
The SawMill Framework for Virtual Memory Diversity

Mohit Aron
Department of Computer Science

Rice University

Jochen Liedtke and Kevin Elphinstone
System Architecture Group

University of Karlsruhe

Yoonho Park and Trent Jaeger
IBM T.J. Watson Research Center

Luke Deller
School of Computer Science and Engineering

University of New South Wales, Sydney

Abstract

We present a framework that allows applications to
build and customize VM services on the L4 microkernel.
While the L4 microkernel’s abstractions are quite power-
ful, using these abstractions effectively requires higher-level
paradigms. We propose thedataspaceparadigm which pro-
vides a modular VM framework. The modularity introduced
by the dataspace paradigm facilitates implementation and
permits dynamic configurability. Initial performance results
from a prototype are promising.

1 Introduction

We argue that a virtual-memory system (VM) designed
to support a wide variety of applications should have the
following features:

• VM diversity: Applications should be able to build
and customize the VM according to their needs. They
should have complete control over the VM policies.
The alternative that frequently occurs in practice is that
application programmers settle for a policy in the ker-
nel that comes closest to providing the right level of
service.

• Dynamic extensibility:Applications should be able to
dynamically extend the VM system. This calls for a
modular design that provides the following benefits:
(1) code reuse which facilitates implementation of VM
policies, (2) enables VM policies to be easily tuned to
applications needs, and (3) dynamic configurability.

• Performance: Increased functionality should not be
performance limited. Consider Mach user-level
pagers. Mach applications can use pagers to con-
trol how data is moved between physical memory and

backing store. This increased functionality is policy-
limited — i.e., pagers cannot control replacement pol-
icy — and performance-limited by the high cost of
Mach IPCs. Backing store is usually slow and hides
the high cost of Mach IPCs in page-fault handling per-
formance. If backing store is not slow, page-fault han-
dling performance will be limited by the cost of Mach
IPCs.

In this paper, we present the SawMill VM framework
in the context of the L4 microkernel [16, 17]. The SawMill
project itself aims to develop highly-configurableoperating-
system technology to address the complexity of building
and maintaining a variety of custom operating systems
[8]. The SawMill VM framework reconciles the conflicting
goals of functionality and performance in order to provide
flexibility to applications. The design provides a modular
and dynamically extensible framework that enables appli-
cations to (1) build application-specific VM services from
modular components and (2) dynamically plug these ser-
vices into the existing framework. Initial performance re-
sults with a prototype implementation are promising.

The rest of the paper is organized as follows. Section 2
describes the L4 microkernel and its abstractions for sup-
porting VM. It describes the L4pagersthat are responsi-
ble for handling page faults and describes their use in the
hierarchicalmanagement of address spaces. Section 3 in-
troduces the concept of adataspace— an unstructured con-
tainer of data — and shows how it augments L4 abstractions
to provide a dynamically extensible VM framework. In Sec-
tion 4 we discuss the types of components that we envision
for the VM framework. In Section 5 we evaluate the per-
formance of our VM framework prototype using popular
benchmarks. Section 6 presents related work, and Section 7
summarizes.

2 L4 Microkernel

In this section, we briefly present the abstractions and
primitives provided by the L4 microkernel. By means of
an example pager, we illustrate how the primitives can be
used, and how powerful as well as flexible they are. A de-
tailed discussion of the L4 microkernel’s API can be found
elsewhere [17].

2.1 VM primitives

The L4 microkernel provides two abstractions:threads
andaddress spaces. The thread is a unit of execution and is
associated to a unique address space. An address space and
the threads associated with it are collectively referred to as
a L4 task. The L4 threads can communicate with each other
using the IPC operations provided by the microkernel [16,
10]. At the hardware level, an address space is a mapping
that associates each virtual page with a physical page frame
or marks it non-accessible. An address space defines the
virtual memory of the threads associated with it.

For the purpose of page-fault handling, the microkernel
supports the notion of per-threadpagers. A pager in L4 is a
thread running in the same or different address space as the
faulting thread. The page fault is reflected to a pager thread
as an IPC, the reply for which is used by the pager to map a
page into the faulting thread’s address space.

The L4 microkernel permits hierarchical management of
its address spaces. In other words, a pager’s address space
might itself be managed by another address space. For such
a hierarchical scheme to work, we need one intial address
space. This address space, calledσ0, is created at system
start time and is idempotent to the physical memory of the
machine. Management of other address spaces is enabled
by means of the following microkernel operations:

Grant. A thread associated with an address space cangrant
any of its pages to another space, provided the recip-
ient agrees. The granted page is removed from the
granter’s address space and included into the grantee’s
address space. The important restriction is that instead
of physical page frames, the granter can only grant
pages that are already accessible to itself.

Map. A thread in an address space canmap any of its
pages into another address space, provided the recip-
ient agrees. Afterwards, the page can be accessed in
both address spaces. In contrast to granting, the page
is not removed from the mapper’s address space. Com-
parable to the granting case, the mapper can only map
pages that it itself can access.

Unmap. A thread in an address space canunmapany of
its pages. The unmapped page remains accessible in

the unmapper’s address space, but is removed from
all other address spaces that had received the page di-
rectly or indirectly from the unmapper. Although ex-
plicit consent of the affected address-space owners is
not required, the operation is safe, since it is restricted
to ones own pages. The users of these pages already
agreed to accept a potential unmapping, when they re-
ceived the pages by mapping or granting.

Page-fault handling is done outside the microkernel and
only thegrant, mapandunmapoperations are done inside.
The microkernel only reflects the page fault to the corre-
sponding pager thread by means of an IPC. The actual page-
fault handling is left upto the pager thread.

3

Grant
Map

Map

A

A

A

A

0

1

2

Figure 1. L4 microkernel map and grant oper-
ations.

Figure 1 shows example uses of the above mentioned
microkernel operations. Address spaceA0 maps a page into
address spaceA1 which further maps it into address space
A2 . The resulting mapping is shown as a thin line from
A0 to A1 and then toA2. If A0 were to unmap this page in
its address space, then the mapping would disappear inA1

as well asA2. However, ifA1 unmaps the mapping in his
address space, the mapping will disappear inA2’s address
space, but is retained inA0’s address space. The figure also
shows agrant operation. Address spaceA0 maps a page
into address spaceA3 which grants it into address spaceA2.
As a result, the mapping disappears inA3. The resulting
mapping is indicated as a thin line fromA0 to A2.

2.2 Constructing a Simple Example Pager

As an example to illustrate the mechanisms decribed
above, we describe the construction of a simple pager. It
manages only a single address space and uses a contigu-
ous partition of a disk for swapping. To make things a lit-
tle bit more complicated, the physical video frame buffer is
mapped one-to-one into the address space and is, of course,
not subject to swapping.

As shown in Section 2.1, a pager uses the pages in its
own address space and maps them into the faulting thread’s

address space. We will refer to the pages in the pager’s ad-
dress space asPagerPages. For easier understanding, the
reader might provisionally think of thePagerPagesas phys-
ical pages in this context. However, it must be noted that,
in fact, they arevirtual pages(of the pager’s address space).
Therefore, we do not use the termphysical pages.

Figure 2 shows the pseudo-code used by our simple ex-
ample pager to implement page-fault handling for its client
address space.ClientPagerefers to the faulting virtual page
in the client’s address space andSelectedPagerPagerefers
to thePagerPagethat the pager selects for mapping into the
ClientPage. FaultTypeindicates whether the page fault is
on a read or a write.

do
wait for page-fault ipc fromClientSpace;
if FaultAddresswithin frame buffer

then select corresponding frame bufferPagerPage
elif aPagerPageis associated withFaultAddress

then selectFaultAddress-associatedPagerPage
else select aPagerPageto be replaced ;

if SelectedPagerPagein use
then unmap (SelectedPagerPage) ;

write back (SelectedPagerPage)
fi ;
load required page intoSelectedPagerPage

fi ;
touch (SelectedPagerPage) ; /* see Section 2.3 */
map (SelectedPagerPage, FaultAddress, ClientSpace)

od .

Figure 2. A simple example pager.

As mentioned in Section 2.1, the microkernel notifies the
pager about the occurrence of a page fault in the client’s
address space using an IPC. This IPC also contains infor-
mation about the faulting page in the client’s address space
as well as whether the fault is upon a read or a write. If
there is currently noPagerPageassociated to the faulting
client page, the pager selects an arbitraryPagerPagefor re-
placement, writes it to swap if necessary, loads the required
contents into the selectedPagerPage, and then maps it to
the faultingClientPagein the client’s address space. Just
before mapping theSelectedPagerPage, the pager touches
it so as to ensure that it is mapped in its own address space
in case any underlying pager had unmapped it. Section 2.3
discusses this aspect in more detail.

The reader should note that aPagerPageis always un-
mapped before its contents are replaced. The corresponding
microkernel primitive unmaps it from all address spaces the
pager had mapped it, i.e. in our example from the client’s
space, but leaves it mapped inside the pager’s address space.

This ensures that the client does not inadvertently access in-
correct data if thePagerPagein question had been mapped
into the client’s address space earlier. As an effect, the pager
can access the page while the client will incur a page fault
if it tries to do the same.

An advantage afforded by our example pager is that in-
formation regarding the association between aClientPage
and the correspondingPagerPageis kept internal to the
pager in a page table data structure. The pager can then
choose any suitable page table organization.

2.3 Hierarchical Pagers

We use the example pager shown in Section 2.2 to show
how two such pagers can be stacked. This is possible be-
cause our example pager did not use physical pages. Its
PagerPageswere virtual pages of the pager’s address space.
Thus stacking two such pagers is easily possible.

As shown in Figure 3, the upper pagerP1 is then the
client of the underlying pagerP0. ThePagerPagesof P1 are
the virtualClientPagesfor P0. Stacking one example pager
on top of another one doesn’t really extend the functional-
ity of the first pager. Nevetheless, it is a simple and good
example for illustrating how hierarchical pagers work and
how they must be constructed to be independent of their po-
tentially underlying pagers. Later in this paper (Section 4),
we present really meaningful, but also more complicated,
hierarchical pagers that extend each others semantics sig-
nificantly.

App fault

App

P

P0

1

own page and
faults

then P
1 0

1

P touches its P maps

Figure 3. Nested pagers.

As long asP1’s PagerPagesare all mapped intoP1’s ad-
dress space,P0 does obviously not affectP1. The fact that
P1’s pager pages may have different physical than virtual
addresses is transparent toP1 since it never sees the physi-
cal addresses.

The situation becomes more complicated when some of
P1’s pager pages are not mapped, i.e. have not been used
before or have been unmapped byP0 for some reason. As-
sume thatP1 receives a page fault, finds an appropriate

PagerPage, and maps it into its client. What happens if that
PagerPageitself was not mapped intoP1’s address space?

To answer the question, we must understand that L4’s
map primitive passes existing access rights from the map-
per to the mappee. The mapper can narrow the access rights
(e.g. to read-only) but he can never grant the mappee more
rights than the mapper possesses itself on the page. Con-
sequently, mapping an unmapped page (no access rights at
all) unmaps the page in the mappee’s address space as well.

To ensure that itsPagerPageis mapped into its own ad-
dress space when mapping it into the client’s address space,
the example pager always touches its ownPagerPageprior
to mapping it into the client; ifP1’s PagerPageis currently
unmapped, touching raises a page fault inP1. The lower-
level pagerP0 will handle it transparently toP1, potentially
swapping in a page from theP0-disk. Afterwards,P1’s
PagerPageis mapped intoP1 so that the subsequent map
operation ofP1 into its client space will succeed with a high
probability. If the just mappedPagerPageis unmapped by
P0 a second time between touching and mapping (unlikely
but possible), we will see another page fault at the client,
touching and mapping byP1 , and so forth. Depending
on P0’s qualities, the game will terminate sooner or later.
Without touching, it would never terminate.

3 An Extensible VM Framework

Pagers as described above, are a low-level and strongly
microkernel-related concept. Using the concept effectively
requires more elaborate higher-level paradigms and con-
cepts. Any such framework should (a) pass all the flexi-
bility and power of the underlying pager concept to its ap-
plications, (b) ensure extensibility by means of different in-
stances and types of those “higher-level pagers,” (c) ensure
interoperability between them, and (d) offer customized se-
mantics for a wide range of application types.

As an instance of such a framework, we present
SawMill’s dataspaceparadigm, the design and implemen-
tation of an according framework, and some examples. The
system described is a true user-level system, located out-
side the microkernel, and uses the low-level operations de-
scribed in Section 2 to provide virtual memory to applica-
tions.

3.1 The Concept of Dataspaces

The virtual-memory framework is based on dataspaces1.
A dataspace is an unstructured data container. In other
words, the term dataspace abstracts any system entity that
contains data. Examples for dataspaces are files, anony-
mous memory, frame buffers, etc.

1The term “Dataspace” was coined by L3 developers [4].

Dataspaces can beattachedto regions of an address
space. Accessing the virtual memory of a region thus ef-
fectively accesses the dataspace associated with the region.
In Figure 4, address spaceA1 has two regions to which the
dataspacesds1 andds2 are attached.ds2 is additionally
attached to a region ofA2.

2

Region

Manager’s
Address space

A A

Dataspacesds ds2 1

1

Figure 4. Relationship between address
spaces, dataspaces, and regions.

The region mapis a per-address space object that keeps
track of the attached dataspaces and translates any virtual
address to a 3-tuple(dataspace manager, dataspace id,
offset). Every page fault is captured by the region map. It
translates the faulting address and then forwards the page
fault, including dataspace id and offset, by means of IPC
to the dataspace manager that corresponds to the faulting
address.

Dataspace managersimplement dataspaces. Each such
manager determines the semantics of the dataspaces that
it offers. For instance, one manager might offer physical
frame buffers as dataspaces, another one anonymous paged
memory, a third one Unix files, a fourth one MSDOS files, a
fifth one distributed shared memory dataspaces. By attach-
ing those dataspaces to address space regions, the managers
also define the semantics of the address space regions to
which their dataspaces are currently attached.

In L4 microkernel terms, dataspace managers are pagers.
Typically, they cache the contents of dataspaces in their own
virtual address-spaces as shown in Figure 4 and use the mi-
crokernel’s VM operations (presented in Section 2) to sat-
isfy application page faults.

As discussed in Section 2, the L4 microkernel binds
pagers to threads. The pager is then responsible for servic-
ing page faults generated by the thread. In our framework,
the dataspace manager is the pager and is bound to a re-
gion. The region map is declared the thread’s pager, but the
dataspace manager services the page fault. Binding pagers
to regions is more conventional but less flexible than bind-
ing pagers to threads. Binding pagers to threads allows the
construction of simple pagers such as the pager presented in
Section 2.2 without any region bookkeeping overhead.

It is to be noted that the dataspace concept is a higher-
level concept in that the microkernel is unaware of dataspa-
ces. Attaching a dataspace is a logical operation that pro-
vides access to the dataspace through the virtual memory
of the application. The actual series of steps leading from
the attachment of a dataspace to the actual accessing of its
content by the application can be enumerated as follows:

1. An application attaches a dataspace to a virtual-
memory region.

2. The application accesses a page in the virtual-memory
region — this generates a page fault since the virtual
memory is as of yet unmapped.

3. The region map is notified of the page fault by an IPC.

4. The region map translates the faulting address to(da-
taspace manager,dataspace id, offset).

5. The region mapping forwards the page fault includ-
ing dataspace id and offset to the appropriate dataspace
manager by another IPC.

6. The dataspace manager caches the contents of the da-
taspace in a mapped virtual-memory page in its own
address space.

7. This VM page is mapped into the applications address
space using the microkernel’s map or grant operations.

3.2 Operations On Dataspaces

All dataspace managers must supportidentify, at-
tach/open, detach/ close, andinterrogatedescribed below.
Share, copy, transfer, create, anddeleteare optional opera-
tions.

Identify: Request for a dataspace id. The manager returns
a dataspace id. The information provided in the request
is manager-dependent. For example, the request can
contain an id such as a file descriptor or a path name.

Attach/Open: Opens a dataspace for access and attaches it
to a region. The request can also contain open meth-
ods such as read-only or read-write. The request can
either work on a dataspace id that was priorily deliv-
ered by anidentifyoperation, or it can work on, e.g., a
file name and implicitlyidentify the dataspace. After
an attach, the region mapping forwards all page faults
in that region to the dataspace manager. The dataspace
manager resolves the faults withmapor grant opera-
tions.

Detach/Close: Removes a region-dataspace mapping. Any
mapped pages are unmapped. The dataspace is no
longer accessible, but the dataspace id remains valid
and can be used, e.g., for another open.

Interrogate: Request to determine which operations and
flavors of operations the manager supports. For exam-
ple, it is unlikely a dataspace manager that provides a
video frame buffer will support the copy operation.

Share: Request to allow a dataspace to be shared with an-
other task. After the share operation, the other task is
allowed to open the dataspace. The sharing semantics
are manager-dependent. For example, the manager can
offer read-only sharing requests.

Copy: Request to create a copy of an existing dataspace in
the same or different manager. The manager returns
the dataspace id of the copy. Managers are free to de-
fine the semantics of the copy. For example, copying
can be performed lazily.

Transfer: Request to transfer ownership of a dataspace to
another task. The dataspace is detached and closed in
the transferring task, and can then be opened and at-
tached in the target task.

Create: Request to create a dataspace. The request con-
tains an id such as a file descriptor or path name. There
is no effect on the requestor’s address space.

Delete: Request to delete a dataspace specified by a data-
space id. All attachments are invalidated.

3.3 Extensibility of Dataspace Semantics

Existing dataspace semantics can be modified in two
ways. Thetransferoperation allows applications to dynam-
ically move dataspaces. This allows applications to layer
additional semantics on existing dataspaces by stacking da-
taspace managers. Applications can also replace semantics
of existing dataspaces.

Figure 5 shows the dynamic stacking of dataspace man-
agers. Before the managers are stacked, the application
uses a dataspace from dataspace manager 1. To stack the
managers, the dataspace is transferred from the application
to dataspace manager 2 (not shown). The application then
re-{attaches/opens} the dataspace from dataspace manager
2. Dataspace manager 2 is now free to extend the seman-
tics of the dataspace. For example, the manager can in-
crease/decrease accessibility, add lazy copying, or add per-
sistence.

Figure 6 shows how an application can replace the se-
mantics of existing dataspaces. Suppose dataspace manager
1 provides swappable, anonymous memory and dataspace
manager 2 provides non-swappable, anonymous memory.
Moving a dataspace from 1 to 2 is a pinning operation.
Moving a dataspace from 2 to 1 is an unpinning operation.

L4Linux [10], a port of Linux to the L4 microkernel,
provides an interesting opportunity to experiment with a

Manager 1

Before transfer After transfer, re−{attach/open}

Application

Dataspace
Manager 2

Dataspace

Figure 5. Extending the semantics of a data-
space by dynamically stacking managers.

After transferBefore transfer

Application

Dataspace
Manager 2

Dataspace
Manager 1

Figure 6. Modifying the semantics of a da-
taspace by moving the dataspace between
managers.

large system. L4Linux acts as a pager for L4Linux appli-
cations. Placing L4Linux within our framework would al-
low L4Linux applications to arbitrarily extend L4Linux VM
semantics. This has several interesting possibilities. One
possibility is that existing semantics could be preserved and
additional semantics such as persistence could then be lay-
ered. Another possibility is that existing semantics could
be stripped to a minimum and applications could then layer
only the semantics it deems necessary.

4 VM Diversity

Different instances and types of dataspace managers will
ensure the extensibility of the VM framework. At this time,
we envision three types of memories provided by dataspace
managers — basic memories, paged memories, and special-
ized memories.

Basic memories represent physical memories and in-
clude main memory, colored memory, and device memory.
A main memory manager can be thought of as aσ0 data-
space manager. It controls the allocation of main memory

by exporting dataspaces that map directly to main mem-
ory. A dataspace provided by a colored memory man-
ager represents physical page-frames which select the same
cache bank. Such dataspaces provide a user-level cache-
partitioning mechanism. Cache-partitioning is useful in
real-time systems where task switches disrupt cache work-
ing sets, making execution times unpredictable [18]. A
video frame buffer is an example of device memory. The
primary responsibility of a device memory manager is ac-
cess mediation.

Paged memories include anonymous memory, file sys-
tems, and compressed memory. Anonymous memory is
zero-filled memory backed by secondary storage, usually
disk. Compressed memory is useful in memory-constrained
devices and can be used with a wide variety of other mem-
ories including anonymous memory and file systems.

Specialized memories include pinned memory and per-
sistent memory. Traditional pinning is static. Pages are
pinned forever or until the user unpins the pages. Quotas are
used to control static pinning. In [19] we propose dynamic
pinning. In this scheme, pages are pinned for short periods
of time. When and how many pages are pinned is deter-
mined dynamically. Both static and dynamic pinning can
be implemented by a dataspace manager. Within our frame-
work, adding persistence to a dataspace is just a matter of
inserting a persistent dataspace below the dataspace as in
Figure 5. The manager can periodically write the dataspace
to secondary storage or employ an incremental strategy.

5 Performance Analysis

We have implemented a prototype that consists of a
main memory manager and an anonymous memory man-
ager. The managers implementidentify, attach/open, de-
tach/close, andinterrogate.

Table 1 compares the time to execute the Appel-Li VM
primitives [2]. The times for OSF/1, Mach and SPIN taken
from [3] were measured on a 133MHz DEC Alpha. The
numbers for SawMill were measured on a 100MHz Pen-
tium which is roughly comparable to a 133MHz DEC Al-
pha. The times for SPIN correspond to kernel extensions in-
voking the virtual-memory system and would be 4µs more
expensive had they been invoked from user-level. The times
for SawMill on the other hand correspond to VM usage by
user-level applications.

TheProt primitive measures the time to increase the pro-
tection of a single page. TheProt100andUnprot100mea-
sure the time to increase and decrease the protection respec-
tively over a range of 100 pages.Trapmeasures the latency
between a page fault and the time when a user-specified
handler executes.Fault measures the total latency perceived
by the application in receiving a page fault, enabling access
to the page within the handler and resuming the faulting

Table 1. VM primitive performance. Times
shown are in µs.

OSF/1 Mach SPIN SawMill

Prot 45 106 16 22
Trap 260 185 7 22
Fault 329 415 29 22

Prot100 1041 1792 213 51
Unprot100 1016 302 214 25

Appel1 382 819 39 22
Appel2 351 608 29 25

thread. TheAppel1andAppel2primitives measure a com-
bination of trap and protection changes.Appel1measures
the time to fault on a protected page, enable access to the
page within a handler and protect another page within the
handler.Appel2measures the time to protect 100 pages and
faulting on each one, unprotecting the page in the handler.
Table 1 shows the average cost per page forAppel2.

The results in Table 1 indicate the SawMill VM frame-
work is capable of achieving virtual memory performance
at user-level that is comparable to SPIN’s performance
with kernel extensions. The significantly lower cost of the
SawMill Prot100andUnprot100is attributed to the L4 mi-
crokernel’s capability of being able to change protection at
the granularity of superpages. The protection of 100 con-
tiguous virtual pages is accomplished by changing the pro-
tection of just three superpages of 64, 32, and 4 machine-
size pages.

6 Related Work

Numerous efforts have been made to provide
application-specific VM. Mach [25] user-level pagers
allow applications to control how data is transferred
between physical memory and backing store. User-level
pagers were later incoporated by Chorus [1] and Spring
[13]. Premo pagers [20] and extensible object-oriented
virtual-memory [14] extended Mach pagers by allowing
pagers to implement replacement policies. HiPEC [15]
allows applications to control replacement policies by
downloading policies written in a restricted language to
the kernel. Sechrest [24] and V++ page-cache managers
[11] extended pagers even further by allowing pagers to
implement replacement and placement policies. Sechrest
and V++ page-cache managers also moved allocation
policies out of the kernel.

SPIN [3] attempts to provide application-specific VM
through kernel extensions. However, downloading un-
trusted user code into the kernel safely remains a difficult
and unavoidable problem [5]. Exokernel [7, 12] takes a
radically different approach in that its kernel exports the un-

derlying hardware safely to applications that can implement
VM in user-level libraries. AVM [6] shares some of the
same goals as our work. However, AVM does not provide
any framework to facilitate the construction and extension
of VM services.

Grasshopper [22] is the only other operating system we
know that permits hierarchical address space mappings.
Grasshopper provides containers which are similar to da-
taspaces, however, container managers do not have con-
trol over all VM policies and lack well-defined interfaces.
While our work focuses on VM, it is very similar in phi-
losophy to the extensible network protocol framework pro-
posed by O’Malley [21] and file system stacking research
[9, 23]. Both bodies of research demonstrated that a modu-
lar framework promotes code reuse and allows the applica-
tion programmers to successfully configure services to their
needs. We are hoping to demonstrate similar points within
the context of VM.

7 Summary

We have presented a virtual-memory framework that is
capable of providing application specific policies that can
be dynamically extended to suit application needs. Bench-
mark results from a prototype implementation indicate that
our that the proposed framework is capable of affording per-
formance that contemporary research implementations have
only been able to achieve through kernel extensions.

References

[1] V. Abrossimov, M. Rozier, and M. Gien. Virtual mem-
ory management in Chorus. InWorkshop on Progress
in Distributed Systems and Distributed Systems Man-
agement. Springer-Verlag, April 1989.

[2] A. Appel and K. Li. Virtual memory primitives for
user programs. InASPLOS. ACM, April 1991.

[3] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fi-
uczynski, D. Becker, S. Eggers, and C. Chambers. Ex-
tensibility, safety and performance in the SPIN oper-
ating system. InSOSP. ACM, December 1995.

[4] U. Beyer, D. Heinrichs, and J. Liedtke. Dataspaces in
L3. In Mini and Microcomputers and Their Applica-
tions. The International Society for Mini and Micro-
computers, 1988.

[5] P. Druschel, V. Pai, and W. Zwaenepoel. Extensible
kernels are leading OS research astray. InHotOS-VI.
IEEE, May 1997.

[6] D. Engler, S. Gupta, and M. Kaashoek. AVM:
Application-level virtual memory. InHotOS-V. IEEE,
May 1995.

[7] D. Engler, M. Kaashoek, and J. O’Toole Jr. Exoker-
nel: An operating system architecture for application-
level resource management. InSOSP. ACM, Decem-
ber 1995.

[8] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen
Liedtke, Kevin Elphinstone, Volkmar Uhlig, Jonathon
Tidswell, Luke Deller, and Lars Reuther. The sawmill
multiserver approach. InSIGOPS European Work-
shop. ACM, September 2000.

[9] R. Guy, J. Heidemann, W. Mak, T. Page Jr., and
G. Popek. Implementation of the Ficus replicated file
system. InUSENIX. USENIX, June 1990.

[10] H. Härtig, M. Hohmuth, J. Liedtke, S. Sch¨onberg, and
J. Wolter. The performance ofµ-kernel-based sys-
tems. InSOSP. ACM, October 1997.

[11] K. Harty and D. Cheriton. Application-controlled
physical memory using external page-cache manage-
ment. InASPLOS. ACM, October 1992.

[12] M. Kaashoek, D. Engler, G. Ganger, H. Brice˜no,
R. Hunt, D. Maziéres, T. Pinckney, R. Grimm, J. Jan-
notti, and K. Mackenzie. Application performance and
flexibility on Exokernel systems. InSOSP. ACM, Oc-
tober 1997.

[13] Y. Khalidi and M. Nelson. The Spring virtual memory
system. Technical Report SMLI TR-93-09, Sun Labs,
February 1993.

[14] K. Krueger, D. Loftesness, A. Vahdat, and D. Ander-
son. Tool for the developement of application-specific
virtual memory. InOOPSLA. ACM, October 1993.

[15] C. Lee, M. Chen, and R. Chang. HiPEC: High per-
formance external virtual memory caching. InOSDI.
USENIX, November 1994.

[16] J. Liedtke. Improving IPC by kernel design. InSOSP.
ACM, December 1993.

[17] J. Liedtke. Onµ-kernel construction. InSOSP. ACM,
December 1995.

[18] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled
cache predictability for real-time systems. InReal-
time Technology and Applications Symposium. IEEE,
May 1997.

[19] J. Liedtke, V. Uhlig, and O. Hers. How to schedule
unlimited memory pinning of untrusted processes or
provisional ideas about service neutrality, December
1998. Submitted to HotOS-VII.

[20] D. McNamee and K. Armstrong. Extending the Mach
external pager interface to accomodate user-level page
replacement policies. InMach Workshop. USENIX,
October 1990.

[21] S. O’Malley and L. Peterson. A dynamic network ar-
chitecture.TOCS, 10(2), May 1992.

[22] J. Rosenberg, A. Dearle, D. Hulse, A. Lindstr¨om, and
S. Norris. Operating system support for persistent and
recoverable computations.CACM, 39(9), September
1981.

[23] D. Rosenthal. Evolving the vnode interface. In
USENIX. USENIX, June 1985.

[24] S. Sechrest and Y. Park. User-level physical mem-
ory management for Mach. InMach Symposium.
USENIX, November 1991.

[25] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Ep-
pinger, J. Chew, W. Bolosky, D. Black, and R. Baron.
The duality of memory and communication in the im-
plementation of a multiprocessor operating system. In
SOSP. ACM, November 1987.

