Scratchpad Memory Allocation for Data Aggregates
via Interval Coloring in Superperfect Graphs

LIAN LI and JINGLING XUE
University of New South Wales
and

JENS KNOOP

Technische Universitat Wien

Existing methods place data or code in scratchpad memory, i.e., SPM by relying on heuristics
or resorting to integer programming or mapping it to a graph coloring problem. In this paper,
the SPM allocation problem for arrays is formulated as an interval coloring problem. The key
observation is that in many embedded C programs, two arrays can be modeled such that either
their live ranges do not interfere or one contains the other (with good accuracy). As a result,
array interference graphs often form a special class of superperfect graphs (known as comparability
graphs) and their optimal interval colorings become efficiently solvable. This insight has led to
the development of an SPM allocation algorithm that places arrays in an interference graph in
SPM by examining its maximal cliques. If the SPM is no smaller than the clique number of an
interference graph, then all arrays in the graph can be placed in SPM optimally. Otherwise, we
rely on containment-motivated heuristics to split or spill array live ranges until the resulting graph
is optimally colorable. We have implemented our algorithm in SUIF/machSUIF and evaluated it
using a set of embedded C benchmarks from MediaBench and MiBench. Compared to a graph
coloring algorithm and an optimal ILP algorithm (when it runs to completion), our algorithm
achieves close-to-optimal results and is superior to graph coloring for the benchmarks tested.

Categories and Subject Descriptors: D.3.4 [Programming Languages|: Processors—compilers;
optimization; B.3.2 [Memory Structures]: Design Styles—Primary memory; C.3 [Special-
Purpose and Application-Based Systems]: Real Time and Embedded Systems

General Terms: Algorithms, Languages, Experimentation, Performance

Additional Key Words and Phrases: Scratchpad memory, SPM allocation, interference graph,
interval coloring, superperfect graph

1. INTRODUCTION

The effectiveness of memory hierarchy is critical to the performance of a computer
system. To overcome the ever-widening gap between the processor speed and mem-
ory speed, fast on-chip SRAMs are used. An on-chip SRAM is usually configured
as a hardware-managed cache, which works by relying on hardware to dynami-
cally map data or instructions from off-chip memory. In embedded processors, the
on-chip SRAM is frequently configured as a scratchpad memory (i.e., SPM).

The main difference between SPM and cache is that SPM does not have the

Li and Xue’s address: Programming Languages and Compilers Group, School of Computer Science
and Engineering, University of New South Wales, Sydney, NSW 2052, Australia. Both authors
are also affiliated with National ICT Australia (NICTA). Knoop’s address: Technische Universitét
Wien, Institut fiir Computersprachen, Argentinierstrale 8, 1040 Wien, Austria

ACM Transactions on Embedded Computing Systems. To appear.



2 . Li, Xue and Knoop

complex tag-decoding logic that cache uses to support the dynamic mapping of data
or instructions from off-chip memory. Therefore, it becomes more energy and cost
efficient [Banakar et al. 2002]. In addition, SPM is managed by software, which can
often provide better time predictability, which is an important requirement in real-
time systems. Given these advantages, SPM is widely used in embedded systems. In
some high-end embedded processors such as ARM10E, ColdFire MCF5 and Analog
Devices ADSP-TS201S, a portion of the on-chip SRAM is used as an SPM. In some
low-end embedded processors such as RM7TDMI and TT TMS370CX7X, SPM has
been used as an alternative to cache.

Effective utilisation of SPM is critical for an SPM-based system. Research on
automatic SPM allocation for program data has focused on how to place the data
that are frequently used in a program in SPM so as to maximise for both improved
performance and energy consumption of the program. Dynamic allocation methods
are recognised to be generally more effective than static ones as the former methods
allow the data objects to be copied to and from an SPM at run time (as discussed
in Section 6). In fact, static allocation methods are really special cases of dynamic
allocation methods. In general, the problem of SPM allocation for program data
has been addressed by either relying on heuristics [Udayakumaran and Barua 2003]
or resorting to integer programming [Verma et al. 2004b; Sjodin and von Platen
2001; Avissar et al. 2002] or mapping it to a graph coloring problem [Li et al. 2005].

This paper proposes a new (dynamic) approach that solves the problem of SPM
management for program data by interval coloring. Interval coloring is a generali-
sation of graph coloring to node weighted graphs. Such a generalisation naturally
models the SPM allocation problem: we first build a node weighted interference
graph for all SPM candidates (which are arrays, including structs as a special case,
in this paper) in a program and then assign intervals to the nodes in this graph,
which amounts to assigning SPM spaces to the arrays in the program.

Interval coloring is NP-complete for an arbitrary graph and there are no widely-
accepted algorithms. In fact, how to recognise and color a superperfect graph is
an open problem [Golumbic 2004]. Our key observation is that in many embedded
C applications, two arrays can be modeled such that either their live ranges do
not interfere or one contains the other. As demonstrated in this paper, this is not
a big constraint for our array placement optimisation, especially because arrays
are considered as monolithic objects and because array copies (due to live range
splitting) are placed at basic block boundaries. An array live range A contains an
array live range B if A is live at every program point where B is live. Then two
arrays are said to be containing-related. It turns out that an interference graph
for such arrays is a special kind of superperfect graph known as a comparability
graph if their array live ranges either do not interfere or are containing-related.
Furthermore, optimal colorings for such interference graphs are efficiently solvable.
Based on this insight, we have developed a new interval coloring algorithm, IC,
to place arrays in SPM. IC can efficiently find the minimal SPM size required for
coloring all arrays in an interference graph. As a result, IC can always find an
optimal SPM allocation for an interference graph if the SPM is no smaller than
the clique number of the graph. Otherwise, IC relies on containment-motivated
heuristics to split or spill some array live ranges until an optimal SPM allocation

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 3

for the resulting graph is possible.
In summary, this paper makes the following contributions:

—We propose a dynamic SPM allocation approach that formulates the SPM man-
agement problem for arrays as an interval coloring problem.

—We demonstrate that the array interference graphs in many embedded C pro-
grams are often comparability graphs, a special class of superperfect graphs, for
which an efficient algorithm for finding their optimal colorings is given. We also
give an algorithm for building such an interference graph from a given program.

—We present a new interval-coloring algorithm, IC, for placing arrays in SPM.

—We have implemented our IC algorithm in the SUIF/machSUIF compilation
framework and compared it with a previously proposed graph coloring algo-
rithm [Li et al. 2005] and an optimal ILP-based algorithm [Verma et al. 2004b].
Our experimental results using a set of 17 C benchmarks from MediaBench and
MiBench show that IC is effective: it yields close-to-optimal results for those
benchmarks where ILP runs to completion and achieves same or better results
than graph coloring for all the benchmarks used.

The rest of this paper is organised as follows. Section 2 uses an example to
motivate the interval-coloring-based formulation for SPM allocation. In addition,
live range splitting and analysis techniques that we apply to arrays are also dis-
cussed. In Section 3, we introduce the concept of live range containment and
describe some salient properties about array interference graphs, a special class of
superperfect graphs, formed by non-interfering or containing-related arrays. By
recognising these graphs as comparability graphs, an efficient procedure for their
optimal coloring exists. As a result, an optimal SPM allocation is obtained for an
interference graph if its clique number is no larger than the SPM size. Otherwise,
our interval-coloring algorithm, IC, presented in Section 4 will come into play. Our
IC algorithm is evaluated in Section 5. Section 6 reviews related work. Section 7
concludes the paper.

2. SPM ALLOCATION VIA INTERVAL COLORING

In this paper, we consider only static- or stack-allocated data aggregates, including
arrays and data structs. Whenever we speak of arrays from now on, we mean
both types of aggregates. An array is treated as a monolithic object and will
be placed entirely in SPM. Hence, an array whose size exceeds that of the SPM
under consideration cannot be placed in the SPM. Such arrays can be tiled into
smaller “arrays” by means of loop tiling [Xue 1997; 2000; Wolfe 1989] and data
tiling [Kandemir et al. 2001; Huang et al. 2003]. Its integration with this work is
worth being investigated separately.

Two arrays cannot be placed in overlapping SPM spaces if they are live at the
same time during program execution since otherwise part of one array may be
overwritten by the other. Such arrays are said to interfere with each other.

2.1 A Motivating Example

We use an example in Figure 1 to illustrate our motivation for formulating the SPM
allocation problem as an interval coloring problem. For simplicity, the second if-else

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Li, Xue and Knoop

int main() { void g(char *P) { void f(char *P) {
char A[80], B[75], *P; char C[120], D[120]; char E[120];
if(...) for (...) for (...)
call g(A); () Bl = .
else call £(C); P[..] = E[L..];
call g(B); for (...) }
if(...) if (...)
P = A; call £(D);
else P[..] =C[...] + D[..];
P = B; }
for (...)
.. = *P4+
}

(a) Program (with only relevant statements shown)

int main()
char A[80], B[75], *P;

BB3

call g(A) call g(B)

BB4

void g(char *P)
char C[120], D[120] ;

E

BBS

nt

BB6

for (...)

if (...) call f(C)
BB7
for (...)
if (...) call f(D)

BB8
P[..1=C[..]+D[...]

void f(char *P)
char E[120] ;

PL.1=E[.]

(b) CFG

Fig. 1. A motivating example. The second if-else in main and all the four for loops are each
simplified to one single block. The six frequently executed, i.e., hot blocks are denoted by ovals.

statement in function main is simplified to one basic block BB4. Each for loop in
the example is also simplified to one basic block. The for loop in function main, the
two for loops in function g and the for loop in function f are each represented as a
single basic block, namely, BB5, BB6, BB7 and BB9, respectively. The sizes of the
five arrays, A, B, C, D and E, are 80, 75, 120, 120 and 120 bytes, respectively.

To place arrays in the example program into SPM, we need to know the infor-
mation regarding whether any pair of arrays interferes with each other or not. In
our approach, we compute such information by using an extended liveness analysis

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 5

for arrays as discussed in [Li et al. 2005] and described in Section 2.2 below.

Let us assume that the given SPM size is 320 bytes, which cannot hold all the
five arrays at the same time. A live range splitting algorithm as introduced in
[Li et al. 2005] and reviewed in Section 2.3 will be applied. This ensures that the
data that are frequently accessed in a hot region can be potentially kept in SPM
when that region is executed. We split an array (live range) accessed in hot loops
(including call statements) where they are frequently accessed. (For convenience,
a call statement that is not enclosed in a loop can be made so by assuming the
existence of a trivial loop enclosing the call statement.) In Figure 1(b), the six oval
blocks are the hot loops where live range splitting is performed.

2.2 Live Range Analysis

An array is live at a program point if it may be used before redefined after that
program point is executed. The live range of an array is the union of all program
points in different functions where it is live. Due to the global nature of array live
ranges, we have extended the liveness analysis for scalars to compute the live ranges
of arrays inter-procedurally [Li et al. 2005].

To permit the data reuse information to be propagated across the functions in a
program, we apply the standard liveness data-flow equations to the standard inter-
procedural CFG constructed for a program. Figure 2 shows the inter-procedural
CFG and the live range information thus computed for Figure 1, where all inter-
procedural control flow edges are highlighted in gray. For convenience, we assume
that every statement that causes an inter-procedural control flow (e.g., function
call/returns and exceptional handling) forms a basic block by itself. As shown in
Figure 2, the successor blocks of a call site are the unique ENTRY blocks of all
functions that may be invoked at the callsite. Reciprocally, the successor blocks of
a function’s unique EXIT block are the successor blocks of all its call sites.

The predicates, DEF and USED, local to a basic block B for an array A are defined
as follows.

—USED 4(B) returns true if some elements of A are read (possibly via pointers) in
B. We conservatively set USED 4(B) = true if an element of A may be read in 5.

—DEF 4(B) returns true if A is killed in B. An array is killed if all its elements
are redefined. In general, it is difficult to identify whether an array (i.e., every
element of an array) has been killed or not at compile time. In the absence of
such information, we have to conservatively assume that an array that appears
originally in a program is killed only once at the entry of its definition block.
In this paper, a definition block is referred to as a scope, e.g., a compound
statement in C, where arrays are declared. Static-allocated arrays are defined
at the outermost scope. In addition, an array introduced in live range splitting
in a loop is defined at the entry of the loop where the splitting is performed
(Section 2.3). Finally, for every edge connecting a call block and an ENTRY
block, we assume the existence of a pseudo block C on the edge such that DEF 4(C)
returns true iff A is neither global nor passed by a parameter at the corresponding
call site and USED 4(C) always returns false. This makes our analysis context-
sensitive since if A is a local array passed by a parameter in one calling context
to a callee, then its liveness information obtained at that calling context will not

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



6 . Li, Xue and Knoop

int main()

IA | 3 ;C ;D gE char A[80], B[75], *P;
é

—
void f(ch
ChankE

arkP)
[129];
[ Entry |

Fig. 2. The live ranges of the four arrays after performing liveness analysis in the inter-procedural
CFG in Figure 1, where the inter-procedural control flow edges are highlighted in gray.

be propagated into the other contexts for the same callee function.

The liveness information for an array A can then be computed on the inter-
procedural CFG of the program by applying the standard data-flow equations to
the entry and exit of every block B:

LIVEIN 4(B) = (LIVEOUT 4(B) A =DEF (B)) v USED 4 (B)

LIVEOUTA(B) = \/  LIVEIN4(S) (1)
SEsucc(B)

where succ(B) denotes the set of all successor blocks of B in the CFG.

For this particular example, the arrays A and B declared in main are used after
the two call statements to g, respectively. As a result, both arrays are live through
g and its callee f. The arrays C and D declared in g are live inside f since they are
used after the two calls to f. E is only live in f.

To understand the context-sensitivity of our analysis, let us consider a modified
example of Figure 1 with BB4 and BB5 removed. Without context-sensitivity, the
liveness results for the modified example are the same as those in Figure 2 (except
that BB4 and BB5 are absent). With context-sensitivity, the live ranges of A and B
are smaller: A is no longer live in BB3 and B is no longer live in BB2. This implies
that the liveness information for the single parameter in each call site in the main
function is only propagated back to the corresponding calling context.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 7

2.3 Live Range Splitting

The intent is to keep in the SPM the data that are frequently accessed in a region
when that region is executed. In embedded applications such as image processing,
signal processing, video and graphics, most array accesses come from inside loops.
We use the same splitting algorithm described in [Li et al. 2005] to split arrays at
hot loops (including call sites as mentioned earlier) except that we also allow an
array to be split even if it may be accessed by a pointer, which may also point to
other arrays. This is realised by using runtime method tests that are often used for
devirtualising virtual calls in object-oriented programs [Detlefs and Agesen 1999].

The basic algorithm for live range splitting is simple. The multiply nested loops
in a function are processed outside-in to reduce array copy overhead. An array that
can be split profitably in a loop will no longer be split inside any nested inner loop.
Local arrays are split in the function where it is defined and global arrays may be
split in all functions in the program.

A simple cost model is used to decide if the live range of an array A in a loop
L should be split into a new array A’. Unnecessary splits may be coalesced during
SPM allocation as described in Section 4. Due to splitting, an array copy statement
A’ = A is inserted at the pre-header of L and A = A’ at every exit of L if A may
be modified inside L and is live at the exit. All accesses to A (including those
accessed indirectly by pointers) in L are replaced by those to A’. So the cost of
splitting A in L is estimated by (Cs 4+ C; x A.size) x copy_freq, where C; is the
startup cost, C; is the transfer cost per byte, A.size is the size of A and copy_freq
is the execution frequency of all such copy statements inserted for A. The benefit
is A.freq X (Mmem — Mspm), where A.freq is the access frequency of A in L, Mmem
is the memory latency and Mgy, is the SPM latency. If the benefit exceeds the
cost, the split is performed. Due to the way that A’ is split from A in L, the live
range of A’ is regarded as being live inside the entire loop, a good approximation
for arrays as further discussed in Section 3.

Figure 3 gives the modified program after live range splitting for our example.
A, C, D and E are split at BB2, BB6, BB7 and BB9, respectively. B is split at both
BB3 and BB5. (In BB5 shown in Figure 1(b), it is assumed that B is frequently
accessed but A is not. So A needs not to be also split inside BB5.) As a result,
all the memory accesses to these arrays in these blocks are redirected to the newly
introduced live ranges Al, B1, B2, C1, D1 and E1 with array copy statements being
inserted accordingly. Note that B is accessed via the pointer P in BB5. Thus, a
runtime test is inserted at the entry of BB5 to redirect the pointer P to the new
introduced array B2. Since P is not live at the exit of BB5, no runtime test is
needed to redirect P to the original array B at the exit of BB5.

Like garbage collectors, SPM allocators, which also reallocate array objects be-
tween the off-chip memory and the SPM, require some similar restrictions in pro-
grams, particularly those embedded ones written in C or C-like languages. These
are the restrictions that should be satisfied for live range splitting to work correctly.
Programming practices that disguise pointers such as casts between pointers and
integers are forbidden. In addition, only portable pointer arithmetic operations on
pointers and arrays are allowed. In general, C programs that rely on the relative
positions of two arrays in memory are not portable. Indeed, comparisons (using,

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



8 . Li, Xue and Knoop

int main()
char A[80], B[75], *P;

A=A F‘"~.\5=51
BB4 _P =AorB
______________ B2=B
if( P->B) P->B2
void g(char *P) BB5
char C[120], D[120] ;
void f(char *P)
char E[120] ;

Fig. 3. The modified program after live range splitting for the example in Figure 1. The six hot
blocks where splitting takes place are highlighted in gray. B is accessed indirectly via pointer P
in BB5. The runtime test inserted at the entry of BB5 checks whether P points to B or not.

e.g., < and <) and subtractions on pointers to different arrays are undefined or
implementation-defined. Also, if n is an integer, p + n is well-defined only if p and
p £ n point to the same array. Fortunately, these restrictions are usually satisfied
for static arrays and associated pointers in portable ANSI-compliant C programs.

In this paper, an array A in a loop L is split only if all pointers to A in L are
scalar pointers that point directly to A. (This implies that A in L cannot be pointed
to by fields in aggregates such as heap objects or arrays of pointers or indirectly by
scalar pointers to pointers.) For such an array, code rewriting, as demonstrated in
Figure 3, required by splitting the array can be done efficiently at the pre-header
and exits of the loop. In all embedded C benchmarks we have seen (including those
used here), static arrays are generally splittable as validated in Figure 13.

All the arrays that appear originally in a program before live range splitting is
applied are referred to as original arrays. We write Aqg to denote the set of all
these original arrays. All new arrays introduced inside loops are called hot arrays.
All the loops that contain at least one hot array are called hot loops. We write Aot
to denote the set of all hot arrays. In our example, there are five original arrays:
Ao = {A, B, C, D, E}. All these arrays, except for array B, happen to have been
split exactly once each and B has been split twice. So there are six hot arrays:
Anot = {Al, B1, B2, C1, D1, E1}. In particular, Al, B1, B2, C1, D1 and E1 are hot
arrays introduced in hot loops BB2, BB3, BB5, BB6, BB7 and BB9, respectively.
Recall that, for convenience, hot call sites are also referred to as hot loops.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 9

int main()
IA B gC :D %E char A[80], B[75], *P;
| |

A1 B1IBZC1D1 E1
m A

Vi chag *P)
chargl129] ;
Entr:

BB9

u !é
/

I | I I

¥ _BB10
| R PHL:

y
Exit

Fig. 4. Live ranges for the five original arrays in Aorg = {A,B,C,D,E} and the six hot arrays
Aot = {A1,B1,B2,C1,D1,E1} after live range splitting for the example in Figure 1.

Figure 4 illustrates the live ranges for both original and hot arrays in our example.
The live ranges of the five original arrays remain the same as in Figure 2. As for
the six hot arrays, Al is live in BB2 and the callee functions f and g invoked in
BB2. Bl is live in BB3 and the callees f and g. B2 is only live in BB5. C1 is live in
BB6 and the callee f. D1 is live in BB7 and the callee f. E1 is only live in BB9.

2.4 Interval Coloring

The goal of SPM allocation is to find a way to map arrays into either SPM or
off-chip memory. An SPM allocator needs to decide which arrays should be placed
in SPM and where each SPM-resident array should be placed in SPM. When live
range splitting is applied, it also should coalesce some unnecessary splits since live
range splitting is usually performed optimistically in register/SPM allocation.

DEFINITION 1. The set, Acan, of candidates for SPM allocation is Aorg U Anot .

As will be explained in Section 4.2, either an original array is considered for SPM
allocation or all the hot arrays split from it but not both at the same time.

In this paper, the SPM allocation problem is modelled as an interval coloring
problem for an array interference graph built from a program. Figure 5 gives two
example interference graphs for the program in Figure 4, where the weight of an
array node is the size of the array. One array is said to interfere with another if it is
defined at a program point where the other is live. In a strict program where there

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



10 . Li, Xue and Knoop

75

120 120

(a) Original arrays in Aorg (b) Hot arrays in Apet

Fig. 5. Two example interference graphs using the arrays from the example program in Figure 1.

is a definition of a variable on any static control path from the beginning of the
program to a use of this variable, this criterion is equivalent to that two variables
interfere if their live ranges intersect [Bouchez et al. 2007]. However, for the arrays
in an inter-procedural CFG, the corresponding program may not be strict due to
array accesses via aliased pointers in different functions. In our example given in
Figure 4, Al and Bl do not interfere with each other even though both are live
in function f. Thus, we prefer to use the more relaxed interference criterion of
Chaitin [Chaitin 1982]: two arrays interfere if the live range of one array contains
a definition of the other. Any pair of interfering arrays are connected by an edge
in an interference graph to indicate that they cannot be allocated to overlapping
SPM spaces.
The interval coloring problem is thus defined as follows.

DEFINITION 2. Given a node weighted graph G = (V, E) and positive-integral
vertex weights w = V. — N, the interval coloring problem for G seeks to find an
assignment of an interval I, to each vertexr w € V, i.e., a valid coloring G; such
that two conditions are satisfied: (1) for every vertex u € V', |I,| = wy, and (2) for
every pair of adjacent vertices u,v € V, I, NI, = 0.

The goal of interval coloring is to minimise the span of intervals || J,cy 1| required
in a valid coloring. When every node in the graph G has a unity weight, the interval
coloring problem degenerates into the traditional graph coloring problem.

Interval coloring provides a natural formulation for the SPM allocation problem.
Allocating SPM spaces to arrays is accomplished by assigning intervals to the nodes
in the graph. Minimising the span of intervals amounts to minimising the required
SPM size. The decision concerning whether to actually split an array or not can
be integrated into an SPM allocator as a coalescing problem during coloring.

3. ARRAY INTERFERENCE GRAPHS AS SUPERPERFECT GRAPHS
Let us firstly recall some standard definitions for a node weighted graph G:

—A clique in G is a complete subgraph of G. A clique in G is a mazimal clique if
it is not contained in any other clique in G. The order of a clique is the sum of
the weights of all nodes in the clique. Since the weights of nodes are positive, a
mazximum clique in G is a (maximal) clique in G with the largest order.

—The chromatic number of G is the minimal span of intervals needed to color G.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 11

A A A
B I
B
‘ B
(a) Containing-related (b) Non-interfering (c) Interfering

Fig. 6. Containing-related, non-interfering and interfering array live ranges for A and B.

—The clique number of G is the order of a maximum clique in G.

In general, the chromatic number of a node weighted graph is equal to or greater
than its clique number. A graph G is known as a superperfect graph if for any
positive weight function defined on G, the chromatic number of G is always equal
to the clique number of G. (A graph is a perfect graph if its chromatic number is
equal to its clique number when all its nodes have unity weights.)

As noted earlier, how to recognise and color superperfect graphs is open [Golumbic
2004]. In Section 3.1, we provide evidence to show that in many embedded C appli-
cations, two arrays are often containing-related when they interfere with each other.
In Section 3.2, we show that array interference graphs are comparability graphs if
their array live ranges do not interfere or are containing-related. This gives rise to
an efficient procedure (given in Algorithm 9) for finding optimal colorings for this
special class of superperfect graphs. This, in turn, motivates the development of
our interval-coloring algorithm for SPM allocation to be described in Section 4.

3.1 Containment

As illustrated in Figure 6, two array live ranges can be related in one of the three
ways. Consider our example in Figure 4, hot arrays Al and Bl do not interfere
since neither is live at any program point where the other is defined. However, Al
contains C, which implies Al interferes with C, since Al is live at all program points
where C is (including the point at which C is defined). In this example as well as
many embedded programs we have studied, the situation depicted in Figure 6(c)
happens only rarely. Frequently, Property 1 holds for two arrays (i.e., two original
or hot arrays in Acan given in Definition 1).

PROPERTY 1. A program has the so-called containment property if whenever the
live ranges of two arrays in Acan in the program interfere, then the live range of
one array contains that of the other.

As a result, any two arrays in a program either do not interfere or are containing-
related.

In Section 2.2, we mentioned that an array in a program is conservatively assumed
to be defined only once at its definition block, i.e., the scope where it is defined. By
convention, global arrays are defined in the outermost scope in the program. By
construction, hot arrays are defined at the entry of hot loop blocks where they are
split. By Definition 1, the SPM candidates are the original arrays in A, and all

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



12 . Li, Xue and Knoop

hot arrays in Aypei. So we only need to consider these live ranges below.

ASSUMPTION 1. For two arrays defined in a common definition block, every last
use of one array must be post-dominated by at least one last use of the other.

ASSUMPTION 2. If an array defined in a definition block is live at the entry of an
inner definition block, then it is live at the exit(s) of, i.e., through the inner block.

ASSUMPTION 3. If an array is live at the entry of a call site, then it is live at
the exit(s) of the call site (i.e., live through all invoked callee functions at the site).

Assumption 1 is applicable to the arrays defined in a common definition block.
These arrays are mutually interfering since their definition sites start from the entry
of the same definition block. Assumptions 2 and 3 are seemingly restrictive; but
they do not warrant relaxation for three reasons. First, the local arrays in a function
are usually declared in its outermost scope in embedded applications. Second, a
hot array is live only in the scope defined by the hot loop where it is split. Third,
we have studied the live range behaviour in a set of 17 representative embedded C
applications from MediaBench and MiBench benchmark suites (Table I). Only four
arrays in pegwitencode and pegwitdecode do not satisfy these three assumptions.

THEOREM 1. Property 1 holds if Assumptions 1 — 8 are all satisfied.

PrOOF. Let A and B be any two interfering arrays in the program. If both are
defined in the same definition block, then one must contain the other by Assump-
tion 1. Otherwise, let A be defined in a scope that includes the scope in which B is
defined. By Assumption 2, A must contain B in the absence of function calls in the
program. When there are function calls in the program, we note that Assumption 3,
which takes care of the arrays defined in different functions, is identical to Assump-
tion 2 since a callee function made in a caller function, once inlined conceptually
in the caller, represents an inner scope nested in the caller. [

DEFINITION 3. G is said to be containing-related if it satisfies Property 1.

3.2 Recognition and Coloring

We show that containing-related interference graphs form a special class of super-
perfect graphs known as comparability graphs and their optimal colorings can thus
be found efficiently. Let G be a node weighted undirected graph. An acyclic orien-
tation G, of G seeks to find an assignment of a direction or orientation to every edge
in G so that the resulting graph is a DAG (directed acyclic graph). It is well-known
that there exists a one-to-one correspondence between the set of interval colorings
of G (given in Definition 2) and the set of acyclic orientations of G. For every edge
(x,y) in G, x is located to the left of y in an interval coloring G; of G if and only
if (z,y) is a directed edge in an acyclic orientation G, of G. An acyclic orientation
G, of G is transitive if (z, z) is contained in G, whenever (z,y) and (y, z) are. G is
known as a comparability graph if a transitive orientation of G exists.

We write A J B if A contains B. The following lemma says that J is transitive.

LEMMA 1. IfAJ B and B3 C, then AJC.

PrROOF. Note that we use the interference criterion of Chaitin [Chaitin 1982] in
this work. If A J B, then the live range of A includes that of B, which must

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 13

Fig. 7. An interval-coloring-based SPM allocator IC.

contain a definition of B. Similarly, if B J C, then the live range of B includes
that of C, which must contain a definition of C. Hence, A J C. O

Let Gy be a graph with n nodes v;,vs,...,v, and G;,Gs,...,G, be n disjoint
undirected graphs. The composition graph G = Gy[G1, Gz, ..., G,] is formed in two
steps. First, replace v; in Gy with G;. Second, for all 1 < 7,5 < n, make each node
of G; adjacent to each node of G; whenever v; is adjacent to v; in Gy. Formally, for
G; = (Vi, E;), the composition graph G= (V, E) is defined as follows:

V = Uiki<n Vi (2)

The following result about the recognition of composition graphs as comparability
graphs from their constituent components is recalled from [Golumbic 2004].

LEMMA 2. Let G =Gy[G1,Gz,...,Gn], where each G; (0 < i < n) is a disjoint
undirected graph. Then G is a comparability graph if and only if each G; is.

THEOREM 2. If G is containing-related, then G is a comparability graph.

PROOF. Let us write A = B if two interfering arrays A and B have the identical
live range, i.e., if A J B and B J A. Let G1,Ga,...,G, be all n maximal cliques of
G such that for every G; (1 < i < n), every pair of array nodes A and B in G; are
such that A = B. Let G be obtained from G with each G; collapsed into one node.
Then G = Go[G1,G2,...,Gxn]. Go must be a comparability graph. To see this, let
X and Y be two nodes in Gy, each of which may represent a set of array nodes in
G. Let Ax (By) be an array represented by X (Y). An acyclic orientation of G
is found if Ax is made to be directed to By whenever Ax O By. In addition, this
orientation is transitive by Lemma 1. Note that every G, is trivially a comparability
graph since it is a clique. Hence, G is a comparability graph by Lemma 2. [

Given a transitive orientation G, of a comparability graph G, we can obtain an
optimal interval coloring in linear time by a depth-first search. For a source node x
in G,, let its interval be I, = [0, w(x)), where w(z) is the weight of z. Proceeding
inductively, for a node y with all its predecessors already being colored, let ¢ be the
largest endpoint of the intervals of these predecessors and define I,, = [t,t + w(y)).
This algorithm is used in our SPM allocator as discussed in Section 4.3.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



14 . Li, Xue and Knoop

4. INTERVAL-COLORING-BASED SPM ALLOCATION

Motivated by the facts that array interference graphs are often containing-related
(Section 3.1) and containing-related interference graphs are comparability graphs
and can thus be efficiently colored (Section 3.2), Figure 7 outlines our IC algorithm
with its three phases described below and then explained in detail afterwards.

The first phase, Superperfection, constructs a containing-related array interfer-
ence graph Gea, from Ac,, (Section 4.1). The middle phase, Spill & Coalesce (Sec-
tion 4.2), addresses the two inter-related problems concerning which arrays can be
placed in SPM (Spill) and which arrays should be split (Coalesce) in the current
interference graph G under consideration, which is always a node-induced subgraph
of Gean and thus a comparability graph itself. (A node-induced subgraph of a graph
G is one that consists of some of the nodes of G' and all of the edges that connect
them in G.) If the size of a given SPM is no smaller than the clique number of
G, then the middle phase is not needed. In this case, G can be optimally colored
immediately. Otherwise, some heuristics motivated by containing-related interval
coloring are applied to split and spill some array live ranges in G until the resulting
graph can be optimally colored. The last phase, Coloring, places all SPM-resident
arrays in SPM (Section 4.3).

In existing graph coloring allocators for scalars [George and Appel 1996; Park and
Moon 2004] and for arrays [Li et al. 2005], live range splitting is usually performed
aggressively first and then unnecessary splits are coalesced during coloring. This
paper proposes to make both splitting and spilling decisions together during Spill
& Coalesce based on a unified cost-benefit analysis as motivated in Section 4.2.1
and illustrated in Section 4.4. Our cost-benefit analysis is performed by examining
the changes to the maximal cliques in the current interference graph G caused by a
splitting or spilling operation. We deduce these changes efficiently from the max-
imal cliques constructed (only once) from Gean. When both splitting and spilling
operations are performed together, the Spill & Coalesce phase may look slightly
complex. However, better SPM allocation results are obtained as validated here.

4.1 Superperfection

Given the set Aca, of SPM candidates (Definition 1), we apply Algorithm 1 to build
a containing-related interference graph G, from Acay,.

Since containment implies interference, i.e., if A J B, then A and B interfere
with each other, we will represent a containing-related interference graph G as a
DAG. A directed edge A — B in G means A J B. In addition (as demonstrated
in the proof of Theorem 2), all arrays with the same live range are collectively
represented by one node. In other words, if A J B and B J A, then A and B are
represented by the same node. Furthermore, we have also decided not to represent
explicitly the transitive edges (as characterised in Lemma 1) in G for three reasons.
First, the absence of transitive edges in G makes it easier to find all its maximal
cliques as shown in Algorithm 3. Second, our IC algorithm checks efficiently the
existence of interference between two arrays by examining if both are in the same
maximal clique rather than if both are connected by a containment edge. Third,
the interference graphs without transitive edges are simpler and visually cleaner.
Figure 8 gives the DAG representations of the two interference graphs in Figure 5.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 15

155 8

240

®)

120 120 120

75

(a) Original arrays in Aorg (b) Hot arrays in Apet

Fig. 8. DAG representations of the two interference graphs given in Figure 5.

Algorithm 1 Building a containing-related interference graph Gean from Acan.

1: procedure BUILD(Acay)

2:
3:
4:

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

The nodes in G..y, are the arrays in Acan
for every function f in the program do
for every scope S in function f do
// Lines 5 — 12 to enforce Assumption 1
for every two arrays in Ac,, defined in S do  // both must interfere
if the two arrays, A and B, are containing-related then
AddA—-BifAdJBand B— AifBJA
else
Denote them A and B such that A is less frequently accessed
Add A— B
end if
end for
// Lines 13 — 17 to enforce Assumptions 2 and 3
for every B € Acan defined in S do
for every A € Aca, that is live but not defined in S do
Add A— B
end for
end for
end for
end for
Collapse every SCC (Strongly-Connected Component) of Gcan to one node
Let all transitive edges of G, be removed via a transitive reduction to Gean
return G,

23: end procedure

Algorithm 1 builds Gc.n (a DAG) for all the arrays in Acay in a program (line 2).

As discussed in Section 2.2, every array is assumed conservatively to be defined at
the entry of its definition block. Therefore, we only need to examine the program
points where some arrays are defined (lines 5 and 13). In lines 5 - 12, we consider
the array live ranges defined in a common scope, which must all interfere with each
other. If the two interfering arrays A and B are not containing-related (lines 8 —
11), we enforce Assumption 1 by making the one that is less frequently accessed

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



16 . Li, Xue and Knoop

(a) Traditional representation | (b) DAG constructed by BUILD

Fig. 9. Traditional and DAG representations of the interference graph built from Acan in Figure 4.

contain the other. The intuition behind is to avoid extending the live ranges of
frequently accessed arrays so they may have a better chance to be placed in SPM.
In lines 13 — 17, we examine every pair of interfering arrays A and B defined in
two different scopes. Line 15 serves a double purpose: if A J B, we need to add
A — B to Gean. Otherwise, we enforce A — B (Assumptions 2 and 3). Live range
extension is a safe and conservative approximation of liveness information. For the
set of 17 embedded C applications we have studied (Table I), only four live ranges
in pegwitencode and pegwitdecode are extended (Section 3.1). In line 20, all array
nodes with the same live range are merged. In line 21, all transitive edges in Gean
are removed by performing a standard transitive reduction on Geap.

Algorithm 1 is correct in the sense that after line 19, every pair of interference
edges in the program is included in G.,, due to lines 5 and 13 — 14 and every
interference edge is containing-related due to lines 7, 10 and 15.

In Figure 4, all eight arrays in Acan either do not interfere or are containing-
related. No live range extension is necessary. Figure 9 gives the interference graph
built from Ac.,. By comparing the traditional and our DAG representations, the
DAG representation (due to the exploitation of containment) is simpler.

4.2 Spill & Coalesce

Our algorithm performs spilling and splitting together based on a cost-benefit anal-
ysis, which examines the resulting changes to the maximal cliques in the interference
graph G. To help understand our algorithm, we will first motivate our approach in
Section 4.2.1 by focusing on these two aspects using the example given in Figure 1.
We will then describe our algorithm in detail in Sections 4.2.2 — 4.2.6.

The set of SPM candidates Acan = Aorg U Anot is given in Definition 1. During
SPM allocation, either an original array A € Ayg is a candidate or all its cor-
responding hot arrays A, As, ..., A, € Apet are but not both at the same time.
Note that it is possible that only some but not all of these hot arrays are eventually
colored. Note also that A and all its hot arrays may be coalesced if A turns out to
be colorable entirely later (due to spilling and splitting performed to other arrays).

When A is split, all its hot arrays A;, Ao, ..., A, will become candidates and the
non-hot live range of A is spilled. Among the 17 benchmarks used in our experi-
ments, the non-hot portions of the array live ranges in each of these benchmarks

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 17

75 75 » so 75 75
80 @ 120 120 120
240 120 120

(&0 () T P Ok

(a) Splitting A and B (b) Splitting D and then C from (a) (c) Spilling D from (a)
from Figure 8(a).

Fig. 10. Interference graphs of the candidate arrays after splitting or spilling.

account for less than 5% of the total number of array accesses. The performance
improvement from allocating them to SPM (if possible) is often negligible.

For an array A, we write HOT 4 to denote the set of all hot arrays from A. If A
is an original array that cannot be split or a hot array, we define HOT 4 = (. This
notational convenience has helped in simplifying the presentation of Algorithms 6
— 8 (by allowing us to treat all arrays in Ac,, in a unified manner).

We write SPM_SIZE to denote the size of the SPM under consideration.

4.2.1 Motivation. The interference graph G.,, constructed by BUILD from A, =
{A,B,C,D,E,A1,B1,B2,C1,D1,E1l} is given in Figure 9. Recall that A., = {A,B,C,D,E}.
Their array sizes are: A.size=80, B.size=75 and C.size=D.size=E.size=120. All five
arrays are split as shown in Figure 4. So Ayt = {A1,B1,B2,C1,D1,E1}. The array
sizes of these hot arrays are the same as their corresponding original arrays.

4.2.1.1 Cost-Benefit Analysis. To avoid introducing too many unnecessary splits
a priori, we propose to perform splitting on-demand during coloring based on a
cost-benefit analysis. In the literature, splitting is usually considered to be less
expensive than spilling. However, this assumption is not always true. For our ex-
ample, our algorithm starts with the five candidates in Aoy = {A,B,C,D,E} with
their interference graph G being given earlier in Figure 8(a). Suppose that the size
of SPM is 320 bytes, which is not large enough to hold all the five arrays. Suppose
that instead of A and B, their hot arrays Al, Bl and B2 as shown in Figure 3 are
considered next for SPM allocation. The updated interference graph G is shown in
Figure 10(a). However, the SPM is still not large enough to hold all the arrays in
{A1,B1,B2,C,D,E}. Splitting D and then C as suggested in Figure 3 will result in
the interference graph as shown in Figure 10(b). On the other hand, spilling D will
give rise to the interference graph in Figure 10(c). The two resulting interference
graphs can both be colored. If the profit of spilling D is higher than the profit
of splitting D and C together, then spilling D is better, a solution that cannot be
found if splitting is always preferred to spilling blindly.

The above-mentioned problem arises because existing SPM allocators make their
splitting and spilling decisions without considering their relative costs and benefits
carefully. Let G be the current interference graph formed by the array candidates
being considered. The benefit of splitting or spilling an array should represent the
increased possibility for the other arrays to be colored, i.e., the increased colorability
of the other arrays. We use a simple yet intuitive model to evaluate the colorability
of an array A in G. If A can be simplified, i.e., is guaranteed to be colorable, we

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



18 . Li, Xue and Knoop

Algorithm 2 Cost-benefit analysis for estimating the profit of spilling/splitting.
1: procedure CBAforSpill(G :=V,E), A)

2 Gnew = G © {4} (interference graph formed by V' \ {A})

3 A.spill_cost = A.freq X (Mmem — Mgspm)

4. Awspill benefit = ((Gnew) — (G)) X (Mmem — Mspm)

5: A.spill_profit = A.spill_benefit — A.spill_cost

6

7

8:

9:

return A.spill_profit
: end procedure
procedure CBAforSplit(G :=V, E), A)

Gnew = G {A} ®HOT 4 (interference graph formed by (V' \ {4})UHOT 4)

10: A.split_cost is the array copy cost plus the cost incurred for accessing the
non-hot portions of A from off-chip memory (Sect. 2.3)

11: A.split_benefit = (a(Gnew) — @(G)) X (Mmem — Mspm)
12: A.split_profit = A.split_benefit — A.split_cost
13: return A.split_profit
14: end procedure

have colorability(G, A) = 1. Otherwise, its colorability is estimated by:

. SPM_SIZE
colorability (G, A) oG, 4) <1 (4)
where O(G, A) is the largest order possible for a maximal clique containing A found
in G, indicating the minimum amount of space required to color all arrays in the
clique. In other words, colorability(G, A) approximates the (average) percentage of
accesses to A that may hit in SPM after a coloring has been found.

Consider Figure 10(a) with SPM_SIZE = 320 bytes. There are three maximal
cliques: {A1,C,D,E}, {B1,C,D,E} and {B2} with their orders being 440, 435 and 75,
respectively. The two larger cliques cannot be colored. Hence, colorability(G, Al) =
colorability(G,C) = colorability(G,D) = colorability(G,E) = 323 and
colorability(G, B1) = i—gg. Since B2 can be colored, colorability(G, B2) = 1.

We use a(A) to approximate the number of array accesses of A that may hit in
SPM after SPM allocation (with A.freq being the access frequency of A):

SPM_SIZE

a(A) = A.freq x colorability(G, A) = A.freq x 0(G,4)

As a result, the number of the array accesses that can hit in SPM for all arrays in
G after SPM allocation is the sum of their o values:

a(g) = > a(4) (5)

Array A contained in g

The larger a(G) is, the better the allocation results for G will (potentially) be.
Algorithm 2 gives our cost-benefit analysis for estimating the profit of splitting

and spilling A in G, where Myem and Mgy, are defined in Section 2.3. In lines 2

and 9, the operations & and @ for updating G = (V, E) with S C Acan are defined

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 19

by:

G 6 S = subgraph of G,y induced by V'\ S (6)
G ® S = subgraph of G, induced by VU S (7)

These operations, which will be used later in Algorithms 6 and 8, together with
those on « in lines 4 and 11, can be performed efficiently as explained shortly below.

In CBAforSpill, the cost of spilling A from G is estimated by the increased number
of cycles when the spilled A is potentially relocated from the SPM to the off-chip
memory. The benefit is the number of cycles reduced due to an improvement on
the colorability values of the other arrays. In CBAforSplit, the cost of splitting A
into the hot arrays in HOT 4 in G is calculated according to the live range splitting
algorithm described in Section 2.3. The benefit is similarly estimated as for spilling.

Let us explain our cost-benefit analysis by using the example given in Fig-
ure 10(a). As before, SPM_SIZE = 320. Recall that the colorability for each array
in {AL, C, D, E} is %, the colorability of B1 is i—gg and the colorability of B2 is 1.

Let us first look at the cost and benefit of spilling D with G being updated from
Figure 10(a) to Figure 10(c). In line 3, we have D.spill_cost = D.freq X (Mmem —
Mgpm). After spilling, all arrays can be simplified and their colorability values are

1. In line 4, we get D.spill_benefit = ((Al.freq+C.freq+E.freq) x (1— %)JrBl.freqx

(1 —223) — D.freq x 22) X (Mmem — Mspm)- In line 5, we obtain D.spill_profit as
desired.

Let us divert slightly by considering to spill Al instead of D in Figure 10(a). After
spilling, there are two maximal cliques {B1,C,D,E} and {B2} with their orders being
435 and 75, respectively. Thus, the colorability values of C, D and E have improved
from 320 to 229 In line 3, we have Al.spill_cost = Al.freq X (Mmem —Mgpm). In line

440 435"

4, we obtain Al.spill_benefit = ((C.freq+D.freq+E.freq) x (% — 2728) — Al.freq x

%) X (Mmem — Mgpm). In line 5, we obtain Al.spill_profit as desired. If all arrays
have the same access frequency, then D is preferred to Al for spilling since spilling
D has a higher profit.

Let us next look at the cost and benefit of splitting D into D1 with G being
updated from Figure 10(a) to Figure 10(b). For now, this splitting operation (shown
in Figure 3) is not profitable since it does not change the colorability of the other
arrays. In line 11, we get D.split_benefit = — D, _pot.freqx % X (Mmem—Mspm). In
line 10, we have D.split_cost = 2 x (Cs + C; x D.size) X copy_freq 4+ Dno—not-freq x
(Mmem — Mgpm), where Cs, Cy and copy-freq are introduced in Section 2.3 and
Duo—not represents the not-hot part live range of D. Finally, we obtain C.split_profit
in line 12 as desired. If we subsequently split C, then the colorability of all arrays
in the resulting interference graph remain unchanged. So a similar cost-benefit
analysis as that for D applies.

Let us assume that we are to decide whether to split or spill D in Figure 10(a). If
D.split_profit is larger than D.spill_profit, then D is selected for splitting as shown
in Figure 10(b). Otherwise, D is spilled as shown in Figure 10(c).

4.2.1.2 Updating Interference Graph. From the above discussions, we can see
that the interference graph G must be updated when computing the benefit of a
splitting or spilling operation. As reflected in lines 2 and 9 in Algorithm 2, G
evolves into Gyew when A is spilled or split. To compute its benefit (in lines 4 and

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



20 . Li, Xue and Knoop

Algorithm 3 Finding maximal cliques in a containing-related interference graph.
1: procedure FINDMAXCLIQUES(G := (V, E))
2: Let S be the set of source nodes in G without any incoming edges
3 Let 7 be the set of sink nodes in G without any outgoing edges
4: let P(s,t) be a path from s € Sand t € 7.
5: C ={c]| cis aset of nodes in G found in P(s,t), where s € S and t € T}
6
7
8
9:

for every A € V do
A(G).MaxCS = {c € C | ¢ contains A}
end for
end procedure

11 in Algorithm 2), we need to recompute ©(Gpew, B) for all and only the arrays
B in update(A) such that ©(Gnew, B) # ©(G, B) may hold. In the case of spilling,
update(A) is the set of arrays B that interfere with A. In the case of splitting,
update(A) also includes the hot arrays in HOT 4.

Our solution is simple and has been engineered to be efficient for real programs
with array candidates. We call FINDMAXCLIQUES(Gcan) in Algorithm 3 (only
once) to initialise A(Gcan).-MaxCS with the set of all maximal cliques containing A
in Gean. There is no need to call FINDMAXCLIQUES(G) any more for the current
interference graph G to recompute A(G).MaxCS every time G is updated. Instead,
the information required can be derived efficiently from A(Gcan).MaxCS.

Let A(Gean)-MaxCS | G = { the sub-clique of ¢ induced by the nodes of ¢
that are also in G | ¢ € A(Gean)-MaxCS}. Since Gean is a comparability graph,
all its node-induced subgraphs G are also comparability graphs. Then we must
have A(G).MaxCS C A(Gcan)-MaxCS | G and A(Gcan).-MaxCS | G\ A(G).MaxCS
contains cliques of A in G. Thus, the largest order of a maximal clique containing
A in G can be found from A(Gcan)-MaxCS | G incrementally as discussed below.

In our implementation, an array in Aca, is said to be active if it is presently
a candidate in G and inactive otherwise. Whether an array is active or inactive
is marked as such (with a Boolean flag) in the A(Gcan).MaxCS sets for all arrays
A € Acan. Whenever an array A is spilled or split in G, A is marked as inactive,
and in the case of splitting, all those in HOT 4 are marked as active. This realises
efficiently the graph updating operations performed in lines 2 and 9 in Algorithm 2
and other parts of our IC algorithm. To compute the benefit of spilling or splitting A
from G to obtain G,y in lines 4 and 11 in Algorithm 2, we need only to recompute
O(Gnew, B) for the arrays B in update(A), which is found simply as the set of
active arrays that appear in A(Gcan).MaxCS. Finally, ©(Gnew, B) can be obtained
efficiently from B(Gcan)-MaxCS | Gpew for every array B € update(A).

In the worst case, Gean can have an exponential number of maximal cliques in
terms of the number of nodes in G..,. However, as shown in Table II, for all
benchmarks we have tested, the largest number of maximal cliques is 267. In addi-
tion, FINDMAXCLIQUES(Gcan) is called only once. Finally, incrementally updating
the maximal cliques for G integrates smoothly with the overall iterative-coalescing
framework. More importantly, our IC algorithm is efficient as shown in Table III.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 21

Algorithm 4 Interval-coloring-based SPM allocation.

1: procedure IC(Gcan)

2 FINDMAXCLIQUES(G can )

3 INnIT()

4 repeat

5: if UnSpillList # () then
6 UNSPILL()

7 else if SplitOrSpillList # () then

8 SPLITORSPILL()

9: end if

10: until UnSpillList = () A SplitOrSpillList = )
11: end procedure

Algorithm 5 Initialising the (current) interference graph and worklists.

1: procedure INIT

2 Let G be the subgraph of G,y induced by Aorg

3 UnSpillList = )

4: RemoveList = ()

5 SplitOrSpillList = set of arrays A in G s.t. ©(G, A) > SPM_SIZE} (Def. 4)
6: end procedure

4.2.1.3 Owerview. Like George and Appel’s graph coloring allocator for scalars
[George and Appel 1996], IC is also an worklist-based iterative-coalescing allocator
(but for data aggregates). So the operational flows among the five modules in this
middle phase IC shown in Figure 7 are captured in Algorithm 4. The meanings of
the three lists, UnSpillList, SplitOrSpillList and RemoveList and which arrays are
eventually identified to be SPM-resident are explained in Section 4.2.2.

Our IC allocator is developed based on the following observation.

DEFINITION 4. An array in G can be simplified, i.e., guaranteed to be placed in
SPM if it is not included in a clique in G with an order larger than the SPM size.

THEOREM 3. G can be colored iff all arrays in G can be simplified.
PRrROOF. Follows from Definition 4 and Theorem 2. [

Since simplified arrays can always be colored, no splitting for an original array is
necessary if it can be simplified in Geay, that is built directly from Acay.

4.2.2 Init. In Algorithm 5, the current interference graph G that IC starts with
is initialised (line 2). So are the three worklists, which are central to IC, a worklist-
based iterative-coalescing algorithm (lines 3 — 5). Below we describe these data
structures in detail. An illustration of these lists using our running example can
be found in Section 4.4. However, due to the iterative nature of IC, these worklists
may have to be understood (dynamically) in the iterative-coalescing context.

UnSpillList and RemoveList are initialised to be empty and SplitOrSpillList to
contain all arrays in G that cannot be presently simplified (i.e.,, colored).

. SplitOrSpillList contains arrays in G that cannot be simplified by Definition 4.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



22 . Li, Xue and Knoop

These are the candidates considered for splitting and spilling.

. RemoveList contains arrays in Gg,, but not in G that are potentially spilled.
These are removed (i.e. spilled) from either SplitOrSpillList or UnSpillList. Every
array is not simplifiable at the time when it is added to this list. However, some
arrays in the list may become simplifiable after others have been split or spilled.

. UnSpillList contains arrays in Gca, but not in G that are transferred from
RemoveList to this list when they become simplifiable (as discussed above). These
are the candidates that may be unspilled, i.e., added back to G. However, unspilling
one array in this list may cause others in the list to become non-simplifiable. All
such non-simplifiable arrays will be removed and added back to RemoveList.

At any time, the three lists are mutually exclusive. In addition, SplitOrSpillList
contains either A or its hot arrays in HOT 4 but not both. This is because only A
or its hot arrays in HOT 4 are considered for SPM allocation at any time. However,
RemoveList and UnSpillList may contain both A and its hot arrays in HOT 4 at
the same time. In the case of RemoveList, once A is spilled to the list, some of its
hot arrays may also be spilled to the list immediately afterwards. In the case of
UnSpillList, if A may not be unspilled, some of its hot arrays may be unspilled.

The Spill & Coalesce phase terminates when both SplitOrSpillList and UnSpillList
are empty. Then G contains all the arrays that can be placed in SPM. This phase
is guaranteed to terminate since IC works by reducing the clique number of G grad-
ually until it is smaller than or equal to SPM_SIZE.

4.2.3  UnSpill. When Algorithm 6 is called, UnSpillList contains a list of arrays
in Gean but not in G that can be simplified individually. This means that every
array in UnSpillList, once added back to G alone, can be simplified. Unspilling a
simplifiable array in this module means that the unspilled array is guaranteed to
be colored eventually (Definition 4). In other words, every unspilled array will stay
in G until the Spill & Coalesce phase has terminated.

In line 2, we call SELECTUNSPILL to choose an array A from UnSpillList with the
largest profit to unspill (line 22). Unspilling a simplifiable array is always profitable
since it will remain to be colorable. Thus, in the for loop in line 13, the profit of
unspilling an array is estimated according to the increased number of SPM accesses
and the reduced array copy cost (if any) as a result of placing this array (rather
than its hot arrays, if any) in SPM. There are two cases. In one case, A can be
split (lines 14 — 17). If A is simplifiable, so are all its hot arrays in HOT 4 since
these hot arrays are contained by A. So the profit gained from placing A rather
than its hot arrays only in SPM (line 17) is derived from the extra benefit obtained
from also placing the non-hot live ranges of A in SPM (line 15) and the array copy
cost avoided (line 16) (Figure 3). In the other case (lines 18 — 20), A is a hot array
or an original array that cannot be split. Its unspilling profit is estimated in the
normal manner.

After A has been selected (line 2), A and all its hot arrays in HOT 4 are removed
from UnSpillList (line 3). In line 4, A, which is guaranteed to be colorable, is
unspilled, i.e., added to G. At the same time, all hot arrays in HOT 4 are removed
from G. Effectively, the splits for A are unnecessary and thus coalesced. Due to
the unspilling of A, some arrays in UnSpillList that are simplifiable before may no

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 23

Algorithm 6 Processing unspilled arrays in UnSpillList.
1: procedure UNSPILL
2 A = SELECTUNSPILL(UnSpillList)
3 UnSpillList = UnSpillList \ ({A} UHOT 4)
4: G=Ga{A}©HOT4
5: for every B € UnSpillList that interferes with A do
6
7
8
9

if ©(G @ {B} ©HOTp, B) > SPM_SIZE) then
UnSpillList = UnSpillList \ {B}
RemoveList = RemoveList U { B}
end if
10: end for
11: end procedure
12: procedure SELECTUNSPILL( UnSpillList)
13: for every array A € UnSpillList do

14: if A€ Ao such that HOT4 # 0 then  // A can be split

15: A.non-hot_benefit = (A.freq — ZHGHOTA) H freq) x (Mmem — Mspm)
16: A.copy_cost is the array copy cost due to splitting A (Section 2.3)
17: A.profit = A.non-hot_benefit + A.copy_cost (saved)

18: else // A€ Ay cannot be split or A € Apot

19: A.profit = A.freq X (Mmem — Mspm)

20: end if

21: end for

22: Select the array A in UnSpillList with the largest A.profit
23: end procedure

longer be simplifiable. In lines 5 — 10, all such arrays are removed from UnSpillList
and appended to RemoveList. Only the arrays in UnSpillList that interfere with A
need to be examined (line 5) and the remaining ones are not affected.

Note that in line 6, B may be a hot array, in which case HOT g = ) as discussed
in Section 4.2. This convention is adopted also in line 15 of Algorithm 8.

No arrays are removed from SplitOrSpillList and RemoveList since these arrays
are still not simplifiable. This is because unspilling A adds a new array to G and
thus will not reduce any interference in G.

4.2.4  SplitOrSpill. As shown in Algorithm 7, this module chooses an array in
SplitOrSpillList with the largest profit to split or spill. Splitting or spilling arrays
will gradually make the clique number of G no larger than SPM_SIZE so that all
the arrays remaining in G can be placed in SPM. As a result, the live range of a
selected array A is split into the hot arrays in HOT 4 on-demand.

Therefore, in line 2, an array A in SplitOrSpillList is selected to reduce the clique
number of G. The selected array may be split (line 4) or spilled (line 6).

In SELECTSPLITORSPILL, we compute the profits of spilling and splitting all
arrays in SplitOrSpillList (line 10) and choose the most profitable one to split or
spill (line 18), based on our cost-benefit analysis discussed earlier.

4.2.5 Split. In SPLIT of Algorithm 8, A is first moved from SplitOrSpillList to
RemoveList (lines 2 and 3). This means that the hot arrays in HOT 4 rather than

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



24 . Li, Xue and Knoop

Algorithm 7 Selecting an array from SplitOrSpillList to split or spill.
1: procedure SPLITORSPILL

2 A =SELECTSPLITORSPILL(SplitOrSpillList)
3 if A is to be split then

4 SPLIT(A)

5: else
6
7
8
9

SPILL(A)
end if
: end procedure
: procedure SELECTSPLITORSPILL(SplitOrSpillList)
10: for every array A € SplitOrSpillList do

11: A.spill_profit = CBAforSpill(G, A)

12: if A € Aoy can be split (i.e., satisfies HOT 4 # () then
13: A.split_profit = CBAforSplit(G, A)

14: else // A€ Ay cannot be split or A € Anet

15: A.split_profit = —oco

16: end if

17: end for

18: Select A with the largest max(A.spill_profit, A.split_profit)
19: end procedure

A will be considered for SPM allocation from now on (line 4). Those hot arrays
that cannot be simplified are appended to SplitOrSpillList (line 5). Splitting an
array may create opportunities for some arrays in SplitOrSpillList and RemoveList
to be simplified. Hence, the call to UPDATELISTS in line 6. In lines 15 — 19, all
those in SplitOrSpillList that can now be simplified are removed. In lines 20 — 25,
all those in RemoveList that can now be simplified are moved to UnSpillList.

Let us explain why lines 16 and 21 are different when performing the same op-
eration. In line 16, B € SplitOrSpillList is always in G. In addition, B and its hot
arrays in HOT g cannot co-exist in SplitOrSpillList (since both are not considered
at the same time for SPM allocation). In line 21, B € RemoveList is not in G while
the hot arrays in HOT g may be in G (due to line 4 in Algorithm 8).

4.2.6 Spill. In SpPILL of Algorithm 8, A is spilled when it is moved from
SplitOrSpillList to RemoveList (lines 9 and 10) and also removed from G. Un-
like SPLIT, there are no hot arrays to be dealt with. Like SpLIT, spilling may
enable some arrays in SplitOrSpillList and RemoveList to be simplified. Hence, the
call to UPDATELISTS in line 12.

4.3 Coloring

As shown in Algorithm 9, whose lines 1 — 12 are implemented as discussed in the
last paragraph of Section 3, all the arrays in G are placed in the SPM (Theorem 3).
All the other arrays in Gg.n but not in G will be placed in the off-chip memory.

4.4 Examples

We consider two scenarios in which our motivating example is handled by focusing
on splitting and spilling in Section 4.4.1 and unspilling in Section 4.4.2.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 25

Algorithm 8 Splitting a live range on-demand and spilling a live range.
1: procedure SPLIT(A)
2 SplitOrSpillList = SplitOrSpillList \ {A}
3 RemoveList = RemoveList U { A}
4: G=Go{A}®HOT4
5: SplitOrSpillList = SplitOrSpillList U {H € HOT 4 | ©(G, H) > SPM_SIZE}
6
7
8
9

UPDATELISTS(A);

: end procedure

: procedure SPILL(A)

: SplitOrSpillList = SplitOrSpillList \ {A}
10: RemoveList = RemoveList U { A}
11: G=Go {4}
12: UPDATELISTS(A);
13: end procedure
14: procedure UPDATELISTS(A)
15: for every B € SplitOrSpillList that interferes with A do

16: if ©(G, B) < SPM_SIZE then

17: SplitOrSpillList = SplitOrSpillList \ { B}

18: end if

19: end for

20: for every B € RemoveList that interferes with A do
21: if (G {B} ©HOTp, B) < SPM_SIZE then
22: RemoveList = RemoveList \ { B}

23: UnSpillList = UnSpillList U { B}

24: end if

25: end for

26: end procedure

Algorithm 9 Performing SPM allocation.
1: procedure ALLOCATE

2 Let S be the arrays in G sorted in the containment non-increasing order >~
3 while S # () do

4 Remove the first array A in S

5: spm_addr =0
6

7

8

9

for every array B that has been colored do
if B interferes with A and B.spm_addr + B.size > spm_addr then
spm_addr = B.spm_addr + B.size

: end if
10: end for
11: A.spm_addr = spm_addr
12: end while

13: end procedure

4.4.1 Scenario 1. Let us trace some key steps of IC using our example in Fig-
ure 1. Recall that Aye = {A,B,C,D,E}. Their array sizes are: A.size=80, B.size=75
and C.size=D.size=E.size=120. All five arrays can be split as shown in Figure 4.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



26 . Li, Xue and Knoop

So Aot = {A1,B1,B2,C1,D1,E1}. The array sizes of these hot arrays are the same
as their corresponding original arrays. As before, we assume that SPM_SIZE = 320.

We will not delve into low-level details by computing the profits of all splits
or spills for the arrays in SplitOrSpillList (as already done in Section 4.2.1.1) and
picking the best one. Instead, we will simply state the most-profitable array selected
by our cost model and proceed with illustrating the key steps of our approach.

4.4.1.1  Superperfection. The interference graph G.,, constructed by BUIiLD from
Acan = {AB,C,D,E,A1,B1,B2,C1,D1,E1} is shown in Figure 9.

4.4.1.2  Spill & Coalesce. FINDMAXCLIQUES(Gcan) returns five maximal cliques:
,={AB,A1,C,D,C1,E,E1}, C2,={AB,A1,C,D,D1,E E1l}, C5={A,B,B1,C,D,C1,EE1l},
Cy, = {A,B,B1,C,D,D1,E,E1} and C5 = {A, B, B2}. In addition, the maximal clique
sets are: A(Gean)-MaxCS = B(Gean)-MaxCS = {C4, Ca, Cs, C4, Cs}, C(Gean)-MaxCS
= D(gcan).MaXCS = E(gcan).MaXCS = El(gcan).MaxCS = {Cl, CQ, 03, 04},
Al(Gean)-MaxCS = {C1,Ca}, Bl(Gean).MaxCS = {C3,C4}, C1(Gean).MaxCS =
{C1,C3}, D1(Gean) - MaxCS = {Cs, Cy} and B2(Gean) - MaxCS = {C5}.

In INIT, G is the subgraph of Gcan induced by Aqe = {A,B,C,D,E} as shown in
Figure 8(a). At this stage, as discussed in Section 4.2.1.2; only these five original
arrays are active and all their hot arrays are inactive. This fact is marked as such in
the maximal clique sets associated with all the arrays in A, found above. Looking
at Figure 8(a), we see that all the five arrays in G appear in the same maximal clique
{A,B,C,D,E}. Thus, ©(G,A) =0(G,B) =06(G,C) =06(G,D) = 0(G,E) =515. In
line 5 of INIT, we can deduce the same information efficiently from the maximal
clique sets constructed from Ge., and find that ©(G,A) = ©(G,B) = 6(G,C) =
©(G,D) = O(G,E) = 515 > SPM.SIZE. Thus, SplitOrSpillList is initialised to
contain A, B, C, D and E and UnSpillList and RemoveList to be 0.

Next, the iterative-coalescing phase begins. Since UnSpillList = (), UNSPILL is
skipped. In SPLITORSPILL, we find that SplitOrSpillList = {A,B,C,D, E}. Let us
assume that B is selected (in line 2) among the five arrays for splitting according
to our cost model. Then SPLIT is called to actually split B (line 4). In SpLIT, B
is removed from SplitOrSpillList and appended to RemoveList (lines 2 and 3). At
the same time, B is removed from G and its hot arrays Bl and B2 are included in
G (line 4). This means that G now contains A,B1,B2,C,D and E, implying that B
is no longer inactive but its hot arrays Bl and B2 are now active. In line 5, we
find from B1(Gean).MaxCS and B2(Gean).-MaxCS (by considering only the active
arrays, i.e., those in G) that ©(G, B1) = 515 and ©(G, B2) = 155. In fact, B1 and
B2 are contained in the maximal cliques {A,B1,C,D,E} and {A B2}, respectively.
Thus, in line 5, Bl is inserted into SplitOrSpillList since it is not simplifiable and
B2 can be simplified. So we have SplitOrSpillList = {A, B1, C, D, E}. In line 6,
UPDATELISTS is called but no array in G can be simplified any further.

With UnSpillList still being empty, UNSPILL is skipped again. SPLITORSPILL is
called again with SplitOrSpillList = {A,B1,C,D,E}. Let us assume that A is selected
this time for splitting. In SPLIT, A is removed from SplitOrSpillList and appended
to RemoveList. Then A is removed from G in line 2 and Al added to G in line
3. In line 4, G contains Al, B1, B2, C, D and E. Al cannot be simplified since
O(G,Al) = 440. In line 5 of SpLIT, Al is appended to SplitOrSpillList.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 27

main

Fig. 11. The SPM allocation result in Scenario 1 for the program in Figure 1.

120 75 75 75

(a) Spilling of Al from Figure 10(c). | (b) Spilling of E from (a) | (c¢) Unspilling of B from (b)

Fig. 12. An illustration of the SPM allocation process in Scenario 2.

UnSpillList is still empty and SPLITORSPILL is called again. SplitOrSpillList =
{A1,B1,C,D,E}. Let us assume that D is selected for spilling. In SPILL, D is removed
from SplitOrSpillList and appended to RemoveList (lines 9 and 10). Then D is
removed from G (line 11). By calling UPDATELISTS in line 12, we find that all
arrays contained in G, i.e., Al, B1, B2, C and E, become simplifiable; they will be
removed from SplitOrSpiliList (lines 15 - 19). Thus, SplitOrSpillList = §). No array
in RemoveList= {A, B, D} can be simplified. Thus, UnSpillList = () remains to hold.
Since SplitOrSpillList = UnSpillList = @), our IC algorithm will thus terminate.

4.4.1.3 Coloring. Al, B1, B2, C and E, which are found in G at the termination
of 1C, will be placed in SPM. Figure 11 depicts the allocation result.

4.4.2 Scenario 2. In this second scenario, we aim to explain the motivation be-
hind UNSPILL in our IC algorithm. Let us start from the interference graph G given
in Figure 10(c) by assuming that SPM_SIZE = 200. At this stage, the contents of the
three worklists are as follows. UnSpillList = (). In addition, RemoveList = {A,B,D}
since A, B and D are no longer in G. Finally, SplitOrSpillList = {A1,B1,C,E} since
{A1,B1,C,E} is a maximal clique with its order 395 > SPM_SIZE = 200.

Since UnSpillList is empty, UNSPILL is skipped for now. SPLITORSPILL is then
called. Let us assume that Al is selected for spilling so that the interference graph
G is modified as shown in Figure 12(a). Al is then appended to RemoveList (lines
9- 11 in SpiLL). After the spilling, B1, C and E still cannot be simplified individu-
ally, giving rise to SplitOrSpillList = {B1,C,E} (lines 15 — 19 in UPDATELISTS).
In addition, no array in RemoveList = {A,Al,B,D} can be simplified, causing
UnSpillList = () to remain unchanged (lines 20 - 25 in UPDATELISTS).

Next, we assume that E is selected for spilling as shown in Figure 12(b). After
the spilling, B1 and C in SplitOrSpillList can be simplified. So they will be removed
from the list, resulting in SplitOrSpillList = () (lines 15 - 19 in UPDATELISTS). In

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



28 . Li, Xue and Knoop

| Benchmark | #Lines | #Arrays | Array Data Set Size (Bytes) |

toast 6031 62 17.8K
untoast 6031 62 17.8K
rawcaudio 741 5 2.9K
rawdaudio 741 5 2.9K
pegwitencode 7138 121 226.7K
pegwitdecode 7138 121 226.7K
gT72lencode 1704 16 568
g721decode 1704 16 568
cjpeg 33717 56 14.8K
djpeg 33717 57 14.6K
mpeg2encode 8304 62 9.2K
mpeg2decode 9832 76 21.8K
lame 18612 220 552.5K
bfencode 2304 8 16.8K
bfdecode 2304 8 16.8K
rsynth 5713 75 44.6K
ispell 15667 71 170.9K

Table I. Benchmarks from MediaBench and MiBench.

addition, we find that both Al and B in RemoveList can now be simplified with
respect to the current interference graph in Figure 12(b). Thus, Al and B are re-
moved from RemoveList and added to UnSpillList (lines 25 — 25 in UPDATELISTS).
As a result, we have RemoveList = {A,D,E} and UnSpillList = {Al,B}.
UnSpillList is not empty. So UNSPILL is called. Let us assume that B is selected
for unspilling according to our cost model (lines 13 - 22). So UnSpillList = {Al}
(line 3). Unspilling B means that its hot arrays B1 and B2 will be coalesced together
with B (since the original array itself is now simplifiable). The interference graph
will then include B and C as illustrated in Figure 12(c) (line 4). After B has been
unspilled, Al in UnSpillList can no longer be simplified in the current interference
graph; it will be removed from UnSpillList and added to RemoveList (lines 5 - 10).
Since UnSpillList = SplitOrSpillList = @), the IC algorithm will then terminate.

5. EXPERIMENTAL RESULTS

Table I gives a set of 17 embedded C benchmarks from MediaBench [Lee et al.
1997] and MiBench [Guthaus et al. 2001] used in our experiments. The first 12
benchmarks are from MediaBench and the last five from MiBench. These are rep-
resentative benchmarks from a number of embedded applications, including, media,
office automation (ispell and rsynth) and security (bfencode and bfdecode). Ac-
cording to Column 2, the largest benchmarks are cjpeg and djpeg with over 30,000
lines of C code each. For each benchmark, Column 3 gives the number of arrays
processed in SPM allocation. Column 4 gives their total data set size. The memory
objects that are declared but not used in a benchmark are not counted.
Embedded programs are often free of recursion. It is probably for this reason
that no previous SPM allocation method has ever attempted to handle recursive
functions (by allocating data to SPM). Due to the use of function pointers in some
C applications, the compiler may have to assume the existence of recursion calls
even if they do not actually appear during some or all program executions. Among

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 29

100

g w
S 60
2]
%)
ISR
Q
<
520
< o
X X+ O (] (] (] @ @ @ N AN
® & & I K F P PP P IS
T E PP b?f’o & be"o K K & &L P be:(’o & ¢
VY N @ N & &
@ @ § N é\’b &’L & Q0
& & & K

Fig. 13. Percentage of the array accesses to all arrays (in Acan) considered for SPM allocation
(which are listed in Table I) over all memory accesses in a benchmark.

all the embedded benchmarks we have tested (including those listed in Table I), the
SUIF /MachSUIF compiler has reported four benchmarks with potentially recursive
calls: rsynth, ispell, cjpeg and djpeg. At run time, recursive calls are detected
in the first two but not in the last two programs. Furthermore, no local arrays are
defined in any (directly or indirectly) recursive function. Therefore, all benchmarks
used here can be treated as recursion-free programs. However, all algorithms pre-
sented in this paper work in the presence of recursive calls. Our SPM allocator can
be easily extended to handle recursion by using a callee-save mechanism.

We have implemented our interval-coloring SPM allocator in the SUIF /machSUIF
compiler framework. All programs are compiled into assembly programs for the Al-
pha architecture. These assembly programs are then translated into binaries on a
DEC Alpha 20264 architecture. The profiling information for MediaBench is ob-
tained using the so-called second data set available in the MediaBench web site.
These benchmarks are evaluated using the (different) data sets that come with
their source files. The profiling for the other benchmarks is obtained using inputs
different from those when they are actually evaluated.

We have modified SimpleScalar in order to carry out the performance evaluations
for this work. There are four parameters involved in the cost model used for live
range splitting [Li et al. 2005]. The cost of communicating n bytes between SPM
and off-chip is approximated by Cs + Cy X n in cycles, where Cj is the startup cost
and C; is the cost per byte transfer. Two other parameters are Mypm and Mpyem,
which represent the number of cycles required for one memory access to the SPM
and the off-chip memory, respectively. For the results presented here, the values of
the four parameters are Cy = 100, C; = 1, Myem = 100 and Mgpm = 1.

Since we are concerned with assigning static data aggregates to SPM, the scalars
and heap objects are ignored. In toast and untoast, we have (manually) replaced
a frequently used heap object with a global array so that it can be assigned to SPM.

Figure 13 shows the percentage of array accesses to all arrays (in Aca,) consid-
ered for SPM allocation over all memory accesses in a benchmark. In 10 bench-
marks, toast, untoast, rawcaudio, rawdaudio, pegwitencode, pegwitdecode,
g721encode, g721decode, bfencode and bfdecode, the majority of memory ac-
cesses are array accesses. In addition, arrays with sizes being larger than 32K bytes
are ignored since it is not effective to keep them entirely in SPM. One solution

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



30 . Li, Xue and Knoop

| Benchmark || #Maximal Cliques | Chromatic Number (Bytes) |

toast 39 2248
untoast 19 1840
rawcaudio 1 2936
rawdaudio 1 2936
pegwitencode 267 21968
pegwitdecode 141 26600
g72lencode 3 184
g721decode 3 168
jpegenocde 8 6504
jpegdecode 7 3176
mpeg2encode 15 6472
mpeg2decode 12 11296
lame 193 273848
bfencode 6 8448
bfdecode 6 8448
rsynth 9 16344
ispell 209 27464

Table II. Some statistics for interference graphs G.,, built from Acan by BUILD.

| Benchmark || Compile Time (secs) |

toast 0.457
untoast 0.424
rawcaudio 0.009
rawdaudio 0.009
pegwitencode 4.875
pegwitdecode 3.971
g72lencode 0.053
g721decode 0.054
jpegencode 1.725
jpegdecode 2.652
mpeg2encode 0.553
mpeg2decode 1.410
lame 19.156
bfencode 0.047
bfdecode 0.046
rsynth 0.627
ispell 4.621

Table III. Average compile times.

is to divide them into smaller subarrays [Huang et al. 2003] and then apply our
algorithms to these subarrays.

Table II gives the chromatic numbers for the interference graphs G.., constructed
from Ac,, for all the 17 benchmarks. For an interference graph, its chromatic
number represents the minimum SPM size required to color all arrays in the graph.
By comparing Table IT with Column 4 of Table I, we find that the chromatic
numbers of the initial interference graphs built by IC for all benchmarks are much
smaller than their overall data set sizes. This suggests that a program with a large
data set can be potentially placed in a relatively small SPM.

Table IIT gives the average compile times (calculated across all SPM sizes consid-

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 31

toast —A—
untoast ---A---
rawcaudio ——
rawdaudio ------

T g72lencode —</—
_| g721decode ---w---
cjpeg —SO—
djpeg --@-

Array Hit Rates (%)

rsynth —<—

a| pegwitencode --a---
pegwitdecode —A—

2\_"/ mpeg2encode --¢---

(%]

9 mpeg2decode ——

©

E lame —7—

T bfencode --@-

g

E bfdecode —&—
ispell —<—

SPM Size (byte)

Fig. 14. Array hit rates achieved by the IC SPM allocator.

ered in this paper) for the IC allocation algorithm on a 2.66GHz Pentium 4 box with
2GB memory. As shown in Table III, IC is practically efficient. In particular, the
maximal cliques of all node-induced subgraphs G of G.., can be efficiently obtained
from the set of maximal cliques that are computed only once from G.

5.1 Performance Evaluation

Since we are concerned with placing arrays in SPM, we will evaluate the effectiveness
of our approach in improving the utilisation of SPM for all the arrays considered
for SPM allocation. To this end, the concept of array hit rate is introduced. The
array hit rate for a program is defined to be the percentage of array accesses hit
in the SPM over the total array accesses (to the arrays in Ac.,) considered for
SPM allocation in the benchmark. As in prior work [Kandemir et al. 2001; Avissar
et al. 2002; Udayakumaran and Barua 2003; Verma et al. 2004b; Li et al. 2005], we
will compare results obtained on a system incorporated with an SPM over the one
without. There are a great number of embedded architectures that have an SPM
but no (data) cache. Examples include Motorola Dragonball, TT TMS370CX7X,
Analog Devices ADSP-21XX, Infineon XC166 and Hitachi SuperH-SH7050.
Figure 14 shows the array hit rate improvements achieved for the 17 benchmarks
as the SPM size increases. We have divided the 17 benchmarks into two groups
according to their data set sizes. One group is evaluated with SPM sizes ranging
from 256 bytes to 8K bytes. For a benchmark in this group, an SPM of 8K bytes
is sufficient to hold all the arrays that are frequently accessed at any time during
program execution (cf. Table II). The other group is evaluated with SPM sizes

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



32 . Li, Xue and Knoop

toast —&—
= untoast ---4A---
%; rawcaudio —<—
% rawdaudio ------
o g721encode ——
£ g721decode ---v---
E cipeg —o—
a dipeg --e--
rsynth —x—
100

pegwitencode ---4---
X 80 pegwitdecode —&—
%)7 mpeg2encode --4---
= 60 mpeg2decode ——
E lame ——
I 40re— bfencode --e-
E bfdecode —5—

v 20 :
ispell —<—

e
512 1K 2K 4K 8K 16K 32K

SPM Size (bytes)

Fig. 15. Effect of varying the SPM size on SPM hit rates.

ranging from 512 bytes to 32K bytes. For the benchmarks in this group an SPM of
32K bytes is sufficient. As for lame, a larger SPM size is needed (Table II).

As the SPM size increases, all the benchmarks exhibit non-decreasing array hit
rate improvements. Each arrives at its peak at one of the SPM sizes used, where all
its frequently accessed arrays are placed in the SPM throughout program execution.

The performance improvement of a program depends on (among others) the
percentage of array accesses over the total memory accesses in the program, the
SPM and memory access latencies and the DMA cost. Figure 15 gives the SPM hit
rates for all the benchmarks. By convention, the SPM (i.e., cache) hit rate for a
program is understood to be the percentage of array accesses hit in the SPM over
the total memory accesses in the program.

Figure 16 shows the performance improvements achieved by the 17 benchmarks
for the experimental settings described earlier in Section 5. These results allow us to
develop an intuitive understanding about the performance speedups achievable due
to improved SPM hit rates. The execution time of a benchmark on an SPM-based
system is normalised to that achieved when the SPM is not used. The best speedups
(by a factor of over 5) are achieved for toast, untoast, rawcaudio and rawdaudio.
But only small improvements are observed for cjpeg, djpeg and mpeg2encode.

The varying performance improvements across the 17 benchmarks can be un-
derstood by examining their array access percentages given in Figure 13 and their
SPM hit rates given in Figure 15. In some benchmarks, including cjpeg, djpeg
and mpeg2encode, array accesses represent only a small fraction of all their mem-
ory accesses and the remaining ones are mostly accesses to heap-allocated objects.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 33

g toast —4&—
= untoast ---4A---
_5 rawcaudio —&—
§ rawdaudio ---#----
L% g721encode ——
3 g721decode ---v---
N cjpeg —O—
£ dipeg -~ e--
S rsynth —x—
[0

£ pegwitencode ---4---
'; pegwitdecode —&—
_% mpeg2encode ---#---
§ mpeg2decode —<—
1} lame ——
B bfencode --e-
% bfdecode —5—
3 ispell —<—
o

z L L L L L L !

0
512 1K 2K 4K 8K 16K 32K
SPM Size (bytes)

Fig. 16. Performance improvements achieved on an SPM-based system over (i.e.,
normalised with respect to) the one without the SPM.

Thus, the performance speedups will not be impressive even if all array accesses
hit in the SPM. Let us take a look at Figure 15. As the SPM size increases, the
SPM hit rate for a benchmark keeps increasing until after the SPM size has passed
a certain value. Then having a larger SPM will have little positive impact on the
SPM hit rate. As shown in Figure 13, the SPM hit rate for a program will eventu-
ally approach the array access percentage for the program, at which all frequently
accessed arrays in any program region are all found in the SPM.

5.2 Compared with Memory Coloring

We compare IC with MC (for memory coloring), a graph-coloring-based allocator
proposed in [Li et al. 2005]. MC formulates the SPM allocation problem as a clas-
sical register allocation problem by partitioning the continuous SPM space into a
pseudo register file and then applying a classic graph coloring algorithm to color
arrays into the pseudo register file. MC is admittedly more general since it can pre-
serve more precise liveness information without extending any live ranges. However,
as mentioned in Section 4.1, very few live ranges need to be extended in embedded
C programs. In addition, MC may suffer from the SPM fragmentation problem.
For the 17 benchmarks evaluated under a number of SPM configurations, the
two allocators yield the same results in seven benchmarks, rawcaudio, rawdaudio,
g72lencode, g72ldecode, bfencode, bfdecode and rsynth. In addition, there are
only slight differences with respect to execution times for jpegencode, jpegdecode,
mpeg2encode, mpeg2decode and ispell. For these 12 benchmarks, near-optimal re-

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



34 . Li, Xue and Knoop

168.7
<o
>
S
n
=%
S
S
o}
o}
o
[%7]
20
15
<
=~
< 10
0
a
3
o 5
O
a 1 _1.0l.1
oI I- ._ - [ | [ | l
Y © Y L O Y 0L QL OV O O O
T T £ ©W T £ ©® T £ ©® B E © T E ©W T E
S 88§88 5558558588538 ¢
S5t =28 - & B8 - & B - & B - & 8 -
g T g T g T s T g T g T
R N R R ] R
> B > O > D > D > o > B
o @ o @ o © o O o @ o @
o o o Qo o Qo o o o o o o
1K 2K 4K 8K 16K 32K

SPM Size (Bytes)

Fig. 17. Speedups of IC over MC.

sults are obtained by both allocators. Below we will only present the results for the
remaining five benchmarks: toast, untoast, pegwitencode, pegwitdecode and lame.
Figures 17 shows the speedups of IC over MC. IC exhibits significant performance
improvements over MC. The largest performance improvement observed is from
toast when the SPM size is set to 768 bytes. For the IC allocator, a speedup of
168.7% has been attained. For this particular configuration, a very hot array that
cannot be successfully colored by MC can be colored by IC. These performance
advantages indicate that the colorability criterion employed in IC is more accurate
than that used in MC for the containing-related interference graphs considered here.
Figure 18 compares IC and MC in terms of the SPM hit rates for the same five
benchmarks in Figure 17. In almost all SPM configurations considered, the hit rates
for IC are higher. This fact correlates well with the performance advantages of IC
as shown in Figure 17. When the SPM is large enough (> 2K bytes for toast and
untoast and > 32K bytes for pegwitencode and pegwitdecode), all array accesses will
hit in SPM (Table II). The SPM hit rates become identical for both algorithms.
For pegwitencode and lame with an SPM of 4K bytes, IC suffers some small
slowdowns compared to MC when IC achieves some slightly lower hit rates. Unlike

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 35

mEMC mIC
100
80 -
& 60
3
2 40+
@
F 20
z
(n07
100
80
60
g
- 40
2
©
9320
=
= 0
% ¢ © 9 9 © © © © 9 0o 0o o 0o O o 0 0o o
T W £ W B £ BW TV £ B T £ B T £ T T £
8 83 8 8 3 8 8 83 8 8 3 8 8 3 8 8 3 =
c Qo c Qo c o c o c QO c Qo
e B L B L B L B L B L B
R R R E R -
o O o O o O o O o O o O
[T T) (TR T L QO [T 7] QL O L QO
o o o o o o o o o o o o
1K 2K 4K 8K 16K 32K

SPM Size (Bytes)

Fig. 18. SPM hit rates achieved by IC and MC.

IC, MC may place some non-hot parts of an array live range A and some of its hot
arrays in SPM. By restricting itself to place either A or its hot arrays aggressively
in SPM, IC may occasionally cause some lower hit rates for some programs.

5.3 Compared with ILP

An ILP-based approach for solving our SPM allocation problem optimally can be
formulated in the standard manner. An example that demonstrates how to do so
for a slightly different SPM allocation problem can be found in [Verma et al. 2004b].
So only the key steps involved are explained below.

An ILP-based allocator is implemented to solve exactly the same problem as our
interval coloring algorithm [Feng 2007]. So the same live range splitting algorithm
used by IC is applied. Linear constraints are introduced to keep track of which
live ranges are in SPM or off-chip memory and whether a copy operation is needed
in a move-related live range (due to splitting). Each live range is associated with
an offset variable to identify its location in SPM if it happens to be assigned to
SPM. For interfering live ranges, linear constraints are introduced to make sure that
they will be placed in non-overlapping SPM spaces based on their associated offset
variables. Finally, the objective function to maximise is the number of cycles saved
on accessing the arrays (since they are assigned to SPM instead of off-chip memory)
under consideration minus the number of cycles spent in array copy operations.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



36 . Li, Xue and Knoop

Speedups (%) under Eight Different SPM Sizes (Bytes)
Benchmark 55151917024 | 2048 | 4096 | 192 [ 16384 | 32768
mpeg2encode | 0.0/6s | 0.0/Ilm | — [0.1/18h | 0.1/15h [ 0.0/4h | 0.0/1h | 0.0/30m
mpeg2decode - 0.0/1s - 10.0/Im | 0.0/Ilm | 0.0/14s | 0.0/14s | 0.0/24s
rsynth - - - - 0.1/18m - 0.0/6m | 0.0/22m
ispell — — — 6.4/2h — — — 0.0/30s

Table IV. Performance improvements of ILP over IC. For each configuration, X/Y means that ILP
achieves an (optimal) speedup of X% over IC with a solution time of Y on a 2.66GHz Pentium 4
with 2GB memory (where s stands for secs, m for mins and h for hours). A '’ for a configuration
indicates that CPLEX cannot run to completion within 24 hours.

Table IV presents the performance improvements that we can optimally expect
from an ILP-based allocator over the IC allocator. We used the commercial ILP
solver, CPLEX 10.1, which is one of the fastest available in the market.

For pegwitencode, pegwitdecode and lame, each has a larger number of fre-
quently accessed arrays, which all must be explicitly dealt with in the ILP for-
mulation, and ILP cannot run to completion in all the configurations tested. For
rawcaudio, rawdaudio, g721encode, g721decode, bfencode, bfdecode, cjpeg and
djpeg, there are only few frequently accessed arrays, so ILP terminates quickly
and IC achieves the same results as ILP in all configurations tested. For toast and
untoast, ILP only terminates when the SPM size is no smaller than 2048 bytes
and IC achieves the same results in all configurations where ILP has run to com-
pletion. As shown in Table II, the chromatic numbers of toast and untoast are
2248 and 1840 bytes, respectively. For toast at the 2K configuration, |C happens
to achieve the same result as ILP. In all the other configurations, IC is optimal for
both benchmarks (Theorem 3). Below we present the results only for the remaining
four benchmarks, mpeg2encode, mpeg2decode, rsynth and ispell.

By examining Table ITI, we find that IC can achieve close to optimal results
efficiently for all the four benchmarks across all configurations. The largest speedup
achieved by ILP is for ispell when the given SPM size is 2048 bytes. However,
it has taken the ILP solver two hours to produce the solution while IC completed
in about two seconds. In this benchmark, ILP has managed to place in SPM some
no-hot parts of the array nword in function good and consequently avoided some
array copy costs associated with its hot arrays incurred by IC. A combination of
these two factors has resulted in the performance speedup of ILP over IC in this
configuration. In contrast, IC restricts itself to nword or its hot arrays exclusively
during SPM allocation. For all the other benchmarks, the performance differences
between the |C solutions and the optimal ILP solutions are less than 1%.

In summary, ILP can yield optimal solutions efficiently in some configurations
for certain benchmarks. However, its overall performance is unpredictable and may
not run to completion within a given time limit. On the other hand, our approach
can obtain nearly optimal solutions efficiently in almost all cases.

6. RELATED WORK

Existing SPM allocation methods are either static or dynamic, depending on whether
or not an array can be copied into and out of SPM during program execution. A

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 37

large number of early methods are static [Avissar et al. 2002; Hiser and Davidson
2004; Sjodin and von Platen 2001; Steinke et al. 2002]. In [Hiser and Davidson
2004], the authors provide an easily re-targetable compiler method for assigning
data to many different types of memory. Steinke et al. [2002] propose a method
that can place both data and code in SPM. In [Avissar et al. 2002; Sjédin and von
Platen 2001], the static SPM allocation problem is formulated as an integer linear
programming (ILP) program and the authors have shown that an optimal static
SPM allocation scheme can be achieved for certain embedded applications.

Dynamic SPM allocation methods enable program data to be copied into and out
of SPM during program execution. It has been demonstrated that a dynamic allo-
cation scheme can often outperform an optimal static allocation scheme [Udayaku-
maran et al. 2006]. There are a few dynamic methods around [Kandemir et al. 2001;
Udayakumaran et al. 2006; Verma et al. 2004b; Li et al. 2005]. In [Kandemir et al.
2001], loop and data transformations are exploited but the proposed technique is
applied to individual loop kernels in isolation. Udayakumaran et al. [2006] use a set
of heuristics to guide their decision in deciding how to copy program data between
SPM and off-chip memory during program execution. The ILP-based approach
introduced in [Verma et al. 2004b] can yield optimal solutions for some programs
but can be expensive when applied to others as reported in [Ravindran et al. 2005]
and verified in our experiments. In [Li et al. 2005], we map the dynamic SPM al-
location problem into a well-understood register allocation problem and then solve
it by applying any classic graph-coloring-based algorithm.

In [Li et al. 2007], we introduced two interval-coloring algorithms based on a sim-
ple cost model for live range splitting and spilling. This journal paper has extended
significantly our earlier work in a number of ways by producing an SPM alloca-
tor that applies interval coloring to solve the SPM allocation problem elegantly
and effectively for real-world embedded programs. First, of the two algorithms
investigated in [Li et al. 2007], the one that performs both splitting and spilling
iteratively together is generally superior. This algorithm has been improved here
in two directions (Figure 7): unspilling is now invoked iteratively together with
(rather than after) splitting and spilling and the colorability of G is now computed
more precisely from the colorability values of individual arrays rather than the col-
orability values of maximal cliques. As a result, same or better performance results
are observed (for those same benchmarks used also earlier). Second, our live range
splitting strategy is more aggressive. In particular, an array that could not be split
earlier due to the presence of pointers (to the array) can now be split, giving rise to
better SPM utilisation. Third, we give an algorithm for extending array live ranges
to build a superperfect interference graph to ensure that all live ranges either do
not interfere or are containing-related. Finally, in comparison with some prelimi-
nary results reported in [Li et al. 2007], we have conducted more experiments using
more benchmarks in evaluating, analysing and understanding all major aspects of
interval coloring, including performance and compile times. In particular, we have
also evaluated our proposed approach against an optimal ILP-based approach.

A live range may be split when it cannot be colored in register allocation for
scalars by graph coloring [Bergner et al. 1997; Cooper and Simpson 1998] and by
adopting a priority-based approach introduced in [Chow and Hennessy 1990]. In

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



38 . Li, Xue and Knoop

this work, however, live range splitting is applied on-demand together with spilling
in an interval-coloring allocator for data aggregates. Furthermore, based on live
range containment, we are able to split where is needed to reduce the clique number
of an interference graph until the resulting graph is optimally colorable.

In [Udayakumaran et al. 2006; Steinke et al. 2002; Ravindran et al. 2005; Verma
et al. 2004a], the authors show that it is also beneficial to place portions of program
code in SPM. In [Panda et al. 2000; 1997a; Verma et al. 2004a], the researchers
consider a hybrid system with both cache and SPM. Their main objective is to
place data in SPM to achieve better SRAM hit rates. In [Panda et al. 2000; 1997a;
1997b], solutions are proposed to map the variables that are likely to cause cache
conflicts to SPM. In [Verma et al. 2004a], the authors propose a generic cache-aware
scratchpad allocation algorithm to use scratchpad for storing instructions.

The interval coloring problem has a fairly long history dating back, at least to
1970s [Fabri 1979; Garey and Johnson 1976]. It has been proved that the interval
coloring problem is NP-complete [Garey and Johnson 1979]. Fabri [Fabri 1979]
made the connection between interval coloring and compile-time memory allocation
in 1979. Since then a few approximation algorithms have been proposed [Fabri 1979;
Kierstead 1991; Gergov 1999], where a program is generally abstracted as a straight-
line program. As a result, the interference graph for static memory objects is an
interval graph [Golumbic 2004]. With this abstraction, the interval coloring problem
remains to be NP-complete [Garey and Johnson 1979] and the above approaches can
thus provide approximate solutions. In this paper, we introduce a dynamic method
that formulates the SPM allocation problem into an interval-coloring problem.

Interval coloring for an arbitrary graph is too complex. Recent research has fo-
cused on developing efficient interval coloring algorithms for some special classes of
graphs like chordal graphs [Pemmaraju et al. 2005; Confessore et al. 2002], interval
graphs [Zeitlhofer and Wess 2003] and comparability graphs formed by containing-
related array interference graphs considered here. Independently, in the field con-
cerning register allocation, researchers have become increasingly more interested
in abstracting interference graphs as some special classes of graphs. For example,
Andersson [Andersson 2003] and Pereira and Palsberg [Pereira and Palsberg 2005
have tested a large number of interference graphs in programs and found that the
majority of these graphs are chordal graphs. Bouchez [2005] and Hack et al. [2006]
demonstrated that the interference graphs for programs in the SSA form [Cytron
et al. 1989] are chordal graphs. An optimal graph coloring is thus possible.

7. CONCLUSION

We recognise that the array interference graphs in many embedded applications
can be abstracted as containing-related superperfect graphs, which are compara-
bility graphs. We present an SPM allocation approach for such array interference
graphs by combining interval coloring, a classic way for solving memory alloca-
tion problems, with a Chaitin-like approach for register allocation so as to intermix
spilling, splitting and coalescing, but for “virtual registers” of non-unit lengths, i.e.,
arrays. Our algorithm can achieve optimal results for a containing-related interfer-
ence graph when the size of a given SPM is no smaller than the clique number of the
graph. If the SPM is not large enough, our algorithm uses containment-motivated

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 39

heuristics to reduce the clique number of the graph by splitting or spilling some ar-
rays from the graph until all arrays remaining in the graph can be optimally placed
in SPM. Our algorithm has been implemented in SUIF/machSUIF and evaluated
using MediaBench and MiBench benchmarks. Experimental results show that our
interval-coloring approach can achieve the same or better results than our earlier
memory coloring approach even though memory coloring is admittedly more general
and may also be effective to programs with arbitrary interference graphs.

8. ACKNOWLEDGEMENTS
This work is supported by ARC grants DP0665581 and DP0881330.

REFERENCES

ANDERSSON, C. 2003. Register allocation by optimal graph coloring. In CC’03: Proceedings of
the 12th International Conference on Compiler Construction. Springer-Verlag.

AvissAar, O., BARuUA, R., AND STEWART, D. 2002. An optimal memory allocation scheme
for scratch-pad-based embedded systems. ACM Transactions on Embedded Computing Sys-
tems 1, 1, 6-26.

BANAKAR, R., STEINKE, S., LEE, B.-S., BALAKRISHNAN, M., AND MARWEDEL, P. 2002. Scratchpad
memory: design alternative for cache on-chip memory in embedded systems. In CODES’02:
Proceedings of the 10th International Symposium on Hardware/Software Codesign. ACM Press,
New York, NY, USA, 73-78.

BERGNER, P., DAHL, P., ENGEBRETSEN, D.; AND O’KEEFE, M. 1997. Spill code minimization via
interference region spilling. In PLDI ’97: Proceedings of the ACM SIGPLAN 1997 conference
on Programming +language design and implementation. ACM, New York, NY, USA, 287-295.

BoucHEz, F. 2005. Allocation de registres et vidage en mémoire. M.S. thesis, ENS Lyon.

BoucHEz, F., DARTE, A., AND RASTELLO, F. 2007. On the complexity of register coalescing. In
CGO ’07: Proceedings of the International Symposium on Code Generation and Optimization.
IEEE Computer Society, Washington, DC, USA, 102-114.

CHAITIN, G. J. 1982. Register allocation & spilling via graph coloring. In SIGPLAN’82: Pro-
ceedings of the SIGPLAN Symposium on Compiler Construction. ACM Press, New York, NY,
USA, 98-101.

Cuow, F. C. AND HENNESSY, J. L. 1990. The priority-based coloring approach to register alloca-
tion. ACM Transactions on Programming Languages and Systems 12, 4, 501-536.

CONFESSORE, G., DELL’OLMO, P., AND GIORDANI, S. 2002. An approximation result for the
interval coloring problem on claw-free chordal graphs. Discrete Applied Mathematics 120, 1-3,
73-90.

COOPER, K. D. AND S1MPSON, L. T. 1998. Live range splitting in a graph coloring register allocator.
In CC’98: Proceedings of the Tth International Conference on Compiler Construction. Springer-
Verlag, London, UK, 174-187.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.; AND ZADECK, F. K. 1989. An
efficient method of computing static single assignment form. In POPL’89: Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM
Press, New York, NY, USA, 25-35.

DETLEFS, D. AND AGESEN, O. 1999. Inlining of virtual methods. In 13th Furopean Conference
on Object-Oriented Programming (ECOOP’99). 258-278.

FABRI, J. 1979. Automatic storage optimization. In SIGPLAN’79: Proceedings of the SIGPLAN
Symposium on Compiler Construction. ACM Press, New York, NY, USA, 83-91.

FENG, H. 2007. Ilp formulation for spm allocation. M.S. thesis, University of New South Wales.

GAREY, M. R. AND JOHNSON, D. S. 1976. The complexity of near-optimal graph coloring. Journal
of the ACM 23, 1, 43-49.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and intractability: a guide to the theory of
NP-completeness. W. H. Freeman & Co., New York, NY, USA.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



40 . Li, Xue and Knoop

GEORGE, L. AND APPEL, A. W. 1996. Iterated register coalescing. ACM Transactions on Pro-
gramming Languages and Systems 18, 3, 300-324.

GERGOV, J. 1999. Algorithms for compile-time memory optimization. In SODA’99: Proceedings
of the 10th annual ACM-SIAM Symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 907-908.

GoLuMBIC, M. C. 2004. Algorithmic graph theory and perfect graphs. Annals of Discrete Math-
ematics.

GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D.; AusTIN, T. M., MUDGE, T., AND BROWN, R. B.
2001. Mibench: A free, commercially representative embedded benchmark suite. In WWC
’01: Proceedings of the Workload Characterization, 2001. WWC-/4. 2001 IEEE International
Workshop on. IEEE Computer Society, Washington, DC, USA, 3-14.

HAck, S., GRUND, D., AND GOOs, G. 2006. Register allocation for programs in ssa-form. In CC’06:
Proceedings of the 15th International Conference on Compiler Construction. Springer-Verlag.

Hiser, J. D. AND DAvIDSON, J. W. 2004. Embarc: an efficient memory bank assignment algo-
rithm for retargetable compilers. In LCTES’04: Proceedings of the ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems. ACM Press, 182—191.

Huang, Q., XUE, J., AND VERA, X. 2003. Code tiling for improving the cache performance of
PDE solvers. In International Conference on Parallel Processing. 615-625.

KANDEMIR, M., RAMANUJAM, J., IRWIN, J., VIJAYKRISHNAN, N., KADAYIF, I., AND PARIKH, A.
2001. Dynamic management of scratch-pad memory space. In DAC’01: Proceedings of the 38th
Conference on Design Automation. ACM Press, 690—695.

KIERSTEAD, H. A. 1991. A polynomial time approximation algorithm for dynamic storage allo-
cation. Discrete Mathematics 87, 2-3, 231-237.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: A tool for evaluating
and synthesizing multimedia and communications systems. In International Symposium on
Microarchitecture. 330-335.

L1, L., Gao, L., AND XUE, J. 2005. Memory coloring: a compiler approach for scratchpad mem-
ory management. In PACT’05: Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques. IEEE Computer Society, Washington, DC, USA,
329-338.

L1, L., NGUYEN, Q. H., AND XUE, J. 2007. Scratchpad allocation for data aggregates in super-
perfect graphs. SIGPLAN Not. 42, 7, 207-216.

PanDA, P. R., DutT, N. D., AND N1COLAU, A. 1997a. Architectural exploration and optimization
of local memory in embedded systems. In ISSS’97: Proceedings of the 10th International
Symposium on System Synthesis. IEEE Computer Society, 90-97.

PanDA, P. R., DutT, N. D., AND NicoLAU, A. 1997b. Efficient utilization of scratchpad memory
in embedded processor applications. In EDTC’97: Proceedings of the european Conference on
Design and Test. IEEE Computer Society, Washington, DC, USA, 7.

Panbpa, P. R., DurT, N. D., AND NIicOLAU, A. 2000. On-chip vs. off-chip memory: the data
partitioning problem in embedded processor-based systems. ACM Transactions on Design
Automation of Electronic Systems 5, 3, 682—704.

PARK, J. AND MOON, S.-M. 2004. Optimistic register coalescing. ACM Transactions on Program-
ming Languages and Systems 26, 4, 735-765.

PEMMARAJU, S. V., PENUMATCHA, S., AND RAMAN, R. 2005. Approximating interval coloring and
max-coloring in chordal graphs. Journal of Experimental Algorithmics 10, 2.8.

PEREIRA, F. M. Q. AND PALSBERG, J. 2005. Register allocation via coloring of chordal graphs. In
APLAS’05: Proceedings of the 3rd asia Symposium on Programming Languages and Systems.
315-329.

RAVINDRAN, R. A., NAGARKAR, P. D., DASIKA, G. S., MARSMAN, E. D., SENGER, R. M., MAHLKE,
S. A., AND BrROwN, R. B. 2005. Compiler managed dynamic instruction placement in a low-
power cod e cache. In Proceedings of the 3rd IEEE/ACM International Symposium on Code
G eneration and Optimization (CGO’03). 179-190.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



Scratchpad Memory Allocation via Interval Coloring . 41

SJODIN, J. AND VON PLATEN, C. 2001. Storage allocation for embedded processors. In CASES’01:
Proceedings of the International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems. ACM Press, 15-23.

STEINKE, S., WEHMEYER, L., LEE, B., AND MARWEDEL, P. 2002. Assigning program and data
objects to scratchpad for energy reduction. In DATE ’02: Proceedings of the conference on
Design, automation and test in Europe. IEEE Computer Society, Washington, DC, USA, 409.

UDAYAKUMARAN, S. AND BARUA, R. 2003. Compiler-decided dynamic memory allocation for
scratch-pad based embedded systems. In CASES’03: Proceedings of the International Confer-
ence on Compilers, Architecture and Synthesis for Embedded Systems. ACM Press, 276—286.

UDAYAKUMARAN, S.; DOMINGUEZ, A., AND BARUA, R. 2006. Dynamic allocation for scratch-
pad memory using compile-time decisions. ACM Transactions on Embedded Computing Sys-
tems 5, 2, 472-511.

VERMA, M., WEHMEYER, L., AND MARWEDEL, P. 2004a. Cache-aware scratchpad allocation algo-
rithm. In DATE’0/: Proceedings of the conference on Design, automation and test in Europe.
IEEE Computer Society, Washington, DC, USA, 21264.

VERMA, M., WEHMEYER, L., AND MARWEDEL, P. 2004b. Dynamic overlay of scratchpad mem-
ory for energy minimization. In CODES+1555°04: Proceedings of the 2nd IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis. ACM Press,
New York, NY, USA, 104-109.

WOLFE, M. 1989. Iteration space tiling for memory hierarchies. In Proceedings of the Third STAM
Conference on Parallel Processing for Scientific Computing. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 357-361.

XUE, J. 1997. On tiling as a loop transformation. Parallel Processing Letters 7, 4, 409-424.

XUE, J. 2000. Loop Tiling for Parallelism. Kluwer Academic Publishers, Boston.

ZEITLHOFER, T. AND WEsS, B. 2003. List-coloring of interval graphs with application to register
assignment for heterogeneous register-set architectures. ACM Signal Processing 83, 7, 1411—
1425.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 7, 2010.



