Optimal interval coloring of the stream IG given in Figure 8 (with the weights of p, ¢ and
r being 1, the weights of s,t,u and v being 2 and the weights of w,z and y being 3). To avoid
cluttering, in the graph labelled by Go[G1,G12, G2, G23, G3], a thicker arrow directing from a clique
K to a clique K’ symbolizes all directed edges (z,y), for all z € K and all y € K'.

sets containing two-kernel long live ranges listed in (4) in ggg. Due to space limi-
tation, we do not enumerate all the cases. Instead, we discuss only the case with
the largest number of transitive orientations. In this case, K; = K; =0, j —i > 2.
In a transitive orientation of G¢,, the middle j — i — 2 sets in the above list must
alternate to serve as a source or a sink. So there are only two possibilities. In
either case, edge (K1), Kig1) may have at most two orientations, and similarly,
edge (Kjo1, K(jo1);) may have at most two orientations. So there are at most

2 x 2 x 2 = 8 different transitive orientations. O

LEMMA 4.5. Let Gy be a comparability graph. If all sets in (4) are nonempty,
Geg has two transitive orientations.

Proof. G¢g is connected and then apply Lemma 4.4. O

4.2 A General Algorithm for Coloring Stream IGs

In some scientific applications (amenable to stream processing), the presence of tem-
poral reuse in a few streams could make their live ranges longer than two kernels. In
some media applications, there are also occasionally a few long producer-consumer
live ranges. Furthermore, some live ranges may be extended by the programmer or
a pre-pass compiler optimization in order to overlap memory transfers and kernel
execution. Such stream IGs may or may not be comparability graphs. In this sec-
tion, we generalize our work described in the preceding section to deal with these
stream IGs, resulting in an SRF allocation algorithm, CGC, given in Algorithm 1.

The basic idea is to partition the node set V' in G = (V, E)) into the following two

15

Algorithm 1 Coloring an arbitrary stream IG.

procedure CGC
Input: G = (V,E) with V ={V,,Vi} and E = {E,, E;, Es}
Output: An acyclic orientation « of G
if a transitive orientation « of G can be found then
return «
end if
if G(V1) is a forest then
a = FOREST_CGC(G)
else
a = GEN_CGC(G)
: end if
: return «
: end procedure

e e =

subsets:

Vs={v € V' | v’s live range spans at most 2 kernels}
Vi={v € V' | v’s live range spans more than 2 kernels}

Thus, E is partitioned into the following three subsets:

E, = {(z,y) e E|z e V,,yeV}
E ={(z,y) eE|xeV,yeV}
Eq = {(z,y) € E|xcV,ycV}

By Theorems 4.2 and 4.3, the subgraph G(V5) induced by V; is a comparability
graph. Our key observation, from both the characteristics of stream applications
and the codes of the benchmarks (Section 5), is that the long live ranges in stream
IGs are sparse and tend not to be live simultaneously. As a result, in most cases,
the subgraph G(V}) is a forest of disjoint trees.

As shown in Algorithm 1, if G is a comparability graph (Definition 2.2), then
by Theorem 2.3, an optimal coloring, represented by a transitive orientation, is
returned immediately (lines 4 — 6). Otherwise, CGC works by distinguishing the
two cases depending on if G(V]) is a forest or not, which are discussed separately
in Sections 4.2.1 and 4.2.2.

4.2.1 G(V;) Is a Forest. As discussed earlier, the long live ranges in stream
applications, i.e., in G(V}) tend to form a forest of disjoint trees. We discuss below
how FOREST_CGC given in Algorithm 2 handles such commonly occurring cases in
practice.

As illustrated in Figure 12, V; consists of two long live ranges m and p: m is
live from kernel 2 to kernel 5 and p is live from kernel 3 to kernel 6. Since both
streams interfere with each other, the forest G(V;) has only one tree, which is a line
connecting m and p.

THEOREM 4.6. A forest is a comparability graph. Let the number of trees in
the forest G(V;) be trees(G(V;)). Then G(V;) has a total of 2te=(9M)) transitive
orientations.

Proof. A forest consists of disjoint trees. Thus, a forest is a comparability graph

16

Load(...,K);
Kernel('1',k, 1);
Load(...,m); n
Load(...,n);
Kernel('2',1, m, n, 0);
Load(...,p);
Load(...,q);
Kernek'3'9 o,p;q, l');
Load(...,s);
Kernel('4',r, s, t);
Load(...,u);
Kernel('5',m, t, u, v);
Load(..., w);
Kernel('6', p, v, w, X);
Kernel('7',x,y);

D ‘.
V@7) NN
74‘}‘\8
NG

SNy

r
G(Vs) G(Vp

Fig. 12: A program with two long live ranges m and p.

if and only if a tree is. A tree G = (V, E) is bipartite [West 1996]. So V can be
partitioned into two disjoint sets V' = S+ .55 such that every edge has one endpoint
in S7 and the other in S;. It is easy to obtain two transitive orientations of G by
orienting all the edges from S to Ss, and vice versa, as shown in Figure 13. Thus,
a tree is a comparability graph. So does a forest.

° a e f 8 F f £
b c d
; ¢c d h i b ¢ d h i
h i
Fig. 13: Two transitive orientations of a tree.

A tree with more than one node has exactly two transitive orientations [West
1996], as shown in Figure 13. Thus, G(V;) has a total of 2te=s(9(V1)) transitive
orientations. O

In Section 4.2.1.1, we describe the algorithm behind FOREST_CGC for coloring
commonly occurring stream IGs. In Section 4.2.1.2, we argue that why it tends to
give optimal and near-optimal colorings in practice.

4.2.1.1 Algorithm. As shown in Algorithm 2, if G is not a comparability graph
and G(V;) is a forest, in which case, an optimal or near-optimal coloring, represented
by an acyclic orientation, is found in three steps, motivated by (3). Recall that
trees(G(V})) be the number of trees in G(V;). The basic idea is to enumerate the set
O; of all transitive orientations of F, i.e., G(V;) (in Step 1) and enumerate the set
O, of all 2trees(9(V1)) transitive orientations for the forest £, i.e., G(V}) (in Step 2).
As a result, for every possible combination o, X 0; in O, x O;, a unique orientation
to Eg is determined (in Step 3). Among |O,| x |O;] acyclic orientations of G found,
the one whose heaviest (directed) path is the smallest is returned (lines 12 — 14).

17

Algorithm 2 Coloring when G(V}) is a forest.

1: procedure FOREST_CGC

2. Input: G = (V, E) with V = {V.,Vi} and E = {E., E;, Ey/}

3: Output: An acyclic orientation « of G

4: Xmin(G) = +0

5: Let O, be the set of all transitive orientations of Fs, i.e., G(V5)
6: Let O; be the set of 27°=(9(V1) transitive orientations of E;, ie., G(V))
7: for each orientation os X 0, € Os x O; do

8: for (z,y) € Es, where x € Vs and y € V; do

9: Direct an arc from y to z (z to y) if y is a source (sink)
10: end for
11: Let a be the acyclic orientation of G thus found
12: if xa(9) < Xmin(G) then
13: Xmin (g) = Xa (g)
14: Record the a as the current best
15: end if
16: end for

17: return «
18: end procedure

We consider only the transitive orientations in G(V;) and G(V}) in order to reduce
the underlying solution space and the width of the final interval coloring found.

In Step 1 (line 5), the set O, of all transitive orientations of Ej, i.e., G(V5) is
found. In real code (the benchmarks described in Section 5), G(V;) is generally con-
nected, resulting in exactly two transitive orientations by Lemma 4.5 as illustrated
in Figure 10. There can be only a limited number of transitive orientations when
G(Vs) is disconnected since the number of transitive orientations of each connected
subgraph is bounded by Lemma 4.4.

In Step 2 (line 6), we find all 2tes(9(V))) transitive orientations of the trees in
G(V), Le., Er.

In Step 3 (lines 7 — 10), for each orientation os x 0; € Qs x O; (line 7), a unique
orientation of Fy is fixed (lines 8 — 10). For each edge (z,y) € Ey, where x € Vj
and y € V}, its orientation is assigned based on the property of y. From Figure 13,
it can be easily observed that y is either a source or a sink under o;. If y is a source,
direct the edge from y to x, namely, maintain y’s property; otherwise, direct the
edge from z to y.

Every orientation « of G found in line 11 is acyclic. This can be reasoned about
as follows. No directed path confined to G(V;) can be a cycle since G(Vs) is a
comparability graph. In addition, no directed path that contains a node in G(V})
can be a cycle since the node must be either a source or a sink (Figure 13).

FOREST_CGC is polynomial in practice. For comparability graphs, their recogni-
tion and optimal colorings are polynomial. In addition, G(V;) is mostly connected,
resulting in a few orientations (Lemmas 4.4 and 4.5). Finally, otrees(9(V1)) s small
since G(V;) has a few trees.

Let us apply FOREST_CGC to the program given in Figure 12. In lines 4 — 6 in
Algorithm 1, G is detected to be a comparability graph. Its optimal coloring is found
and returned immediately. Nevertheless, let us use this example to explain how

18

2N
PR

(b)

Fig. 14: Two orientations for the program in Figure 12.

FOREST_CGC works. G(V;) is connected and happens to have only two transitive
orientations. As G(V;) has only one tree, there are two orientations. So there are
a total of four orientations, two of which are shown in Figure 14. The one in
Figure 14(a) will be the solution found since it is transitive.

4.2.1.2 Analysis. We now argue that FOREST_CGC finds optimal colorings for
most stream programs. We show further that non-optimal colorings occur only
infrequently and are near-optimal in the sense that they are only larger by the
sum of one or two stream sizes in the worst case. Our claim is validated in our
experiments in Section 5.

Recall that x(G;w) denotes the chromatic number of G. In FOREST_CGC, « is
the best acyclic orientation found and x,(G;w) is its width. Let P, be the heaviest
directed path in G, of the following form:

Pa =def V1,V2,...,Unm (6)

According to (3), we have x(G;w) = w(P,). In addition, w(P,) is the smallest
among the heaviest directed paths in all 2t¢(9(V1)) orientations of G found in line
14 of FOREST_CGC given in Algorithm 2.

Definition 4.7. FOREST_CGC is optimal for G if xo(G;w)=x(G;w).

All results presented below in this section are formulated and proved based on
reasoning about the structure of P,, which is uncovered in Lemma 4.8, resulting
in four cases to be distinguished, and Lemma 4.9. In two cases, FOREST_CGC is
optimal (Theorem 4.10). In the remaining two cases, FOREST_CGC is also optimal
for many stream IGs. Non-optimal solutions « are returned only infrequently when
some strict conditions are met, and moreover, these solutions are near-optimal since
Xa(G;w) — x(G; w) is small for reasonably large stream IGs (Theorems 4.11 and
4.12).

LEMMA 4.8. Only v1 or vy, may appear in G(V;).

PROOF. Follows from the fact that for every orientation «a of G found in line 11 of
FOREST_CGC, every node in G(V}) is either a source or a sink under a. O
This lemma implies that all nodes in P, are contained in G(V;) except its start
and end nodes.
Let K; = K(io1)i UK; U Kj(jp1). By Lemma 4.1, K; is a maximal clique in G(V;)
(as illustrated in Figure 9).

19

LEMMA 4.9. The nodes of P, contained in G(Vy) form a clique KC; for some 1,
where ’CZ = K(i@l)i U Kz U K’i(i@l) .

PRrROOF. «a found by FOREST_CGC is a transitive orientation of G(V;). Without

loss of generality, suppose the nodes of P, in G(V;) are v, vs, ..., Um_1.
First, there cannot exist two different nodes v; and v; in v2,vs, ..., Vm—1, Where
i < j, such that v; € K; and v; € K;. Otherwise, since {v;,...,v;} C P, is a

directed path in G, and « is transitive, then (v;,v;) € G(Vs). However, (v;,v;) ¢
G(V;) because v; and v; do not interfere with each other. A contradiction.

Second, there cannot exist three distinct nodes v;, v; and vy in va,vs, ..., Vm—1,
where ¢ < j < k, such that v; € Kj(ig1), vj € Kj(je1) and vg € Kyrg1)- Otherwise,
since {v;,...,v;,...,v05} C P, is a directed path in G, and « is transitive, then
(vi,vr) € G(Vs). However, (v;,vg) ¢ G(Vs) due to v; and v do not interfere with
each other (the only exception is when N, = 3, and K3; # (), however, in that
case, according to Theorem 4.2 and Theorem 4.3, the loop will be unrolled once
beforehand). A contradiction.

Third, it is not possible for vo, vs, . .., v,;,—1 to be contained in two “non-consecutive”
Kic1yi and Kj(jg1), where j # i and i©1 # j@ 1. Otherwise, we would end up in
a situation that contradicts to the fact just established (in the second step).

So va,v3,...,Uy,_1 are all contained in IC; for some 1.
Finally, KC; is a clique, which must be formed by vy, vs,...,vy_1 since P, is the
heaviest path found by a. a

There are four cases depending on the structure of P,:

—Case P1. P, is contained in G(V5)

—Case P2. P, is contained in G(V})

—Case P3. vy, v, are both contained in G(V})
—Case P4. Either v; or vy, is in G(V}) (but not both)

THEOREM 4.10. FOREST_CGC is optimal in Cases P1 and P2.

PrOOF. In Case P1, G(V) is a comparability graph. Thus, P, must be contained
in a clique K in G(V5) (and also in G). This means that x,(G;w) = w(P,) = w(K).
Since w(K) < x(G;w), we must have x,(G;w) < x(G;w). So « is optimal. The
proof for Case P2 is similar since the forest G(V}) is also a comparability graph. O

THEOREM 4.11. In Case P3, we have xo(G;w) — x(G;w) < w(vy) + w(vy),
where the equality holds if and only if vo,vs,...vm_1, happen to form the heaviest
cliqgue K in G such that x(G;w) = w(K).

ProOOF. By Lemma 4.8 and Lemma 4.9, we have x,(G;w) — x(G;w) < w(vy) +
w(vm). We now prove the “if” and “only if” for the equality. The “if” part is
true since xo(G; w) = w(Py) = w(v1) + w(vy) + w(K) = w(vy) + w(vy) + x(G;w).
The “only if” part is true due to Lemma 4.9 and the given hypothesis x,(G;w) —
X(G;w) = w(v1) + w(vm). H

An analogue of Theorem 4.11 for Case P4 is given below.

THEOREM 4.12. In Case P/, suppose that v1 is contained in G(v;) but v, is
not. Then xq(G;w) — x(G;w) < w(vy), where the equality holds if and only if
V2,3, . . . Um, happens to form the heaviest clique K in G such that x(G; w) = w(K).

20

Algorithm 3 Coloring when G(V}) is not a forest.

1: procedure GEN_CGC

2: Input: G = (V, E) with V ={V,,Vi} and E = {E,, Ei, Eq}
3: Output: An acyclic orientation « of G

4: G’ = (V, E’) = Find_Max _Forest_Subgraph(G)
5: o/ = FOREST_CGC (G")

6: Let B,, = E — F’', where E,, C E,

7: Xmin(G) = 400

8: Let O,, be the set of 21¥7! orientations of Ey,

9: for each orientation o,, € O,, do
10: Let o = o’ U 0,, be an orientation of G
11: if a is acyclic then
12: if xa(G) < Xmin(G) then
13: Xmin(g) = Xa (g)
14: Record the a as the current best
15: end if
16: end if
17: end for
18: Output: «
19: end procedure

[\~
o

: procedure Find_Max_Forest_Subgraph

21: Input: G = (V, E) with V ={V,,V;} and E = {E,, E;, Eq }
22: Output: a subgraph G’ of G, such that G'(V}) is a forest

23: Let Giy = (V,, E}) be a maximum spanning forest of G(V})
24: Let ' = Es + Eq + E|

25: Let G’ be the subgraph of G formed by V and E’

26: return G’

27: end procedure

4.2.2 G(V;) Is Not a Forest. In the rare cases when G(V}) is not a forest, GEN_CGC
given in Algorithm 3 first finds a subgraph G’ of G, such that G’(V}) is a maximum
spanning forest of G(V;), and then invokes FOREST_CGC to obtain the optimal ori-
entation o of G’ (lines 4 — 5 in Step 1). Then GEN_CGC enumerates the set O,, of
all 2/Pm| orientations for the edge set E,, C E; (lines 6 — 8 in Step 2). As a result,
for every o,, € O,,, combined with o/, an orientation of G is determined. Among
21Em| orientations of G found, the acyclic one whose heaviest (directed) path is the
smallest is returned (lines 9 — 18 in Step 3).

GEN_CGC is polynomial in practice. Find_Max_Forest_Subgraph can be done in
O(| Vi | + | E;|) time. An orientation can be determined to see if it is acyclic or
not in O(] V | + | E |) time by the algorithm for topological sorting [Kahn 1962].
Finally, 2/%m| is small since | E; | is small because | V; | is very small, and E,, C Ej.
According to our experiments described in Section 5, | E,, | is mostly smaller than
10, with a maximum value of 13.

Figure 15(a) shows a stream program with a series of six kernels. Its IG is
depicted in Figure 15(b). V; consists of three long live ranges ¢, e and f: ¢ is live
from kernel 1 to kernel 5, e is live from kernel 2 to kernel 6, and f is live from
kernel 2 to kernel 5. Since all streams interfere with each other, the subgraph G(V})
induced by V; is a clique as shown in Figure 15(d) but not a forest. Let us apply

21

Load(..., a);

Load(..., b);

Kernel('1', a, b, ¢);

Load(..., d);

Load(..., e);

Kernel('2', d, b, e, f); G G(Vs) GV
Load(..., g); (b) (c) (d)
Kernel('3', g, h);

Load(..., j);

Kernel('4', j, h, k); £
Load(...,1); ./.
Kernel('S', 1, k, m, f, ¢); ¢

Load(..., p);

Kernel('6', p, m, e);

Em
(2)

()

Fig. 15: A program with three long live ranges ¢, e and f, and G(V}) is not a forest.

GEN_CGC to the IG given in Figure 15(b). In line 4, the subgraph G’ of G computed
is depicted in Figure 15(e). There is only one edge (c, f) absent: G'(V}) is shown
in Figure 15(f) and E,, is shown in Figure 15(g). In line 5, the optimal orientation
o' of G' is computed by FOREST_CGC. Next, in lines 8 — 18, the set O,, of all
21Em| = 2 orientations for E,, is enumerated. Combined with o/, the 2/Fml = 2
orientations of G are induced, and from which the optimal one is returned.

5. EXPERIMENTS

Research into advanced compiler technology for stream processing is still at its in-
fancy. There are presently no standard benchmarks available. Table I gives a list of
13 media and scientific applications available to us for the FT64 stream processor.
NLAG-5 is a nonlinear algebra solver for two-dimensional nonlinear diffusion of hy-
drodynamic. QMR is the core iteration in the QMRCGSTAB algorithm for solving
nonsymmetric linear systems. LUD is a dense LU Decomposition solver. Viterbi
implements the Viterbi decoding algorithm [Viterbi 1967]. Triangle Rendering is
referred to [Rixner et al. 1998]. As shown, the stream IGs in 12 benchmarks are
comparability graphs. Their optimal colorings are guaranteed. The G(V;) for QMR
is a forest as depicted in Figure 16, it is a comparability graph. A transitive orienta-
tion of this comparability graph is shown in Figure 17. For small applications (the
real benchmarks shown above we currently have), either First-Fit or our algorithm
suffices. For large applications, First-Fit can be sub-optimal, as validated below.

In Section 5.1, we demonstrate that CGC can find optimal and nearly optimal
colorings efficiently for a large number of randomly generated stream IGs when
G(V1) is a forest. In Section 5.2, we demonstrate further the effectiveness of CGC
in coloring stream IGs in the rare cases when G(V;) is not a forest.

22

[Benchmark H Source [I1G]
Laplace NCSA C
Swim-calcl SPEC2000 C
Swim-calc2 SPEC2000 C
GEMM BLAS (@]
FFT - C
EP NPB (@]
NLAG-5 - C
QMR - F
LUD - C
Jacobi - C
MG NPB C
Viterbi - C
Triangle Rendering - C

Table I: Media and scientific programs. C (F) marks a stream IG G (G(V})) to be a comparability

graph (forest).

Fig. 17: A transitive orientation for (unrolled) QMR.

51 G(V}) Is a Forest

In this case, FOREST_CGC is invoked. We have implemented an algorithm that
randomly generates the stream IGs that satisfy the stream application character-
istics exploited in the development of FOREST_CGC as discussed in Section 4.2.1.
All random numbers are in discrete uniform distribution generated by unidrnd in

Matlab unless specified otherwise.

There are five steps in building a stream IG G. Step 1 generates the number
of kernels, denoted num_kernel. In Step 2, we obtain the set of short live ranges,
namely G(Vs). For each kernel i, we generate two sets K; and K;(;g1). We generate

23

No Gh G2 G} G2
N]JEJT|NJ]E [T|NJE] [Ea| N[E [En
1 38 | 160 | 1 [213 | 880 | 4 | 113 | 495 | 4 | 177 | 794 1
2 152 | 565 | 2 | 248 | 990 | 4 | 57 | 273 | 1 95 | 368 3
3 122 | 492 | 2 | 220 | 793 | 1 | 149 | 636 | 2 68 | 342 3
4 63 | 265 | 1 | 283 | 1039 | 1 | 173 | 770 | 2 87 | 329 3
5 111 | 449 | 1 | 255 | 1015 | 2 | 54 | 259 | 1 | 116 | 537 3
6 180 | 730 | 4 | 230 | 919 | 6 | 66 | 311 | 2 | 182 | 821 2
7 131 | 522 | 2 | 350 | 1479 | 4 | 177 | 794 | 1 | 137 | 633 2
8 142 | 562 | 1 | 409 | 1836 | 8 | 35 | 150 | 1 | 187 | 742 1
9 91 | 367 | 2| 219 | 875 | 7| 95 | 368 | 3 57 | 303 1
10 21 | 56 | 1| 307 | 1115 | 4 | 68 | 342 | 3 34 | 139 1
11 192 | 746 | 3 | 394 | 1528 | 4 | 87 | 329 | 3 | 164 | 702 6
12 129 | 549 | 2 | 323 | 1342 | 6 | 116 | 537 | 3 | 122 | 491 1
13 80 | 378 | 2 | 273 | 1147 | 7 | 137 | 633 | 2 | 171 | 741 1
14 41 | 151 | 1 | 306 | 1248 | 4 | 187 | 742 | 1 73 | 348 1
15 44 | 159 | 1 | 360 | 1451 | 6 | 57 | 303 | 1 | 123 | 549 | 13
16 116 | 504 | 3 | 208 | 794 | 3 | 183 | 781 | 5 34 | 145 1
17 59 | 216 | 1 | 339 | 1208 | 2 | 34 | 149 | 1 59 | 308 1
18 97 | 334 | 2 | 345 | 1416 | 6 | 119 | 609 | 7 | 150 | 681 3
19 137 | 506 | 3 | 235 | 941 | 5 | 164 | 702 | 6 83 | 408 8
20 114 | 455 | 2 | 308 | 1151 | 3 | 122 | 491 | 1 | 136 | 633 2
21 54 | 238 | 2 | 265 | 1070 | 5 | 171 | 714 | 1 | 172 | 930 | 10
22 110 | 434 | 2 | 392 | 1577 | 5 | 73 | 348 | 1 | 170 | 828 5
23 137 | 498 | 1 | 301 | 1170 | 5 | 123 | 549 | 13 | 116 | 559 1
24 51 | 214 | 2 | 313 | 1167 | 4 | 34 | 145 | 1 | 214 | 1084 | 6
25 216 | 953 | 5 | 399 | 1649 | 9 | 66 | 311 | 2 | 105 | 493 1
26 166 | 711 | 5 | 306 | 1230 | 3 | 150 | 681 | 3 | 170 | 845 5
27 75 | 319 | 2 | 255 | 898 | 2 | 83 | 408 | 8 | 109 | 485 5
28 166 | 664 | 5 | 297 | 1150 | 3 | 136 | 633 | 2 | 159 | 648 1
29 132 | 508 | 2 | 326 | 1203 | 1 | 172 | 930 | 10 | 118 | 557 2
30 167 | 653 | 3 | 292 | 1111 | 2 | 170 | 828 | 5 | 127 | 589 1

Table II: Results for four groups of weighted IG graphs, where N stands for the number of nodes,
E the number of edges, T the number of trees in G(V;), and E; the number of edges which are
not in the spanning forest of G(V}).

one random number in the range [1,3] to represent the number of live ranges in K;
and another random number in [1,3] to represent the number of live ranges in
K;(ig1)- Thus, each kernel has at most nine short live range streams live at the
kernel: three from K(;g1);, three from K; and three from Kj(;g1).

In Step 3, we generate the set of long live ranges, namely G(V;). We generate
a random number p ranging from 1% to 20% to represent the percentage of long
live ranges in G(V;) over num_kernel. Thus, |G(V})| = p X num_kernel. For each
long live range i, we generate a random number, length_i, over [3,6] to represent
the number of kernels spanned by ¢ (longer live ranges should be split) and another
random number over [1, num_kernel-length_i+1] to represent the kernel from which
1 starts to be live.

In Step 4, we keep G if G(V}) is a forest and go back to Step 1 otherwise. In Step

24

5, we generate the stream sizes for all live ranges according to their characteristics
in stream applications. In our experiments, node weights are chosen to have two
different distributions, Distribution U and Distribution L. Distribution U, a discrete
uniform distribution, in this case, node weights are randomly taken from the range
[1,6]. For each program, we modify Distribution I/ to obtain Distribution £ by
simply replacing each stream size w by 2%. In this second case, the fact that some
streams may be geometrically larger than others in a program is explicitly taken
into account. Distribution £ is actually a uniform distribution in the logarithmic
scale.

To test the scalability of FOREST_CGC, we have generated four groups of stream
IGs. Gy, and G, consist of IGs with between 3 to 50 kernels with their node weights
generated using Distributions ¢ and L, respectively. Gz{ and G% consist of larger
1Gs with between 50 to 100 kernels. Each group consists of exactly 30 different IGs
(with their node weights being ignored). For each IG in each group, there are 10
instances of that IG instantiated with different node weights (in Step 5). So each
group consists of 300 different weighted IGs, giving rise to a total of 1200 stream
IGs. Due to space limitation, we include only the results for Group G} and Group
Ga in Table II. The node counts of the graphs in these two groups are shown
in Column 2 and Column 5, respectively, and their edge counts in Column 3 and
Column 6, respectively. The tree counts in the forests G(V}) in these graphs are
shown in Column 4 and Column 7, respectively.

To check the optimality of FOREST_CGC, we have developed a formulation of the
SRF allocation problem by integer linear programming (ILP). We ran the commer-
cial ILP solver, CPLEX 10.1, to find an optimal coloring for each IG. If CPLEX
does not terminate in five hours for an IG G, its optimal coloring is estimated by
(2). So all optimality results about FOREST_CGC reported here are conservative.

300¢
200
100
0 1 1 2 2
GL Gl G2 G2,
B FOREST CGC | 299 298 296 295
O First_Fit_I 262 189 281 191
W First_Fit 2 55 115 38 104

Fig. 18: Optimality of FOREST_CGC and First-Fit for 1200 IGs.

Figure 18 shows that FOREST_CGC obtains optimal solutions in 99% of the 1200
IGs in all four groups. In contrast, the solutions from First-Fit are mostly sub-
optimal, with only 76.9% (First-Fit-1) and 26% (First-Fit-2) of the 1200 IGs being
optimal. These results for Groups G} and Ga are shown in Figures 19 and 20,
respectively. In each figure, the = axis represents the 30 different IGs corresponds

25

to Column 1 in Table II and the y axis depicts the number of optimal solutions
found by FOREST_CGC and First-Fit among the ten different IGs associated with
each IG.

| EFOREST_CGC O First_Fit_1 M First_Fit_2 |
. 10
£
g
£ 5
=3
1=
o0
1 5 9 13 17 21 25 29

Fig. 19: Number of optimal solutions found by FOREST_CGC and First-Fit in 300 weighted 1Gs
from GIE.

| @ FOREST_CGC O First_Fit_l M First_Fit_2 |

5 10 T T T T
£
£
=3
: |
I* 0 Il | | Il Il Il Il Il | | Il Il | Il Il | Il

1 5 9 13 17 21 25 29

Fig. 20: Number of optimal solutions found by FOREST_CGC and First-Fit in 300 weighted 1Gs
from GZQ/[.

The near-optimality of FOREST_CGC is achieved efficiently as validated in our
experiments on a 3.2GHz Pentium 4 with 1GB memory. The longest time taken is
0.2 seconds for an IG with 409 nodes and 1836 edges, in which case G(V}) has 8
trees. For most of the other IGs, the times elapsed are less than 0.05 seconds each.

Let us look at the differences between FOREST_CGC and First-Fit in terms of
their allocation results. For a given weighted IG G, the quality of our solution «
found by FOREST _CGC is measured as a gap with respect to that found by First-Fit
defined as follows:

XFirst—Fit (g7 UJ) — Xa (gv w)
= 7
g2p(9) XFirst—Fit (G; W) @)

where XFirst—rit (G; w) is the optimal solution (i.e., the smallest width required for
coloring G) found by First-Fit and x.(G;w) is the optimal solution from FOR-
EST_CGC.

[Group [<0% [0% [(0%,10%) | [10%,20%) [[20%,30%) |

Gr 1 262 29 7 1
G, 1 189 99 11 0
G 3 278 16 3 0
G% 2 190 106 2 0

Table III: Gaps between FOREST_CGC and First-Fit-1 for 1200 weighted IGs.

26

[Growp [| & | Gy | Gz | Gj |
[Mean gap [0.799% | 1.883% | 0.379% [1.352% |

Table IV: Mean gap between FOREST_CGC and First-Fit-1.

[Group [<0% | 0% [(0%,10%) [[10%,20%) [[20%,30%) |

Gr 1 55 175 61 8
G, 2 114 165 19 0
GZ 2 38 217 40 3
G}, 1 105 179 14 1

Table V: Gaps between FOREST_CGC and First-Fit-2 for 1200 weighted IGs.

[Growp [| G | Gy | GL | Gy |
[Mean gap [5.833% | 3.079% | 5.044% [3.533% |

Table VI: Mean gap between FOREST_CGC and First-Fit-2.

Tables IIT and V show the gaps between FOREST_CGC and First-Fit for the four
groups, G%, G}, G% and G¥,, with 300 weighted graphs in each group. For Table V,
for 69 out of 300 weighted graphs in Group G}, FOREST_CGC achieves a gap of
over 10%. The largest for this set of 300 graphs is 29% for a graph consisting
of 114 nodes and 455 edges. Finally, we observe that FOREST_CGC may perform
slightly worse than First-Fit in six different weighted graphs. The gaps for five of
these graphs are between —5.69% — —2.86% and the gap for the remaining one is
—13.89%. Tables IV and VI demonstrate the mean gaps between FOREST_CGC and
First-Fit for the 1200 weighted IGs from four groups. In general, the gaps depend
on the distribution of the node weights, i.e., the sizes of streams in a program. The
major advantage of FOREST_CGC is that if an IG is a comparability graph, then
the optimal allocation is guaranteed regardless of what its node weights are, and
in addition, even when an IG is not a comparability graph, FOREST_CGC can still
achieve near-optimal colorings as proved in Theorems 4.11 and 4.12 and confirmed
by the experimental data in Figure 18. However, the performance of First-Fit is
sensitive to the structure of an IG and the values of its node weights. For example,
the gap as shown in Figure 7 is 30%.

Let us also examine a counter example for which First-Fit-2 outperforms FOR-
EST_CGC. This IG consists of 63 nodes. In addition, G(V;) has one tree formed by
nodes numbered 62 and 63. All the other nodes represent short live ranges. This
IG is not a comparability graph. FOREST_CGC generates four acyclic orientations
to the IG, as shown in Figures 21(a) — (d) (with some irrelevant nodes and edges
omitted) — (a) and (d) are equivalent and (b) and (c) are equivalent. The heav-
iest directed path in each acyclic orientation is highlighted by bold arrows. The
heaviest directed path in Figure 21(a) or (d) is 62,51, 15, 16,48, 49, 50, 63, forming
a clique (without node 62) with a total weight of 328. The heaviest directed path in
Figures 21(b) or (c) is 39,40, 41,7,8,9,42,43, 44,63, forming a clique (without node
63) with a total weight of 336. So the optimal result achieved by FOREST_CGC is
328. In fact, the optimal orientation is shown in Figure 21(e). The heaviest directed

27

63 62

1,2 34 56 789 10 1L12,13 14 15,16 117,18,19

'® cee
34,3536 37,38 394041424344 45 46,47 48,49,50 51 52

(a)

10 11,1213 14 1516 |17,18,19

34,3536 37,38 39,40,4142,4344 45 46,47 484950 51 52

(b)

63 62

0\ 17,18,19

34,3536 37,38 39,40,4142,4344 45 46,47 4849,50 51 52

63 62

7.8,9

10 1,12,13 14

34,3536 37,38 39,40,4142,4344 45 46,47 48,4950 51 52

34,3536 37,38 394041424344 45 46,47 484950 51 52
(e)

Fig. 21: A counter example.

path is 42,43,44,7,8,9,41,40,39 with a total weight of 288. This is the heaviest
directed path in Figures 21(b) or (c) with node 63 removed, corresponding to the
situation identified in Theorem 4.12. For this IG, First-Fit accidently achieves the
best coloring.

5.2 G(V}) Is Not a Forest

In this case, GEN_CGC is invoked. In order to generate the IGs such that G(V}) is
not a forest, some minor changes are made to the algorithm used in Section 5.1
for generating random IGs. In step 4, when G(V}) is not a forest, we keep rather
than discard the generated IG. In addition, we extend the range of the random
variable p from 1% to 30% to admit more long live ranges. We generate two groups
of IGs in total. G}, and G% consist of IGs with between 3 to 50 kernels. Their
node weights are generated using Distributions ¢/ and L, respectively. Each group
consists of exactly 30 different IGs (with their node weights being ignored). For

28

each IG in each group, there are 10 instances of that IG instantiated with different
node weights. So each group consists of 300 different weighted IGs, giving rise to
a total of 600 IGs. Our experimental reports for these two groups are reported in
Table II. The node counts of the graphs in these two groups are shown in Column
8 and Column 11 and the edge counts are shown in Column 9 and Column 12. The
number of edges which are not in the spanning forest of G(V}) are shown in Column
10 and Column 13.

300

200

100 1

0

Gl Gy
B GEN_CGC 265 254
O First_Fit 1 249 165
W First_Fit 2 40 111

Fig. 22: Optimality of GEN_CGC and First-Fit for 600 IGs.

B GEN_CGC O First_Fit_1 B First_Fit 2
. 10 T T
g
£
E s i
=3
S
=
1 5 9 13 17 21 25 29

Fig. 23: Number of optimal solutions from GEN_CGC and First-Fit in 300 weighted 1Gs from G‘Z’:.

B GEN_CGC [OFirst Fit 1 W First_Fit 2

o 10 T N T
£

g

E s

=3

1=

o0

1 5 9 13 17 21 25 29

Fig. 24: Number of optimal solutions from GEN_CGC and First-Fit in 300 weighted IGs from ngjl.

Figure 22 shows that GEN_CGC obtains optimal solutions in 86.5% of the 600
IGs in two groups. In contrast, the solutions from First-Fit are mostly sub-optimal,
with 69% (First-Fit-1) and 25.2% (First-Fit-2) of the 600 IGs being optimal. The
detailed results are shown in Figures 23 and 24, respectively.

Tables VII and IX show the gaps between GEN_CGC and First-Fit for the two
groups, G:Z and Ga, with 300 weighted graphs in each group. For Table IX, for 68
out of 300 IGs in Group G%, GEN_CGC achieves a gap of over 10%. Tables VIII

29

Group [[<0% [0% [(0%,10%) | [10%,20%)]

G3. 29 | 228 36 7
G}, 32 | 152 112 4

Table VII: Gaps between GEN_CGC and First-Fit-1 for 600 weighted IGs.

[Growp || GF | G |
[Mean gap [0.185% [1.130% |

Table VIII: Mean gap between GEN_CGC and First-Fit-1.

Group [<0% [0% | (0%,10%) [[10%,20%) | [20%,30%) |

G2, 15 40 177 56 12
G3, 21 | 108 152 19 0

Table IX: Gaps between GEN_CGC and First-Fit-2 for 600 weighted IGs.

and X demonstrate the mean gaps between GEN_CGC and First-Fit for the 600
weighted IGs from two groups.

6. RELATED WORK

Stream scheduling introduced in [Das et al. 2006] was earlier implemented in the
StreamC compiler to compile stream programs for Imagine [Das et al. 2006; Owens
et al. 2002]. Stream scheduling associates (if possible) all stream accesses to the
same stream with the same buffer in the SRF. All such SRF buffers are placed in
the SRF by applying some greedy First-Fit-like bin-packing heuristics. The key
idea is trying to position each buffer at the smallest possible SRF address, always
complete the current buffer before starting another, and finally, position the largest
buffers first so that smaller buffers can fill in the cracks. In [Yang et al. 2008], we
focus on identifying and representing loop-dependent reuse between streams.

This paper extends our previous work [Yang et al. 2009] in four ways. First, a
general algorithm that works for any arbitrary stream IG is presented while our
earlier algorithm is limited to stream IGs decomposable into comparability graphs
and a forest. Second, more benchmarks and more experimental evaluation are
included. Third, a counter example is presented showing First-Fit may occasionally
achieve better colorings than our algorithm. Finally, all results are now rigorously
proved.

Fabri [1979] recognized the connection between interval coloring and compile-
time memory allocation. However, interval coloring is NP-complete even when re-
stricted to interval graphs (a class of so-called perfect graphs) with vertex weights
in {1,2} [Garey and Johnson 1979]. Since then, the research of applying interval
coloring to compile-time memory allocation focuses on straight-line programs, i.e,
programs without loops or conditional statements, in which case, their IGs are inter-
val graphs. A number of approximation algorithms have been proposed [Kierstead
1988; 1991; Gergov 1996; 1999; Buchsbaum et al. 2003]. In particular, Kierstead
[1988] presented the first constant-factor approximation algorithm, where the fac-

30

[Growp || GF | Gy |
[Mean gap [[5.690% | 2.840% |

Table X: Mean gap between GEN_CGC and First-Fit-2.

tor is 80. Later he reduced the factor to 6 [Kierstead 1991]. Subsequently, the
factor was further reduced to 5 [Gergov 1996] and then to 3 [Gergov 1999]. Re-
cently, Buchsbaum et al. [2003] has made further progress in reducing the factor
to be 2 + . However, despite these many years of continuous progress, the upper
bound from mathematical analysis remains too conservative to be practically use-
ful in computer science applications. Furthermore, straight-line programs (interval
graphs) are too limited to be directly applied to real-world computer programs.
In addition to compile-time memory allocation, Lefebvre and Feautrier [1998] use
interval coloring to minimize the number of data structures to rename in storage
management for parallel programs. Recently, Li et al. [2007] apply interval coloring
to assign arrays in embedded programs to SPM.

Due to the one-to-one correspondence between interval colorings and acyclic ori-
entations [Golumbic 2004], enumerating acyclic orientations for a given graph is
another way to solve the interval coloring problem. Squire [1998] presented the first
algorithm to generate all the acyclic orientations of an arbitrary graph. Barbosa
and Szwarcfiter [1999] proposed another algorithm with lower complexity. [Stanley
1973] discovered that the number of acyclic orientations in a graph can be derived
from its chromatic polynomial. Unfortunately, performing the acyclic orientation
enumeration for an arbitrary graph is exponential [Linial 1986].

In [Wu et al. 2006], some improvements of [Das et al. 2006] to LRFs (Local
Register Files) allocation in stream processor are presented. The LRFs are register
files near the ALU clusters in a stream processor. Unlike SRF, LRFs play a similar
role as the register files in general-purpose processors.

7. CONCLUSION

This paper presents a new approach to optimizing utilization of the SRF for stream
processors. The key insight is that the interference graphs (IGs) in media and sci-
entific applications amenable to stream processing are comparability graphs or de-
composable into well-structured comparability subgraphs. This has motivated the
development of a new algorithm that is capable of finding optimal or near-optimal
colorings efficiently, thereby outperforming frequently used First-Fit heuristics.

Our IG-based algorithm allows other pre-pass optimizations such as live range
splitting and stream prefetching to be well integrated into the same compiler frame-
work. Finally, although developed for a non-bypassing SRF, our algorithm is ap-
plicable to any software-managed memory allocation for stream applications under
a similar stream programming model.

ACKNOWLEDGMENTS

We wish to thank Yu Deng and Ying Zhang for some helpful discussions on this
work. This research is supported in part by the National Natural Science Foun-
dation of China (61003081), the Funds for Creative Research Groups of China

31

(60921062) and Australian Research Grants (DP0881330 and DP110104628).

REFERENCES

BANAKAR, R., STEINKE, S., LEE, B.-S., BALAKRISHNAN, M., AND MARWEDEL, P. 2002. Scratchpad
memory: design alternative for cache on-chip memory in embedded systems. In CODES ’02:
Proceedings of the tenth international symposium on Hardware/software codesign. ACM, New
York, NY, USA, 73-78.

BARBOSA, V. C. AND SZWARCFITER, J. L. 1999. Generating all the acyclic orientations of an
undirected graph. Inf. Process. Lett. 72, 1-2, 71-74.

BucusBaum, A. L., KArRLOFF, H., KENYON, C., REINGOLD, N., AND THORUP, M. 2003. Opt versus
load in dynamic storage allocation. In STOC ’03: Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing. ACM, New York, NY, USA, 556-564.

Buck, 1., FoLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN, K., HOUSTON, M., AND HANRAHAN,
P. 2004. Brook for gpus: stream computing on graphics hardware. ACM Trans. Graph. 23, 3,
TT7-786.

CuviLLo, J., Zuu, W., Z1aANG, H., AND GAO, G. 2005. Fast: A functionally accurate simula-
tion toolset for the cyclops64 cellular architecture. In In MoBS2005: Workshop on Modeling,
Benchmarking, and Simulation. ACM Press, 11-20.

Darry, W. J., LABONTE, F., DAs, A., HANRAHAN, P., AND ET AL, J.-H. A. 2003. Merrimac:
Supercomputing with streams. In SC ’03: Proceedings of the 2003 ACM/IEEE conference on
Supercomputing. IEEE Computer Society, 35.

Das, A., DaLLy, W. J., AND MATTSON, P. 2006. Compiling for stream processing. In PACT
’06: Proceedings of the 15th international conference on Parallel architectures and compilation
techniques. ACM, New York, NY, USA, 33—42.

FaBri, J. 1979. Automatic storage optimization. SIGPLAN Not. 14, 8, 83-91.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

GERGOV, J. 1996. Approximation algorithms for dynamic storage allocations. In ESA ’96: Pro-
ceedings of the Fourth Annual European Symposium on Algorithms. Springer-Verlag, London,
UK, 52-61.

GERGOV, J. 1999. Algorithms for compile-time memory optimization. In SODA ’99: Proceedings
of the tenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 907-908.

GoLuMBIC, M. C. 2004. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Math-
ematics, Vol 57). North-Holland Publishing Co., Amsterdam, The Netherlands, The Nether-
lands.

GUMMARAJU, J., COBURN, J., TURNER, Y., AND ROSENBLUM, M. 2008. Streamware: programming
general-purpose multicore processors using streams. In ASPLOS XIII: Proceedings of the 13th
international conference on Architectural support for programming languages and operating
systems. ACM, New York, NY, USA, 297-307.

GUMMARAJU, J. AND ROSENBLUM, M. 2005. Stream programming on general-purpose proces-
sors. In MICRO 38: Proceedings of the 38th annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, Washington, DC, USA, 343-354.

KAnN, A. B. 1962. Topological sorting of large networks. Communications of the ACM 5, 11,
558 — 562.

KIERSTEAD, H. A. 1988. The linearity of first-fit coloring of interval graphs. SIAM J. Discret.
Math. 1, 4, 526-530.

KIERSTEAD, H. A. 1991. A polynomial time approximation algorithm for dynamic storage allo-
cation. Discrete Math. 87, 2-3, 231-237.

KocH, K. 2006. the new roadrunner supercomputer: What, when, and how. In Proceedings of
International Conference on High Performance Computing.

KUDLUR, M. AND MAHLKE, S. 2008. Orchestrating the execution of stream programs on multicore
platforms. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation. ACM, New York, NY, USA, 114-124.

32

LABONTE, F., MATTSON, P., THIES, W., BUCK, 1., KOZYRAKIS, C., AND HOROWITZ, M. 2004. The
stream virtual machine. In PACT ’04: Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques. 267-277.

LEFEBVRE, V. AND FEAUTRIER, P. 1998. Automatic storage management for parallel programs.
Parallel Comput. 24, 3-4, 649-671.

LEVERICH, J., ARAKIDA, H., SOLOMATNIKOV, A., FIROOZSHAHIAN, A., HOROWITZ, M., AND
Kozyrakis, C. 2007. Comparing memory systems for chip multiprocessors. In ISCA ’07: Pro-
ceedings of the 34th annual international symposium on Computer architecture. ACM, New
York, NY, USA, 358-368.

L1, L., NGUYEN, Q. H., AND XUE, J. 2007. Scratchpad allocation for data aggregates in superper-
fect graphs. In Proceedings of the 2007 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems. ACM, 207-216.

LiNIAL, N. 1986. Hard enumeration problems in geometry and combinatorics. SIAM J. Algebraic
Discrete Methods 7, 2, 331-335.

MAKINO, J., HIRAKI, K., AND INABA, M. 2007. Grape-dr: 2-pflops massively-parallel computer
with 512-core, 512-gflops processor chips for scientific computing. In In SC ’07: Proceedings of
the 2007 ACM/IEEE conference on Supercomputing. ACM, 1C11.

MURTHY, P. K. AND BHATTACHARYYA, S. S. 2004. Buffer merging a powerful technique for reduc-
ing memory requirements of synchronous dataflow specifications. ACM Trans. Des. Autom.
Electron. Syst. 9, 212-237.

OWwENS, J. D., Kapasi, U. J., MATTSON, P., TOWLES, B., SEREBRIN, B., RIXNER, S., AND DALLY,
W. J. 2002. Media processing applications on the imagine stream processor. In Proceedings of
the IEEE International Conference on Computer Design. 295-302.

RIXNER, S., DALy, W. J., Kaprasi, U. J., KHAILANY, B., LPEZ-LAGUNAS, A., MATTSON, P. R.,
AND OWENS, J. D. 1998. A bandwidth-efficient architecture for media processing. In Proceedings
of the 81st Annual International Symposium on Microarchitecture. 3—13.

SQUIRE, M. B. 1998. Generating the acyclic orientations of a graph. J. Algorithms 26, 2, 275-290.

STANLEY, R. P. 1973. Acyclic orientations of graphs. Discrete Math 5, 171-178.

TAYLOR, M., KiMm, J., AND MILLER, J. 2002. The raw microprocessor: A computational fabric for
software circuits and general-purpose programs. IEEE Micro 22, 2, 25-35.

THIES, W., KARCZMAREK, M., GORDON, M., Mazge, D., Wong, J., Ho, H., BRowN, M., AND
AMARASINGHE, S. 2001. Streamlt: A compiler for streaming applications. MIT-LCS Technical
Memo TM-622.

VITERBI, A. J. 1967. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. Information Theory IT-13, 260—269.

WaNg, L., Yang, X., XUE, J., DENG, Y., YaN, X., TanG, T., AND NGUYEN, Q. H. 2008. Op-
timizing scientific application loops on stream processors. In LCTES ’08: Proceedings of the
2008 ACM SIGPLAN-SIGBED conference on Languages, compilers, and tools for embedded
systems. ACM, 161-170.

WEsT, D. B. 1996. Introduction To Graph Theory. Prentice Hall.

WILLIAMS, S., SHALF, J., OLIKER, L., KAMIL, S., HUSBANDS, P., AND YELICK, K. 2006. The
potential of the cell processor for scientific computing. In CF ’06: Proceedings of the 3rd
conference on Computing frontiers. ACM, New York, NY, USA, 9-20.

Wu, N., WEN, M., REN, J., HE, Y., AND ZHANG, C. 2006. Register allocation on stream processor
with local register file. In ACSAC ’06: Proceedings of the 11th Asia-Pacific Computer Systems
Architecture Conference. 545—-551.

Yanag, X., WANG, L., XUE, J., DENG, Y., AND ZHANG, Y. 2009. Comparability graph coloring for
optimizing utilization of stream register files in stream processors. In PPoPP ’09: Proceedings
of the 14th ACM SIGPLAN symposium on Principles and practice of parallel programming.
ACM, New York, NY, USA, 111-120.

Yang, X., YaN, X., XING, Z., DENG, Y., JIANG, J., AND ZHANG, Y. 2007. A 64-bit stream
processor architecture for scientific applications. In ISCA ’07: Proceedings of the 34th annual
international symposium on Computer architecture. ACM, 210-219.

33

YAaNG, X., ZHANG, Y., XUE, J., ROGERS, 1., L1, G., AND WANG, G. 2008. Exploiting loop-dependent
stream reuse for stream processors. In PACT ’08: The Seventeenth International Conference
on Parallel Architectures and Compilation Techniques.

