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Abstract—Research on compiler techniques for thread-level loop speculation has so far remained on studying its performance
limits: loop candidates that are worthy of parallelization are manually selected by the researchers or based on extensive profiling
and pre-execution. It is therefore difficult to include them in a production compiler for speculative multithreaded multicore
processors. In a way, existing techniques are statically adaptive (“realized” by the researchers for different inputs) yet dynamically
greedy (since all iterations of all selected loop candidates are always parallelized at run time).
This paper introduces a SEED (Statically GrEEdy and Dynamically Adaptive) approach for thread-level speculation on loops
that is quite different from most other existing techniques. SEED relies on the compiler to select and optimize loop candidates
greedily (possibly in an input-independent way) and provides a runtime scheduler to schedule loop iterations adaptively. To select
loops for parallelization at run time (subject to program inputs), loop iterations are prioritized in terms of their potential benefits
rather than their degree of speculation as in many prior studies. In our current implementation, the benefits of speculative threads
are estimated by a simple yet effective cost model. It comprises a mechanism for efficiently tracing the loop nesting structures
of the program and a mechanism for predicting the outcome of speculative threads. We have evaluated SEED using a set of
SPECint2000 and Olden benchmarks. Compared to existing techniques with a program’s loop candidates being ideally selected
a priori, SEED can achieve comparable or better performance while aututomating the entire loop candidate selection process.

Index Terms—Loop-Level Speculation, Thread-Level Speculation, Speculative Compilation
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1 INTRODUCTION

The hardware support for thread-level speculation
(TLS) on multicore processors [6], [26] allows specu-
latively parallel threads to be created from sequential
code without having to prove they are independent.
If a speculative thread executes incorrectly, a recovery
mechanism is used to restore the machine state. This
architectural support provides more opportunities to
uncover thread-level parallelism in applications diffi-
cult to parallelize traditionally.
Both hardware and software approaches have been

proposed. In loop-level speculation, each iteration of a
loop forms a speculative thread that runs in parallel
with the other iterations of the same loop or other
loops (nested or otherwise). Many programs, how-
ever, contain a large number of loops. The challenge
is to select the right subset of these loops, which may
vary from input to input, and to fully exploit the
dynamic parallelism available in those loops at run
time with minimum overhead.
The pure hardware approaches [1], [4], [12] have

the advantage of being transparent to users, being
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able to run legacy code without re-compilation, and
being adaptive to input data. However, they are
often limited in the amount of extractable paral-
lelism due to the lack of source-level information and
TLS-enhancing compiler optimizations. It is generally
agreed that if we want to take full advantage of the
hardware TLS support, software support is required
to identify and optimize potential loops and avoid
poor speculation.
Recently proposed compiler techniques on thread-

level speculation for loops are also rather restrictive.
In most of those schemes, all loops in a candidate
set, denoted LC, are speculatively parallelized in a
greedy manner on the assumption that all loops in
LC have been ideally selected (for some particular
inputs). In most studies [2], [7], [8], [11], [16], [17],
[29], LC for a program is determined either manually
or based on extensive profiling (including dependence
profiles), [7], [8], [29] or pre-execution of a parallelized
program on some sample inputs [11] or real inputs
[17]. Since the focus of these performance limit studies
is on showcasing the best possible speedup of their
techniques, the loops in LC are ideally selected in their
experiments (for good reasons). Such idealized loop
selection makes it difficult for them to be adopted in
a production compiler. To automate this process, the
compiler needs to optimize based on the average-case
execution time (ACES) of a program, resulting in too
few loops in LC if it is to conservative or too many if
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it is too greedy. In either way, parallelism cannot be
adequately exploited.
In the case of thread scheduling, there are further

difficulties in existing compiler techniques. First, all
loops in LC are parallelized greedily even though
some may not benefit from speculative execution,
and some could even suffer a performance loss. This
requires their loop selection to be unduly restric-
tive so that all loops in LC would produce good
speedups during most or all program executions. Sec-
ond, threads are spawned from a loop either in-order
or out-of-order without considering the dynamic par-
allelism available in the program. Third, in the case of
multi-level loop speculation [7], [11], [16], [17], a sim-
ple scheduling policy that prioritizes threads based
on their degree of speculation (DOS) is used in most
prior studies [2], [7], [11], [16], [17], [29]. In such DOS-
based scheduling, threads are prioritized in favor of
the least speculative threads. Therefore, threads that
execute inner loop iterations are always given a higher
priority than the threads that execute outer loop iter-
ations (by squashing the latter when there is no more
free core available). Furthermore, squashing a thread
may trigger all its spawned threads to be squashed.
As a result, this simple policy often fails to exploit
parallelism that is dynamically and independently
available in other loops nested in the same loop nest
structure.
If existing speculative compiler techniques [2], [7],

[8], [11], [16], [17], [29] were to be fully implemented
in a production compiler, ACES-driven adaptive loop
selection and DOS-based greedy thread scheduling
would have to go together. However, such a combi-
nation could be problematic, especially when some of
the nested loops are inside an IF-statement or have
function invocations and non-constant loop bounds.
The thesis of this work is that their roles should

be reversed: dynamic runtime scheduling should be
adaptive and driven by a cost-benefit analysis while
static loop selection should be greedy and thus easily
automated in a compiler. In particular, loop selection
should be done in an input-independent manner: only
the loops that would not benefit from speculative
execution are excluded from LC based on a simple
compile-time analysis. This new approach not only
makes it easier to be implemented in a production
compiler but could also exploit more dynamic paral-
lelism available in a program at runtime.
This paper makes the three main contributions:

• We introduce SEED, a more practical approach to
parallelize multiple loops in sequential code (Sec-
tion 2). The novelty lies in allowing the compiler
to select and optimize loop threads greedily, but
relying on a runtime scheduler to maximize per-
formance adaptively by prioritizing loop threads
based on their potential benefits rather than their
degree of speculation.

• We present an implementation of SEED includ-

ing a new thread scheduling scheme to realize its
statically-greedy but dynamically- adaptive strategy
(Section 3). Speculative threads are scheduled
based on their potential benefits guided by a sim-
ple yet effective cost model. The model comprises
a mechanism to efficiently trace the loop nesting
structure in the program and a mechanism to
predict the outcome of speculative threads.

• We have implemented SEED in GCC and com-
pared it with the existing multi-level loop spec-
ulation approaches that rely on ideally selected
loop candidates and DOS-based thread schedul-
ing (Section 4). SEED can achieve comparable
or better performance validated using a set of
selected Olden and SPEC2000 benchmarks while
automating the entire loop candidate selection
process.

2 THE SEED METHODOLOGY

In this section, we first examine in more detail the
limitations of existing TLS-based compiler techniques
by way of examples and then outline the key compo-
nents in our SEED approach.
To effectively exploit the speculative thread-level

parallelism in a program, we need to both maximize
parallelism and increase its coverage, i.e., the percent-
age of code executed under speculative execution. In
many programs, inner loops tend to have higher par-
allelism but lower coverage while outer loops cover
more of the program but have lower parallelism [14].
To be fully automatable and as competitive as (and
even better than) existing compiler techniques, SEED
aims to overcome their limitations by maximizing
both parallelism and coverage in a program.

for (; node; node=node→list) {
do { // DOALL

othernode = . . .

} while (k < j)
++othernode→from; // input-dependent dependences

}

Fig. 1. Dynamic parallelism available at both loops.

Figure 1 gives a double loop abstracted from em3d
in the Olden benchmark suite. The outer loop is
a DOACROSS loop with its degree of parallelism
depending on the runtime values of othernode com-
puted in the inner DOALL loop.
Let us look at the limitations of existing TLS-based

compiler techniques [2], [7], [8], [11], [16], [17], [29].
With ACES-based loop selection, the outer loop may
or may not be selected to be parallelized, i.e., included
in LC. In either case, its parallelism and coverage can-
not be effectively exploited for some of its executions
depending on the runtime values of othernode. In
the two extreme cases, the outer loop is parallelized
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(as it is included in LC) when it is actually DOSEQ
and sequentialized when it is DOALL. Furthermore,
when both loops are parallelized, DOS-based schedul-
ing will prevent outer loop iteration threads from
being executed when there are not even enough cores
to execute the inner loop as validated by experiments
(to be discussed in Section 4).
In our SEED approach, we expect both loops in

Figure 1 to be greedily selected (i.e., included in LC)
for parallelization since the inner loop is DOALL and
the outer loop is expected to have some DOACROSS
parallelism for some program executions. However,
the parallelism in both loops will be adaptively ex-
ploited at run time. When the program is currently
executing the i-th outer loop iteration, let us consider
the scenario in which this iteration and outer loop
iterations i+1 and i+2 are independent but outer loop
iteration i + 3 may be squashed due to some depen-
dence violation (caused by accesses to othernode).
Then, roughly SEED will allocate two cores to execute
iterations i + 1 and i + 2 and the remaining cores to
execute iteration i and all its inner iterations. In gen-
eral, both inner and outer loop iterations are executed
simultaneously depending on their potential benefits.
Thus, unlike existing techniques, both parallelism and
its coverage can be maximized at the same time.

int main() {
for ( . . . ) { // LoopM

f ( . . . );
if ( . . . ) g ( . . . );

}
}
void f( . . . ) {

for ( . . . ) { // Loopf
if ( . . . ) g( . . . );
. . .

}
. . . // f-cont

}
void g( . . . ) {

for ( . . . ) { // Loopg
. . .

}
. . . // g-cont

}

LoopM

Loopf

Loopg

1

2

3

4

f-cont

g-cont

(a) A program (b) Four dynamic loop nests

Fig. 2. Dynamic loop nesting.

The limitations of existing compiler techniques be-
come more apparent when we consider programs
with their loop nesting structures being formed dy-
namically due to complex control flow and caller-
callee relations. For the example program given in
Figure 2(a), there are four different dynamic loop nests
given in Figure 2(b), which correspond to four differ-
ent combinations of the evaluation results of the two
if statements. Different loops exhibit different degrees
of parallelism, which may depend on program inputs
and vary during different program executions or dif-
ferent stages of the same program execution. It will
be difficult to apply ACES-based loop selection and

DOS-based scheduling to find a static parallelization
scheme that is effective in all the situations.
For loop nests formed dynamically at run time,

a good parallelization scheme should exploit paral-
lelism from all loop levels simultaneously. This al-
lows both parallelism and coverage to be maximized.
However, we cannot create infinitely many threads.
As a result, the limited number of cores available in
a platform should be utilized effectively to maximize
performance.
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Fig. 3. An overview of SEED.

Figure 3 outlines our SEED methodology designed
to be used by ordinary programmers with compa-
rable or better performance than existing compiler
techniques. This is made possible due to the key
improvements of SEED over the existing AECS- and
DOS-based techniques represented by [2], [7], [8], [11],
[16], [17], [29] as summarized in Table 1. All the
components of SEED, together with the rationales for
making these improvements or changes, are described
in Section 3. The feasibility of SEED is evaluated
in Section 4. Essentially, we rely on the compiler to
identify and optimize greedily the loop candidates in
LC and adopt an adaptive runtime scheduling scheme
to selectively run in parallel the loop iterations that
are likely parallelizable from some multiple loops in
LC.

3 AN IMPLEMENTATION OF SEED
In this section, we present a concrete implementation
of SEED to validate our proposed approach. In this
implementation, we leverage and integrate several
existing TLS-based techniques. We have also added
a few new features, for example, the techniques of
constructing dynamic loop nests, predicting thread
outcomes and scheduling threads with a cost-benefit
analysis. However, it is the use of the SEED approach
as the underpinning of the implementation and inte-
gration that is most novel in this work.
In SEED, the dynamic loop nest being executed

at any time in a program is tracked. In order to
determine the potential benefit of running threads
to execute iterations from either an outer or inner
loop, thread boundaries are partitioned differently
from other existing techniques. In particular, a thread
that executes an inner-loop iteration will execute only
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Loop Nesting
Construction &

Thread
Approach Loop Selection

Creation Spawning Scheduling Squashing Outcome Prediction

ACES- & DOS-
based

Largely
researchers-
assisted to
improve ACES

Non-essential due
to being DOS-
based

Inorder or out-
of-order for both
main & speculative
threads

Prioiritized
by DOS

DOS-based
(offending thread &
all more speculative
ones)

NO

SEED

Greedy, easily
automated by
compiler (§ 3.1.1)

Iteration
boundaries
marked more
precisely (§ 3.1.2,
3.1.3 & 3.2.1.3)

Out-of-order for
main thread and
one spawnee for a
speculative thread
(§ 3.2.1.1)

Prioritized
by benefits
(§ 3.2.4)

Offending thread &
all more specula-
tive ones at the
same nesting level
(§ 3.2.1.2)

YES

(§ 3.2.2 & 3.2.3)

TABLE 1
The key differences between SEED and the ACES- and DOS-based compiler approach.

the continuation code that belongs to the same outer-
loop iteration. These differences are reflected in thread
spawning and the execution model, which are other-
wise similar to the schemes used in the literature.

3.1 Compiler Phase

As shown in Figure 3, three modules are used in this
phase. Given a program, LC is first selected by the
“Loop Selection” module. Then thread-spawning in-
structions are inserted by the “Thread Creation” mod-
ule to the selected loops in LC. Finally, in the “TLS-
Enhancing Optimizations” module, optimizations are
applied to those selected loops to reduce the misspec-
ulation cost that would be incurred otherwise. Note
that such compiler optimizations cannot be applied as
such by pure hardware approaches [12], [1], [4].

3.1.1 Loop Selection

Due to the adaptive scheduling used in SEED, loops
can be selected greedily so that a loop that exhibits
parallelism in some but not all program executions
can be included in LC. Furthermore, any existing loop
selection techniques can be leveraged here.
To demonstrate the feasibility of SEED, LC is se-

lected greedily in our current implementation. All
loops in a program are included in LC unless they
are irreducible, have small trip counts, or have small
workload in the loop bodies. Our measurement shows
that loops with trip counts smaller than three exhibit
little loop-level parallelism. They are thus ignored. In
addition, a loop must have a body large enough to
offset the speculation overhead incurred. There are
three cases. In Case 1, a loop that contains calls is
assumed to be large. In Case 2, we deal with inner
loops that contain no calls. Such an inner loop is
large if its estimated execution time is larger than the
speculation overhead. In Case 3, we deal with outer
loops that contain no calls. For such an outer loop,
if all its nested inner loops have small trip counts, it
is handled as in Case 2. Otherwise, the outer loop is
treated as large and included.

It should be emphasized that in our current im-
plementation, loop selection is done by a simple
compiler-time analysis. No memory dependence pro-
filing information is used (although it can be exploited
if available). Some execution profiles are needed only
to decide whether a loop has a small trip count during
most or all its program executions. Such information
may be obtained through inter-procedural constant
propagation or user annotations.

3.1.2 Thread Creation

For each loop in LC, its iterations may be executed
in different threads. The compiler will divide its loop
body into a pre-spawn region and a post-spawn region
by inserting a spawn instruction, SPAWN(S), where
S is the starting address of the loop. In addition, S is
also the starting address of the speculative thread that
is spawned. A special instruction CHECK EXIT(S)
is inserted at every exit of the loop, and a special
instruction CHECK VALIDATE(S) at the back edge
of the loop. We refer to these two types of special
instructions as CHECK instructions when there is no
need to distinguish them. During the execution of a
loop, every loop iteration is terminated by a CHECK
instruction. CHECK VALIDATE plays a similar role
in existing TLS execution models. CHECK EXIT is
unique in SEED to make sure that the thread that
executes the last iteration of an inner loop may con-
tinue to execute the continuation code that belongs
to the same outer loop iteration (for scheduling pur-
poses). More details on the semantics of both CHECK
instructions are explained in Section 3.2.1.3.
In practice, the starting address of a thread is

augmented with the stack pointer so that different
dynamically created loops due to recursion are dis-
tinguished. For convenience, a program is assumed
to be enclosed by a trivial loop, denoted root. Thus,
every thread starts from a loop’s starting address.

3.1.3 TLS-Enhancing Optimizations

In general-purpose applications, loop-level paral-
lelism is often obfuscated by a small number of data
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and control dependences [30]. TLS-enhancing opti-
mizations are critical to uncover and eliminate such
hindrances to loop-level parallelism. In our current
implementation, two optimizations, pre-computation
[17] and software value prediction [29], are applied.
A pre-computation slice computes the correct input

values for a speculative thread, in particular, the
values of the loop induction variables, to reduce some
frequent data dependence violations caused. So is the
computation for the loop terminating condition to
reduce control dependence violations.
The (size) ratio of the pre-spawn region over the

post-spawn region is crucial. A tradeoff between
thread-level parallelism and misspeculation overhead
is usually made there. If we push all loop instructions
into the pre-spawn region, no misspeculation will
occur but the loop will also be totally sequential.
In our current implementation, the ratio threshold is
preset to be 10%. No more instructions are moved
into the pre-spawn region if the threshold is reached.
Our results show that this threshold is large enough
to accommodate most pre-computation slices.
Software value prediction is a technique that inserts

value prediction code as well as mis-prediction check
and recovery code into a program at compile time to
predict critical values of certain variables. In SEED,
this is applied to the variables that are only com-
puted in the post-spawn region and used in the later
iterations (i.e., those that cannot be pre-computed in
the pre-spawn region). They include loop induction
variables that cannot be pre-computed, variables in
loops with a similar behavior to induction variables
(e.g., if (cond) i++, where cond is mostly true or
false), and return values of some function calls.

3.2 Runtime Phase

This phase aims to execute mostly parallelizable iter-
ations from multiple loops in LC to maximize par-
allelism and coverage, by prioritizing threads based
on their potential benefits rather than their degree of
speculation (DOS). There are four modules as shown
in Figure 3. The “Execution Model” module dictates
how threads are spawned, squashed and validated.
The “Thread Outcome Prediction” module predicts
whether a speculative thread will be squashed due
to dependence violations or stalled due to load im-
balance or speculative buffer overflow. This ensures
that some loops in LC that are greedily selected by
“Loop Selection” are not executed in parallel if they
have little parallelism in a particular execution unless
spare cores are available. The “Dynamic Loop Nest
Construction” module traces precisely and efficiently
the dynamic loop-nesting structure for all loops at a
particular point in time during program execution.
Based on the dynamic loop-nesting structure and the
predicted thread outcome, a simple yet effective cost
model is used to estimate the relative benefit of run-
ning different speculative threads in parallel. Finally,

the “Thread Scheduling” relies on this cost model
to schedule a speculative thread (by de-scheduling
another thread when no free cores are available).

3.2.1 Execution Model
As summarized in Table 1, the execution model for
the ACES- and DOS-based approach is simple. There
is no need to distinguish between outer and inner
loop iterations. In particular, a speculative thread
that executes the last iteration of an inner loop is
allowed to continue executing instructions anywhere
in its continuation code. In contrast, SEED aims to
exploit the parallelism available in different loops by
prioritizing threads in terms of their potential benefits
rather than their degree of speculation. For the loops
that are nested at the same level and enclosed in
another loop, there are generally data dependences
of producer-consumer types and/or control depen-
dences between the two adjacent loops. As a result,
in SEED, squashing a misspeculated thread will only
cause all threads at the same nesting level that are
more speculative than itself to be squashed. Data
forwarding is now confined to the same nesting level
(Section 3.2.1.2). Note that such dependence violations
(across the same or different levels) can still be de-
tected as before. As a result, a speculative thread that
executes the last iteration I of a loop is allowed to
continue executing the first iteration I ′ of the next
loop at the same nesting level. (We could force I and
I ′ to run in two separate threads by inserting a spawn
instruction in between. However, doing so will not be
efficient since I often contains only a few instructions.)
As is customary, the main thread is the only non-

speculative thread that can commit and update the
program state. Thus, all threads are committed in
their original sequential program order. A speculative
thread could stall due to a speculative buffer overflow,
resource shortage or load imbalance. In addition, a
speculative thread will be squashed due to data or
control dependence violations.

3.2.1.1 Thread Spawning: On encountering a
SPAWN instruction, a thread may spawn a speculative
thread if there is a free core. A SPAWN(S) is associated
with a loop identified by its unique starting address
S. The nesting level of a SPAWN is the nesting level of
its associated loop in the dynamic loop nest observed
at that point in time.
The main thread can spawn out-of-order specula-

tive threads at all SPAWN instructions it encounters
during its execution. These SPAWN instructions are
associated with different nested loops in a dynamic
loop nest. The earliest spawned thread is the most
speculative because it is associated with the outermost
loop in the dynamic loop nest.
A speculative thread T executing an iteration of a

loop L can spawn at most one speculative thread.
The first encountered SPAWN instruction will be at the
same nesting level as T . All other SPAWN instructions
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encountered during the execution of T are ignored
(i.e., treated as no-op instructions). The intuition be-
hind this one-spawnee restriction is to fully parallelize
the inner loops of a loop nest first in order to max-
imize parallelism while keeping outer loop threads
relatively large to improve coverage and maintain
load balance. Iterations of the outer loops are often
more speculative since they are farther apart from
each other in the original sequential execution order.
In speculative parallelization, allowing a speculative
thread to create many smaller spawnees out of order
may cause them to stall and thus create unintended
load imbalance. Our experimental results presented in
Section 4 confirm the effectiveness of this simple one-
spawnee approach. Thus, “one spawnee” is a perfor-
mance enabler rather than a limiter. This policy was
not generally endorsed in the prior work that dealt
with speculative execution of multiple nested loops
[2], [7], [8], [11], [16], [17], [29] as shown in Table 1.

root

…

L1 L2

L11 L12 L13

L111 L112

main thread a loop iteration

running speculative threadcommitted thread

IS List

(Thread 

Order)

Fig. 4. A snapshot of S-nest in SEED (Part I).

SEED maintains at run time the dynamic loop
nest structure, S-nest, being executed in the program.
Figure 4 gives a snapshot of S-nest for an imaginary
example. S-nest is represented as a tree in which each
tree node represents a loop. Each labeled horizontally-
stretched rectangle in the figure represents a tree node,
i.e., a loop, with many iterations in the node. So,
root, L1, L11, L111, L112, L12, L13 and L2, form the
current S-nest, where root encloses the entire program.
A thread is represented by either a circle or a square.
A solid circle is a committed thread. The main thread,
which conceptually includes all committed threads,
starts from root. Threads working on the inner loops
at the same level are executing the same loop iteration
of their immediately enclosing loop.
Due to the one-spawnee policy imposed on specu-

lative threads, the following properties are immediate:

Property 1: In a post-order traversal of S-nest with all
committed threads being ignored, all threads are ordered
from the least to the most speculative with the first being

always the main thread.
Property 2: All children of a loop node L in S-nest

must be executing the same iteration of L.
Property 3: S-nest is left-biased such that only the

leftmost child of a node can itself have child nodes.
In out-of-order thread spawning, additional hard-

ware support is necessary for efficient thread order-
ing. In [20], all running threads will link themselves
dynamically in hardware in a immediate successor (IS)
list according to their sequential order. SEED uses
the same IS list as in [20] to track the thread order,
which happens to be a post-order traversal mentioned
in Property 1. In Figure 4, the zigzag arrow in gray
represents such a thread ordering sequence, i.e., IS.
In particular, the main thread is the head of IS. The
nesting level of a speculative thread is defined to be
the nesting level of the loop from which this thread
is spawned. The nesting level of the main thread is
defined to be the nesting level of the innermost loop
that it is executing in S-nest.

3.2.1.2 Thread Squashing: The speculative ver-
sioning cache (SVC) [25] is used to detect dependence
violations. In [25], when a thread T issues a load
request that causes a cache miss, say, in memory loca-
tion X , a version control logic (VCL) is used to fetch
the most recent version of X from a less speculative
thread T ′ based on the IS list and the status of the L1
cache line for X . We have modified SVC slightly to
incorporate the nesting levels of threads so that T is
sent a kill signal if T ′ is at a different level from that of
T . So memory forwarding will take place only within
a particular loop level in S-nest. Note that the main
thread is conceptually working through all nesting
levels. This modification aims to reduce the cross-level
interference in determining the potential benefits of
parallelizing different loop levels.
Everything else works exactly the same as in SVC.

If T has obtained the most recent version of X from,
say, T ′′ but there is a subsequent write into X by T ′

that is more speculative than T ′′ but less speculative
than T , then T will receive a kill signal.
Any thread that receives a kill signal will squash

itself and propagate the signal to its successor in IS
if the successor is at the same nesting level. Hence,
the offending thread and all of the more speculative
threads at the same level in IS are squashed. Unlike
DOS-based scheduling, SEED does not indiscrimi-
nately squash all more speculative threads in order
to exploit more dynamic parallelism in other nested
loops in the loop nest.

3.2.1.3 Thread Validation: Like a SPAWN in-
struction, a CHECK is associated with a loop. A suc-
cessful execution of CHECK in a thread T indicates
the completion of the iteration assigned to the thread.
Then, thread validation will take place. There are two
cases depending on whether T is a speculative thread
or the main thread.
Suppose T is a speculative thread executing an
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iteration of a loop L. All speculative threads spawned
by T are at the same nest level of T . Thus, thread
validation takes place only for a CHECK(S) instruction
associated with a loop at the same nest level of L. All
CHECK(S) instructions that T encounters are ignored
if they are associated with the loops nested inside
L (since no speculative threads were ever spawned
there). If T encounters a CHECK(S) associated with
the enclosing loop of L, the task assigned to T is
completed and T stalls. Eventually, there are two
possibilities: T becomes the main thread. Its execu-
tion resumes from this CHECK instruction. Or, T is
squashed.
For a CHECK(S) instruction that T encounters at the

same nesting level of L, two cases are distinguished:

• CHECK(S) is CHECK VALIDATE(S):
If the successor thread T ′ of T in IS has a different
starting address, then T ′ must be executing an
outer loop iteration. In this case, T will continue
executing the next iteration of L. Otherwise, T
first checks all predicted values for T ′. If all
predicted values are validated, then T stalls.
Eventually, T will become either the main thread
or get squashed. On the other hand, if T detects
a data dependence violation in T ′, then T ′ will
receive a kill signal, causing T ′ and all other more
speculative threads at the same level in S-nest to
be squashed. T will then continue executing the
next iteration of L.

• CHECK(S) is CHECK EXIT(S):
The current loop L is finished. Let T ′ be the
speculative running thread following T in the
thread order IS. If the starting address of T ′ is
S, then L has a control misspeculation. In this
case, T ′ and all other more speculative running
threads at the same level in S-nest are squashed.
Either way, T will continue its execution.

If T is the main thread, T needs to validate its suc-
cessor thread in IS every time T encounters a CHECK

instruction because the main thread can spawn spec-
ulative threads at any nesting level in S-nest. All
our earlier discussions for the case when T is a
speculative thread are still valid except in the case of
CHECK VALIDATE(S). If the successor thread T ′ of T
in IS has the same starting address S and all predicted
values for T ′ are validated by T , then T commits and
T ′ becomes the main thread.

3.2.2 Dynamic Loop Nest Construction

SEED maintains S-nest by augmenting the IS list used
for maintaining the thread order. The extra cost in-
curred is minimal. By Property 3, S-nest is left-biased.
Hence, there is no need to build a tree to represent S-
nest at run time. We augment the thread description
structure of each thread T with two fields, level
and leftmost, to capture S-nest. For every SPAWN
instruction, the nesting level of the loop at which the

SPAWN instruction is executed is known. So T.level is
set as such. T .leftmost represents whether the iteration
executed by T is from the leftmost, i.e., the lexically
earliest loop at T.level. There are two cases to initialize
this field when T is spawned. If T is spawned by the
main thread, then T.leftmost=true. If T is spawned
by a speculative thread T ′, we examine T ′ instead.
If T and T ′ have different starting addresses, then
they must be associated with different loops at the
same level, we set T.leftmost=false. Otherwise, we set
T.leftmost=T ′.leftmost.
The loop where the main thread is executing is

always the leftmost node at the lowest level of S-nest.
Hence, whenever a speculative thread T becomes the
main thread, we set the leftmost field to true for both
T and all other more speculative ones with the same
starting address at the same nesting level.
Let T and T ′ be two threads executing some itera-

tions of loops L and L′, respectively. Loops L and L′,
which may be identical, are at the same nesting level
in S-nest when T.level = T ′.level. If T.level > T ′.level
and T.leftmost = true, then L′ is nested inside L.
Otherwise, L′ is not nested inside L.

3.2.3 Thread Outcome Prediction
Unlike most previous prediction mechanisms [21],
[14], [3] that were introduced to predict values and
to reduce inter-thread dependence violations for a
pre-selected parallelizable loop, our thread outcome
prediction serves to predict whether a future thread
is likely to be squashed/stalled or not. The prediction
results are used to adaptively select loops to paral-
lelize at run time. Due to the difference in the role
of predictors, a much simpler prediction mechanism
could be adopted for our purposes. In our current
implementation, we use a popular two-level bi-mod
centralized prediction mechanism [10] to predict the
outcome of speculative threads.
Our predictor has a table of entries indexed with

loop starting addresses. Each entry is associated with
a loop and has a stall counter and a squash counter.
A stall (squash) counter, which starts with the initial
value not-stall (not-squash), predicts whether future
threads spawned will stall (be squashed) or not. A
thread may stall due to load imbalance (caused by
varying granularities of different loop iterations) or
speculative buffer overflow or may be squashed due
to dependence violations. A stall counter is updated
when a speculative thread stalls or retires successfully
without incurring any stall cycles. A squash counter
is updated when a thread is squashed or retires
successfully. Any update to a stall (squash) counter
may cause it to transit between not-stall and stall (not-
squash and squash) according to the underlying state
machine introduced in [10].
A thread has two status bits, stallable and squash-

able, with their meanings as indicated. Its status is
initialized when spawned and remains unchanged
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Fig. 5. A snapshot of S-nest in SEED with two lists
(Part II).

during its execution. The status bits are either in-
herited from its spawner or obtained from its thread
predictor as follows. Let B be spawned by A. Let X
be any of the two status bits. We set B.X = A.X if
A.X = true and as predicted for the loop from which
B is spawned otherwise. We make B inherit its status
bits from A in the first case by exploiting some future
information that cannot be accurately predicted from
history information. If A stalls, B will generally stall
since all threads commit in sequential order. If A is
squashed, so will all other more speculative threads
executing the same loop in our execution model.

3.2.4 Thread Scheduling
In our current implementation, speculative threads
are scheduled and de-scheduled based on their po-
tential benefits estimated by a simple cost model. The
cost model is built based on S-nest and the predicted
thread outcomes.
The relative benefit of any two speculative threads

T and T ′ are ranked as follows. If T.level = T ′.level,
then the more speculative one is less beneficial. Other-
wise, T.level 6= T ′.level. Then, their predicted thread
outcome and nesting information are checked. T

and T ′ are equally beneficial if both are squashable
threads. If one is squashable but the other is not,
then the squashable thread is less beneficial. Finally, T
and T ′ are two non-squashable threads that must be
spawned from distinct loops since T.level 6= T ′.level.
T and T ′ are equally beneficial if one is not nested
within the other (due to the lack of information
to distinguish them in our current implementation).
When both are executing nested loops, we assume
without loss of generality that the loop L′ executed
by T ′ is nested inside the loop L executed by T . Then
there are three cases. In Case 1, if one is stallable
but the other is not, then the non-stallable thread is
more beneficial than the stallable one. In Case 2,
when both are stallable, then T ′ is more beneficial.

In Case 3, when both are non-stallable, then T is
more beneficial. The motivation for Case 1 is self-
explanatory. Case 2 happens since the outer loop
thread T is more speculative and will continue to
stall until it either becomes the main thread or gets
squashed. Therefore, we prefer to exploit parallelism
over coverage by giving preference to the thread T ′

that runs at the inner loop and squashing T if no
free core is available. In Case 3, preference is given
to coverage over parallelism instead.
To facilitate thread scheduling, two lists, in addition

to IS, are maintained as shown in Figure 5. All threads
waiting to be spawned are kept in a spawning list
in non-increasing order of their potential benefits.
Such a list has to be maintained in any TLS system
that supports out-of-order thread spawning. Due to
our one-spawnee restriction, there can be at most
one thread waiting to be spawned at each nesting
level. So the spawning list in SEED is much smaller
than that in other out-of-order spawning schemes.
Another, called the running list, is used to find the least
beneficial one among all running speculative threads
in IS. As can be observed in Figure 4, the last thread
at each nesting level is the most speculative and thus
the least beneficial. So the running list simply links
the most speculative threads at all nesting levels in
the IS list in a non-increasing order of their benefits.
The sizes of both the spawning list and the running

list are bounded by the number of levels of S-nest,
which is small in practice. Both lists are significantly
smaller than the IS list, hence, both lists can be effi-
ciently maintained. In addition, the operations on the
lists can overlap with program execution.
The scheduling/descheduling process is simple.

When there are free cores available, the head thread in
the spawning list is spawned immediately. Otherwise,
the head thread is spawned and removed from the
spawning list when it is more beneficial than the tail
thread in the running list. In that case, the tail thread
is squashed and removed from the running list. The
running list is updated as follows. First, the immedi-
ate predecessor of the squashed tail thread that is also
executing the same loop (if any) is made available in
the running list. Then, the head thread is linked in
the running list to substitute for its predecessor that
is executing the previous iteration of the same loop (if
any). A committed thread needs to be removed from
the running list only if it is executing the last iteration
of a loop (otherwise, it would not appear in the list).

4 EXPERIMENTAL RESULTS

We focus on the practicality of SEED by analyzing
its relative performance to the ACES- and DOS-based
multi-level loop speculation (Table 1), denoted by
DOS. In our experiments, the process of manually
selecting the “best” loops in LC for DOS is the most
painful undertaking, and a major shortcoming elimi-
nated in SEED. To choose the best LC set for DOS, we



9

spent about four weeks to perform time-consuming
memory profiling with true inputs and extensive man-
ual code analysis, as discussed in Section 4.1.
In addition, we also compare SEED against

DOS-SEED LC, a version of DOS applied to the same
LC sets except that DOS-based scheduling is used.
The goal is to show that existing techniques cannot
effectively work on large-loop candidate sets due to
their lack of adaptive scheduling at runtime. In DOS
and DOS-SEED LC, out-of-order task spawning is
allowed in both the main thread and the speculative
threads.
In some other experiments, we compared SEED

against a modified version in which the one-spawnee
restriction is relaxed so that out-of-order task spawn-
ing is allowed for speculative threads. SEED is su-
perior on almost all benchmarks (due to the reasons
given in Section 3.2.1.1).
The compiler phase of SEED described in Section 3

is implemented in GCC-4.1.1, while the runtime phase
is realized in a simulator explained in Section 4.2.
The same optimizations introduced in Section 3.1.3
are applied to SEED and DOS-related techniques.
A total of 13 benchmarks are selected from

SPECint2000 and Olden, and compiled under “-O2”.
The Olden benchmarks are irregular applications with
dynamic data structures. The SPECint2000 bench-
marks are general-purpose applications for code com-
pression, games, optimization, FPGA circuit router
and languages. The MinneSPEC’s large input sets are
used for SPECint2000 during simulation. All bench-
marks are simulated to completion.

4.1 Loop Candidates

Benchmark #Loops LC (Loop Candidate Sets)

SEED & DOS-SEED LC DOS
164.gzip 177 85 (95%) 4 (94%)
175.vpr 374 249 (98%) 2 (93%)
181.mcf 48 14 (98%) 6 (85%)
186.crafty 353 245 (59%) 10 (31%)
253.perlbmk 566 308 (99%) 1 (99%)
254.gap 1640 673 (32%) 3 (23%)
256.bzip2 141 68 (98%) 7 (41%)
bh 7 5 (100%) 3 (95%)
bisort 4 2 (88%) 1 (41%)
em3d 17 11 (99%) 2 (98%)
health 11 8 (100%) 4 (60%)
mst 10 6 (100%) 3 (98%)
tsp 8 6 (95%) 3 (95%)

TABLE 2
Loop candidates and their execution-time coverage.

Table 2 lists the loop candidates and their
(execution-time) coverage using the three approaches.
SEED and DOS-SEED LC share the same LC sets
(Column 3), which are determined automatically as
described in Section 3.1.1. They also exhibit a higher
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Fig. 6. Speedups over single-threaded code.

coverage than DOS due to the use of adaptive
scheduling in SEED. However, DOS uses a smaller
subset of the loops used by SEED.
The LC sets for DOS are manually optimized as

follows. For a program, every loop whose coverage
is no smaller than 3% is examined. First, DOALL
loops and nearly DOALL loops (based on depen-
dence analysis and profiling) are selected. Next, for
a DOACROSS loop (such as the loop from fullGtU
in bzip2 and the loop from BlueRule in mst), if
its cross-iteration dependences are highly predictable,
value prediction is applied so that the optimized loop
is selected. For a DOACROSS loop with a coverage
of over 30%, more optimizations such as inlining and
code motion [21], [29], [30] are applied to reduce
misspeculations. If the cross-iteration dependences
in the optimized DOACROSS loop are highly pre-
dictable or likely to be preserved during specula-
tive execution, the optimized DOACROSS loop is
selected. In vpr, for example, some functions for up-
dating the heap structures, such as free_heap_data
and get_heap_head, that are called from within
route_net, are inlined so that the heap update
operations can be performed earlier in each iteration.
Finally, among a large number of possible LC sets for
a program, the one that gives the best execution time
is listed in Table 2. We are not aware of any systematic
solution unless we try all possibilities exhaustively.
The time-consuming selection of the LC sets for

DOS is effective. In Figure 6, the speedups of DOS
over single-threaded code on a 4-core TLS system are
compared with those from POSH [11]. POSH is a TLS
compiler that relies on a profiler to exploit benefi-
cial threads from program structures including loops.
The profiler simulates the execution of sequential
code, records the time and dependence information
at important program points such as memory access
instructions and potential thread start and end points,
and estimates the benefit of every potential thread. All
common benchmarks are listed in Figure 6. The loop-
level parallelism performance results for POSH are
taken directly from their paper; similar results were
also reported elsewhere [7], [30]. In most benchmarks,
DOS performs similarly or slightly better than POSH.
As an exception, POSH works very well for mcf
but the smaller speedup achieved by DOS is close
to those reported elsewhere (e.g., about 1.4 in [30]
and about 1.25 in [7]). These data show that DOS
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can accurately represent existing DOS-based compiler
techniques. Such a comparison is fair because it is
often difficult to replicate an existing TLS technique
(due to the lack of details).

4.2 Simulated Architecture

We used a multicore TLS system, in which each core
has its own function units, register file, L1 I-cache and
L1 D-cache. All the cores share a unified L2 cache. In
our simulator (based on SimpleScalar), the SVC [25]
coherence protocol is used to buffer speculative states
in the L1 data cache, identify remote L1 accesses,
and detect misspeculated data dependences. The hit
latency for the L1 data cache is modeled as 3 cycles [7].
There is no special hardware used for sharing register
values among cores. Each core uses the Alpha ISA
with its main parameters listed in Table 3. It relies on
a hardware-assisted misspeculation detection mecha-
nism such as [7], [11], [17], [23]. Our implementation
uses SVC but it could be any other similar scheme.

Individual Core Value

Fetch, Issue, Commit bandwidth 4, out-of-order issue
L1 I-Cache 16KB, 4-way, 1 cycle (hit)
L1 D-Cache 16KB, 4-way, 3 cycles (hit)

L2 Cache (Unified) 1MB, 4-way, 12 cycles (hit)
Memory Latency 250 cycles

TLS Parameter SEED(cycles)
DOS-SEED LC

DOS (cycles)

Spawn overhead 20 12

Commit overhead 5
Squash overhead 20

Remote L1 accesses > 8

TABLE 3
Architecture simulated.

The overhead of thread spawning, committing or
squashing a thread and the latency for remote L1 D-
cache accesses are given in Table 3. In out-of-order
spawning, an ordered list similar to IS for threads
[11], [20] is maintained and updated when threads
are spawned and squashed. A remote L1 D-cache
access also involves traversing the list. For SEED, a
few additional comparisons are needed to schedule a
more beneficial thread by squashing a less beneficial
thread. The impact of such hardware changes is small
[20]. Thus, the spawning overhead of SEED is slightly
larger than that of DOS and DOS-SEED LC with
these extra operations considered.
We have used a two-level adaptive predictor

[28] to predict the outcomes of speculative threads
with l1size=8, l2size=2048, hist_size=8 and
xor=0. The first-level table has 8 entries indexed by
loop start addresses with a history width of 8 bits. The
second-level table is set to 2048. This setting suffices
to capture the stall and squash behaviour for the loops
used in our benchmarks (Section 3.2.3).

4.3 Performance and Analysis

Figure 7 compares SEED, DOS-SEED LC and DOS
for their execution times (lower bars are better). By
using same LC sets as SEED, DOS-SEED LC is the
worst performer among the three, and is 10% (11%)
slower than SEED on average with 4 (8) cores. This
shows that DOS cannot be effectively applied to many
loops without also employing a similar adaptive
scheduling mechanism. By automating the entire loop
candidate selection process, SEED is still at par with
DOS with its average speedups over DOS by 0.19%
and 0.22% for 4 and 8 cores, respectively. As analyzed
below and also in case studies in Section 4.4, SEED
is successful in exploiting more parallelism than DOS
in some dynamic loop nests and also keeping to a
minimum the overhead incurred for loops that turn
out to have little parallelism.

SEED achieves the largest speedup over DOS in
gzip (6.6% (6.0%) on 4 (8) cores). There is a loop
nest whose two loops (residing in deflate and
longest_match) have limited parallelism because
only a small number of their cross-iteration depen-
dences are predictable. DOS blindly parallelizes the
inner loop while SEED has succeeded in finding
a balance between the two loops in its parallelism
exploitation. If DOS parallelizes either loop alone,
similar results are observed. On the other hand, SEED
displays the largest slowdown over DOS in mst (4.0%
(3.9%) on 4 (8) cores). For a double loop in AddEdges,
DOS parallelizes only the outer loop while SEED has
included both loops in LC. The inner loop has a rel-
atively strong cross-iteration dependence that makes
the speculative parallelism difficult to exploit. Thus,
SEED suffers some overhead when the dependence
does happen.

Let us look at crafty, gap, bzip2, bisort and
health for which the LC sets selected by SEED have
much higher coverage ratios than those used by DOS.
For bzip2, SEED has a higher coverage since its LC

contains a time-consuming loop; but the loop is too
large and ends up being filtered out by the stallable
predictor. SEED outperforms DOS since SEED has
succeeded in exploiting more parallelism in a loop
nest (with the outermost loop contained in sortIt
and the innermost in fullGtU). In this loop nest,
the innermost loop has more parallelism than the
other outer loops but has a smaller coverage. DOS is
biased toward parallelism by parallelizing the inner-
most loop while SEED finds a better balance between
parallelism and coverage. For bisort, SEED suffers
from some overhead by including in LC a hot loop
that turns out to have no speculative parallelism. For
health, SEED has included in LC a loop that con-
tains a recursive function with deep recursion. This
loop has little speculative parallelism and is mostly
filtered out by the stallable predictor. For crafty and
gap, SEED has included significantly more loops in
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LC than DOS. Some of these loops turn out to be
beneficial but the majority of them could be filtered
out. Hence, SEED underperforms DOS slightly for
both benchmarks.

Let us look at the remaining benchmarks. For
bh, SEED is superior. In a triply-nested loop with
parallelism in all of its loops, DOS favors to par-
allelize the innermost loop while SEED favors to
parallelize the most beneficial one, i.e., an outer loop
in most cases. For mcf, SEED outperforms DOS for
a similar reason concerning a doubly-nested loop in
primal_bea_mpp. For perlbmk and tsp, SEED and
DOS have (nearly) the same coverage, implying that
the extra loops included in LC by SEED either are
nested inside those selected by DOS or have negligi-
ble execution times. However, SEED is slightly worse
than DOS due to its adaptive scheduling overhead
despite a significantly large number of extra loops
being selected.

Figure 8 gives some dynamic statistics. Each bar
represents the percentage of the number of stalled

cycles incurred by all committed threads over their
total number of execution cycles. Only in 6 out of
26 configurations (4 cores for perlbmk, 8 cores for
bzip2 and 4 and 8 cores for both em3d and mst)
does SEED incur slightly more stall cycles than DOS.
SEED may sometimes favor outer loops but only
when they are unlikely to stall. Those benchmarks
with more stall cycles are expected to benefit if more
sophisticated scheduling policies are used. In Figure 8,
each line represents the maximum number of dynamic
loop levels being parallelized. For both SEED and
DOS, more threads are executed in parallel as the
number of cores increases. However, given the same
number of cores, SEED executes more loops in paral-
lel than DOS.

Due to the greedy heuristics used in loop selection,
the LC sets for SEED are significantly larger than
those of DOS (Table 2). However, the number of
worse performers in the benchmarks is small due to
the adaptive out-of-order scheduling strategies used.
This is particularly significant because the LC sets for
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both SEED and DOS are selected manually. These
preliminary results show that SEED is not only prac-
tical because it can be easily deployed but also could
achieve comparable or better performance compared
to other existing techniques.

4.4 Two Case Studies

We choose vpr to examine the overhead incurred
by SEED’s adaptive scheduling strategy. It allows
us to understand why DOS could outperform SEED
sometimes when the LC sets for DOS are ideally
determined by an “oracle” selector. On the other hand,
we choose em3d to demonstrate the performance
advantage of SEED when the degree of parallelism in
loops varies under different problem sizes and inputs.
It is therefore possible for SEED to outperform DOS
even if an “oracle” loop selector is used in DOS. Thus,
as a whole SEED can be as competitive as or even
better than DOS when evaluated across a large set of
benchmarks.

4.4.1 vpr

We examine the cost and benefit of SEED’s adaptive
scheduling under four different configurations using
the two predictors. Bo-Pred is the default used in
SEED (with both the squashable and stallable pre-
dictors turned on). In SQ-Pred (ST-Pred), only the
squashable (stallable) predictor is on. In No-Pred, both
predictors are off. Figure 9 compares the performance
using vpr under these configurations. Both predictors
have positive effect on performance for this bench-
mark. It runs about 13% slower on 4 cores if both
predictors are turned off. Below, we first examine the
characteristics of this benchmark, and then analyze
the impact of prediction on performance.
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Fig. 9. Execution times of vpr achieved by SEED
under four different prediction schemes normalized
with respect to Bo-Pred.

As shown in Table 2, the LC set selected by
SEED for vpr contains 249 loops, of which 154
loops are dynamically executed. In particular, the
coverage of a four-deep dynamic loop nest is nearly
90%. Let L1, L2, L3 and L4 be the four loop lev-
els ordered from outermost to innermost, where L1

appears in try_route, L2 and L3 in route_net
and L4 in expand_neighbours. The speculative
threads spawned from L1 and L2 are so large that

they often stall due to speculative buffer overflow.
However, it rarely happened to the threads spawned
from L3 and L4. Due to the branches contained in
L3, about 44% of its iterations are significantly larger
than the remaining 56% iterations. There are loop-
carried dependences at all four loop levels; but a
large number of cross-iteration data-dependent values
are predictable. So this nest has good parallelism,
especially at L2 and L4.

When the squashable predictor is turned on in SQ-
Pred, it favors loops with more parallelism. Thus,
L2 and L4 are selected over L1 and L3 for parallel
execution. Better performance is thus observed under
SQ-Pred than No-Pred. When the stallable predictor
is turned on in ST-Pred, the two outermost loops
L1 and L2 are not selected because they are more
likely to stall. In addition, preference is given to L4

over L3 because of the load imbalance in L3. Better
performance is thus observed under ST-Pred than
No-Pred. When both SQ-Pred and ST-Pred are both
turned on in Bo-Pred, even better performance is
observed.

The squashable and stallable predictors may take
several iterations to warm up in order to function
more effectively. Such overheads could offset some of
their performance gain.

4.4.2 em3d

One of its kernel loop nests is shown in Figure 1.
Its outer loop has input-dependent DOACROSS par-
allelism while its inner loop is a DOALL loop. This
kernel covers 98% of the total execution time of em3d.
We use four different inputs to show that the

outer DOACROSS loop exhibits different degrees of
parallelism at run time. In input1, the outer loop
becomes almost like a DOALL loop and the inner
DOALL loop has a very small trip count (often only
one iteration). In input2, the outer loop behaves
again like a DOALL loop, but the inner DOALL loop
has a relatively large trip count. In input3, about
70% of the outer loop iterations are independent. In
input4, only about 50% iterations of the outer loop
are independent. In both input3 and input4, the
inner loop behaves the same as in input2.
Figure 10 shows the speedup of SEED over DOS-

BOTH (by parallelizing both loops), DOS-INNER (by
parallelizing the inner loop only), and DOS-OUTER
(by parellelizing the outer loop only), using the four
different inputs on 4-core and 8-core systems. SEED
is the best performer in nearly all configurations
except for input1. With input1, the inner DOALL
loop has very small trip counts, resulting in frequent
control misspeculations (at its last iteration). In con-
trast, DOS-OUTER does not suffer from this penalty
because the outer loop it parallelizes is almost like
a DOALL. DOS-BOTH and DOS-INNER have similar
performance because DOS-BOTH is biased toward se-
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Fig. 10. Execution times of SEED, DOS-BOTH, DOS-
OUTER and DOS-INNER for ema3d normalized with
respect to SEED.

lecting innermost loop with its DOS-based scheduling
strategy.
Now, let us examine the performance using differ-

ent inputs. DOS-OUTER is the best performer under
input1 and input2 because the outer DOACROSS
loop it selected is almost like a DOALL loop. DOS-
OUTER is also superior to SEED because we did not
manually filter out non-beneficial loops for SEED as
we did for the other approaches. In this benchmark,
there is a DOSEQ loop between the two loops shown
in Figure 1. Its outer loop is further nested in some
other DOSEQ loops. SEED filtered out these DOSEQ
loops dynamically with some small extra overhead.
Both DOS-BOTH and DOS-INNER are not effective
because they both favor the inner loop that exhibits
little parallelism under input1. As the parallelism in
the outer loop decreases with input3 and input4,
SEED begins to achieve a better performance than
the other approaches. In particular, when input4 is
used, only half of the iterations in the outer loop
are independent. In this case, SEED can achieve a
speedup of over 50% than the other three approaches.
Looking at the geomean bar in Figure 10, we could

see that SEED outperforms the other three approaches
for all four inputs, and shows its adaptability to differ-
ent inputs. On the other hand, DOS may perform well
if the loops could be correctly selected (by an oracle).

5 RELATED WORK

A great deal of compiler work has been done on
extracting speculative threads from sequential code.
In [2], [7], [8], [11], [13], [17], [29], [21], the loop can-
didates where speculation is likely to be beneficial for
a program are identified based on program analysis,
profiling information and pre-executions. In [13], [21],
[23], [29], [30], loop transformations are applied to re-
move, isolate, overlap, shift or pre-compute the cross-
iteration dependences that may hinder parallelization.
In particular, DSWP [23] represents a different way to
extract threads from loops. This approach pipelines
one single loop iteration across multiple cores so that
the latencies of the computations in different slices

of the same iteration can be overlapped. However,
DSWP is limited to parallelizing one loop level in a
loop nest. Parallel-stage DSWP [18] allows multi-level
loop parallelization but does not support speculation.
In fact, many existing loop-oriented compiler tech-
niques are limited to single-level loop speculation [2],
[29], [16]. Some other techniques support multi-level
loop speculation [7], [11], [17] and more aggressive
speculation at arbitrary program points [7], [8], [11],
[17], [26], [27]. In [9], some existing TLS techniques
are evaluated.
In [5], a static approach is introduced to par-

allelize loops also for non-expert programmers.
This work can quantitatively estimate the actual
speedup/slowdowns of parallelized loops. However,
its model supports only in-order thread spawning and
allows only one loop in a loop nest to be parallelized.
In TLS research, little attention has been paid

to thread scheduling. Initially, thread scheduling at-
tracted little interest due to the use of in-order thread
spawn on pre-dominantly ring-based interconnection
architectures [4], [22], [24], [26]. Although in-order
spawn is simple, out-of-order spawn can often sig-
nificantly improve performance as demonstrated later
in [1], [11], [14], [17], [20]. To facilitate out-of-order
spawn, additional hardware support is required to
maintain the sequential order of running threads,
such as the immediate successor (IS) list [20] and the
ordering tree [1]. This work demonstrates that the
dynamic loop nesting structure of a program can be
efficiently and precisely obtained from the IS list.
Even though out-of-order spawn has become a

predominant scheme for spawning threads, thread
scheduling remains in-order in prior work [8], [11],
[20], [17], [12], [14], [1]. Therefore, which threads to
squash when a new thread is to be spawned but
no free cores are found to be available or when
dependence violations are detected is decided based
on threads’ degree of speculation (DOS), which is
exactly the execution order in the absence of mis-
speculations. This work represents the first attempt of
combining out-of-order thread scheduling with out-
of-order thread spawning.
Adaptive thread scheduling entails the use of run-

time feedback. Some prior studies have proposed
microarchitectures to enhance thread spawning with
some runtime feedback. Capsule [15] delegates the
parallelization decision to the architecture at run time
through frequent hardware resource probing by the
program. Capsule has been specifically designed for
component-based programs. Thread creation is by
means of self-replication. Threads are allowed to com-
mit in any order (not necessary sequential), avoiding
thread scheduling altogether. However, Capsule is
well suited to only componentized applications.
DMT [1] updates a predictor on thread actions like

retirement and squash and then decides whether to
spawn a thread by the predictor. Although thread
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spawning in DMT is adaptive, its thread scheduling is
still DOS-based and thus in-order. Furthermore, DMT
spawns new threads at subroutine and loop continu-
ations. So the innermost loop in a loop nest is always
seqentialized (since it is executed in one thread). Fi-
nally, unlike the prediction mechanism used in [1], our
prediction mechanism is different in that we predict
the outcomes of speculative threads and that a thread
predicted to be squashable can still be scheduled and
commit if it is not squashed by other threads. VPT [3]
uses a predictor for future dependence violations.
Their prediction table can be large, particularly for ir-
regular programs, since it records the information for
all earlier memory access violations. In addition, their
mechanism requires every memory read to consult
the prediction table, resulting in additional overhead
for memory accesses. Unlike VPT, SEED works at the
granularity of loop iteration threads. SEED requires
a thread to consult our predictor only once when it
is spawned and updates the predictor only when the
thread is squashed, stalled or retired. The overhead
thus incurred is small, particularly when it can be
overlapped with other thread overhead.
In [19], it is shown that the energy cost of TLS can

be kept modest by using a lean TLS CMP microarchi-
tecture and by minimizing wasted TLS work.

6 CONCLUSION

We describe an approach to speculatively parallelize
multiple nested loops. The basic idea is to allow
the compiler to select and optimize loop candidates
greedily and rely on adaptive scheduling at runtime
to exploit parallelism using a benefit analysis (instead
of degree of speculation as in most existing schemes).
Compared to other existing techniques, the set of
loops (i.e., the program coverage) that could be par-
allelized is much larger. The extra overhead incurred
could be mitigated by using the adaptive out-of-order
scheduling scheme mentioned above as well as by
the increased parallelism and the program coverage.
Our preliminary results show that this new approach
not only makes it easier to deploy in a production
compiler, but also achieves a better or comparable per-
formance to existing techniques. With more sophisti-
cated scheduling policies being proposed, its potential
performance could be improved even further.
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