
Minimal Placement of Bank Selection Instructions

for Partitioned Memory Architectures

BERNHARD SCHOLZ

The University of Sydney

and

BERND BURGSTALLER

Yonsei University

and

JINGLING XUE

University of New South Wales

We have devised an algorithm for minimal placement of bank selections in partitioned memory ar-
chitectures. This algorithm is parameterizable for a chosen metric such as speed, space or energy.
Bank switching is a technique that increases the code and data memory in microcontrollers with-
out extending the address buses. Given a program in which variables have been assigned to data
banks, we present a novel optimization technique that minimizes the overhead of bank switching
through cost-effective placement of bank selection instructions. The placement is controlled by a
number of different objectives, such as runtime, low power, small code size or a combination of
these parameters. We have formulated the minimal placement of bank selection instructions as a
discrete optimization problem that is mapped to a Partitioned Boolean Quadratic Programming
(PBQP) problem. We implemented the optimization as part of a PIC Microchip backend and eval-
uated the approach for several optimization objectives. Our benchmark suite comprises programs
from MiBench and DSPStone plus a microcontroller real-time kernel and drivers for microcon-
troller hardware devices. Our optimization achieved a reduction in program memory space of
between 2.7% and 18.2%, and an overall improvement with respect to instruction cycles between
5.0% and 28.8%. Our optimization achieved the minimal solution for all benchmark programs.
We investigated the scalability of our approach towards the requirements of future generations
of microcontrollers. This study was conducted as a worst-case analysis on the entire MiBench
suite. Our results show that our optimization (1) scales well to larger numbers of memory banks,
(2) scales well to the larger problem sizes that will become feasible with future microcontrollers,
and (3) achieves minimal placement for more than 72% of all functions from MiBench.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers;
Optimization

This project has been supported by the ARC Discovery Project Grant “Compilation Techniques
for Embedded Systems” (DP 0560190) and the University of Sydney R&D Grants Scheme “Spec-
ulative Partial Redundancy Elimination” (L2849 U3229).
Authors’ addresses: Bernhard Scholz, School of Information Technologies, The University of Syd-

ney, Sydney, NSW 2006, Australia; email: scholz@it.usyd.edu.au; Bernd Burgstaller, Department
of Computer Science, Yonsei University, Seoul, Korea; Jingling Xue, School of Computer Sci-
ence and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; email:
jingling@cse.unsw.edu.au.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–32.

2 · Bernhard Scholz et al.

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Partitioned Boolean Quadratic Programming, Bank Selec-
tion, Partitioned Memory Architectures

1. INTRODUCTION

Embedded systems have become an integral part of the infrastructure of today’s
technological society. They are prevalent in an ever-increasing range of applications,
including consumer electronics, home appliances, instrumentation/measurement,
automotive, communications and industrial control. Microcontrollers constitute
the core of all embedded systems designs. The Semiconductor Industry Associ-
ation’s November 2005 forecast predicted the market for 4-, 8-, 16-, and 32-bit
microcontrollers to grow to $12.8 billion in 2006. The reported share of 8-bit mi-
crocontrollers is 42%. Gartner Dataquest reports that the 8-bit market reached
$5.5 billion in 2004 [Gartner Dataquest 2005].

The widespread use of 8-bit microcontrollers can be attributed to the following:
(1) many embedded systems designs do not need the more costly, energy-burning
and complex 16- or 32bit CPUs, (2) many embedded systems designs distribute
small numbers of low-cost electronics instead of using one powerful and expensive
core CPU, (3) embedded systems designs often employ 8-bit microcontrollers as
low-cost subsystems of complex 32-bit hardware designs, and (4) there is a trend
to add entry-level electronics intelligence to mechanics-based systems.

Bank switching is a common technique used for 8-bit microcontrollers which
increases the size of code and data memory without extending the address buses of
the CPU. The address space is partitioned into memory banks, and the CPU can
only access one bank at a time. This bank is called the active bank. To keep track
of the active bank the CPU’s bank register stores the address of the active bank. A
bank selection instruction is issued to switch between banks. Smaller address buses
result in smaller chip die-sizes, higher clock frequencies and less power consumption.
As an example, Motorola 68HC11 8-bit microcontrollers address a maximum of
64KB memory using their 16-bit address registers. This scheme allows multiple
64KB banks to be accessed although only one can be active at a time. As another
example, the memory of the PIC 16F877A microcontroller is partitioned into four
banks of 128B each. Other processor families have similar features such as Zilog’s
Z80 and Intel’s 8051 processor families. Architectures such as Ubicom’s 8-bit SX
microcontroller organize their registers in register banks to shorten the cycle time,
avoiding multi-porting [Nystrom and Eichenberger 1998; Ravindran et al. 2005;
Kiyohara et al. 1993]. Bank-switched SRAMs are employed with ultra-low power
sensors to achieve high code-density [Nazhandali et al. 2005] and allow the gating
of individual memory banks [Hempstead et al. 2005; Hempstead et al. 2006].

The disadvantage of bank-switched architectures is the code-size and runtime
overhead caused by bank selection instructions. Currently compilers provide limited
support to generate bank-switched code. For example, GNU GCC for Motorola’s
68HC11 and 68HC12 will compile a function declared with the far attribute by
using a calling convention that takes care of switching banks when entering and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 3

leaving a function. However, the GCC compiler does not eliminate redundant
bank selection instructions. The CC5X compiler for mid-range PICmicro devices
(from B Knudsen Data) expects the programmer to allocate variables to banks but
will insert bank selection instructions automatically with no guarantee of optimal
placement of the bank selection instructions. The PICC-18 for the PIC18Fxxx
family appears to have automated both tasks under certain language restrictions.
As far as the authors are aware, the bank switching schemes of existing compilers
are ad hoc, and it remains a challenging research problem to generate efficient
memory accesses for bank-switched architectures.

This work develops a compiler optimization for minimal placement of bank se-
lection instructions in a bank-switched architecture. This problem is important
because poor placement of bank selection instructions increases runtime, code-size,
and power consumption. Given a program in which all variables have been assigned
to banks (by the programmer or compiler), we present an optimization that inserts
the minimum number of bank selection instructions in the program to guarantee the
correct access to memory. The placement is controlled by a number of objectives
such as runtime, low power, small code size or a combination of these parameters.
We are only aware of an ad-hoc approach in this area [Kiyohara et al. 1993]. As
we will explain in Section 3, the problem cannot be solved as a speculative partial
redundancy elimination problem [Scholz et al. 2004; Knoop et al. 1994]. It can be
seen as an extended code motion. However, bank selections impose dependencies
which cannot be handled with classical code motion.

Most previous efforts on partitioned memory architectures focus on maximizing
parallel data accesses to make memory banks simultaneously active [Cho et al.
2004; Leupers and Kotte 2001; Panda et al. 2001; Panda et al. 2000; Saghir et al.
1996; Sudarsanam and Malik 1995; Zhuang et al. 2002; Zhuge et al. 2002]. By
enabling parallel memory accesses in a single instruction, one can increase mem-
ory bandwidth and thus improve program performance. Such partitioned memory
banks are found in Motorola’s DSP56000, Analog Devices’ ADSP2016x and NEC’s
µPD77016. Some researchers re-organize the order of instructions and the layout of
data, e.g., by loop transformations [Delaluz et al. 2000], to reduce energy consump-
tion in partitioned memory architectures. In the case of heterogeneous memory
banks such as scratchpad SRAM, internal DRAM and external DRAM, we refer
to [Banakar et al. 2002; Li et al. 2005; Udayakumaran and Barua 2003; Verma et al.
2004] and the references therein for a number of compiler techniques proposed to
perform automatic scratchpad management.

The contributions of this paper are as follows:

—We present a novel algorithmic approach to minimize the number of bank selec-
tion instructions in a partitioned memory architecture for a given cost metric.

—We formulate the problem as a form of Partitioned Boolean Quadratic Program-
ming (PBQP). We present experimental evidence that PBQP is very efficient for
real-world applications.

—We introduce an intra- and inter-procedural approach for placing bank selection
instructions.

—We present our worst-case feasibility study using MiBench to show that our
problem formulation can be solved almost optimally in polynomial time.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Bernhard Scholz et al.

—We present our experimental results over a benchmark suite to show that our op-
timization can accommodate a variety of optimization objectives such as speed,
space or a combination of both. We have implemented the optimization as part
of a backend for a Microchip microcontroller. Microchip is the No. 1 8-bit mi-
crocontroller manufacturer with 45000 customers worldwide [Gartner Dataquest
2004].

The paper is organized as follows. In Section 2, we describe the background.
In Section 3, we define and motivate the problem of minimizing the costs of bank
selection instructions across basic block boundaries. The optimization algorithm
is presented in Section 4. In Section 5, we present and discuss our experimental
results. We draw our conclusions in Section 6.

2. BACKGROUND

A basic block [Muchnick 1997] is a sequence of statements in which flow of control
can only enter from its beginning and leave at its end. A control flow-graph(CFG)
is a directed graph G = 〈V, E, s, e〉 where V is the set of vertices representing
basic blocks and E is the set of edges E ⊆ V × V . Vertex s is the entry node
(aka. start node) of the CFG and e is the exit node (aka. end node). The set of
predecessors preds(u) is defined as {w|(w, u) ∈ E} and the set of successors succs(u)
as {v|(u, v) ∈ E}. For an edge (u, v) ∈ E, vertex u is the source and vertex v is
the tail of the edge. A critical edge is an edge (u, v) for which |succs(u)| > 1
and |preds(v)| > 1, i.e. the source has several outgoing edges and the tail has
several incoming edges1. A path π is a sequence of vertices 〈v1, . . . , vk〉 such that
(vi, vi+1) ∈ E for all 1 ≤ i < k. In a CFG, all vertices are reachable, i.e., there is a
path from s to every other vertex in V .

The PBQP problem [Scholz and Eckstein 2002; Eckstein 2003] is a specialized
quadratic assignment problem and is NP-complete. Consider a set of discrete vari-
ables X = {x1, . . . , xn} and their finite domains {D1, . . . , Dn}. A solution of PBQP
is a simple function h : X → D where D is D1 ∪ . . . ∪ Dn; for each variable xi we
choose an element di in Di. The quality of a solution is based on the contribution
of two sets of terms:

(1) for assigning variable xi to the element di in Di. The quality of the assignment
is measured by a local cost function c(xi, di).

(2) for assigning two related variables xi and xj to the elements di in Di and dj

in Dj . We measure the quality of the assignment with a related cost function

C(xi, xj , di, dj).

Thus, the total cost of a solution h is given as

f =
∑

1≤i≤n

c(xi, h(xi)) +
∑

1≤i<j≤n

C (xi, xj , h(xi), h(xj)) . (1)

The PBQP problem seeks for an assignment at a minimum total cost.

1The term “critical edge” stems from compiler algorithms (e.g., partial redundancy elimination)
that prohibit this kind of edge. Critical edges are split, i.e., nodes are inserted on critical edges,
to convert them to non-critical edges.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 5

RI
=⇒

RN
=⇒

RII
=⇒

RI
=⇒

R0
=⇒

Fig. 1: Reduction sequence.

We solve the PBQP problem using matrix notation. A discrete variable xi be-
comes a Boolean vector ~xi whose vector elements are zeros and ones, and whose
length is determined by the number of elements in its domain Di. Each 0-1 element
of ~xi corresponds to an element of Di. An assignment of xi to di is represented as
a unit vector whose element for di is set to one. Hence, a possible assignment for
a variable xi is modeled by the constraint ~xi

~1T = 1 that restricts vectors ~xi such
that only one vector element is assigned one and all other elements are set to zero.

The cost function C(xi, xj , di, dj) is decomposed for each pair (xi, xj). The costs
for the pair are represented by matrix Cij . A matrix element corresponds to an
assignment (di, dj). Similarly, the local cost function c(xi, di) is mapped to cost
vectors2 ~ci. Quadratic forms and scalar products are employed to formulate PBQP
as a mathematical program:

minimize f =





∑

1≤i≤n

~ci~x
T
i



 +





∑

1≤i<j≤n

~xiCij~x
T
j





subject to: ∀1 ≤ i ≤ n : ~xi ∈ {0, 1}|Di|

∀1 ≤ i ≤ n : ~xi
~1T = 1.

In [Scholz and Eckstein 2002; Eckstein 2003] a solver was introduced, which
solves a sub-class of PBQP problems optimally in O(nm3), where n is the number
of discrete variables and m is the maximal number of elements in their domains, i.e.,
m = max (|D1|, . . . , |Dn|). The solver uses an undirected graph called PBQP graph
as the underlying data structure. The nodes of the PBQP graph are the discrete
variables xi, for all i (1 ≤ i ≤ n). In the graph there exists an edge (xi, xj) if the
cost function C(xi, xj , h(xi), h(xj)) is not equal to zero for an arbitrary solution of
h, i.e., matrix Cij is not zero. An instance of the PBQP problem is regarded as
trivial if the nodes in the PBQP graph are disconnected, i.e., there are no edges in
the PBQP graph.

The solver uses reductions to solve an instance of a PBQP problem. A reduction
maps an instance of the PBQP problem to a new instance that has one less discrete
variable. If the solution for this new problem instance is known, the solution for the
eliminated discrete variables can be computed. Hence, the solver has two phases:
(1) a reduction phase that eliminates variables until a trivial instance (the empty
graph) of the PBQP problem remains, and (2) a back propagation phase that
determines the solutions for the eliminated variables.

The solver employs the reductions R0, RI, and RII to eliminate discrete variables
whose nodes in the PBQP graph have either a node degree of zero, one or two.
Figure 1 depicts the reduction of a PBQP graph. If none of the above reductions
can be applied (as shown in Figure 1), the problem becomes irreducible and a

2Note that vectors are row vectors in our notation.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Bernhard Scholz et al.

heuristic is applied, which is called RN. The heuristic chooses a beneficial discrete
variable ~xi and an assignment by searching for local minima. The solution obtained
is guaranteed to be optimal if the reduction RN is not applied [Eckstein 2003]. Even
if there are RN nodes in the PBQP graph, an optimal solution can be obtained by
branch-and-bound techniques [Hames and Scholz 2006].

3. MOTIVATION

The goal of our optimization is to insert the minimal number of bank selection
instructions while ensuring that the banked memory is accessed correctly. The
underlying optimization assumptions are that all variables in a program have been
assigned to memory banks and that our optimization does not re-order statements
to further minimize the number of bank selection instructions. For the sake of
simplicity, we assume that a statement has at most one banked-memory access. To
extend the optimization to more than one banked-memory access per statement,
the optimization is performed for each bank register separately.

A statement is said to be bank-sensitive if it accesses banked memory, otherwise
it is transparent. For example, all banked-memory accesses of load and store state-
ments are bank-sensitive. A bank-sensitive statement requires that the appropriate
bank is made active prior to its execution. Otherwise, the program semantics are
violated.

In the intra-procedural optimization, function calls are considered to be bank-
sensitive but are handled differently from load and store statements. For a function
call, we do not know which bank is active upon return. Therefore, a call statement
denotes a banked-memory access to an unknown bank. To optimize bank selection
instructions across call sites, an extension of the intra-procedural optimization is
described in Section 4.4.

We define a local predicate bank(s) that indicates the bank property of state-
ment s:

bank(s) =







b∗, if s is transparent,
bx, if s requires bank bx,

b?, if s requires an unknown bank.

(2)

For a bank-sensitive statement, bank(s) is either b? denoting an unknown bank, or
bx denoting a concrete bank.

A linear scan over a basic block is sufficient to find a minimal placement of
bank selection instructions in the basic block. However, with a linear scan it is
not possible to determine whether the bank of the first bank-sensitive statement
is already active at the entry of the basic block. Therefore, placing bank selection
instructions for the first bank-sensitive statements becomes an intra-procedural
optimization problem.

If a basic block has only transparent statements then we call it a transparent

basic block, otherwise it is bank-sensitive. In our intraprocedural analysis, we need
to distinguish between transparent basic blocks u ∈ T and bank-sensitive basic
blocks u ∈ S, where T is the set of transparent basic blocks and S is the set of
bank-sensitive basic blocks.

The bank selection instruction for the first bank-sensitive statement is the only
bank selection instruction that can be beneficially moved across basic basic block

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 7

LD X

LD Y

ST Y

LD A

LD Z

ST B

ST X

ST A

ST B

1

2 3

4

5

6

7 8

9

10

7
3

7

1
2

90

1 2

2
8

2 2 6

4

LD X

LD Y

ST Y

LD A

LD Z

ST B

ST X

ST A

ST B

1

2 3

4

5

6

7 8

9

10

11

12

13

14

15

(a) CFG (b) Critical edge splitting

BSL 1

LD X

LD Y

ST Y

LD A

LD Z

BSL 0

ST B

BSL 1

BSL 0

BSL 1

ST X

BSL 0

ST A

ST B

BSL 0

BSL 1

LD X

LD Y

ST Y

BSL 0

LD A

LD Z

BSL 0

ST B

BSL 1

ST X

BSL 0

ST A

ST B

BSL 1

LD X

LD Y

ST Y

LD A

BSL 0

BSL 1

LD Z

BSL 0

ST B

BSL 1

ST X

BSL 0

ST A

ST B

(c) Speed (d) Space (e) Speed and space

Fig. 2: An example for a two-bank architecture (A and B reside in bank 0, X, Y and
Z in bank 1).

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Bernhard Scholz et al.

boundaries. Hence, the transformation of the intraprocedural optimization limits
the placement of bank selection instructions to the following points inside a basic
block: (1) before the first bank-sensitive statement, (2) after the last bank-sensitive
statement, and (3) inside a transparent basic block.

Splitting a critical edge creates a transparent basic block (aka. critical basic block)
in the CFG. Critical basic blocks are potential hosts for bank selection instructions
and therefore yield optimization opportunities. However, splitting a critical edge is
not free because an additional jump statement must be inserted. Overhead costs
and optimization opportunities of critical basic blocks are considered during cost
analysis of our optimization. A critical edge is only split if the cost analysis of the
intra-procedural optimization decides to place a bank selection instruction in the
resulting critical basic block. Otherwise the critical edge is kept (with zero overhead
cost).

Consider our running example in Figure 2(a). Basic blocks are numbered in bold,
execution frequencies are denoted by underlined numbers on edges. The execution
frequency of a basic block (except the start node) is the sum of frequencies of its
incoming edges. For the start node it is the sum of frequencies of its outgoing edges.
Figure 2(b) shows the CFG where all five critical edges have been split tentatively.
Let us assume that our example architecture has two banks, i.e., bank 0 and bank 1,
and either bank 0 or bank 1 is active. All memory operations are done by load and
store statements of the form LD v and ST v, where v is a variable residing in either
bank 0 or bank 1. Our example has five variables: A and B reside in bank 0, and
X, Y and Z in bank 1. Before a load or store for variable v is executed, the bank of
the variable must be active.

A naive approach to ensure correct code is to issue a bank selection instruction
prior to all banked-memory accesses. However, this approach produces sub-optimal
code. For example, basic block 4 that contains LD A inside a loop would require
the bank selection instruction BSL 0.

Figures 2(c)–(e) illustrate the minimal solutions that we find with respect to the
three optimization criteria: speed, space, and a combination of speed and space.
In our cost model, we take into account the costs of additional jump statements
introduced in critical basic blocks (critical basic blocks are shown as dashed boxes
in Figure 2(b)). We assume that bank selection instructions and jump statements
have an instruction length of one byte and they take one cycle to execute. If
we want to minimize the number of bank selection instructions inserted, we can
measure the cost of inserting a bank selection instruction in a basic block as the
dynamic number of cycles spent on executing the bank selection instruction times
the execution frequency of the basic block. If we place the bank selection instruction
in a critical basic block, we need to add the extra cost for the jump statement. The
minimal solution for speed is shown in Figure 2(c) where we place a bank selection
instruction before and after the loop and in basic block 14. In Figure 2(d) the
optimization for space is shown. BSL 0 stays inside the loop to avoid the additional
jump statement required if BSL 0 is placed in critical basic block 11. Optimizing
for space reduces the memory footprint but increases the execution time of the
program. An optimization which combines speed and space objectives is shown in
Figure 2(e). For this particular example the speed objective was weighted one third

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 9

LD A LD X

LD B

1

2

3 4

5

6

1
1009

1000

101000

10

1

BSL 0

LD A

BSL 1

LD X

BSL 0

LD B

(a) CFG (b) Minimal placement

Fig. 3: Minimal placement by bank selection optimization but not by SPRE (variables A and B

are assigned to bank 0 and variable X to bank 1).

and the space objective was weighted two thirds.

3.1 Bank Selection Optimization vs. SPRE

The goal of Speculative Partial Redundancy Elimination (SPRE) is to minimize the
dynamic number of computations for a given expression in a CFG with respect to
an edge profile [Cai and Xue 2003; Scholz et al. 2004]. Computations of expressions
are moved from heavily executed paths to rarely executed paths and computations
are performed speculatively, i.e., without a guarantee that computations are used
later. For SPRE, expressions are considered to be independent from each other,
and the expression order of the SPRE transformation is arbitrary.

A bank selection instruction for a specific bank could be seen as a computation in
SPRE. However, the placement of bank selection instructions for a specific bank is
not independent because bank selection instructions modify the same bank register.
Hence, a necessary assumption of SPRE is violated and SPRE cannot solve the
minimal placement of bank selection instructions. While SPRE may be used to
find the minimal placement for the set of all instructions that access a specific
bank, the solutions obtained can lead to incorrect or sub-optimal code.

An example is illustrated in Figure 3. For the CFG given in Figure 3(a), the
minimal placement found by our bank selection formulation is shown in Figure 3(b).
If SPRE is used instead, one may proceed as follows. For the first bank-sensitive
instruction in every basic block, the required bank selection instruction is inserted
just before the instruction. As a result, some of these instructions may be partially
or fully redundant. In the current example, BSL 0 will be inserted at the entries of
basic blocks 3 and 5, and BSL 1 at the entry of basic block 4. The three instructions
are all partially redundant (in the dynamic sense). To eliminate such redundancies,
all distinct bank selection instructions are treated as distinct expressions. If there
are m banks, there will be m SPRE problems, one for each distinct bank. There
are two approaches to solving these m SPRE problems. First, they are solved
independently of each other. But this can lead to incorrect code. In the current
example, BSL 0 and BSL 1 will both be inserted inside basic block 1 so that one
of the two instructions ends up being removed effectively but incorrectly. Second,

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Bernhard Scholz et al.

OptimizeBasicBlock (u)
1 first ← entry(u)
2 last ← entry(u)
3 rbank ← b∗

4 for all s ∈ u in seq. order do

5 if bank(s) 6= b∗ then

6 if rbank = b∗ then

7 first ← s

8 else

9 if bank(s) 6= b? ∧ bank(s) 6= rbank then

10 insert BSL 〈bank(s)〉 before s

11 endif

12 endif

13 rbank ← bank(s)
14 last ← s

15 endif

16 endfor

17 return(first , last)

Fig. 4: Local optimization.

the m SPRE problems are solved one after another by considering the effects of the
bank selection instructions introduced when the earlier SPRE problems are solved.
However, this second approach also fails since there does not exist a linear order
to guarantee the minimal placement. In the current example, the minimal solution
can be found if we process BSL 0 and then BSL 1. It is easy to see that the order
should be swapped if edge (2,4) is far more frequently executed than edge (2,3).
Since both scenarios can co-exist in the same CFG, SPRE cannot determine the
minimal placement of bank selection instructions. Instead, the minimal placement
must be sought when all bank selections are considered together. This is the major
contribution of this paper.

4. BANK SELECTION OPTIMIZATION

We develop the bank selection optimization in four steps. In the first step we discuss
how to optimize bank selection instructions inside a basic block. In the second step
we formulate the intraprocedural optimization as a discrete optimization problem.
In the third step we show how the discrete optimization problem is mapped to
the PBQP problem, and the last step extends the intraprocedural optimization to
whole programs.

4.1 Local Optimization

Given a basic block in which all variables have been assigned to banks, this section
gives an algorithm that minimizes the number of bank selection instructions inserted
in the basic block.

In Figure 4, the linear scan algorithm for inserting bank selection instructions
is listed. The algorithm initializes variable first, which points to the first bank-
sensitive statement; variable last, which points to the last bank-sensitive statement;

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 11

Basic Block bank(s) first last

s0 NOP b∗ s0 s0

s1 LD X 1 s1 s1

BSL 0 inserted
s2 ST A 0 s1 s2

s3 CALL foo b? s1 s3

BSL 0 inserted
s4 LD B 0 s1 s4

BSL 1 inserted
s5 ST Y 1 s1 s5

s6 ST Z 1 s1 s6

s7 NOP b∗ s1 s6

Fig. 5: Example: variables A and B reside in bank 0, and variables X, Y, and Z in bank 1.

and variable rbank , which represents the active bank of the bank register. Inside
the loop, we ignore transparent statements, i.e., those statements s that satisfy
bank(s) = b∗ (in line 5). When the first bank-sensitive statement is reached, the
algorithm sets variable first. For all subsequent bank-sensitive statements, the
algorithm checks whether a new bank selection instruction needs to be issued. This
is the case if the required bank bank (s) for statement s is not b? and differs from
the bank required by a preceding bank-sensitive statement. After having traversed
the basic block, the algorithm returns the first and last bank-sensitive statements
of the basic block. If the basic block is transparent, first and last will point to the
first statement of the basic block (due to lines 1 and 2), and the following holds:
bank(first) = b∗ and bank(last) = b∗.

Given a basic basic block u, we write first(u) and last(u) to denote the first and
last statement returned by the algorithm in Figure 4. We use fbu to denote the
bank of statement first(u), and lbu to denote the bank of statement last(u).

Figure 5 illustrates the operation of our linear scan algorithm on a sample ba-
sic block consisting of the instructions s0–s7. In this example we assume that
variables A and B reside in bank 0, and variables X, Y and Z reside in bank 1. The
column entitled “bank(s)” depicts the bank-sensitivity of the respective statements.
We use NOP statements to introduce transparency to this example. The call to
function foo in statement s3 potentially modifies the bank register. Therefore, the
bank of this statement is unknown (b?). Columns “first” and “last” denote the
first and last bank-sensitive statement as the algorithm progresses through the ba-
sic block. Since statement s0 is transparent, first is eventually set to statement s1.
For each bank-sensitive statement, last is updated. The linear scan algorithm
introduces three BSL instructions and sets first and last to the first and last bank-
sensitive statement of the basic block.

Note that the optimization algorithm for basic blocks does not insert a bank
selection instruction for the first bank-sensitive statement. If we do not take into
account the intra-procedural flow across basic blocks in our analysis, we could insert
the bank selection instruction prior to the first bank-sensitive statement. However,
this would result in a sub-optimal solution for the entire program.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Bernhard Scholz et al.

Table I. Transformation for configuration (Pu, Qu).

For a bank-sensitive basic block:

Location Insertion Condition

entry BSL〈fb
u
〉 fb

u
6= b? ∧ Pu 6= fb

u

exit BSL〈Qu〉 Qu 6= b? ∧ Qu 6= lbu

For a transparent basic block:

Insertion Condition

BSL〈Qu〉 Qu 6= b? ∧ Pu 6= Qu

4.2 Intra-Procedural Optimization

The intra-procedural optimization is effective because bank selection instructions
can be hoisted across basic blocks. For example, instead of performing the bank
selection instruction for LD A of Figure 2 inside the loop, we move the bank se-
lection instruction outside of the loop when optimizing for speed (as depicted in
Figure 2(c)).

Our approach uses discrete optimization to place bank selection instructions. The
main idea is that we introduce two controlling variables Pu and Qu for every basic
block u. These two variables describe the state of the bank register before and after
execution of the basic block. The domain of Pu and Qu is D = {b0, . . . , bm−1, b?},
i.e., variables Pu and Qu are either set to a concrete bank, or the state of the bank
register is unknown. The semantics of the controlling variables are as follows: If Pu

is set to bx, we can assume that the bank register has been set to bx prior to the
execution of basic block u. If Pu is set to b?, then the state of the bank register is
unknown upon entry of u. Conversely, variable Qu forces basic block u to guarantee
that the bank register is set to Qu upon exit.

Depending on the values of Pu and Qu we insert bank selection instructions
according to Table I. For a bank-sensitive basic block, there are at most two
insertions, i.e., one before the first bank-sensitive statement and one after the last
bank-sensitive statement. The first insertion ensures that the bank register is set
to bank fbu if variable Pu is not set to this bank. The second insertions is used to
guarantee that the bank register is set to Qu after executing basic block u. For a
transparent basic block at most one bank selection instruction is inserted to ensure
that the bank register is set to Qu upon exit (cf. again Table I).

A bank selection transformation T ∈ (D × D)|V | is defined by configurations
(Pu, Qu) for all basic blocks u. All possible insertions of bank selection instructions
at entries and exits of basic blocks are covered by at least one configuration of a
basic block.

A bank selection transformation T is correct if controlling variable Ps of the entry
node is unknown and for all CFG edges (u, v) it holds that

(Pv 6= b?) ⇒ (Qu = Pv) . (3)

The start node s cannot assume that a specific bank is active prior to its execution.
Therefore, we set Ps to b?. For all other nodes, each predecessor needs to have
bank Qu active upon exit if Pv is not equal to the unknown bank.

The controlling variables Pu and Qu determine the correctness of a transforma-
tion and its costs. For each basic block u, we have a cost function costu(Pu, Qu)
that returns the costs for a given configuration (Pu, Qu). These costs are chosen
from arbitrary metrics such as speed, space, and mixed cost models.

A bank selection transformation T is minimal if it is correct and if the costs of a

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 13

transformation are minimal:

min f =
∑

u∈V

costu(Pu, Qu). (4)

We split the cost function into the costs for bank-sensitive basic blocks (u ∈ S)
and transparent basic blocks (u ∈ T).

f =
∑

u∈V

costu(Pu, Qu) =
∑

u∈S

s-costu(Pu, Qu) +
∑

u∈T

t-costu(Pu, Qu) (5)

Without loss of generality we divide the costs for a bank-sensitive basic block into
the costs occurring upon entry and exit of the basic block. Function n-costu(Pu)
accounts for the cost of the bank selection instruction at the entry of the basic block
and function e-costu(Qu) upon exit:

s-costu(Pu, Qu) = n-costu(Pu) + e-costu(Qu). (6)

Both functions are zero if no insertion is performed. Otherwise they return the
cost cu of a bank selection instruction.

n-costu(Pu) =

{

cu, if fbu 6= b? ∧ Pu 6= fbu

0, otherwise
(7)

e-costu(Qu) =

{

cu, if Qu 6= b? ∧ Qu 6= lbu

0, otherwise
(8)

For a transparent basic block the costs are defined by

t-costu(Pu, Qu) =

{

cu, if Qu 6= b? ∧ Pu 6= Qu

0, otherwise.
(9)

In Eqns. (7) – (9), constant cu represents the insertion cost of a bank selection
instruction in basic block u. Costs are computed based on a chosen metric. The
only restriction we impose on such a metric is that the costs must have positive
values3, i.e., cu ≥ 0. In our experiment, we have chosen the parameterizable cost
metric

cu = α × SPEEDu + β × SPACEu, (10)

with its two parameters α and β controlling the weights of the speed and space
objectives. Depending on whether u is a critical basic block, SPEEDu is defined as

SPEEDu =

{

(bsl-cycles+ jump-cycles) × frequ, if u is critical

bsl-cycles× frequ, otherwise.
(11)

Therein bsl-cycles denotes the number of cycles taken for executing one single bank
selection instruction, jump-cycles is the number of cycles taken for executing one
additional (unconditional) jump statement introduced in basic block u due to edge
splitting, and frequ is the execution frequency of u (obtained by profiling).

3Note that the PBQP solver would also cope with negative costs. However, in the context of bank
selection negative costs are not sensible.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Bernhard Scholz et al.

Similarly, the constant SPACEu is defined as

SPACEu =

{

bsl-size+ jump-size, if u is critical

bsl-size, otherwise,
(12)

where bsl-size (jump-size) is the size of a bank selection (jump) instruction (mea-
sured in bytes).

Putting all constraints and costs together, we formulate the intra-procedural
bank selection problem as the following discrete optimization:

s.t. ∀u ∈ V : Pu, Qu ∈ D

Ps = b?

∀(u, v) ∈ E : (Pv 6= b?) ⇒ (Qu = Pv)

min f =
∑

u∈S

n-costu(Pu) +
∑

u∈S

e-costu(Qu) +
∑

u∈T

t-costu(Pu, Qu). (13)

A related problem was introduced in [Kleinberg and Tardos 1999], which is a clas-
sification problem and it was shown that this problem is hard to solve, i.e., a set
of points should be labeled such that a cost function is to be minimized. The
cost function takes into account costs for local labeling and labeling of two related
points. In [Kleinberg and Tardos 1999] an approximation algorithm was introduced.
However, the approximation algorithm is not practical. Instead, we use the PBQP
problem to solve the underlying discrete optimization problem for bank selection,
for which we have a very efficient and effective solver.

4.3 Mapping to PBQP

We employ PBQP [Scholz and Eckstein 2002; Eckstein 2003] to solve the discrete
optimization problem of Eqn. (13). The controlling variables Pu and Qu become
Boolean vector variables ~pu and ~qu. The elements of the vectors represent an
element in D = {b0, . . . , bm−1, b?}. PBQP restricts ~pu and ~qu to Boolean vectors
whose elements are set to zero except one element is set to one, i.e. variables Pu

and Qu have a concrete bank assignment or they are set to b?.
The costs of bank-sensitive basic blocks are modeled as scalar products and the

costs of transparent basic blocks become quadratic forms. The objective function
of Eqn. (13) is mapped to the PBQP objective function

f =
∑

u∈S

~nu~pT
u +

∑

u∈S

~eu~qT
u +

∑

u∈T

~pu(cu · T)~qT
u . (14)

Therein ~nu~pT
u and ~eu~qT

u are the cost functions n-costu(Pu) and e-costu(Qu) in vector
notation, and ~pu(cu · T)~qT

u is t-costu(Pu, Qu) as a quadratic form. The vector ~nu in
scalar product ~nu~pT

u is a zero vector if the bank of the first bank-sensitive statement
is b?, otherwise it is the vector

b0 b1 . . . bi−1 bi bi+1 . . . bm−1 b?

~nu cu cu . . . cu 0 cu . . . cu cu
, (15)

where bi is bank fbu of the first bank-sensitive statement and cu are the costs
for inserting a bank selection instruction (i.e., BSL bi). Cost function e-cost(Qu)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 15

Table II. Cost matrices.

T b0 b1 bm−1 b?
b0 0 1 1 0
b1 1 0 1 . . . 1 0
...

...
. . .

. . .
. . .

...
...

bm−2 1 . . . 1 0 1 0
bm−1 1 1 0 0
b? 1 1 0

(a) Transparent basic blocks

R b0 b1 bm−1 b?
b0 0 ∞ ∞ 0
b1 ∞ 0 ∞ . . . ∞ 0
...

...
. . .

. . .
. . .

...
...

bm−2 ∞ . . . ∞ 0 ∞ 0
bm−1 ∞ ∞ 0 0
b? ∞ ∞ ∞ 0

(b) Correctness constraint for CFG edges

becomes the scalar product ~eu~qT
u , for which the cost vector ~eu is

b0 b1 . . . bj−1 bj bj+1 . . . bm−1 b?

~eu cu cu . . . cu 0 cu . . . cu 0
. (16)

Therein bank bj denotes bank lbu, and we do not issue a bank selection instruction
if Qu is equal to bj or b?.

For example, consider basic block 4 in our motivating example (see Figure 2(a)).
This basic block is executed 91 times. The first bank-sensitive statement is LD A,
which accesses bank b0. If we assume that it takes one cycle to execute a bank
selection instruction, then we have 91 cost units for the insertion before LD A. Thus
cu = 91 and cost function n-cost(P4) becomes ~n4 =

(

0 91 91
)

. The first element
of the vector imposes zero costs if P4 is set to b0. If P4 is set to b1 or b?, 91 cost
units are imposed because a bank selection instruction needs to be inserted prior
to LD A. Cost vector ~e4 is

(

0 91 0
)

, because there are zero costs imposed for Q4

equal to b0 or b?.
The transparent cost function t-costu(Pu, Qu) is expressed as quadratic form

~pu(cuT)~qT
u . Matrix T is given in Table II(a) and it is generated based on Eqn. (9).

The rows of T correspond to variable Pu and the columns correspond to variable Qu.
If Pu and Qu are not set to the same bank and Qu is not b?, one cost unit is imposed
(zero costs otherwise). We multiply matrix T with scalar cu in Eqn. (14) to model
the actual insertion costs for a bank selection instruction.

To enforce correct transformations, we use the standard technique of encoding
the correctness constraint as part of the objective function, which we extend to
g = f + ∆, where ∆ is 0 if the transformation T is a correct transformation, and
∞ otherwise. The correctness constraints defined over CFG edges are mapped to
a sum of a scalar product and quadratic forms,

∆ =
(

∞ . . . ∞ 0
)

~qT
s +

∑

(u,v)∈E

~quR~pT
v , (17)

where the constraint expressed in Eqn. (3) is mapped to matrix R shown in Ta-
ble II(b) and the constraint to set Ps to b? is mapped to a scalar product. Quadratic
forms are used to express the correctness constraints. In matrix R the diagonal and
the last column contain zeroes, representing the cases where Qu is equal to Pv or
where Pv is set to b?. All other assignments of Qu and Pv are penalized with ∞
costs.

Our running example in Figure 2 assumes an architecture with two banks. Hence,

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Bernhard Scholz et al.

we get the following correctness matrix R and transparent matrix T .

R b0 b1 b?

b0 0 ∞ 0
b1 ∞ 0 0
b? ∞ ∞ 0

T b0 b1 b?

b0 0 1 0
b1 1 0 0
b? 1 1 0

The objective function without correctness constraints is

f =~n1~p
T
1 + ~e1~q

T
1 + ~n2~p

T
2 + ~e2~q

T
2 + ~n4~p

T
4 + ~e4~q

T
4 + ~n5~p

T
5 + ~e5~q

T
5 + ~n6~p

T
6 + ~e6~q

T
6 +

~n7~p
T
7 + ~e7~q

T
7 + ~n9~p

T
9 + ~e9~q

T
9 + ~p3(c3 · T)~qT

3 + ~p8(c3 · T)~qT
8 + ~p10(c10 · T)~qT

10+

~p11(c11 · T)~qT
11 + ~p12(c12 · T)~qT

12 + ~p13(c13 · T)~qT
13 + ~p14(c14 · T)~qT

14+

~p15(c15 · T)~qT
15,

where cu for basic blocks 3, 8, 10, 11, 12, 13, 14 and 15 denotes the costs for insert-
ing bank selection instructions. Constants cu are dependent on the optimization
criteria.

The correctness constraints are

∆ =
(

∞ ∞ 0
)

~pT
s + ~q1R~pT

2 + ~q1R~pT
3 + ~q2R~pT

6 + ~q3R~pT
5 + ~q3R~pT

11 + ~q4R~pT
12+

~q4R~pT
13 + ~q5R~pT

6 + ~q6R~pT
7 + ~q6R~pT

8 + ~q7R~pT
9 + ~q8R~pT

14 + ~q8R~pT
15 + ~q9R~pT

10+

~q11R~pT
4 + ~q12R~pT

4 + ~q13R~pT
6 + ~q14R~pT

9 + ~q15R~pT
10.

The objective function g = f +∆ is to be solved to find the minimal bank selection
placement for the running example.

4.4 Inter-procedural Optimization

The bank selection optimization can be extended to hoist bank selection instructions
across call sites. For frequently executed calls the inter-procedural optimization is
highly effective. The inter-procedural transformation extends the placement of
bank selection instructions to the following program points: (1) at the entry of a
subroutine, (2) at the exit of a subroutine, (3) and before a call. In contrast to
the intra-procedural optimization, a single discrete optimization problem solves the
bank selection of the whole program in one step.

The mathematical model of the inter-procedural optimization problem is an ex-
tension of the intra-procedural approach. The discrete optimization problem for
each subroutine is constructed as outlined in the previous section. However, the
boundary condition for the start node is removed except for the main subroutine
of the program. Each call site li of subroutine F becomes a basic block of its own
(with controlling variables Pli and Qli). Correctness constraints between the call
site and the callee ensure a consistent state of the bank register upon procedure
call and return. The correctness constraints between the callers and the callee are
depicted in Figure 6 (edges represent correctness constraints). For call site li we
impose a correctness constraint between discrete variable Pli and Ps such that

(Ps 6= b?) ⇒ (Ps = Pli) (18)

holds. For the end node of a subroutine we add correctness constraint

(Qli 6= b?) ⇒ (Qli = Qe) . (19)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 17

all F
all F
all FPl2

Ql1Caller 1 Caller 2 Caller k

Plk

Callee F
Ps

Qlk

Qe

start
endQl2

Pl1

Fig. 6: Interprocedural analysis.

The correctness constraints ensure that the call site sets the correct bank if the bank
selection is not performed for the first bank-sensitive statement within subroutine F .
If the statements after the call expect a certain bank to be set by the subroutine,
a bank selection instruction is inserted after the last bank-sensitive statement of
subroutine F .

The PBQP problem is extended for all subroutines F in the program and for all
calls {x1, . . . , xk} of the subroutine F as given below:

∆′ = ∆ + ~pxi
R~pT

s + ~qeR~qT
xi

. (20)

The correctness constraint is identical to Eqn. (3) and therefore the same matrix R
as in the intra-procedural mapping is used to map the discrete optimization problem
to PBQP.

4.5 Non-Uniform Cost Models

Architectures such as the PIC 16Fxxx microcontroller do not have uniform costs for
bank switching. Instead of having a single bank selection instruction with constant
execution speed and program space costs, the PIC 16Fxxx architecture provides
only bit access to the bank register; depending on the previously active bank the
bank switching costs may vary. For example, assume we want to set the bank
register to bank 1. For this task we need to issue two assembly instructions.

bsf STATUS, RP0

bcf STATUS, RP1
(21)

These assembly instructions set the first and second bit of the bank register to
one and zero, where RP0 and RP1 denote the first and second bit of the bank
register [Microchip Technology Inc. 2003]. If we know that the first bit of the bank
register is already set to one, the first instruction can be omitted and the number
of bank selection instructions for setting bank 1 is halved.

The optimization benefits from the knowledge of the state of the bank register
before switching. Since the state of the bank register is reflected in the discrete
variables Pu and Qu at the entry and exit of a basic block, it would be straightfor-
ward to extend the cost functions for bank-sensitive basic blocks and transparent
basic blocks. However, there are cases where the state of the bank register can
only be partially deduced. As an example, assume the CFG fragment depicted in

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Bernhard Scholz et al.

incf X incf Y

incf Z

Fig. 7: Example: Variables X, Y and Z are in banks 1,3 and 1. Instruction incf increments the
value of its operand.

Figure 7, with variables X, Y and Z residing in banks 1, 3 and 1. Let us assume that
the nodes preceding the confluence node have higher execution frequencies. Hence,
it is beneficial to place the bank selection instruction in the basic block of incf Z.
The bank register is either set to bank 1 or bank 3 prior to execution of incf Z.
At incf Z the second bit RP1 is unknown, but the first bit RP0 is known to be one.
Hence, the instruction bcf STATUS, RP1 must be issued prior to the execution of
incf Z, but the instruction bsf STATUS, RP0 can be omitted. It should be noted
that data flow analysis is able to deduce the bits of the bank register, however, it
cannot solve the underlying discrete optimization problem.

To model the unknown bits in the discrete domain D of variables Pu and Qu, we
use a bit representation of the banks

D =
{

bx : x ∈ {0, 1, ?}k
}

, (22)

where k is the bit length of the bank register, i.e., m = 2k. For example, the bank
register of the PIC 16Fxxx architecture has a bit length of 2. Therefore, the discrete
domain is given by

D = {b〈0,0〉, b〈0,1〉, b〈1,0〉, b〈1,1〉, b〈?,0〉, b〈?,1〉, b〈0,?〉, b〈1,?〉, b〈?,?〉}. (23)

The first four values of D denote concrete banks of the bank register in binary
representation, e.g., b〈1,0〉 represents bank 2. The remaining values of D describe
(partially) unknown states of the bank register, e.g., b〈?,0〉 represents a state of the
bank register for which only the second bit is known and b〈?,?〉 denotes a state for
which all bits of the bank register are unknown.

To model the bits of the bank register, discrete variables Pu and Qu become
bit vector variables. The correctness constraint of Eqn. (3) is extended to take
unknown bits of the bank register into account, i.e.,

∀(u, v) ∈ E : ∀1 ≤ i ≤ k : (Pv[i] 6=?) ⇒ (Qu[i] = Pv[i]) , (24)

where Pv[i] and Qu[i] represent the ith bits of the discrete variables Pv and Qu,
respectively. Similarly, we adopt the cost functions for bank-sensitive (cf. Eqn. (7))
and transparent basic blocks (cf. Eqn. (9))

n-costu(Pu) =
∑

1≤i≤k

{

cu, if fbu[i] 6=? ∧ Pu[i] 6= fbu[i]

0, otherwise
(25)

e-costu(Qu) =
∑

1≤i≤k

{

cu, if Qu[i] 6=? ∧ Qu[i] 6= lbu[i]

0, otherwise
(26)

t-costu(Pu, Qu) =
∑

1≤i≤k

{

cu, if Qu[i] 6=? ∧ Pu[i] 6= Qu[i]

0, otherwise,
(27)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 19

C-

Program

Binary

Program

Info

Extended

Assembly

Banked

Assembly

C-Compiler

Simulator

Disassembler

PrunerExtended

Assembly
Optimizer Opt.

Binary

Fig. 8: Toolchain.

where for each bit that needs to be switched the costs cu are imposed. The mapping
of the non-uniform cost model to PBQP follows along the lines of the mapping
devised in Section 4.3.

5. EXPERIMENTAL RESULTS

We evaluated our optimization using programs typically run on contemporary mi-
crocontrollers. Our sample included programs from the MiBench Embedded Bench-
mark Suite [Guthaus et al. 2001] and from DSPStone, and we surveyed a microcon-
troller real-time kernel and common microcontroller driver routines. We conducted
this experiment on a PIC16F877A microcontroller [Microchip Technology Inc. 1997;
2003]. We applied different optimization objectives to show the versatility of our
approach.

Our second experiment addressed the scalability of our optimization. This is
important due to the prevailing trend to equip next generation microcontrollers with
more program and data memory. (Microchip’s PIC18F97J60 8-bit microcontroller
for example provides 128KB of program memory and 4KB of data memory spread
over 16 banks [Microchip Technology Inc. 2006].) In the second experiment we
showed that our optimization

—scales well to a larger number of memory banks (i.e., 8, 16, 32),

—scales well to the larger problem sizes that will become feasible with future mi-
crocontrollers, and

—achieves the minimal result in almost all circumstances.

The second experiment involved the complete MiBench suite which has more than
6000 procedures. In this experiment we assumed the worst-case scenario for our
optimization problem, which occurs when all basic blocks are transparent.

5.1 Experiment 1: PIC16F877A Microcontroller Benchmarks

The PIC family of midrange microcontrollers constitutes a RISC-based Harvard
architecture with instruction sizes of 12, 14 or 16 bits, and a data-bus that is 8 bit
wide [Microchip Technology Inc. 1997]. The PIC16F877A microcontroller provides

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Bernhard Scholz et al.

8KB of program memory and 368B of data memory spread over four banks [Mi-
crochip Technology Inc. 2003]. The MiBench programs that we could fit onto this
microcontroller included “basicmath”, “bitcount”, “qsort”, “sha”, “CRC32” and
“FFT”. From the DSPStone benchmark suite we included “adpcm” and “matrix”.
We also surveyed a microcontroller real-time kernel and common microcontroller
driver routines [MicrochipC.com 2006].

Our experimental setup is depicted in Figure 8. The compilation of a C bench-
mark program for the PIC16F877A resulted in a binary image and supplementary
program information comprising the linker map file and a list of C-prototypes con-
tained in the input program. We ran the binary image on the GPSIM simula-
tor [Dattalo 2006] to obtain execution frequencies for the instructions of the binary
image. The binary image together with the corresponding execution frequencies
were then fed into the disassembler to produce an extended assembly file. The
disassembler used the linker map file and the list of C-prototypes to establish pro-
cedural boundaries within the binary image. In this setup, an extended assembly
file consisted of PIC assembly routines, where each instruction was augmented with
its instruction frequency. The extended assembly file contained the bank selection
instructions generated by the C-compiler. We used this information to compare it
to the bank selection achieved by our optimization.

To carry out our optimization we pruned the extended assembly files from the
bank selection instructions of the C-compiler. The pruner then performed data-flow
analysis to annotate each operand of the assembly file with the required bank. In
the following we call these annotations bank assertions, and the annotated assembly
code is called banked assembly code.

The optimizer had to insert bank selection instructions into the banked assembly
code so that all bank assertions were satisfied (this is the correctness criteria of our
optimization) at minimal cost. It should be noted that due to the pruner the bank

selection of our optimizer was completely independent of the bank selection of the

C-compiler.

We checked the correctness of the inserted bank selection instructions generated
by the optimizer. This was achieved by means of data-flow analysis. We deter-
mined the costs induced by the bank selection instructions in the optimized binary
and compared them to the bank selection achieved by the C-compiler (from the
extended assembly file). We used the HI-TECH PICC C-compiler as a reference
point in this experiment. HI-TECH PICC is a high-performance C compiler adver-
tised by Microchip itself for their whole family of PIC microcontrollers. It employs
an optimizer that makes full use of PIC-specific features [HI-TECH Software 2006].
However, this compiler does not automatically assign C variables to memory banks
(apart from the default assignment to bank 0). For this reason we had to manu-
ally assign program variables to memory banks with our benchmark programs. We
replaced file I/O operations by I/O operations via the UART of the PIC16F877A.
Some of the benchmark problem sizes had to be downsized to fit on an 8-bit mi-
crocontroller.

As depicted in Table III, we determined the overall static instruction count (“To-
tal”) together with the number of bank selection instructions (“BSL”) for each
benchmark. We determined the cycle counts induced by these instruction-catego-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 21

Table III: Experimental results for the PIC microcontroller benchmark programs; program size
reductions and speedups wrt. the optimizing commercial compiler.

Instruction count Cycle count Size reduction Speedup
Benchmark Objective Total BSL Total BSL Total% BSL% Total% BSL%

adpcm

HiT 6031 797 3.0e+09 3.9e+08 n/a n/a n/a n/a
Speed 5781 521 2.7e+09 1.6e+08 4.1 34.6 8.5 148.7
Space 5640 406 2.8e+09 1.6e+08 6.5 49.1 8.3 140.2
Mixed 5666 426 2.8e+09 1.6e+08 6.1 46.5 8.4 141.7

basicmath

HiT 1844 248 5856 1023 n/a n/a n/a n/a
Speed 1857 237 5545 712 -0.7 4.4 5.6 43.7
Space 1794 198 5608 775 2.7 20.2 4.4 32.0
Mixed 1799 199 5590 757 2.4 19.8 4.8 35.1

bitcnts

HiT 1888 197 81012 8091 n/a n/a n/a n/a
Speed 1871 163 75852 2931 0.9 17.3 6.8 176.0
Space 1810 119 75992 3071 4.1 39.6 6.6 163.5
Mixed 1811 120 75852 2931 4.1 39.1 6.8 176.0

crc32

HiT 450 36 2.2e+07 1.2e+06 n/a n/a n/a n/a
Speed 422 8 2.1e+07 64 6.2 77.8 5.9 1.9e+06
Space 422 8 2.1e+07 64 6.2 77.8 5.9 1.9e+06
Mixed 422 8 2.1e+07 64 6.2 77.8 5.9 1.9e+06

decimal

HiT 514 85 8547 1660 n/a n/a n/a n/a
Speed 460 31 7268 381 10.5 63.5 17.6 335.7
Space 460 31 7284 397 10.5 63.5 17.3 318.1
Mixed 460 31 7268 381 10.5 63.5 17.6 335.7

FFT

HiT 2693 348 53141 6485 n/a n/a n/a n/a
Speed 2576 216 50588 3932 4.3 37.9 5.0 64.9
Space 2538 193 50688 4032 5.8 44.5 4.8 60.8
Mixed 2540 195 50588 3932 5.7 44.0 5.0 64.9

lcd

HiT 307 65 72707 16285 n/a n/a n/a n/a
Speed 251 9 56431 9 18.2 86.2 28.8 1.8e+05
Space 251 9 56431 9 18.2 86.2 28.8 1.8e+05
Mixed 251 9 56431 9 18.2 86.2 28.8 1.8e+05

matrix

HiT 401 62 716 105 n/a n/a n/a n/a
Speed 368 27 660 49 8.2 56.5 8.5 114.3
Space 360 21 667 56 10.2 66.1 7.3 87.5
Mixed 360 21 666 55 10.2 66.1 7.5 90.9

nvmtsens

HiT 1238 134 121070 24229 n/a n/a n/a n/a
Speed 1138 34 97389 548 8.1 74.6 24.3 4.3e+03
Space 1125 21 98075 1234 9.1 84.3 23.4 1.9e+03
Mixed 1138 34 97389 548 8.1 74.6 24.3 4.3e+03

qsort

HiT 908 128 24549 3298 n/a n/a n/a n/a
Speed 802 20 21769 518 11.7 84.4 12.8 536.7
Space 799 19 21771 520 12.0 85.2 12.8 534.2
Mixed 799 19 21769 518 12.0 85.2 12.8 536.7

rtkernel

HiT 2097 422 2.6e+08 4.9e+07 n/a n/a n/a n/a
Speed 2063 343 2.3e+08 1.8e+07 1.6 18.7 13.4 169.9
Space 1862 187 2.3e+08 1.8e+07 11.2 55.7 13.4 169.8
Mixed 1864 189 2.3e+08 1.8e+07 11.1 55.2 13.4 169.9

serial

HiT 1178 189 8.4e+06 1.7e+06 n/a n/a n/a n/a
Speed 1035 44 6.7e+06 3128 12.1 76.7 25.3 5.4e+04
Space 1022 33 6.7e+06 3385 13.2 82.5 25.3 5.0e+04
Mixed 1022 33 6.7e+06 3385 13.2 82.5 25.3 5.0e+04

sha

HiT 3012 170 5.0e+06 9.3e+05 n/a n/a n/a n/a
Speed 2881 35 4.6e+06 5.2e+05 4.3 79.4 8.9 78.1
Space 2868 26 4.7e+06 6.2e+05 4.8 84.7 6.8 51.8
Mixed 2875 29 4.7e+06 5.8e+05 4.5 82.9 7.5 59.7

swi2c

HiT 740 123 4.1e+06 9.0e+05 n/a n/a n/a n/a
Speed 659 42 3.2e+06 673 10.9 65.9 28.1 1.3e+05
Space 644 27 3.2e+06 1043 13.0 78.0 28.1 8.6e+04
Mixed 653 36 3.2e+06 673 11.8 70.7 28.1 1.3e+05

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Bernhard Scholz et al.

ad
pc

m
ba

sic
m

ath
bi

tcn
ts

cr
c3

2
de

cim
al

FFT lcd
m

atr
ix

nv
m

tse
ns

qs
or

t
rtk

er
ne

l
se

ria
l

sh
a

sw
i2

c
a.

m
ea

n

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Sp
ee

du
p

(%
)

Speed
Space
Mixed

Fig. 9: Speedup achieved over the optimizing commercial compiler.

ries for a given benchmark sample input. The given “Total” cycle counts take into
account extra jump instructions that might arise due to the insertion of bank selec-
tion instructions. For each benchmark these performance figures were determined
for the HI-TECH PICC C-compiler and for our optimization. We performed our
optimization under the objectives (1) speed, (2) space, and (3) mixed (a combi-
nation of speed and space). The corresponding values for α and β were α = 1,
β = 0 (speed), α = 0, β = 1 (space), and α = 0.5, β = 0.5 (mixed). In terms of
Eqns. (11) and (12), we set bsl-cycles = bsl-size = jump-cycles = jump-size = 1.
The rightmost columns in Table III depict the memory footprint reduction and the
resulting performance improvement achieved by our optimization. The figures re-
flect the goals of the different optimization objectives: optimizing for space results
in the lowest number of issued bank selection instructions, whereas optimizing for
speed minimizes instruction cycles. Optimizing for speed and space combines both
objectives, resulting in performance figures between the two. Note however, that
for some benchmarks the speed and space optimizations are identical, which then
applies for the mixed optimization as well.

It follows from Table III that the reduction of the program memory footprint
(corresponding to the overall instruction count) is between 2.7% and 18.2% when
we optimize for space. In this case the reduction of bank selection instructions
is between 20.2% and 86.2%. If we optimize for speed , the achieved overall im-
provement is between 5.0% and 28.8%, and the improvement with respect to the
execution of bank selection instructions alone is between 43.7% and 1900000%. Our
optimization achieved the optimal solution for all benchmark programs. The over-
all speedup is shown in the bar chart of Figure 9, and the program-size reduction
of our bank selection optimization is shown in Figure 10 (“a. mean” denotes the
arithmetic mean over all benchmark programs).

To investigate the sensitivity of our optimization to actual input data, we em-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 23

ad
pc

m
ba

sic
m

ath
bi

tcn
ts

cr
c3

2
de

cim
al

FFT lcd
m

atr
ix

nv
m

tse
ns

qs
or

t
rtk

er
ne

l
se

ria
l

sh
a

sw
i2

c
a.

m
ea

n

0

2

4

6

8

10

12

14

16

18

20

Si
ze

 r
ed

uc
tio

n
(%

)

Speed
Space
Mixed

Fig. 10: Program size reduction achieved over the optimizing commercial compiler.

Table IV: Optimization results across different data sets.

Average speedup(%) Average size reduction(%)
Benchm. Speed Space Mixed σSpd σSpc σMxd Speed Space Mixed σSpd σSpc σMxd

adpcm 8.38 8.17 8.21 0.18 0.19 0.17 3.88 6.5 6.05 0.33 0 0.05
bitcnts 6.86 6.67 6.86 0.09 0.08 0.09 1.35 4.1 4.1 0.7 0 0
crc32 5.9 0 6.2 0
FFT 5.04 4.83 5.04 0.05 4.3 5.8 5.7 0
qsort 12.54 12.53 12.54 0.26 11.45 12.0 11.98 0.36 0 0.08
sha 8.9 6.8 7.5 0 4.3 4.8 4.5 0

ployed the MiDataSets of Fursin et al. [2007]. The MiDataSets provide 20 data sets
per MiBench benchmark, with the intention to establish a baseline for the evalu-
ation of compiler optimizations under varying input data conditions. We profiled
several of our benchmarks with each of the corresponding 20 data sets to determine
basic block execution frequencies. The MiDataSets for qsort had to be shrunk to
fit onto the PIC16F877A microcontroller. For benchmark FFT we used the data
from bitcnts to seed the pseudo-random generator. Table IV shows the average
speedup and program size reduction together with the standard deviation σ across
all data sets. Note that a standard deviation of zero from the average footprint size
reduction is expected when optimizing for space, because execution frequencies are
not taken into account in this case. The extremely small values for σ in Table IV
show that our optimizations were effective with each data set.

We investigated the instruction distributions of the PIC microcontroller bench-
mark programs to determine applicability and improvement potential of our opti-
mization. The obtained data is depicted in Table V. Therein Column “traB” de-
notes the percentage of transparent basic blocks. “traS”, “isenS” and “bsenS”denote
the percentages of transparent statements, bank sensitive statements inside basic
blocks, and first and last bank sensitive statements of a basic block (note that they
add up to 100% and hence do not account for BSL statements). “traC”, “isenC”

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Bernhard Scholz et al.

Table V: Instruction distribution properties of the PIC microcontroller benchmark programs.

Benchmark Objective traB traS isenS bsenS traC isenC bsenC bBslS bBslC bsl

adpcm
HiT 63.4 76.6 7.8 15.6 77.8 7.4 14.8 71.9 77.7 13.2

Speed 65.7 77.9 7.4 14.7 77.8 7.4 14.8 60.1 47.8 9.0
Space 65.6 78.0 7.4 14.6 77.8 7.4 14.8 49.3 49.6 7.2

basicmath
HiT 36.6 73.4 16.6 10.0 68.7 17.3 14.0 37.5 51.7 13.4

Speed 39.1 72.4 16.8 10.8 68.1 17.4 14.5 40.5 37.2 12.8
Space 33.7 72.7 16.7 10.6 68.3 17.3 14.4 28.8 42.3 11.0

bitcnts
HiT 50.9 70.2 14.3 15.5 68.9 14.0 17.1 61.9 77.8 10.4

Speed 53.5 71.3 13.8 14.9 68.9 14.0 17.1 54.6 44.3 8.7
Space 51.9 71.0 14.0 15.0 68.9 14.0 17.1 37.8 46.8 6.6

crc32
HiT 50.8 73.9 15.2 10.9 77.7 7.4 14.9 94.4 100.0 8.0

Speed 60.7 79.2 12.3 8.5 77.7 7.4 14.9 100.0 100.0 1.9
Space 60.7 79.2 12.3 8.5 77.7 7.4 14.9 100.0 100.0 1.9

decimal
HiT 56.3 68.8 13.3 17.9 77.2 8.0 14.8 85.9 86.4 16.5

Speed 56.3 68.8 13.3 17.9 77.2 8.0 14.8 61.3 40.7 6.7
Space 56.3 68.8 13.3 17.9 77.2 8.0 14.8 61.3 43.1 6.7

FFT
HiT 46.4 72.9 17.1 10.0 71.9 16.2 11.9 57.2 63.7 12.9

Speed 48.9 72.8 17.3 9.9 71.9 16.2 11.9 37.0 44.5 8.4
Space 47.1 73.0 17.2 9.8 71.9 16.2 11.9 31.6 46.1 7.6

lcd
HiT 56.0 67.7 8.7 23.6 84.5 0.4 15.1 92.3 100.0 21.2

Speed 56.0 67.7 8.7 23.6 84.5 0.4 15.1 44.4 44.4 3.6
Space 56.0 67.7 8.7 23.6 84.5 0.4 15.1 44.4 44.4 3.6

matrix
HiT 80.0 90.3 5.3 4.4 86.4 7.7 5.9 69.4 62.9 15.5

Speed 80.7 90.3 5.3 4.4 86.4 7.7 5.9 40.7 20.4 7.3
Space 80.0 90.9 4.7 4.4 86.4 7.7 5.9 33.3 30.4 5.8

nvmtsens
HiT 50.1 75.7 0.9 23.4 73.0 0.9 26.1 89.6 99.0 10.8

Speed 50.3 75.8 0.9 23.3 73.0 0.9 26.1 58.8 56.4 3.0
Space 50.3 75.8 0.9 23.3 73.0 0.9 26.1 33.3 80.6 1.9

qsort
HiT 55.8 69.5 10.0 20.5 68.8 9.0 22.2 85.9 97.4 14.1

Speed 56.1 69.5 10.0 20.5 68.8 9.0 22.2 45.0 89.6 2.5
Space 55.8 69.5 10.0 20.5 68.8 9.0 22.2 42.1 89.6 2.4

rtkernel
HiT 56.1 68.2 8.7 23.1 78.7 3.2 18.1 71.6 99.9 20.1

Speed 60.6 71.3 7.2 21.5 78.7 3.2 18.1 72.9 99.6 16.6
Space 60.9 71.9 7.3 20.8 78.7 3.2 18.1 50.3 99.6 10.0

serial
HiT 53.8 70.9 6.6 22.5 77.0 0.1 22.9 88.4 99.9 16.0

Speed 56.3 73.0 5.7 21.3 77.0 0.1 22.9 50.0 25.1 4.3
Space 56.0 73.6 5.1 21.3 77.0 0.1 22.9 36.4 30.8 3.2

sha
HiT 46.9 66.5 20.1 13.4 60.9 17.7 21.4 94.7 70.2 5.6

Speed 47.3 66.5 20.1 13.4 60.9 17.7 21.4 74.3 47.0 1.2
Space 46.9 66.5 20.1 13.4 60.9 17.7 21.4 65.4 54.8 0.9

swi2c
HiT 52.9 72.9 2.1 25.0 84.8 0.2 15.0 95.1 100.0 16.6

Speed 52.9 72.9 2.1 25.0 84.8 0.2 15.0 85.7 86.3 6.4
Space 52.9 72.9 2.1 25.0 84.8 0.2 15.0 77.8 91.2 4.2

and “bsenC” denote the corresponding percentages of the cycle counts. Given the
total number of BSL statements, “bBslS” denotes the percentage of BSL statements
before the first and after the last bank-sensitive statement of a basic block, and
“bBslC” denotes the corresponding cycle count percentage. Given the total num-
ber of statements of a benchmark, “bsl” denotes the percentage of BSL statements.
For the following considerations we use again HI-TECH PICC as a baseline for
comparison. However, as already pointed out, our optimization is independent of
this baseline. In Column 2 of Table V, “HiT” denotes data obtained from pro-
grams compiled with the HI-TECH compiler, and “Speed” and “Space” denote the
corresponding objectives of our optimization.

The number of BSL statements in the code is an upper bound for the number of

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 25

statements that can be removed by our optimization. Column “bsl” shows that the
percentages of BSL statements for “HiT” range from 5.6% to 21.2%, which indicates
potential for improvement. However, due to the non-uniform cost model of the
PIC16F877A (cf. Section 4.5), the number of optimization opportunities is less
than the actual number of BSL statements. In our survey of benchmark programs,
49% of all bank switches require two BSL statements (as depicted in Eqn. (21)). This
suggests an improvement potential for the partitioning of variables. It is however
the case that most of the special function registers of the PIC 16Fxxx architecture
are spread across different banks, which limits data partitioning optimizations for
hardware-dependent code.

Transparent basic blocks benefit our optimization because they constitute poten-
tial insertion points for BSL statements. Column “traB” shows that between 36.6%
and 80% of all basic blocks in the “HiT” code are transparent. It should be noted
that due to the splitting of critical edges our optimization may generate additional
transparent basic blocks and associated statements; for this reason the percentages
given for basic blocks and statements may vary across different optimizations of a
given benchmark.

Our optimization is effective for first and last bank-sensitive statements of a
basic block. Column “bsenS” of Table V shows that between 4.4% and 25% of
all bank-sensitive statements are either a first or last bank sensitive statement
in a basic block. For the majority of benchmark programs the number of bank-
sensitive statements in the above category dominates the number of bank-sensitive
statements between the first and last bank-sensitive statement (“isenS”). Figure 10
confirms that our space optimization is most effective for benchmarks in the high
(17.9%–25%) “bsenS” category. “Matrix” from the DSPStone benchmark suite is
the only exception to this rule. Despite only 4.4% of bank-sensitive statements in
the “bsenS” category, our optimization achieves a program size reduction of 10.2%.
This can be attributed to the exceptionally high rate of transparent basic blocks
(80%) and to the high improvement potential (15.5% share of BSL statements)
present in the “HiT” code that we use for comparison. In absolute terms “bsl”
is down to 5.8% after our space optimization, which is is well within the range of
0.9%–11% that we achieve when optimizing for space.

The principles outlined above apply to cycle counts and optimizations in the
time-domain as well. However, one has to take into account the non-uniformity
of instruction frequencies among different statements to be able to precisely relate
benchmark programs to the achieved speedups. All surveyed benchmarks exhibit a
surprisingly high percentage of transparent statements (between 66.5% and 90.3%).
This suggests that there is a potential for instruction reordering within basic blocks
to further improve the bank selection optimization.

We compared the efficiency and effectiveness of a heuristic PBQP solver with a
branch-and-bound PBQP solver. For the experiment we used the inter-procedural
space optimization only. Because of the small number of RN nodes, the heuristic
solver guessed the optimal solution and the branch-and-bound solver was able to
terminate the search quickly. The results of the experiment are shown in Table VI.
The first two columns (“nodes” and “edges”) show the number of discrete variables
and the number of dependencies between two discrete variables for each benchmark.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Bernhard Scholz et al.

Table VI: PBQP Problem, Interprocedural Optimization for Space.

PBQP Heuristic B&B
Benchmark nodes edges R0 RI RII RN mem t f # mem t f

adpcm 2888 2862 297 1812 775 4 3.8 0.19 134 6 3.86 0.19 134
basicmath 344 293 75 244 22 3 0.37 0.02 33 5 0.44 0.02 33

bitcnts 754 689 132 452 170 0 0.9 0.04 23 1 0.9 0.05 23
crc32 106 81 30 66 10 0 0.1 0.01 4 1 0.1 0.01 4

decimal 238 219 25 195 18 0 0.27 0.02 12 1 0.27 0.02 12
FFT 566 492 87 428 51 0 0.61 0.03 37 1 0.61 0.03 37
lcd 200 196 11 169 20 0 0.24 0.01 2 1 0.24 0.01 2

matrix 110 100 18 80 12 0 0.12 0.01 3 1 0.12 0.01 3
nvmtsens 946 1108 16 491 436 3 1.61 0.09 6 4 1.79 0.11 6

qsort 394 357 51 288 55 0 0.45 0.02 6 1 0.45 0.02 6
rtkernel 1252 1041 241 937 72 2 1.29 0.04 45 3 1.32 0.05 45
serial 714 677 76 573 63 2 0.82 0.04 8 4 0.87 0.04 8
sha 1020 958 134 736 150 0 1.19 0.05 10 1 1.19 0.06 10

swi2c 510 506 24 401 83 2 0.65 0.03 20 3 0.69 0.03 20

The majority of the benchmarks result in small PBQP problems of approx. 1000
variables or less for the bank selection optimization. There is only one benchmark
(“adpcm”) that has approx. 3000 discrete variables.

The small number of dependencies (“edges”) is already a good indication that
the number of RN nodes is small. The heuristic solver can reduce nearly all nodes
with reductions R0, RI, and RII. Six benchmarks have RN nodes, for which the
heuristic solver cannot guarantee optimality4. The number of R0, RI, RII, and RN
nodes are given in Table VI. The values of the objective functions are shown under
Columns f . The heuristic solutions coincide with the branch-and-bound solutions.
Note that Column “#” gives the total number of sub-problems that were computed
for the branch and bound solver. For benchmarks that do not contain RN nodes,
this number is equal to one. Due to a very tight bound [Hames and Scholz 2006], the
branch-and-bound solver of PBQP finds the optimal solution with only a few sub-
problems. Benchmark “adpcm” required 6 sub-problems to compute the optimal
solution whereas all the other benchmarks with RN nodes needed less than 6 sub-
problems5. As shown in the table, the heuristic PBQP solver delivers an optimal
solution even for benchmarks with RN nodes, i.e. the Columns “f” of the solvers
coincide for all benchmarks.

The memory consumption in MBytes is listed in Column “mem” and the time
measurements in Column “t”. Time measurements have a time resolution of 10ms
and the solvetime is given in seconds. Both solvers were executed on a Pentium 4
with 1.8Ghz and 1.2GB RAM under Linux. The memory consumption and the ex-
ecution time of the branch-and-bound solver is marginally larger than the heuristic
solver because of storing and traversing the branch and bound tree. Runtime and
memory consumption are negligible for both solvers.

4A heuristic is only applied for RN nodes. If there are no RN nodes, the heuristic solver obtains
an optimal solution.
5For benchmarks with no RN nodes, the solution is optimal and the total number of sub-problems
is one, i.e., the problem itself.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 27

Table VII: Problem sizes and PBQP optimization results for MiBench.

CFG CFG (simpl.) PBQP
Benchmark proc node edge node edge P ,Q optproc

a
u
to

m
. basicmath 6 97 143 174 220 348 6 100.0%

bitcount 15 88 102 124 138 248 13 86.7%
qsort 4 40 55 59 74 118 3 75.0%
susan 19 698 1102 1104 1509 2208 11 57.9%

co
n
su

m
. jpeg 375 6998 10255 10948 14211 21896 262 69.9%

lame 213 5720 8510 8735 11528 17470 148 69.5%
mad 1 3 2 3 2 6 1 100.0%
tiff 510 10735 15668 15678 20628 31356 320 62.7%
typeset 399 20650 31675 31322 42348 62644 251 62.9%

n
w dijkstra 12 138 184 198 246 396 10 83.3%

patricia 5 160 227 217 285 434 2 40.0%

o
ffi

ce

ghostscript 3551 47967 65967 67117 85120 134234 2734 77.0%
ispell 107 2368 3611 3757 5001 7514 51 47.7%
rsynth 53 1326 2012 2074 2760 4148 32 60.4%
sphinx 684 10597 14895 15732 20043 31464 522 76.3%
stringsearch 13 176 240 262 326 524 7 53.8%

se
cu

r.

blowfish 14 237 344 373 483 746 13 92.9%
pgp 320 7381 10959 11207 14788 22414 195 60.9%
rijndael 7 157 223 220 286 440 2 28.6%
sha 7 56 70 78 92 156 7 100.0%

te
le

c.

adpcm 5 79 105 103 132 206 3 60.0%
CRC32 4 32 41 47 56 94 3 75.0%
FFT 6 83 114 124 156 248 6 100.0%
gsm 65 1589 2244 2097 2754 4194 44 67.7%

all 6395 117375 168748 171753 223186 343506 4646 72.7%

5.2 Experiment 2: Scalability Study

In our second experiment we investigated the scalability of our optimization to
future microcontrollers which will provide a larger number of memory banks and
larger program memories. Due to the memory constraints of current microcon-
trollers it was not possible to investigate large MiBench programs within Experi-
ment 1. Instead we used the CFGs and constructed PBQP problems based on the
control flow information. This approach is justified by the fact that the runtime of
the PBQP problem solely depends on (1) the size and topology of the CFGs of the
input programs, and (2) the number of banks. The following evaluation of our op-
timizations with MiBench was done on a Linux system based on kernel version 2.6
and on GCC version 3.2.3.

During a build of the complete MiBench source distribution we used the infor-
mation provided by the -dw option of GCC to generate CFGs for all MiBench
functions. With these CFGs we assumed that all basic blocks are transparent.
As pointed out in Section 4.2, this assumption constitutes the worst-case for our
PBQP optimization problem because it requires optimizations across basic blocks
(cf. Eqn. (14)). This experiment was conducted to gather empirical data on (1) the
discrete optimization problem and the PBQP solver (esp. on the optimality of the
derived solution), and (2) the execution time spent for the analysis.

Table VII enumerates the programs of the MiBench suite together with the num-
ber of functions and CFG nodes and edges. It lists the number of nodes and edges
of the so-called simplified CFG which is derived from the input-CFG by remov-

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Bernhard Scholz et al.

m=2 m=4 m=8 m=16 m=32
Number of banks

1

10

100

1000

10000

Pr
ob

le
m

 s
ol

ve
 ti

m
e

in
 s

ec
on

ds

(a) Accumulated solve times wrt. the number of banks.

0 500 1000 1500 2000

Number of edges

0

50

100

150

200

250

300

Pr
ob

le
m

 s
ol

ve
 ti

m
e

in
 m

ill
is

ec
on

ds

(b) Solve times of functions wrt. problem size.

Fig. 11: MiBench solve times.

ing unreachable nodes and splitting critical edges6. Our analysis is based solely
on simplified CFGs. It should be noted that these CFGs correspond to GCC’s
intermediate representation (RTL), which is on a higher abstraction level than the
CFGs created by the HI-TECH PICC compiler. Regarding the discrete optimiza-
tion problem itself, we list the number of discrete variables occurring with our
approach (“P ,Q”). Column “optproc” depicts the number of functions and their
percentages in terms of the overall numbers of functions for which our PBQP solver
could derive an optimal solution7. Since the PBQP problem is NP complete in the
general case, this figure is an important indication of the practicality of our bank

6Section 4.2 shows that splitting a critical edge creates a critical block, which accounts for the
actual increase in the number of nodes (cf. also Figure 2(a) and Figure 2(b)).
7It follows from Section 2 that, if our solver derives an optimal solution, it does not need to apply
an RN reduction.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 29

selection optimization. It follows that despite the assumption that all basic blocks
are transparent (which is a highly unrealistic worst-case scenario for practical pro-
grams, as indicated in Table V), we can compute the minimal solution for more
than 72% of the 6395 MiBench functions.

Our PBQP optimization problem has complexity O(n ·m3), where n is the num-
ber of discrete variables and m is the number of banks. Since m is fixed for any
practical implementation, we can expect our optimization to run in almost linear
time. We have conducted measurements using the k-best measurement scheme de-
scribed by Bryant and O’Halloran [2003] and achieved an epsilon of ε = 25% by
selecting the 5 best measurements out of 50 measurements. Figure 11(a) shows the
problem solve times measured for m=2,4,8,16, and 32 banks on a logarithmic scale.
For m=32 banks the PBQP problem takes 7700 seconds on a 1.8GHz Pentium 4 PC
to solve the optimizations for the entire MiBench suite. On average, that is 1.2 sec-
onds per function, which suggests that the overhead induced by our optimization
is acceptable for practical implementations. Figure 11(b) details the problem solve
times of functions for m=4 banks with respect to the number of CFG edges.

6. CONCLUSION

We believe this is the first algorithmic approach to address the problem of mini-
mizing the number of bank selection instructions for a given instruction order and
a given data partitioning. We formulated the bank selection placement problem as
a discrete optimization problem. Optimization objectives such as speed, space or
energy are modeled as cost metrics and allow parameterizable trade-offs between
them. We provided empirical evidence that our method performs well for embed-
ded systems architectures. We devised an efficient algorithm for bank selection
minimization based on Partitioned Boolean Quadratic Programming.

We conducted experiments with programs from the DSPStone and MiBench
benchmark suites, and we surveyed a microcontroller real-time kernel and com-
mon microcontroller driver routines. To show the practicality of our approach, we
implemented a toolchain for the Microchip PIC 16F877A microcontroller. This
toolchain optimizes the bank selections of binaries. For the surveyed programs
we achieved speedups to 28.8% and code size reductions up to 18.2%, where the
base-line is a state-of-the-art C-compiler for the PIC 16F877A.

In this work we showed that nearly optimal bank selection is solvable in polyno-
mial time. We conducted experiments which show that the introduced optimization
technique has low overhead and performs very well on a real-world benchmark. Also
a worst-case scenario (assuming that all basic blocks are transparent) computes in-
sertions of bank selections in almost linear time.

ACKNOWLEDGMENTS

We would like to thank Merrilee Robb and Wei-Ying Ho for proofreading the
manuscript. We would like to thank Sanjay Chawla for presenting the paper [Klein-
berg and Tardos 1999] in our algorithmic reading group.

REFERENCES

Banakar, R., Steinke, S., Lee, B., Balakrishnan, M., and Marwedel, P. 2002. Scratchpad
memory: A design alternative for cache on-chip memory in embedded systems. In Proceedings of

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Bernhard Scholz et al.

the 10th International Symposium on Hardware/Software Codesign (CODES’02). ACM Press,

New York, NY, USA, 73–78.

Bryant, R. E. and O’Halloran, D. R. 2003. Computer Systems: A Programmer’s Perspective.
Prentice-Hall.

Cai, Q. and Xue, J. 2003. Optimal and efficient speculation-based partial redundancy elimina-
tion. In Proceedings of the International Symposium on Code Generation and Optimization
(CGO ’03). IEEE Computer Society, Washington, DC, USA, 91–102.

Cho, J., Paek, Y., and Whalley, D. 2004. Fast memory bank assignment for fixed-point digital
signal processors. ACM Transactions on Design Automation of Electronic Systems 9, 1, 52–74.

Dattalo, T. S. 2006. The Gpsim SW simulator for PIC microcontrollers. http://www.dattalo.
com/gnupic/gpsim.html.

Delaluz, V., Kandemir, M., Vijaykrishnan, N., and Irwin, M. J. 2000. Energy-oriented com-
piler optimizations for partitioned memory architectures. In Proceedings of the 2000 Interna-
tional Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES
’00). ACM Press, New York, NY, USA, 138–147.

Eckstein, E. 2003. Code optimizations for digital signal processors. Ph.D. thesis, Institute of
Computer Languages, Compilers and Languages Group, Vienna University of Technology.

Fursin, G., Cavazos, J., O’Boyle, M., and Temam, O. 2007. MiDataSets: Creating the condi-
tions for a more realistic evaluation of iterative optimization. In Proceedings of the International
Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2007). Vol.
4367. Springer LNCS, 245–260.

Gartner Dataquest. 2004. 2003 microcontroller market share and unit shipments.

Gartner Dataquest. 2005. Top companies revenue from shipments of 8-bit mcu — all applica-
tions.

Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., and Brown, R. B.

2001. MiBench: A free, commercially representative embedded benchmark suite. In Proceedings
of the IEEE 4th Annual Workshop on Workload Characterization. IEEE Computer Society,
3–14.

Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with PBQP. In Proceedings of
the 7th Joint Modular Languages Conference (JMLC’06). LNCS, vol. 4228. Springer, 346–361.

Hempstead, M., Tripathi, N., Mauro, P., Wei, G.-Y., and Brooks, D. 2005. An ultra low
power system architecture for sensor network applications. In Proceedings of the 32nd An-
nual International Symposium on Computer Architecture (ISCA’05). IEEE Computer Society,
Washington, DC, USA, 208–219.

Hempstead, M., Wei, G., and Brooks, D. 2006. Architecture and circuit techniques for low-
throughput, energy-constrained systems across technology generations. In Proceedings of the

2006 International Conference on Compilers, Architectures and Synthesis for Embedded Sys-
tems (CASES’06). ACM Press, 368–378.

HI-TECH Software. 2006. PICC ANSI C Compiler. http://www.htsoft.com/.

Kiyohara, T., Mahlke, S., Chen, W., Bringmann, R., Hank, R., Anik, S., and Hwu, W.-M.

1993. Register connection: A new approach to adding registers into instruction set architectures.
In Proceedings of the 20th Annual International Symposium on Computer Architecture. ACM
Press, New York, NY, USA, 247–256.

Kleinberg, J. M. and Tardos, E. 1999. Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and markov random fields. In Proceedings of the
40th Annual Symposium on Foundations of Computer Science (FOCS’99). IEEE Computer
Society, Washington, DC, USA, 14–23.

Knoop, J., Rüthing, O., and Steffen, B. 1994. Optimal code motion: Theory and practice.
ACM Trans. Program. Lang. Syst. 16, 4, 1117–1155.

Leupers, R. and Kotte, D. 2001. Variable partitioning for dual memory bank DSPs. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing.
1121–1124.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Minimal Placement of Bank Selection Instructions for Partitioned Memory Architectures · 31

Li, L., Gao, L., and Xue, J. 2005. Memory coloring: A compiler approach for scratchpad memory

management. In Proceedings of the 2005 International Conference on Parallel Architectures
and Compilation Techniques. 329–338.

Microchip Technology Inc. 1997. PICmicro mid-range MCU family reference manual.

Microchip Technology Inc. 2003. PIC16F87XA data sheet.

Microchip Technology Inc. 2006. PIC18F97J60 family data sheet, advance information.

MicrochipC.com. 2006. PIC micros and C. http://www.microchipc.com/.

Muchnick, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Nazhandali, L., Minuth, M., Zhai, B., Olson, J., Austin, T., and Blaauw, D. 2005. A
second-generation sensor network processor with application-driven memory optimizations and
out-of-order execution. In Proceedings of the 2005 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES’05). ACM Press, New York, NY,
USA, 249–256.

Nystrom, E. and Eichenberger, A. E. 1998. Effective cluster assignment for modulo scheduling.
In Proceedings of the 31st Annual ACM/IEEE International Symposium on Microarchitecture.

103–114.

Panda, P. R., Catthoor, F., Dutt, N. D., Danckaert, K., Brockmeyer, E., Kulkarni, C.,
Vandercappelle, A., and Kjeldsberg, P. G. 2001. Data and memory optimization techniques
for embedded systems. ACM Transactions on Design Automation of Electronic Systems 6, 2,
149–206.

Panda, P. R., Dutt, N. D., and Nicolau, A. 2000. On-chip vs. off-chip memory: The data
partitioning problem in embedded processor-based systems. ACM Transactions on Design
Automation of Electronic Systems 5, 3, 682–704.

Ravindran, R. A., Senger, R. M., Marsman, E. D., Dasika, G. S., Guthaus, M. R., Mahlke,

S. A., and Brown, R. B. 2005. Partitioning variables across register windows to reduce spill
code in a low-power processor. IEEE Trans. Comput. 54, 8, 998–1012.

Saghir, M. A. R., Chow, P., and Lee, C. G. 1996. Exploiting dual data-memory banks in digital
signal processors. In Proceedings of the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). ACM Press, New York, NY,
USA, 234–243.

Scholz, B. and Eckstein, E. 2002. Register allocation for irregular architectures. In Pro-
ceedings of the Joint Conference on Languages, Compilers and Tools for Embedded Systems
(LCTES’02). ACM, 139–148.

Scholz, B., Horspool, N., and Knoop, J. 2004. Optimizing for space and time usage with
speculative partial redundancy elimination. SIGPLAN Notices 39, 7, 221–230.

Sudarsanam, A. and Malik, S. 1995. Memory bank and register allocation in software synthesis
for ASIPs. In Proceedings of the 1995 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD’95). 388–392.

Udayakumaran, S. and Barua, R. 2003. Compiler-decided dynamic memory allocation for
scratch-pad based embedded systems. In Proceedings of the 2003 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems (CASES’03). ACM Press,
276–286.

Verma, M., Wehmeyer, L., and Marwedel, P. 2004. Cache-aware scratchpad allocation
algorithm. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’04). IEEE Computer Society, Washington, DC, USA, 1264–1269.

Zhuang, X., Pande, S., and Jr., J. S. G. 2002. A framework for parallelizing load/stores
on embedded processors. In Proceedings of the 2002 International Conference on Parallel
Architectures and Compilation Techniques (PACT’02). IEEE Computer Society, 68–79.

Zhuge, Q., Xiao, B., and Sha, E. H.-M. 2002. Variable partitioning and scheduling of multiple
memory architectures for DSP. In Proceedings of the 16th International Parallel and Distributed
Processing Symposium (IPDPS’02). IEEE Computer Society, Washington, DC, USA, 332.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Bernhard Scholz et al.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

