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Abstract

Data caches are a key hardware means to bridge the gap between processor and memory speeds, but
only for programs that exhibit sufficient data locality in their memory accesses. Thus, a method for evalu-
ating cache performance is required to both determine quantitatively cache misses and to guide data cache
optimizations. Existing analytical models for data cache optimizations target mainly isolated perfect loop
nests. We present an analytical model that is capable of statically analyzing not only loop nest fragments
but also complete numerical programs with regular and compile-time predictable memory accesses. Cen-
tral to the whole-program approach are abstract call inlining, memory access vectors and parametric reuse
analysis, which allow the reuse and interferences both within and across loop nests to be quantified pre-
cisely in a unified framework. Based on the framework, the cache misses of a program are specified using
mathematical formulas and the miss ratio is predicted from these formulas based on statistical sampling
techniques. Our experimental results using kernels and whole programs indicate accurate cache miss esti-

mates in substantially shorter amount of time (typically several orders of magnitude faster) than simulation.

Index Terms

Modeling Techniques, Analytical Modeling, Cache Memories, Data Locality, Performance Evaluation

1 Introduction

Memory speeds in today’s computers have fundamentally lagged behind processor speeds
[26]. The increasing performance mismatch has required increasingly more levels of cache
memories (e.g., three levels in the Intel IA-64 processors) to prevent performance degrada-
tion, in which each level trades off higher capacity for faster access times. There can be a
wide performance gap between programs that are designed to optimize cache performance
and those that are not. As a consequence, a program’s cache behavior is becoming the major
performance-determining factor. While optimization technology for improving instruction
cache performance is relatively mature [23], [37], [50], data cache optimizations are still at
an early stage. We believe the lack of a general-purpose analytical model for evaluating the
data cache behavior of a program is the primary reason for this imbalance and the major
obstacle to a systematic exploration of data cache optimizations.

Data cache behavior is very difficult to analyze both accurately and efficiently. Due to
the non-linear mapping of memory accesses to cache sets, data cache behavior is inherently

unstable and can fluctuate widely due to slight variations in problem size parameters and
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base addresses [32]. Thus, a realistic model must strike a balance between accuracy and
efficiency in order to be viable in guiding a range of optimizations in a huge search space.

Trace-driven simulation [51] and hardware measurement [2] can obtain accurately a broad
range of performance metrics for a program. But their precision and flexibility come at a
price. The former consumes a large amount of simulation time and can demand gigabytes
of space for storing address traces. The latter — while not quite as time-consuming —
is obviously restricted to measurements of existing caches. In addition, both approaches
inherently offer little insight into the causes behind cache misses.

To overcome or avoid these limitations, compiler writers have explored the use of heuristics-
based models to optimize the cache performance of numerical programs, which typically
consist of loop nests operating on arrays. A number of models have been used to guide
optimizing compilers in their choice of loop and data transformations such as loop tiling or
blocking [10], [31], [32], [45], [57], [59], loop permutation [38], loop fusion [13] and padding
[4], [28], [29], [44], [48], [52]. While promising significant performance improvements for
some programs, these models are mostly qualitative (in estimating cache misses) and often
restricted to a particular optimization technique or individual nests.

A recent study [39] reports that most misses in numerical codes are inter-nest even though
most reuse is intra-nest and suggests that “optimizations cannot simply focus on nest op-
timizations but need to consider more than one nest.” When inter-nest optimizations are
included, the resulting search space is even larger. In order to reason about the interactions
between optimizations and apply them in concert, we need detailed knowledge about the
frequency and causes of cache misses in the program. To that end, a general-purpose model
is required to give quantitative measurement of cache misses for parts or the entirety of the
program. Such a model is expected to represent a good compromise between simulation,
which is expensive, and heuristics-based modeling, which can be imprecise.

In the past decade, several general-purpose analytical models targeting regular numerical
codes have emerged.! These include the footprint-oriented models [25], [47], the Cache
Miss Equations (CMEs) [22], the probabilistic model [20] and the Presburger-formulas-
based model [7]. All except [7] are limited mainly to analyzing individual perfect nests with

!The analytical means that the underlying model relies on some form of mathematical analysis for predicting cache

misses although some parts of the model can be algorithmic in nature.
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straight-line assignments and neither handles the call statements in the program. All these
models have been applied to small kernels containing only a few array references.

This paper presents an analytical model for statically predicting the cache behavior of nu-
merical programs (or its selected regions) with regular and compile-time predictable memory
accesses. The proposed model is applicable to K-way set-associative data caches. Central to
the whole-program approach are abstract call inlining, memory access vectors and paramet-
ric reuse analysis, which allow the reuse and interferences both within and across nests to be
quantified precisely in a unified compile-time framework. The contributions and limitations

of this work are summarized below.

e Abstract Inlining. In this preprocessing step, we abstractly inline all the calls in a
program to obtain a sequence of loop nests free of calls. The inlined program contains
exactly the same memory accesses executed in exactly the same order as in the original
program. The inlined program is statically analyzable if the original program is. As an
enabling technique, the technique may also be useful to other cache modeling techniques.
e Memory Access Vectors. We introduce the memory access vectors as a powerful
abstraction for the memory accesses of array references across the entire program. A memory
access vector encompasses three pieces of information: the reference for which the memory
access is executed, the loop nest in which the reference is contained and the particular
iteration at which the reference is accessed. The memory access vectors determine statically
the order in which a program’s memory accesses are executed.

e Parametric Reuse Analysis. We present an integer programming formulation that
computes exactly, for a given memory access to a memory line, the most recent previous
access (MRPA) also to the same line. We derive from this formulation a practical algo-
rithm for uniformly generated references, which may be contained in distinct nests possibly
guarded by arbitrary affine IF conditionals. This algorithm is efficient since it requires in-
teger programming only rarely and exact in commonly occurring cases (Theorem 3). Our
reuse analysis is parametric since the MRPA of an access is expressed parametrically as a
function of its memory access vector.

e Whole-Program Modeling. Based on our parametric reuse analysis, we specify the
cache misses of a program using mathematical formulas and predict its miss ratio efficiently

from these formulas based on statistical sampling techniques [53]. Our model is applicable
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to numerical codes with regular and compile-time predictable accesses consisting of sub-
routines, calls, IF statements and arbitrarily (perfectly or imperfectly) nested loops. In
order to obtain accurate predictions of miss ratios statically, these programs must be free
of data-dependent constructs such as variable loop bounds, data-dependent IF conditionals,
indirection arrays and recursive calls.

e Prototyping Implementation. We have implemented our techniques in a prototyping
system, which consists of components inlining calls (abstractly), obtaining memory access
vectors, performing reuse analysis, sampling memory accesses, forming the mathematical
formulas for cache misses and solving them for obtaining miss ratios.

e Validation and Experimental Results. We have validated the accuracy of our model
against simulation using loop nest fragments and complete programs from SPECfp95, Per-
fect Suite, Livermore kernels, Linpack and Lapack. The analysis time is generally several
orders of magnitude faster than simulation. The memory requirements are very reason-
able in lieu of the fast analysis time. The largest program we have analyzed, Applu from
SPECp95, has 3868 lines of code, 16 subroutines and 2565 references. In the case of an
8KB (direct-mapped, 2-way, 4-way and 8-way, resp.) data cache with a 64B cache line size,
our model obtains the miss ratios with absolute errors (0.99%, 0.97%, 0.97% and 0.92%,
resp.) in only 130 seconds using about 60.3MB memory while the cache simulation runs
for about 5 hours on a 933MHz Pentium III PC. In comparison with the existing analytical
models (reviewed in Section 2), our model is the only one with a demonstrated capability

for analyzing programs of this scale efficiently with a good degree of accuracy.

This work has enlarged the scope of programs that can be analyzed statically from indi-
vidual nests to whole programs. Admittedly, the proposed model is still limited to data-
independent constructs. But it should be recognized that developing a general-purpose
quantitative model for analyzing data-dependent constructs is an important next step.
There are relatively few published results in this challenging endeavor, although some qual-
itative models for optimizing irregular codes can be found in [19], [24], [40], [49]. Unlike our
(static) model, such a dynamic model will usually rely on some form of address traces for
behavior analysis. We believe both types of models have their respective roles to play, just
like how static and dynamic program analysis co-exist in staged or adaptive compilation.

The rest of this paper is organized as follows. Section 2 provides a detailed review of
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the related work. Section 3 describes our program model, the cache architecture used and
our prototyping implementation for exercising and validating our analytical model. Sec-
tion 4 introduces the three components — abstract call inlining, memory access vectors
and parametric reuse analysis — central to the whole-program analytical modeling. Sec-
tion 5 presents the mathematical formulas for specifying the cache misses of a program and
discusses an algorithm for obtaining cache misses from these formulas. Section 6 presents

experimental results. Section 7 concludes and discusses future work.

2 Related Work

Some earlier attempts on estimating cache misses at compile time can be found in [18],
[21], [41], [57]. Below we review in detail the five general-purpose analytical cache models
developed primarily for guiding data cache optimizations [5], [7], [20], [22], [25], [47], [53].
These models are all restricted to data-independent language constructs, and consequently,

can obtain predictions of miss ratios at compile time without relying on address traces.

An analytical model consists of three components: reuse analysis, cache miss specification
and cache miss generation. In some cases, some or all of the three are combined. Reuse
analysis applies a reuse metric to obtain quantitative measurement of data reuse in the
program. Based on this analysis, some mathematical formulas for specifying cache misses are
set up. In the case of numerical programs, these formulas typically describe the relationships
among loop variables, array sizes, base addresses and cache parameters. Finally, the cache

miss information is generated from the specification by some means.

Temam et al [47] estimate the cache misses of individual perfect nests with rectangular
iteration spaces for direct-mapped caches. They consider a subset of uniformly generated
references so that all temporal reuse vectors are essentially basis vectors. To find the misses
for a particular iteration of a reuse-carrying loop (corresponding to a basis reuse vector),
they compute the footprint (i.e., the set of cache lines) accessed by each reference and
solve their formulas expressed in terms of these footprints. Despite that the footprints are
generally approximated, they obtain good estimates for several kernel examples. Recently,
Harper et al [25] give an extension to K-way set-associative caches but still for the same

class of nests. They obtain good estimates for the four example kernels: MM as given in
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Appendix B, a 2-D SOR nest, a 2-D Jacobi nest and a blocked matrix multiplication.?

Ghosh et al [22] introduce the well-known CMEs, a set of equalities and inequalities, to
specify the cache misses of a single perfect nest with straight-line assignments for K-way
set-associative caches. Their reuse metric is Wolf and Lam’s reuse vectors, which they
obtain from uniformly generated references approximately by relying on Wolf and Lam’s
reuse framework and some ad hoc techniques. They show that the CMEs can help an
optimizing compiler choose tile and pad sizes without requiring the CMEs to be solved
explicitly. When there is a need to solve the CMEs for cache misses, Vera et al [53] discuss
how to do so efficiently with a controlled degree of accuracy by using statistical sampling on
a version of the CMEs greatly simplified by Bermudo et al [5] in the polyhedral model [16],
[33]. Statistical techniques have also been applied to trace sampling to produce simulation
results within an error margin with a pre-defined confidence [51].

Fraguela et al [20] rely on a probabilistic model to provide a fast estimation of cache
misses for K-way set-associative caches. They use the so-called area vectors as a reuse
metric to represent probabilistically the amount of reuse along those directions and solve
their recursive cache miss equations for cache misses. When analyzing imperfect nests, they
exploit only the reuse between references contained in a common nest. These references
differ by constants in their matching dimensions, forming a subset of uniformly generated
references considered in the CMEs. They validate the accuracy of their model using three
kernel examples. The two perfect nests can be analyzed by the CMEs and are not compared
here. The third one is a 3-D blocked imperfect nest for computing ABT (named MMT and
given in Appendix B). Table 1 compares their model with ours.> Our EstimateMisses (given
in Figure 7) produces better results in all cases. In both models, the two largest relative
errors are due to the fact that the total number of misses is small in each case.

Chatterjee et al [7] present a cost model for exactly analyzing the cache behavior of loop
nests for K-way set-associative caches. They use Presburger formulas (as a reuse metric)
to specify a program’s cache misses, the Omega Calculator [42] to simplify the formulas,

2Tt is impractical to compare with this work. They present their average relative errors in Tables 1 and 2 of their

paper without providing details on the samples taken. We have decided just to include our results for their MM in

Section 6.
3The analysis times are not compared since the required data are not given in their paper [20]. In our model, each

case takes less than 1 second. To compare with their results, we have used relative rather than absolute errors.
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TABLE 1
Comparison with Fraguela et al’s Model Using MMT in Appendix B for Various Cache Configurations
(C,L,K) — 4-Way Caches Were Not Considered by Them. In Each Case, Ap Denotes Their Relative
Error between the Predicted and Simulated Miss Ratios and Ag for Our EstimateMisses given in Figure 7

with ¢ = 95% and w = 0.05 as the Input Confidence and Interval, Respectively.

N | BJ | BK | C(KB) | L (B) | K-Way | Ap (%) | A (%)
200 | 100 | 100 16 8 2 6.23 0.10
200 | 100 | 100 | 256 16 2 2.73 0.50
200 | 200 | 100 32 8 1 6.88 0.06
200 | 200 | 100 | 128 8 2 2.86 0.05
200 | 200 | 100 | 128 32 2 44.25 | 16.00
200 | 50 | 200 16 4 1 4.62 0.05
200 | 100 | 200 32 8 2 12.51 0.10
200 | 100 | 200 64 16 1 3.31 0.40
400 | 100 | 100 16 8 2 4.48 0.03
400 | 100 | 100 | 256 16 2 4.26 0.50
400 | 200 | 100 32 8 1 2.65 0.40
400 | 200 | 100 | 128 8 2 5.82 0.05
400 | 200 | 100 | 128 32 2 44.68 | 16.00
400 | 50 | 200 16 4 1 2.02 0.05
400 | 100 | 200 32 8 2 5.55 0.06
400 | 100 | 200 64 16 1 7.12 0.30

PolyLib [56] to obtain an indiscriminating union of polytopes, and finally, Ehrhart poly-
nomials to count the integer points (i.e., misses) in each polytope [9]. They can formulate
Presburger formulas for a looping structure consisting of imperfect nests, IF statements,
references with arbitrary affine accesses and non-linear data layouts. However, their current
implementation as a SUIF [36] pass “does not yet have enough performance to be practical.”
Two examples are discussed: matrix multiplication — it takes 1 to 10 seconds on a 300MHz
Sparc Ultra 60 to analyze the 21 x 21 instance; matrix-vector product — they have derived

the Presburger formulas for N = 100 but did not solve them.
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3 Background and Terminology
3.1 Program Model

Our analytical model applies to numerical programs consisting of subroutines, calls, ar-
bitrarily (perfectly or imperfectly) nested loops, and assignments possibly guided by IF
conditionals. The typical data structures in these programs are 1-D and 2-D arrays.

Definition 1 (References). A reference is a static read or write in the program.

Definition 2 (Memory Accesses). A memory access is the execution of a reference
at a particular iteration of the loop nest enclosing the reference.

Definition 3 (Affine Expressions). An expression in a program is affine if it has the
form cily + - -+ ¢, L, + b, where I, ..., I, are the loop variables of the n enclosing loops (if
any) and cq, . .., cn, b are compile-time or runtime constants.

We rely on the optimizing compiler to identify compile-time and runtime constants. In
numerical codes, some variables are initialized once and never subsequently modified. De-
tecting these runtime constants allows more affine expressions to be recognized.

In this paper, all programs are in FORTRAN 77. All example codes are expressed in
a FORTRAN-like syntax. Thus, all arrays are assumed to be in column major, but the
techniques apply to any linear data layout.? All the load/store references are assumed to
be arrays. Scalars are either register-allocated or considered as a special case of 1-D arrays.

The following restrictions define the scope of programs considered in this work:

e The calls are non-recursive (which is the case in FORTRAN 77).
e The bounds of all loops are affine.’

e The IF conditionals guiding array references are affine.’

e The subscript expressions of array references are affine.

These constraints ensure that our analysis can be done in the polyhedral model [16], [33].
They are not too restrictive for static analytical modeling, which is generally limited to the
statically predictable control flow and memory accesses (independently of the input data).
Our program model excludes essentially only data-dependent constructs, which include, for

4An m-D array can be stored linearly in m! different ways including row- and column-major as two special cases.
5As a consequence, the input parameters initialized in READ statements are treated as runtime constants.
In our model, the IF conditionals involving mod/div/floor/ceiling can be handled. The basic idea is to make

these expressions linear by introducing extra free variables [42]. For example, I mod4=1=1—-4¢g=1Aq € Z. To

avoid complicating matters in several places in our presentation, their discussions are omitted.
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example, recursive calls, variable loop bounds, data-dependent IF conditionals and indi-
rection arrays. Recursive calls are data-dependent since they are usually terminated by
data-dependent IF conditionals. These constraints are assumed in the prior work reviewed

in Section 2 except that some non-linear array layouts can be accommodated in [7].

3.2 Cache Model

We consider a uniprocessor with a two-level memory hierarchy consisting of a virtually-
indexed set-associative data cache using LRU replacement followed by main memory. In
the case of write misses, we assume a fetch-on-write policy so that reads and writes are
not distinguished. Many systems utilize physically-indexed caches. An extension of this
work considering the effects of page placement [30] is a future work. Note that this cache
architecture is assumed in all the existing analytical work reviewed in Section 2.

In a K-way set-associative cache, a cache set contains K distinct cache lines. Let C (L) be
the cache (line) size in bytes. The total number of cache sets is thus C/(L x K). Sometimes,
a cache configuration is identified as a triple (C, L, K), which is direct-mapped if K = 1 and
fully-associative if K = C/L in the two extreme cases.

L is in bytes rather than array elements so that our formulas on reuse analysis and cache
miss analysis work directly when the arrays involved have different element sizes.

A memory line refers to a cache-line-sized block in the memory while a cache line refers
to the actual block in which a memory line is mapped.

Definition 4 (Reuse). When an (array) reference R accesses a memory line that was
accessed previously by an (array) reference R, it is called a reuse of that memory line by
the reference R [22]. The reuse is temporal if the same data element is accessed in both
cases and spatial otherwise and the reuse is self if R = R’ and group otherwise’ [57].

Following the CMEs [22], cold misses are used in the normal manner but capacity and

conflict misses are combined and called replacement misses.

3.3 Compilation Model

Our model analyzes statically possible cache conflicts in a program. Therefore it needs

to know the addresses of all memory accesses at compile time. In addition to the program

"This classification can be generalized in a meaningful way if the elements accessed have different element sizes.
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restrictions stated in Section 3.1, the following ones must also be respected:

e The base addresses of all arrays are known statically. If A is an array variable, the notation
@A stands for its base address in the rest of this paper.

e The sizes of all arrays in all but their last dimensions are known statically.

Both together ensure that all affine array references have statically known addresses. In fact,
all arrays must be statically allocated in order to be analyzable. Due to the call-by-reference
semantics, the dummy arrays that satisfy these constraints are dealt with by the abstract
inlining technique in Section 4.1. The arrays that appear in COMMON or EQUIVALENCE
statements are not special except that the reuse between the references to these aliased
arrays can be more expensive to analyze exactly if they have different dimensions, shapes
or extents (which are bad FORTRAN programming styles, in general).

Figure 1 depicts the structure of our prototyping system for exercising our analytical
model and wvalidating its accuracy against simulation. Our model consists of the five com-
ponents represented by the doubly-framed boxes. The program being analyzed is first
translated by a Polaris parser into Polaris IR [14], which is subsequently translated by Icti-
neo [3] into a so-called Ictineo load/store IR. The lowering of the Polaris IR serves two
purposes. First, some standard compiler optimizations such as constant propagation and
induction variable elimination are performed so that the estimated miss ratio is a realistic
representation of the miss ratio of the compiled code. Second, the load/store array refer-
ences are identified and the scalars and temporaries mapped to virtual registers. Once both
are done, the load/store IR is converted to an optimized Polaris IR in which all load/store
array references are clearly indicated. This same code will be analyzed by our model to
obtain the estimated miss ratio and also instrumented to obtain the simulated miss ratio.

It should be pointed out that our model is not limited to the Polaris and Ictineo IRs.
The model can be applied to any IRs as long as the information required by the model is
available. In addition, scalars and temporaries are not required to be register-allocated. As
mentioned in Section 3.1, the memory-allocated scalars can be considered as a special-case
of 1-D arrays. In Section 4.1, we will see that the stack-allocated temporaries can be mapped
to the appropriate elements of the runtime stack due to the absence of recursion.

Most optimizing compilers keep loop variables in registers. We state clearly the follow-

ing simplifying assumption made in all our experiments. We make comments wherever
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Input Program

Polaris IR

| Ictineo Load/Store IR |

!
| Optimized Polaris IR (with Load/Store Refs) li
}
[ Abstract Call Inlining l |Instrumentation|
I Obtaining Memory Access Vectors I | Compilation & Linking|

| L

[ Parametric Reuse Analysis ]<—| Getting Base Addresses|

!

[ Generating Miss Specification I Cache Parameters
* / \ |
[ Predicting Cache Misses l | Cache Simulator

Predicted Miss Rm@m Miss Ratio

Fig. 1. A framework for exercising and validating our analytical model.

appropriate to show that our model works straightforwardly when this assumption is lifted.
Assumption 1: All loop variables are assumed to be register-allocated.

As a result, a loop variable will not induce any memory accesses in behavor analysis.

4 Whole-Program Analysis

Analytical modeling relies on the following fact or its variants to make static predictions.
Theorem 1: In a K-way set-associative cache with LRU replacement, these two state-
ments are true. (a) A memory access m, to memory line £ is a cold miss if € is accessed for
the first time. (b) Let my, be the most recent previous access (MRPA) also to . Then m, is
a replacement miss if there are K or more distinct memory lines that are accessed between
m, and my, that are also mapped to the same cache set as ¢ and a hit otherwise.
To apply this theorem, we need to achieve the following two goals statically:
e Identify two consecutive accesses (the earlier being its MRPA) to a memory line.
e Identify all intervening accesses between such a pair of consecutive accesses.
Our compile-time framework for achieving these two goals, which consists of abstract call

inlining, memory access vectors and parametric reuse analysis, is described below.
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*
REAL™S A(_Nl’ wo N1 %) ‘ foo’s code body goes here with the transformations below: ‘
CALL foo(..., A(f1,-- s fm)s---) = dummy arrays:
if(p=1V (p=m N V1<k<m:N,=My)))
SUBROUTINE foo(...,F,...) o each reference F(g,...,gp) is replaced with:
REAL*8 F(My, ..., M, 1, %) if (p=1)
A(f1+gl_17f277fm)//®
F else //p=m---
1y e
END e F’s decl ignored
A else
(a) A program segment e cach reference F(gi,. .., gp) is replaced with:
Stack[BP] = RetAddr foo ACCL (I N)(fi = 1) + 91,92, .9p) //©
Stack[BP+4] = addr of 1st arg e foo_A has the same base address as A
Stack[BP+8] = addr of 2st arg . J; 00_A has the same decl as
o m non-dummy arrays:
... = Stack[BP+4] e base addresses, decls, and refs to them are preserved
... = Stack|BP+8§] e Each local array, X, is renamed uniquely as foo_X
RetAddr = Stack[BP]

(b) Inlined code

Fig. 2. Abstract inlining of a call statement.

4.1 Abstract Call Inlining

The objective is to obtain a program consisting of loop nests free of calls. This will allow
the reuse and interferences across subroutines to be quantified precisely.

In FORTRAN 77, all arguments are passed by reference. To analyze a program containing
calls, we perform an abstract inlining for all the calls recursively. We do not actually generate
the inlined code. We need only to obtain the information required for analyzing the inlined
code. Each subroutine is associated with an abstract function consisting of the information
about the accesses to the runtime stack, its code body (i.e., its loop nests with references),
and the base addresses and declarations for its dummies and other variables.

Figure 2 shows that the inlining of a call consists of essentially replacing the call with the
information in the callee’s abstract function. In the program fragment shown in Figure 2(a),
the actual A(fi,..., fin) and a generic reference F(gy, ..., g,) to the matching dummy F
are affine. If A is the actual (without any subscripts), A is the same as A(1,...,1). Recall
that memory-allocated scalars (including actuals and dummies) are considered 1-D arrays.
The two issues addressed by the abstract inlining are discussed below.

e Modeling of Accesses to the Runtime Stack. The calling conventions are compiler-
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REAL*8 A(10,10) REAL*8 A(10,10), f-A(5,5, *)
DO =... /'l f_A has the same base addr as A: Qf A = QA
DO I, =... DO =...
A(11712):A(11712—1)+1 DO I, =...
CALL f(A,A(Il,Iz),A(Il,IQ)) A(Ihfz) = A(11712 — 1) +1
CALL f(AQ1,I2),A(L — 1,12), A) DO Is=...
END DO I,=...
SUBROUTI NE f(B,C, D) e = A(I1+.[3—1712+I4—2)+ A(11+13—1712+I4—1)
REAL*8 B(10),C(10,10), D(5,5, %) f-A(LL+10% (I — 1) + Is — 1,14,2) = A(I4,1)
DO Is=... DO Is=...
DO I, =... DO I, =...
e = C(Ig,[4 — 1) + 0(13714) el = A(.[1+.[3—2712+I4—2)+ A(11+13—27 .[2+I4—1)
D(Is, 14,2) = B(14) f-A(I3,14,2) = A(14, I2)
END END
(a) Original program (b) Inlined version

Fig. 3. Transformations of the references to dummy arrays.

and architecture-dependent. What is shown in Figure 2(b) is one such a convention for a 32-
bit machine, in which all actual arguments are passed via the runtime stack. Stack denotes
the runtime stack modeled as a 1-D array. If BP is 0 initially, its value is known at compile
time at every call site due to the absence of recursion. The base address of Stack, if unknown
at compile time, has to be obtained at run time. Then Stack is treated just like an ordinary
array. In Section 3.3, we mentioned that the stack-allocated temporaries may be introduced
in a load/store IR. It is not difficult to see that they are mapped straightforwardly to their
unique elements in the Stack array.

e Transformation of Array References in the Callee. As shown in Figure 2(b),
the references to the non-dummy arrays remain unchanged. But the references to the
dummy arrays are transformed so that the subscript expressions of the matching actuals
are incorporated into the transformed references. All the three cases are illustrated in

Figure 3. The inlined code may not compile. Hence, the term abstract inlining.

The inlined code is statically analyzable if the original program is. The inlined code
contains the same memory accesses executed in the same order as in the original program.
Both statements are true simply because the transformed references in Figure 2(b) are affine
if both A(fi,..., f) and F(g1,...,gp) are, and in addition to these transformations, the
abstract inlining has not modified anything else in the original program. If Assumption 1 is
lifted, the loop variables in fi,..., f,, introduced into the transformed references are simply

tagged so that they do not result in any superfluous memory accesses in analysis.
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In our current implementation, we do not consider the cache effects of the system calls
(to I/O subroutines and intrinsic functions). Only the memory accesses to their actual
arguments are included. These calls can be inlined if their abstract functions are known.

While we inline in order to analyze cache misses exactly, existing techniques such as [1],

6], [46] inline primarily to optimize program performance.

4.2 Defining the Address Trace Statically

The inlined program has a flat structure consisting of multiple loop nests without any calls.
The memory access vectors are defined to introduce a total order among all the memory
accesses from both within a nest and across nests in the abstractly inlined program. They

define precisely the address trace of the program at compile time.

4.2.1 Loop Nest Normalization

We normalize all loop nests to put the program into a suitable form for analysis. We
apply loop sinking to move all statements into their respective innermost loops by adding
IF conditionals wherever appropriate [57], [58]. We add trivial loops with equal lower and
upper bounds, if necessary, so that all (deepest) loop nests are n-dimensional. Finally, all
loop variables at depth k are normalized to I,. From now on, whenever we speak of a loop
nest, we mean an n-dimensional nest with all statements nested inside its innermost loop.

The normalized program contains the same accesses executed in the same order as in the
original program. This is guaranteed by the semantics of loop sinking and Assumption 1.
If this assumption is lifted, our normalization procedure works as usual except the loop
variables in the extra IF conditionals and loops introduced during the normalization are

simply tagged so that they do not result in any superfluous memory accesses in analysis.

4.2.2 Memory Access Vectors

The access of a reference in the program can be uniquely identified by (a) the loop nest
in which the reference is contained, (b) the iteration of the nest at which the reference is
accessed, and (c) the access order of the reference in the nest.

The loops in the program are identified hierarchically in the same way as how the sections
in this paper are numbered except that, for example, we use a vector (z,y, z) to identify a

loop while we would write z.y.z to identify the section in the same lexical position.
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PARAMETER ( N=20) Access Vector
REAL*8 B(N,N), C(N)
DO =1, N
DOL =1, N
IF (L. GE 2)
B(l,—1,I}) = (1,i1,1,is,1)
IF (L.GE. 2 .AND. I, + . GE. 10)
=Dl — 1) (1,i1, 1,42, 2)
DOL =1, N
:B( 27I1) (1,i1,2,i2,1)
DO =1, N
DO =1, N
D(Iz) _ (2,i1,1,i2,1)

Fig. 4. Memory access vectors for an example.

Definition 5 (Loop Vectors). Each n-dimensional loop nest is identified by the loop
vector of its innermost loop, ({1,...,¢,), where £, means that the k-th loop of the nest is
the lx-th (counted from 1) among all loops enclosed in the (k — 1)-st loop.

Definition 6 (Iteration Vectors). The execution of an n-dimensional nest when I, =
i1,y In =1n, known as an iteration, is identified by the iteration vector = (iy,...,1,).

Recall from Figure 1 the access order of references is specific to a compiled code.

Definition 7 (Access Order of References). Let S; be the set of all references in a
loop nest L. We define a - Sz — Z" such that a(R) = k, meaning that R is the k-th
accessed reference (with any guarding IF conditional ignored) in a common iteration of L.

The memory accesses introduced in Definition 2 are specified by integer vectors.

Definition 8 (Access Vectors). Let R be a reference in the nest L= (01,...,¢,). The
access of R at the iteration ¥ = (iy, ..., 1,) of the nest is identified uniquely by the (memory)
access vector ({1,iy,..., 0y, i, a;(R)) € Z*".

Figure 4 lists the access vectors of the four references for an example program.

Definition 9 (Reference Iteration Spaces). The reference iteration space (RIS)
of a reference R, denoted RISp C Z", is the n-dimensional polytope defined by the bounds
of its n enclosing loops and its guiding IF conditional, if any.

While the RISs for most references in numerical codes are convex, some are not. This
can happen, for example, when a reference is guided by I;. LE. 5. OR I;. GE. 100. Due to the
program restrictions stated in Section 3.1, all loop bounds and IF conditionals are affine.

Thus, each RIS is always expressible as a union of convex polytopes.
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The set of all accesses of a reference R contained in the nest (¢q,...,/¢,) is defined by:
Mr = {(l,ir, ..., lyin, g, 0)(R)) | (i1,...,1,) € RISk} (1)

If RefSet is the set of all references, then the set of all accesses in the program is given by:

M = | Mq (2)

R € RefSet

Example 1: Consider the two C references in Figure 4. By Definition 9, RISp(r,—1)
= {(1,72) | 1 <1 < 20,2 <ip < 20,41 +1i9 = 10} and RISp(r,) = {(t1,92) | 1 < iy, 42 < 20}.
By (1), we obtain MD(12_1 = {(1 i1, 1,09,2) | 1 <4y < 20,2 < dp < 20,47 + 42 = 10} and
Mpy = {(2,41,1,i2,1) | 1 <iy,4p < 20}. The connection between RISk and Mg is clear.

Theorem 2: If d, be M, then the access b occurs before the access a iﬁb <d.

Proof: Follows from Definitions 5 — 9, (1) and (2). H

Thus, M possesses the (strict) total order, <, which is known as the lexicographic or
dictionary order. This order specifies statically the temporal order in which all accesses in
the program are executed. In other words, the accesses in M ordered by < give rise to

precisely the address trace of the program at compile time.

4.2.8 Notations

Let @ be an access of a reference R. We write mag(a@) to represent the memory address
in bytes of the element accessed at the access d. Let mlg(d) and csg(@) be the memory
line and cache set to which mag(@) is mapped, respectively. In each case, the redundant
subscript R serves to highlight the reference of which @ is an access. It is understood that

mag(@) can be calculated in the standard manner. The other two terms are given by:

mlp(a@) = |mag(a)/L] (3)
csr(@) = mlg(d@) mod (C/(L x K)) (4)

Example 2: For the first B reference in Figure 4, we have map(,—1,1,)(1,41,1,42,1) =
QB + 8(iy — 2+ N(iy — 1)), mlp(,—1,1,)(1,41,1,i,1) = | (@B + 8(is — 2 + N(i; — 1)))/L|
and CSB(]2_17]1)(1,i1, 1, ig, 1) = L(@B + 8(7,2 -2+ N(Zl - 1)))/LJ mod ((C/(]L X K))

If @ is an access vector, a; identifies the iteration at which the access is executed.
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4.3 Parametric Reuse Analysis

This section computes the MRPA (most recent previous access) as required in Theorem 1.
We give below a precise and insightful definition for the problem addressed in reuse analysis.

We postulate the existence of an undefined access vector 1. ¢ M that is always executed
before any other accesses: Va € M : L < a. Let S be a set of integer vectors. The notation
max_ S denotes the lexicographic mazimum of S. By convention, max_ ) = L.

Let R and R’ be two arbitrary references, which are not necessarily different. We define:

-

Prp (@) = {b€ Mp | b < @ mip(@) = mlp(b)} (5)
which consists of all accesses of R’ preceding @ and mapped to the same line as a. Let
l'predR’R/ . MR — MR’ U {J_}, I'pI‘edR’R/(C_L') = max. PRJ{/(C_I:) (6)

Then ipredy, g (@) is the most recent previous access, i.e., the one that immediately precedes
@ in Pr,p(@). Note that ipredp p (@) = L holds as desired when Pg p/(@) = 0.

By composing the ipredp, g, functions for a fixed R but varying R, we get:
ipredp : Mp — MU{L}, ipredp(d) = max_{ipredy (@) | R' € RefSet} (7)

The reuse analysis is concerned with finding a good approzimation of the function ipredp
for every reference in the program. In fact, @ and ipred(a@) play exactly the roles that the
access m, and its MRPA m, played in Theorem 1, respectively.

We write MRPAR r for our approximation of ipredp /. As a result, MRPAg is our approx-
imation of ipredp. MRPAR g/ (MRPAR) is eract if MRPAR g/ = ipredp pr (MRPAR = ipredp).
In Section 4.3.1, we give an integer programming formulation for finding ipredp g exactly.
In Section 4.3.2, we derive from this formulation a practical algorithm for finding MRPAR g/
mostly analytically by considering uniformly generated references. In Section 4.3.3, we
discuss various trade-offs that can be made between efficiency and accuracy in our reuse
framework. In Section 4.3.4, we discuss the equivalence of two reuse metrics, MRPA and
shortest reuse vectors, and highlight the importance of this work. Appendix A discusses

strategies for minimizing the time on evaluating the MRPA functions in behavior analysis.
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4.3.1 Constructing ipredp g

From our definition of the function ipredp g/, we recognize that we can build the function

exactly using parametric integer programming (PIP) [15], [35] by solving:

C_I: é (fl, 'il, P ,gn, in, Oé(gl’m’gn)(R)) € MR
L bE (Ll G oqeo(R)) € Mp
ipredy p(@) = max;Q b - El o I Uttt () & (8)
’ b<a
mlp(@) = mlp (b)
where the n loop variables of g[ = (j1,-..,Jn) are constraint variables, the n loop indices
of @ = (iy,...,i,) are structural parameters (i.e., symbolic constants) and all the rest

-

(including L, base addresses and array sizes appearing in mlg(@) and mlg (b)) are integers.

Our model does not require (8) to be solved directly in that form. We explain briefly how
to solve it by PIP and then give an example. The domain of (8) is not convex. However,
we can always transform the problem into a finite number of subproblems whose domains
are convex polytopes and obtain ipredy z (@) from the lexicographic maximums of these
polytopes. The transformations are as follows. Every RIS is always expressible as a union
of convex polytopes (Section 4.2). The non-linear constraint mlg(@) = mlg(b) can be

linearized as illustrated in Example 3. Let R and R’ be enclosed in d common loops. Then

(b1, ... 0g) = (£, ..., 0)). Clearly, b < @ = (Ve_,b <o, @) V (b <441 @), where

g‘<k5 bi=ai N -~ ANbp_1 = ar_1 Nb, < ay, (9)

Example 3: To construct ipredpp,) p(r,—1) for the program given in Figure 4, we assume
that L = 32 and @D = 3200. By letting @ = (2,i1,1,i2,1) and b = (1,j1,1,j2,2), we
find that b < @ is always true. Mp,) and Mp,—1) found in Ezample 1 are convez.
In addition, mlpr,)(2,11,1,42,1) = [ (3200 + 8(iy — 1))/32]| and mlp,-1)(1,71,1,72,2) =
[(3200 + 8(j2 — 2))/32]. By linearizing mlp1,)(2,41,1,12,1) = mlp,—1y(1, j1, 1, jo2, 2) with
the introduction of a new constraint variable, say, q, we transform (8) to get:

— o ({ — -
2 1] 1< 45,09, <20

Jil] 2< 72 <20

7
' LT g + 42 > 10

2 2| 0<jo—4g+98<3
1 \ 911 ¢=0
- - - V
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Solving the system parametrically, we obtain ipredp 1,y p(1,—1)(2, %1, 1,11, 1) = (1,20, 1, 4((i2+
3)+4)+1,2) if iy < 16 and (1,20, 1,20, 2) otherwise.

4.3.2 Constructing MRPAR g

It is unnecessary and can be expensive to solve (8) as a form of PIP for a large number
of reference pairs. In numerical codes, the patterns of accesses are regular [39]. We can
capture most of this regularity by considering only the accesses from uniformly generated
references [21], [57], [60] that are generalized from single to multiple nests.

Definition 10 (Uniformly Generated References/Sets). Let A be an m-D array.
Two references A(H\I + &) and A(HoI + &) (inside the same or distinct n-dimensional
nests) are uniformly generated if Hy = H,, where Hy, Hy € Z™"" and ¢,,C, € Z™. The
uniformly generated set for a reference R, denoted UGR(R), consists of all references
(including R itself) in the program that are uniformly generated.

In the program given in Figure 4, two uniformly generated sets are { B(Io—1, I1), B(I2, I1)}
and {D(Iy — 1), D(I3)}. In the two kernels Hydro_K and MGRID _K given in Appendix B,
there are a few uniformly generated sets consisting of references from different nests.

Definition 11 (Uncoupled References). A reference A(HI + &) or H is uncoupled
if each row of H has at most one nonzero component, where H € Z™*" and ¢ € Z™.

We have developed a practical algorithm, named FindMRPA in Figure 5, for computing
MRPAR r when R and R’ are uniformly generated. This algorithm is exact in commonly
occurring cases (Theorem 3). It addresses the three cases classified in lines 15, 23 and 39
separately. Of all uniformly generated reference pairs in SPECfp95 and Perfect Benchmarks,
the frequencies of these cases are 75.41%, 22.53% and 2.06%, respectively. FindMRPA solves
the first two cases analytically and requires integer programming in the last case not only
rarely but also on a simplified version of (8).

Based on the notations in lines 2 — 9 in FindMRPA, we explain its basic idea, examine

its three cases, and finally, illustrate each by an example. The simple fact we rely on is:

- =

mlp(d) = mlp/(b) = |mag(d) — mar (b)] <L+ E (11)

where L = E is the number of elements in a memory line. But the converse is obviously

not true. Next, we divide all the accesses of R’ preceding @ into disjoint sets based on their
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1 Algorithm FindMRPA

2 INPUT: R2 A(HI+@): a reference nested in L = (¢4,...,4,)

3 R £ A(Hf—i— p): a reference nested in L= (0,...,0)

4 hg: the k-th row of H € Z™*"

5 ck: the k-th component of ¢ € Z™

6 pr: the k-th component of e Z™

7 A(N1,...,Np—1,%): an m-D array with @A as its base address

8 E: the number of bytes per element of A such that E divides IL

9 OUTPUT: MRPAgpr : Mr — Mp U{L},ie., MRPAR r/(a@), where d=({1,41,...,ln,in, ap(R))
10 if(m=1V (@AmodL =0 A Ny mod (L+E)=0))
11 Set C' =1
12 else
13 Set C = |(L+E—-2)/N1]+2 // typically C =2
14 SR,R/ =0
15 if (rank(H) = n)
16 forc=-C+1,C—-1
17 for{=-L+-E+1,L+-E-1
18 Let Q3% (@) = {b € Mp | b= H(d —by)=p—c+({—cNy,c0,...,0)}
19 if (HE =p—Cc+ ({ —cNy,¢,0,...,0) has an integer solution, say, § € Z")
20 Set b5 = (i1 — g1, -1 in — gn)
21 if (0% < @)
22 SR,R’ ZSR)R/-F{[;*}
23 else if (H is uncoupled (Def. 11) and RISp/ is rectangular)
24 Let RISp = {(j1,---,dn) |V1 <k <n: L, <jp <U/}
25 Let R and R’ be enclosed in d common loops, where 0 < d < n
26 forc=-C+1,C—-1
27 for{=-L+-E+1,L+-E-1
28 forz=1,d+1

b= (0,41, s Loy jny g, (R))
29 Let Q3% (@) = ¢ be Mp | ((J15-- -, Ja), baar1) <= ((in, -, ia), aza+1)
H(d@; —b;) =p—é+ ({ —cNy,c,0,...,0)
30 if (the system after the ‘|’ in terms of the variables ji, ..., J, is consistent)
31 Set (jik;---aj:_l):(ily---aizfl)
32 if (z#d+1)
33 Set 7 to its unique solution if it has one and min(i, — 1, U.) otherwise
34 fork=2zn
35 if (z=d+1VEk>2)
36 Set ji to its unique solution if it has one and U}, otherwise
37 Set bt = (ji,..., %)
38 SR,Rr/ :SR_,R/-F{Z;*}
39 else
40 forc=-C+1,C—-1
41 for{=-L+-E+1,L=-E-1
L b<abeMp,ieM
42 Let Q%n (@) = b| 0 S 8= AoR
’ H(dr—br)=p—c+ ({ —cN1,¢,0,...,0)
43 Let b* be its lexicographic maximum (Section 4.3.1)
44 SR,Rr/ :SR)R/-F{Z;*}
45 MRPAR)R/(@') = max.<{g* S SR,R’ | g* S MR/,mJR((i’) = mZR/(g*)}
DRAFT Fig. 5. An algorithm for computing MRPAg g when R and R’ are uniformly generate?dly 11, 2003
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distances from d. We consider only distances up to the line size as beyond which we can

never access the same memory line. There are a total of 2IL +E — 1 such sets:
Qb (@) = {be Mp |b=d mag(@d) — map(b) =} (12)
where |[¢| < L+E. The following two conclusions are a direct consequence of this definition:

o All accesses in the set in (@) are mapped to the same memory line as @ or all are not:
‘v’gl, 52 € Q%,R,(ﬁ) : IH]R(C_I:) = mIR/(gl) <~ mIR(oY) = m]R/(gg) (13)

b PRJ{/(&)) g U|€‘<]L+E Q%R/(&)).
Hence, the function ipredy, g can also be obtained precisely as follows:

-

ipredp p(@) = max_{b € Or p | mlg(@) = mlp (b)} (14)

where P
Orr = {max<Qpp(ad)||(|<L+E} (15)

This development is significant. We are only required to find max_ Q% (@) during reuse

-

analysis by working with the linear constraint mag(@) — mag (b) = ¢ that appears in (12).
The non-linear constraint mlp(@) = mlg (b) that appears in (14) will be checked during
behavior analysis when @ is analyzed and is thus known in numbers.

To find max Qf, (@), we divide QF /(@) further — this is where our approximation
arises. In lines 10 — 13, C' is found to be the maximum number of array columns possibly
spanned by a memory line. In line 11, C' is set to 1 if A is a 1-D array or its columns are
aligned to the memory line boundaries. In line 13, C' is typically 2 since L +-E — 2 < Nj.

(Recall that @; and br identify the iterations at which the accesses @ and b are executed.)

Based on the notations in lines 2 — 9, we find that

mag(d) = QA+ Y7 (T2 N (i + i — 1) (16)
maR’(q) = Q@A+ Z?ll(ﬂz_:llNk)(ﬁigf +pi—1)
Thus, we can rewrite mag(a@) — mag (b) = ¢ to:
Y (N (huldr —br) + ¢ —pi) = ¢ (17)

i=1
The base address @A that got cancelled out in the above formula is accounted for in the

constraint mlp(@) = mlg (b) introduced in line 45. In practice, it is rare for @ and b to touch
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the same memory line even when the third indices (if any) of the accessed elements differ.

Thus, we impose the following restrictions on the last m — 1 dimensions of A:

ﬁg(d} — g]) + Cy —

hs(a; — 51) +c3—ps3

(18)
}_im(a:I - g[) +Cm —DPm = 0

where |¢| < C. This implies that the two elements accessed by @ and b share the identical
indices in their last m — 2 dimensions. The number of the memory lines accessed this
way, i.e., spanned by the first two dimensions of A, is O((II"; N;)/(L + E)). The situation
when, for example, A(Ny, No, 1,...,1) and A(1,1,2,1,...,1) are the two accessed elements
in a memory line can be analyzed similarly by using different constant terms in (18). The
memory lines of this second kind are totaled as O(II7,V;) and are thus negligible.

By combining (17) and (18), we obtain:

H(d:]—b[) = ﬁ—g—l—(f—CNl,C,O,...,O) (19)
Thus, we have found a desirable decomposition of QY /(d@) as follows:

Q% i (U Q5 (@)U Qe (@) (20)

le]<C

—

where Q,,..(@) is ignored in our current implementation and Q% (@) is defined by:

, b
Qi (@) = {b € Mr H(a — b)) = —é+ ({ —cNy,c,0,...,0) } (21)
By combining all the results so far, the function MRPAR r is constructed as follows:
MRPAR (@) = max_{b€ Spp | mlp(@) = mlp(b)} (22)
where
Srr = {max Q% (@) ||| <L+E | <C} (23)

FindMRPA distinguishes the three cases in lines 15, 23 and 39. In each case, the ¢ and /¢

loops are responsible for computing max_ Q% R, “n (@) exactly for all possible pairs (¢, ¢).
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e The if Case. QﬁfR,(c?) contains the singleton b* found in line 20 if b* € Mp and is
empty otherwise. Thus, max_ QﬁfR,(ﬁ) is b* if b* € My and L otherwise. This explains
the occurrence of b* € My in line 45. This case takes O((L + E) x C' x max(n, m)3).

e The “else if” Case. This case is less expensive because H has a simpler structure. In
line 25, (01,...,4q) = (¢},...,¢,) holds. We further divide Qf{R,(d’) given in (21) such
that Qfng,(*) = Ud+}Q§f}§,( @), where QR “7(@) is defined in line 29. This is because
b < ad= VI (ba, .. bog) baasr) <k (a2, . a0a), a2a41) = VEN Gy da), baasr) <
((i1,---,1q), a2qs1), where <, is from (9). Note that max Qﬁfg,(&) is b* if b* € Mp and L

otherwise. Hence, b e M g in line 45. Clearly, we have:
max ngR, (@) = max.{max_ Qﬁ;’f}’; (@) |1<2<d+1} (24)

e The else Case. This requires integer programming but is invoked only rarely. In addition,
the problem in line 42 can generally be solved more efficiently than (8) since the constraint
variables in the last constraint have smaller coefficients than those in the last three of (8).
Note that @ € Mg appears in line 42 and be M, is redundant in line 45.

Example 4 (The if Case). Let us construct MRPAg (1, 1,),B(1,—1,1,) for Figure 4, where
a = (1,i1,2,i9,1). Suppose L = 32 and QB = 3200. Thus, L + E = 4. In line 11, we set
C=1. H=[V}] is nonsingular, ¢= (0,0) and = (—1,0). Theif case is ezecuted. In line
19, we solve [9 3)a=[]+[§]. The unique solution found in line 20, b* = (1,iy,1,iy—(+1,1),
satisfies b* < d@. Finally, Sps.1).8s-1.1) = {(1,71, 1,43 — £+ 1,1) | =3 < £ < 3}. Thus,

1 1 —-3</0<3
121 i 1< <20
MRPAB(1,,11), 31> -1,1) ( b ) = maxg i—t41|| 2<ia—+1<20
1 1 L22—1+2£(21—1)J _ ng—Z—lZZO(zl—l)J

Example 5 (The “else if” Case.). Let us construct MRPAx (1. ;) x(r,i) for the MM kernel
given in Appendiz B, where @ = (1,i1,1,14,1, j3,2) = (1,4,1,4,1,k,2). Thus, the single nest
in the kernel is identified by the loop vector (1,1,1), where a(1,1)(X(k,7)) = 2. X has
the declaration X (N, N). Suppose L = 32, QX = 3224 and N = 100. Thus, L + E = 4.
H = [98¢] and ¢ = p = (0,0). Note that rank(H) < n = 3. X(k,i) is uncoupled.
Its RIS is cubic: RISxu,; = {(i,7,k) | 1 < 4,5,k < N}. Thus, the ‘else if” case is
executed. In line 13, we set C' = 2. X(k,1) is enclosed in all the three loops. So in line 25,
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d = 3. In line 29, we have Q% = {(1,j1,1,72,1,73,2) | 1 < j1, J2,J3 < N, (j1, J2, Js, 2) <.
(11,149,13,2),i3 — jg = £ — cN1,i1 — j1 = ¢} with the subscripts “X(k,i), X(k,i)” and the
argument @ = (1,41, 1,149, 1,143,2) for Q ignored to avoid cluttering. The c loop in line 26
has three iterations. In the first iteration when ¢ = —1, iy — j1 = —1 and (j1, j2, j3, 2) <.
(i1, 12, 13,2) are found to be inconsistent for all ¢ and z in line 30. That is, Q“~%* = ) for all
¢ and z. In the second iteration when ¢ = 0, there are two cases. Case (1) =3 < { < 0. We
have Q01 = Q03 — QL0 — () From Q%92 we obtain b} = (iy, min(iy — 1, N), iz — () =
(11,72 — 1,13 — £) and add the elements in S; = {(1,i1,1,i0 — 1,1,i3 — ¢,2) | =3 < £ < 0}
to Sx (ki) x(ki)- Case (II) 0 < £ < 3. We have Q"% = Q%04 = 0. From Q“%2, we obtain
bi = (i1, min(iy — 1, N),ig — £) = (iy,ip — 1, i3 — ) and add what are in Sy = {(1,i,1, iy —
11,45 — £,2) | 0 < £ < 3} to Sxpayxsy. From QY03 we obtain b5 = (i1, i, i3 — ()
and add the elements in S3 = {(1,i1,1,49,1,i3 — £,2) | 0 < £ < 3} to Sx(ki)x(ki)- 1N
the last iteration when ¢ = 1, we have Q412 = Q613 = Q414 = (). From Qb we obtain
bt = (i1—1, N, is+N—0) and add the elements in Sy = {(1,i1—1,1, N, 1,is+N—0,2) | =3 <
0 < 3} t0 Sx (ki) x (k). Finally, Sx k) x (s = S1US2US3USy. The function MRPAx (5.4, x (k.i)
s given as in line 45. Appendix A discusses how to remove some redundant elements from

SX (ki) X (ki) Jor this ezample.

Example 6 (The else Case). Let us construct MRPAp(1,) p(1,-1) for the same reference
pair in Example 3. Since H = (0,1), we have rank(H) # n. RISp,-1) is non-rectangular.
Hence, the else case is executed. In line 11, we set C' = 1 since C is one-dimensional.
Replacing the last three constraints in (10) with ia—js = £—1 and solving the resulting system
at every iteration of the £ loop in line 41, we obtain Sp(1,),p(—1) = {(1,20,1,i9 — £,2) |
=3 < £ < 3}, The resulting MRPAp(1,) p(1,-1) i equivalent to ipredp ) pi,—1) found in
Ezxample 3.

MRPAR i is exact in the common cases when A is a 1-D or 2-D array or when A is

any-dimensional array provided its columns are aligned to the memory line boundaries.

Theorem 3: If 1<m<2 or @4 mod L=0A N; mod (L +E)=0, MRPAg p =ipredp p.

Proof: Under the hypothesis, Q% (@) = 0 in (20). In addition, FindMRPA builds

max Q%?R,(ﬁ) exactly. By noting the definition of ipredg p in (14) and (15) and the
definition of MRPAR r in (22) and (23), we conclude that MRPAR r/ = ipredy p,. W
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The MRPA functions found in Examples 4 — 6 are all exact.
In our current implementation, R and R’ are also considered uniformly generated if the
arrays accessed are aliases created by COMMON or EQUIVALENCE statements provided

that both have the same dimension, shape and extent. Thus,

MRPAR(@) = max_{MRPAg r (@) | R’ € RefSet} (25)

4.3.3 Efficiency and Accuracy Trade-offs

When building MRPAR g/, we have used a strict subset of Mg if Q°,, (@) # 0 in (20).
When building MRPAR, we have considered only the accesses of all R’ references that are
uniformly generated w.r.t R in (25). These facts lead directly to the following result.

Theorem 4: MRPARg r < ipredy p and MRPAR = ipredp,.

We have discussed how to construct ipredy exactly and MRPAR efficiently for numerical

codes. Our reuse framework is flexible and extensible, allowing various ‘analysis’ switches to

14
other

be used. Several possibilities are: (a) including Q¢,, (@) given in (20) in reuse analysis, (b)
including non-rectangular shapes for RISk in line 23, (c¢) analyzing non-uniformly generated
references and (d) analyzing aliased arrays with, for example, different dimensions. These
switches allow various trade-offs between efficiency and accuracy to be made. For example,

time-consuming deep analysis is required in order to optimize a program’s hot spots.

4.8.4 MRPAs v.s. Shortest Reuse Vectors

Given @ € Mg and b € | Reremset PRE(@), @ — b represents a generalization of Wolf and
Lam’s reuse vector from single nests to multiple nests [57]. Among all these reuse vectors

of the access @, the shortest reuse vector (SRV) in the entire program is:
SRVyz(@) = d— ipredg(@) > 0 (26)

(with the provision that @ — L = T and T > any reuse vector.) Accordingly, @—MRPAR(@) is
our approximation of SRVg(a@). To apply Theorem 1 to check if the access @ is a hit or a miss,
we need its shortest reuse vector SRVg(a) in order to obtain the MRPA, @—SRVg(ad). Thus,
the concepts of MRPAs and shortest reuse vector are equivalent but the latter represents a

roundabout way of providing what is required in Theorem 1.
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As can be observed from Examples 4 — 6, ipredg - depends on the following factors: (a)
the subscript expressions of R and R’, (b) the base addresses of the arrays accessed by R
and R', (c) the array sizes in all but the last dimension, (d) the line size L, (e) the shape
of RISk and (f) the shape of RISg. FindMRPA, which takes all these factors into account,
is exact in the common cases described in Theorem 3. Wolf and Lam’s reuse framework
for single nests [57], while sufficient for their optimization purposes, does not provide the
notion of shortest reuse vector required in behavior analysis. This is because they compute
reuse vectors without considering the factors (b) — (f) above. For example, they would have
generated only (0, 1,0) and (0,0, 1) for Example 5. Ghosh et al [22] rely on Wolf and Lam’s
framework and some ad hoc techniques to obtain approximately the shortest reuse vectors

required in their CMEs for single perfect nests in the absence of IF conditionals.

5 Cache Behavior Modeling

A program’s cache behavior is specified based on the notion of MRPA. An algorithm for

obtaining predictions of miss ratios from this specification is given.

5.1 Cache Miss Specification

The following result is a direct consequence of Theorem 1(a).

Theorem 5: The access @ of R is a cold miss if MRPAg(@) = L.

If MRPAR(d@) # L, we follow the CMEs [22] to set up the so-called replacement miss
equations to investigate if the access @ is a hit or a miss. Let InterRefsg(@) be the set of all
references that may be potentially accessed between the access MRPAR(@) and the access a.
The construction of this set is straightforward and is omitted here.

The replacement miss equations for the access @ of R are as follows:

)
VBEIntErRefs r(@)

(b= (0,5, .. iy Jns ety (B)) € Mg

A MRPAR(@) < b < @

RMEgR(d@) = A mag(@) + mC/K + § = mag(b) (27)

A Log = mag(a@) mod L

N —Log KOKL—1—Log

A m # 0)

\

-, =

The last four lines due to [22] are equivalent to csg(@) = csp(b) A mlg(@) # mlg(b) except
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ma}%)‘— mC/K——H __— mag (b)
— Loz — —

_LOE<5<]L’_1_LOE

Fig. 6. The last four lines in (27) for checking cache set contentions [22]. The boxes depict memory lines.

they are expressed in terms of bytes here. They are illustrated in Figure 6 in order to make

-

the paper self-contained, where mag(b) is at a distance of mC/K + ¢ bytes in memory from
mag(@). Note that m £ 0 ensures that mlg(@) # mlg(b). In a direct-mapped cache when
both R and B take L bytes to store a single array element, we can set 6 = 0.

The replacement miss equations are to analyze if the access @ can reuse the memory
line mlg(@) that was most recently accessed by the access MRPAg(a@) subject to the set
contentions caused by all intervening accesses of the references in InterRefsg(d). A set
contention is said to occur when one such an intervening access b is made to a memory line
that is distinct from mlg(a@) but also mapped to csg(d@) (enforced by the last four lines of
(27)). The intervening access b causes a set contention if the associated m is a solution to
(27). Hence, the following result is a direct consequence of Theorem 1(b).

Theorem 6: Suppose MRPAg(@) # L. The access d@ of R is a replacement miss if (27)
has at least K distinct solutions mq, ..., mg and a hit otherwise.

In comparison with the CMEs [22], we have dispensed with their cold miss equations and

generalized their replacement miss equations for single nests to multiple nests.

5.2 Cache Miss Generation

EstimateMisses given in Figure 7 finds the miss ratios for all references independently
and derives the miss ratio for the program from these individual miss ratios. This algorithm
analyzes a sample of RISk based on standard statistical sampling techniques. For technical
details regarding ¢ and w, see [11]. Basically, these two input values determine the size of
the sample taken from RISk and impose a lower bound on |RISg|. Their meanings are such
that if we run FstimateMisses many times, the real miss ratio for each R obtained in ¢ of
these runs will lie in the interval [MissRatio(R) —w/2, MissRatio(R) + w/2]. However, this
interpretation does not apply to the miss ratio for the entire program.

Our sampling mechanism is based on the prior work [53] except that we have made
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1 Algorithm FEstimateMisses 14 for each reference R in the program
2 INPUT: ¢ the confidence percentage 15 CMp =10 // cold misses for R
w: the confidence interval 16 RMgr =10 // replacement misses for R
3 OUTPUT: ProgMissRatio 17 Hr =190 // hits for R
4 for each reference R (in no particular order) |18~ for .each iteration vector ar € S(R)
5 compute |RISg|, i.e., the volume of RISk 19 if (MRPAR(@) = 1) /1 Theorem 5
6 if (|[RISR] is too small to achieve (¢, w)) 3(1) eIseOMR = CMp U {a}
7 if (|[RISg| is large enough to achieve 99 if (d is a repl. miss by Theorem 6)
8 the default (¢/,w') = (90%,0.15)) | 5 RMp — RMzU {5}
9 S(R) = a sample (¢/,w’) of RISk 24 else
10 else 25 Hpr = Hrp U {a}
5 e S(R) = RISg // analyze all accesses 926 MissRatio(R) — |CM‘IZ|E|—R\§3|£MR\
13 S(R) = a sample (¢, w) of RISk 27 ProgMissRatio — &alBSnlxMisRatio(R)
> |RISR|

Fig. 7. An algorithm for estimating cache misses.

modifications on computing |RISg| when RISg is not convex. As discussed in Section 4.2.2,
RISk can always be expressed as a union of convex polytopes. We compute |RISg| by
slicing RISk recursively into regions of lower and lower dimensions until eventually every
such a region is either empty or has a few line segments so that the points in the region
can be counted easily. This algorithm, while exponential in terms of the dimensionality of
RISR, is very efficient for regular codes with simple loop bounds and IF conditionals. The
majority of RISs are rectangular; their volumes can be calculated trivially. Other methods

for computing the volume of a convex polytope can be found in [9], [43].

The for loop in line 14 analyzes all references sequentially. For each reference R being
analyzed, the for loop in line 18 goes through its access vectors in its sample and classifies
each as a cold miss, replacement miss or a hit by applying Theorems 5 and 6. The time
complexity for solving (27) in line 22 is O(M), where M is the number of the intervening
accesses investigated for the reuse. In practice, EstimateMisses is efficient due to sampling.

Our model, when mispredicting at an access, always errs on the conservative side due to
Theorem 4. If MRPAR(@) = L but ipredg(a@) # L, the access @ may be either a replacement
miss or a hit. Its classification as a (cold) miss in lines 19 — 20 is incorrect if it is actually a
hit. If MRPAR(d) < ipredp(d) but MRPARg(a@) # L, then the interval (MRPAR(@), @) strictly
includes the interval (ipredy(@),@). Hence, more memory accesses have been checked than

necessary for set contentions due to the third line in (27). The access @ is a hit when it is
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classified so in lines 21 — 25 but may still be a hit even when it is classified as a miss. These

remarks highlight the importance of the notion of MRPA in exact behavior analysis.

6 Experiments

We have analyzed a range of programs from SPEC{p95, Perfect Suite, Livermore Ker-
nels, Linpack and Lapack. We discuss the experimental results for the five kernels given
in Appendix B and three complete programs. Hydro_K consists of three 2-D loop nests
from Livermore (kernel 18). MGRID_K is a 3-D loop nest (with multiple nests inside the
outermost loop) from the MGRID Benchmark. MMT is the 3-D blocked loop nest from
20] for computing the matrix multiplication of A and BT. MM is the matrix multiplication
kernel with initialization taken from [25]. LWSI_K is a 4-D imperfect loop nest (with many
statements between loops) from the LWSI Benchmark. These kernels (typical of nested

regular computations) have been chosen so that all parts of our model can be exercised.

Let us recall the framework for exercising and validating our model given in Figure 1. In
each program, scalars and temporaries are assumed register-allocated and each load/store
array reference triggers a call to an appropriate instrumentation subroutine. All programs
are compiled and linked using “g77-O1” on a 933MHz Pentium III PC with 512MB memory.
The base addresses and access order of all references are obtained from these binary codes.
Hence, the miss ratio of a program is sensitive to a particular binary being used. However,

the simulated code and analyzed code have the same accesses executed in the same order.

Our experimental results are summarized in a number of tables and figures. In each case,
the problem size and the cache configurations used are indicated. The cache configura-
tions covered include many from modern architectures such as Pentium IV (8KB, 64B, 4),
UltraSparc 11T (64KB, 32B, 4), Alpha 21264 (64KB, 64B, 2), Athlon (64KB, 64B, 2) and
PowerPC G4 (32KB, 32B, 8). All execution times are obtained on the 933MHz Pentium III
PC. All simulation results are obtained using a trace-driven simulator.® In all experiments,
we ran EstimateMisses with ¢ = 95% and w = 0.05 as the input. The time elapsed on
analyzing a program includes the costs from all the five components represented by the

doubly-framed boxes in Figure 1.

8 A locally written simulator has been used in all our experiments. It has been validated over the years against the

well-known Dinero III trace-driven simulator [27].
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6.1 Loop Nest Kernels

TABLE 2

Average Absolute Errors when Compared against Simulation for the Experiments from Figures 8 and 9.

Kernel | K | (32KB,32B) | (8KB,64B)
1 0.26 0.19
Hydro K | 2 0.25 0.18
4 0.24 0.18
1 0.20 0.35
MGRIDK | 2 0.14 0.37
4 0.14 0.30
1 0.43 0.19
MMT 2 0.28 0.14
4 0.21 0.09
1 0.30 0.32
MM 2 0.27 0.30
4 0.22 0.30
1 0.57 0.99
LWSI_K 2 0.51 0.76
4 0.53 0.61

Figure 8 compares the predicted miss ratios against that from simulation for a fixed
(32KB, 32B) but with three different K choices. In each graph, the miss ratios are plotted
against one single problem size parameter (with the others, if any, fixed). Figure 9 does the
same for (8KB, 64B). Table 2 gives the average absolute errors. Table 3 shows the times
taken to evaluate all the kernels for a single cache configuration. In all experiments, the
predicted miss ratios are close to the simulated ones and are obtained in times that are at
least two orders of magnitude faster than simulation. In Figures 8 and 9, the seemingly big
differences between the predicted and simulated miss ratios for MGRID_K are due to the
short ranges used for the miss ratios. We have used a smaller number of samples for MMT

because the tile size parameters KN and JN are required to divide N.

6.2 Whole Programs

We evaluate FEstimateMisses using three programs as detailed in Table 4. For each pro-
gram, we succeeded in abstractly inlining all the calls and obtained an inlined program
with loop nests only. Each program is analyzed using the reference input data. Thus, the
variables in all READ statements are initialized from the reference data and then treated

as compile-time constants. The three programs are further discussed below.
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Fig. 8. Predicted and simulated miss ratios for (C,L) =(32KB, 32B) with three different associativities.
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TABLE 3

Execution Times for (32KB,32B,2) Illustrated in Figure 8.

E.M. (secs) Sim. (secs)

Kernel - -
Min. Max. Mean Min. Max. Mean

Hydro K | 0.03 | 0.27 | 0.19 0.04 14.49 5.10

MGRID K | 0.17 | 0.19 | 0.18 0.50 35.00 11.82
MMT 0.71]15.54 | 4.71 || 1054.64 | 1938.65 | 1295.66
MM 0.07| 0.89 | 0.33 0.13 1126.93 | 171.75

LWSIK |0.06 | 0.28 | 0.17 0.21 18.33 8.20

TABLE 4

Three Complete Programs from SPEC{p95.

Program | #lines | #subrs | #calls ‘ #refs‘

Tomcatv 190 1 0 79
Swim 429 6 6 52
Applu 3868 16 27 2565

e Tomcatv. This example shows that our model can analyze more than just isolated nests.
The number of iterations of the outermost loop is data-dependent. For the reference input
data, the outermost loop runs for 750 iterations. The only data-dependent IF conditional
in the program is always false. In our analysis, the memory accesses contained in this
conditional are included but those inside the IF body are ignored.

e Swim. This example shows that our model can analyze codes consisting of call state-
ments. In this example, all calls are parameterless. After inlining, the outermost loop is an
[F-GOTO construct, which is converted into a DO construct.

e Applu. This example shows that our model can analyze programs of this size efficiently
with a good degree of accuracy. In subroutine SSOR, there are some data-dependent con-
structs. All but one are guarded by an IF conditional that is false at compile time and are
thus ignored. The remaining one is a WRITE statement for a register-allocated scalar. The

memory accesses in this I[F conditional are included in our analysis.

Figure 10 compares the predicted miss ratios against that from simulation for CxL xK =
4 x 3 x 8 = 96 cache configurations. The total analysis times required by Tomcatv, Swim

and Applu for all the configurations lumped together are about 14 secs, 2.8 mins, 3.2 hours,
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Fig. 10. Predicted and simulated miss ratios for C x . x K = 96 cache configurations.

TABLE 5

Absolute Errors and Execution Times Compared Against Simulation for (8KB, 64B) from Figure 10.

Miss Ratio Exe.T (secs)

Program | K g7y [ Sim. [Abs.Err. | EM. | Sim.
1 |56.16 | 56.00 0.16 0.31 4780.48
Tomcatv | 2 | 46.01 | 45.83 0.18 0.49 4897.58
4 | 22.38 | 22.46 0.08 0.60 4878.56
8| 7.27 7.36 0.09 0.63 4769.87
1 |66.71 | 65.98 0.73 2.88 8831.84
Swim 2 | 70.15 | 69.18 0.97 3.55 9030.47
4 | 63.95 | 63.46 0.49 3.79 9353.51
8 | 37.99 | 37.15 0.84 5.93 9401.60
1| 6.88 5.89 0.99 129.3 | 16784.15
Applu 2 | 5.42 4.45 0.97 129.7 | 17646.31
4 | 5.20 4.23 0.97 129.8 | 18848.32
8| 4.16 4.18 0.92 129.6 | 21104.30

respectively. These numbers are in sharp contrast with the respective total simulation times
consumed: 55 hours, 110 hours and 230 hours! In addition to being efficient, our model is
accurate (in terms of its prediction errors) and consistent (in terms of the trend exhibited
by the errors). To understand these points further, Table 5 gives the absolute errors (in
numbers) and the times to evaluate the three programs for (8KB, 64B). For the programs
of the scale such as Applu, EstimateMisses yields the close to actual miss ratio in about
130 seconds for each associativity while the cache simulation runs for about 5 hours. This
translates into a three orders of magnitude speedup over the cache simulator used. In terms

of memory requirement, our model requires about 1.8MB, 7.1MB and 60.3MB to analyze
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Tomcatv, Swim and Applu for the cache configuration (8KB, 64B), respectively.

7 Conclusion

To the best of our knowledge, this is the first work that demonstrates the feasibility of
analyzing statically the cache behavior of whole programs with regular and compile-time
predictable memory accesses. We have described, implemented and validated an analytical
model for numerical codes, where the bulk of computations are expressed in loop nests
operating on arrays. Our experimental results using kernels and complete programs indicate
accurate cache miss estimates in substantially shorter amount of time than simulation.
Our model can obtain predictions of miss ratios for program regions ranging from a single
reference to the entire program. The causes for cache misses can be easily recovered from
the specification (27). We believe the proposed mode is fast and accurate enough to guide
compiler cache optimizations, in particular, those across nests (which are less-well developed

[39]). We plan to apply our model for inter-nest cache optimizations in the future.

While this work represents a useful step towards an automatic analysis of whole programs,
data-dependent constructs such as variable bounds, data-dependent IF conditionals and
indirection arrays are still not statically analyzable. While Tomcatv, Swim and Applu are
analyzable as a whole, the rest of the programs in SPECfp95 and Perfect Benchmarks are
not despite that most of the lines can now be analyzed by our model. We plan to investigate
techniques for their analysis. To go beyond FORTRAN 77, we need to cope with pointers
and recursive calls. Some recent work [8], [12] on characterizing the reuse from some form

of address traces is promising toward analytical modeling for data-dependent constructs.

There are many other benefits to static analytical modeling. An analytical model can be
used as part of a general-purpose performance evaluation tool [34]. In addition, the mathe-
matical formulas developed for characterizing cache misses may be potentially exploited to

tighten the bound of the WCET (Worst-Case Execution Time) of a program [17], [55].
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Appendix
A Reducing the Evaluation Time of MRPAg

Given Sg r constructed in FindMRPA, we define the following set:

Se = |J Sew (28)

R’ €RefSet

Let us introduce the notation R(@) just in this appendix to represent the reference of which

a is an access. The function MRPAR can be expressed equivalently in terms of Sk as follows:

MRPA (@) = max_{b € S | b € My, mlg(@) = mlgyg (b)} (29)

We discuss two strategies for reducing the time on spent evaluating MRPAR for a given
access @ during behavior analysis. One is to remove some redundant elements from Sy g
that may be introduced in the two analytical cases of FindMRPA. The other is to sort Sg so
that the impact of the remaining redundant elements is marginalized. An example is given
to show that the latter is significantly more critical than the former.

In the first analytical case, the function MRPAR r found is correct for any Mz and Mp.
In the second case, MRPAR r works for any M g but Mz must be rectangular. In numerical
codes, Mg and My are simple. By exploiting their geometrical relationship, a number of
simplifications are possible. Let us mention two general rules, which have been specialized
for common cases.

An element b € S r.r 1s redundant if the MRPAR g stays unchanged when b is removed.
e Rule-A. Let b € Sgr. Then b is redundant if V @ € M, : g€ Mg
e Rule-B. Let b, b/ € Sg.r such that b/ < b. Then ' is redundant w.r.t b if (a) V @ € Mp :
Ve Mp=beMpand (b)Vae Mpg: mlg(@) = mlp¥') = mlg(a@) = mlg(b).

In FindMRPA, each element b* added to S rp in lines 22 and 38 has the form gj =
(7 —di, ... 0, —dy). Thus, @ — b* is an integer vector. By sorting Sy according to -, we
can significantly reduce the average number of comparisons required for evaluating MRPAR
for the accesses of R. As a result, the impact of any redundant elements in Sg is reduced.

Theorem 7: Consider MRPAg(a@) given in (29), where d; = (iy,...,i,). Assume that
every b€ Sr has the form g] = (iy — dy,...,i, — dy), where (dy,...,d,) € Z". Let all r
elements of Sg be sorted as 51, c b, such that (@— gk) < (a— gk+1). Let l;f be the first in
the list such that I;f € MR(Ef) and mlg(a) = ij(l?f)(gf)' Then MRPAR(@) = gf.
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Proof: The definition of max_ and that of MRPAR r in (29). B

As Example 3 shows, b* found in the last case of FindMRPA may not have the desired
form as in Theorem 7. A version of this theorem can then be generalized in an obvious way.

Example 7: Consider the four subsets Sy to Sy that make up Sx ki) x (ki) 1 Example 5.
Sy can be ignored. This becomes clear if we set Vo= (1,d1,1,i9 — 1,1,i3 — £,2) from Sy
and b = (1,d1,1,149,1,i3 — £,2) from Ss and then apply Rule-B. By further applying Rule-B
to the elements in S3, we find that (1,i1,1,ia,1,i3 — 3,2) and (1,41, 1,49, 1,43 — 2,2) are
both redundant w.r.t (1,i1,1,49,1,43 — 1,2). Let S = {(1,41,1,49,1,43 — 1,2)}. Let us
consider Sy. Since 1 < i3 < N and 1 <ig+ N —{¢ < N, then { > 1 holds. By Rule-A,
all elements in Sy such that ¢ < 1 are redundant. Among the three elements left in Sy,
(1,9, —1,1,N,1,i3+ N —3,2) and (1,9, — 1,1, N, 1,i3+ N — 2,2) are both redundant w.r.t
(1,499 — 1,1, N, 1,i3+ N —1,2) by Rule-B. Let S} = {(1,i1 — 1,1, N, 1,is+ N —1,2)}. Thus,
we have reduced Sx ki), x (ki) given in Example 5 to its subset: Sx k) x(ki) = S1U S5 U S).

X(k,i) is the only reference to X. Thus, Sxui = Sx(ki)xki) ond MRPAxy,) =
MRPAx (&5), x (k,i)- Note that |Sx x| = 6. By Theorem 7, we sort Sx.; into a list, which
is assumed to contain L as its last, i.e., Tth element. When N = 100, X (k,i) generates
N3 = 105 accesses. Let Cy be the number of accesses with the k-th element on the list as
its MRPA. We have Cy = 740,000, Cy = 237,600, C5 = 9,900, Cy = 0, C5 = 9,900,
Cs =99 and C; = 2501. Thus, the average number of comparisons required for evaluating
MRPAx (i) for all accesses of X(k,i) is found to be 1.31. If we did not eliminate any re-
dundant elements from Sx k), i.€., Sx (ki) x k), we would have |Sx | = 17. The average
number of comparisons would increase only to 1.85. Thus, the impact of Rule-B is more

significant than that of Rule-A in reducing analysis time.

B The kernel codes
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PROGRAM Hydro K
REAL*8 ZA, 7P, 7ZQ, ZR, ZM, ZB, ZU, ZV, 77

T= 0.003700D0

$=0.004100D0

DO k= 2,KN
DO j= 2,JN

ENDDO
ENDDO
DO k= 2,KN
DO j= 2,IJN

ENDDO
ENDDO
DO k= 2 KN
DO j= 2,JN
ZR(j,k)= ZR(j,k)+T*ZU(jk)
77.(j,k)= ZZ(j,K)+T*ZV (j k)
ENDDO
ENDDO
END

DIMENSION ZA (JN+1,KN+1), ZP(JN+1,KN+1), ZQ(JN+1,KN+1), ZR(JN+1,KN+1), ZM(JN+1,KN+1))
DIMENSION ZB(JN+1,KN+1), ZU(JN+1,KN+1), ZV(JN+1,KN+1), ZZ(JN+1,KN+1)

ZA(j.K)=(ZP(j-1,k+1)+ZQ(j-1,k+1)-ZP(-1,k)-ZQ(j-1.k)) *(ZR (j, k) + ZR (- 1.k) ) /(ZM(j-1,k) + ZM(j-1,k+1))
ZB(jk)= (ZP(j-1k)+ZQ(j-1,k)-ZP(j.k)-ZQ(,k)) *(ZR(j. k) +ZR (j,k-1)) /(ZM(j k) + ZM(j-1,k))

ZU(j,k)= ZU(j,k)+S*(ZA(j,k)*(ZZ(j,k)-ZZ(j+1,k))-ZA
-ZB(j,k)*(2Z(j,k)-ZZ(j,k-1))+ZB(j,k+1)
ZV(j,k)= ZV(j,k)+S*(ZA(j,k)*(ZR(j,k)-ZR(j+1,k))-ZA
-ZB(j,k) *(ZR(j,k)-ZR(j,k-1))+ZB(j,k+1) *(

—

L) (22 K)-22(j-1,K)
(k)22 (j k-+1)))

i-1K) *(ZR(1,k)-ZR (j-1,K))
R(j,k)-ZR(j k+1)))

N

N =~

PROGRAM MGRID K
REAL*8 U,Z
DIMENSION U(M,M,M), Z(M,M,M)
DO 400 13=2,M-1
DO 200 12=2,M-1
DO 100 I1=2,M-1
U(2*11-1,2%12-1,2¥13-1)=U (2*11-1,2%12-1,2*13-1)
+7(11,12,13)
100 CONTINUE
DO 200 I1=2,M-1
U(2*11-2,2%12-1,2¥13-1)=U (2*¥11-2,2%12-1,2*13-1)
+0.5D0*(Z(11-1,12,13)+Z(11,12,13))
200 CONTINUE
DO 400 12=2,M-1
DO 300 I1=2,M-1
U(2*11-1,2%12-2,213-1) = U (2¥11-1,2%12-2,2*13-1)
+0.5D0*(Z(11,12-1,13)+Z(11,12,13))
300 CONTINUE

PROGRAM MMT
REAL*8 A, B, D, WB
DIMENSION A(N,N), B(N,N), D(N,N), WB(N.N)
DO J2 = 1,N,BJ
DO K2 = 1,N,BK
DO J=J2,J2+BJ-1
DO K=K2,K2+BK-1
WB(J-J2+1,K-K2+1)=B(K,J)
ENDDO
ENDDO
DOI=1N
DO K=K2,K2+BK-1
RA=A(LK)
DO J=J2,J2+BJ-1
D(I,J)=D(L,J)+
WB(J-J2+1,K-K2+1)*RA

DO 400 11=2,M-1 ENDDO
U(2411-2,2%12-2,2%13-1)=U (2*11-2,2*12-2,2%13-1) ENDDO
+0.25D0%(Z(11-1,12-1,13)+ Z(11-1,12,I3) ENDDO
FZ(I1, 12-1,13)+7Z(11, 12,13)) ENDDO
400 CONTINUE ENDDO
END END
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PROGRAM MM

REAL*8 X(N,N), Y(N,N), Z(N,N)

DOi=1N

DOj=1N
Z(j,i) = 0.0
DOk =1N
Z(5.0)=2(3,i) +X (k) *Y (j.k)
ENDDO

ENDDO

ENDDO

END

PROGRAM LWSI_K

DOUBLE PRECISION xt, yt, xc, yc, zc
DOUBLE PRECISION zero, wsin, wcos, z, Xs
DIMENSION xc(natoms, ns), yc(natoms, ns)
DIMENSION zc (natoms, ns), xt (natoms)
DIMENSION wsin(1), wcos(1), zero(1), z(1)
DIMENSION xs(1), yt (natoms)

DOi=1,ns,1
xt(1) = xt(2)+wcos(1)
xt(3) = xt(1)
yt(2) = zero(1)
DOj=1,ns, 1
yt(1) = yt(2)+wsin(1)

y
yt(3) = yt(2)-wsin(1)
z(1) = zero(1)
DOk=1,ns,1
DO 1 =1, natoms, 1
xc(Lk) = xt(1)
ye(Lk) = yt(1)
zce(Lk) = z(1)
ENDDO
z(1) = z(1)+xs(1)
ENDDO
yi(2) = yt(2)-+xs(1)
ENDDO
xt(2) = xt(2)+xs(1)

ENDDO
END
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