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Abstract. L4 is a small microkernel that is used as a basis for several operat-
ing systems. L4 seems an ideal basis for embedded systems that possess and use
memory protection. It could provide a reliable, robust, and secure embedded plat-
form. This paper examines L4’s suitability as a basis for trustworthy embedded
systems. It motivates the use of a microkernel, introduces L4 in particular as an
example microkernel, overviews selected embedded applications benefiting from
memory protection (focusing mostly on security related applications), and then
examines L4’s applicability to those application domains and identifies issues
with L4’s abstractions and mechanisms.

1 Introduction

Microkernels have long been espoused as a basis for robust extensible operating sys-
tems. A small, efficient, flexible kernel that provides high assurance as to its correctness
provides the foundation of the system. System services are provided by applications
running on the microkernel, normal applications receive those services via interacting
with the system applications via interprocess communication. Such a system is modu-
lar, robust as faults are isolated within applications, flexible and extensible via remov-
ing, replacing, or adding system service applications. The efficiency of such a system
structure has been demonstrated to be sufficiently close to their monolithic counter-
parts [9], largely as result of improved efficiency of the microkernel’s fundamental
primitives [19, 26].

There are strong arguments for applying the microkernel approach to systems con-
structed in the embedded space. Embedded systems are becoming more powerful and
feature the memory protection required to facilitate constructing protected systems, as
exemplified by personal digital assistants, digital cameras, set-top boxes, home net-
working gateways and mobile phones. These platforms are no longer sufficiently re-
source constrained to warrant a built-from scratch, unprotected construction approach
that forgoes the robustness and re-usability of basing development on an operating sys-
tem.

An operating system for such embedded devices must be modular to ensure its ap-
plicability to a wide range of devices. It must the reliable as even in the absence of
safety critical or mission critical requirements, embedded systems are expected to per-
form their function reliably, and usually do not have a skilled operator present to correct
their malfunctions. It must be robust in the presence of external and local influences,
including those of a malicious nature, given a device’s potential presence on the Internet



or the ability to download and execute arbitrary code. It should provide strong integrity,
confidentiality, and availability guarantees to applications on the embedded device both
to protect data supplied by the user, and data and applications of the manufacturer, or
content and service providers.

These requirements are strong motivation for a microkernel-like approach, as op-
posed to a monolithic approach to constructing an embedded operating system. A single
monolithic operating system that contains all OS functionality is more difficult to assure
as it is both larger and requires all OS functionality to be assured at the minimum level
required for the most critical component. Fault-isolation is non-existent. Inevitable OS
extensions make the situation worse, even to the point of allowing a well designed base
system to be compromised or malfunction.

The L4 microkernel might provide a capable basis for an embedded operating sys-
tem. It is both efficient, flexible, and small. It is currently undergoing formal verifica-
tion [29] which would provide a high degree of assurance of correctness. One of its
goals is to provide a basis for OS development for as many classes of systems as possi-
ble: “all things to all people”. It has been successfully used in systems ranging from the
desktop [9], to those with temporal requirements [8], virtual machine monitors [17], to
high-performance network appliances [20]. Such broad success is strong motivation for
exploring L4’s application to the embedded space.

In the paper, we examine L4’s applicability to the embedded space, and hence a po-
tential direction in its future evolution. We first provide some background to L4 in Sec-
tion 2. When the go on to examine selected application domains for embedded systems
that would stand to benefit significantly from a protected operating system in Section 3,
and summarized important properties required of an operating system in those domains.
In Section 4, we critically examine L4’s applicability to constructing systems with the
identified properties by examining relevant conceptual model in both past and current
versions of L4.

2 L4 Background

L4 is a small microkernel that aims to provide a minimal set of mechanisms suitable
for supporting a large class of application domains. The basic abstractions provided are
address spaces and threads. A classical process is the combination of the two. Interpro-
cess communication (IPC) is the basic mechanism provided for processes to interact.
The IPC mechanism is synchronous, threads themselves are the sources and destinations
of IPC, not the process (address spaces) that encapsulates them. The IPC mechanism
has a basic form and an extended form. The basic form simply transfers up to 64 words
between source and destination in a combination of processor registers and memory
dedicated to the purpose, with the exact combination being architecture specific. The
extended form of IPC consists of typed messages sent via the basic mechanism which
are interpreted by the kernel as requests to transfer memory buffers or establish virtual
memory regions.

Address space manipulation is via the map, grant, and unmap model as illustrated in
Figure 1. The figure consists rectangular boxes representing address spaces. σ 0 initially
possesses all non-kernel physical memory; A is an operating system server; C and D are



two clients of A. L4 implements a recursive virtual address space model which permits
virtual memory management to be performed entirely at user level. It is recursive in the
sense that each address space is defined in term of other address space with initially all
physical memory being mapped within the root address space σ 0, whose role is to make
that physical memory available to new address spaces (in this case, the operating system
server A and another concurrently support OS B). A’s address space is constructed by
mapping regions of accessible virtual memory from σ 0’s address space to the next such
that rights are either preserved or reduced.

Memory regions can either be mapped or granted. Mapping and granting is per-
formed by sending typed objects in IPC messages. A map or grant makes the page
specified in the sender’s address space available in the receiver’s address space. In the
case of map, the sender retains control of the newly derived mapping and can later use
another primitive (unmap) to revoke the mapping, including any further mappings de-
rived from the new mapping. In the case of grant, the region is transferred to the receiver
and disappears from the granter’s address space (see Figure 1).

Page faults are handled by the kernel transforming them into messages delivered
via IPC. Every thread has a pager thread associated with it. The pager is responsible
for managing a thread’s address space. Whenever a thread takes a page fault, the kernel
catches the fault, blocks the thread and synthesizes a page-fault IPC message to the
pager on the thread’s behalf. The pager can then respond with a mapping and thus
unblock the thread.

This model has been successfully used to construct several very different systems as
user-level applications, including real-time systems and single-address-space systems
[5, 9, 10, 21].
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Fig. 1. Virtual Memory Primitives

Device drivers are outside of the kernel. The kernel enable drivers to run as normal
applications by allowing the registers (or ports) required for device access to be mapped
into the address space (or port space) of applications. Device interrupts are transformed
into messages from apparent kernel threads, they are acknowledged by sending a reply
IPC to the identity of the sending kernel thread.



We can see that the basic concepts and mechanisms L4 provides are few, while at
the same time, are quite powerful enablers of higher-level systems constructed on the
kernel. The few concepts and mechanisms (including the lack of device drivers in the
kernel) means L4 is relatively small kernel (10,000 lines of code) that could be a highly
assured basis of an embedded system.

3 Future Embedded Applications

In this section we examine three application domains of embedded systems: depend-
able systems, secure systems, and digital rights management. These application do-
mains stand to benefit significantly when the embedded operating system can provide
protection between components in the system.

3.1 Dependable Systems

Dependable systems are systems where there is justifiable grounds for having faith in
the service the system provides [15]. Dependability is a desirable property of many past,
existing and future embedded systems. Methods for obtaining dependable systems can
be broadly classified [16] into (or combinations of) the following:

fault prevention where fault occurrence or introduction is avoided,
fault tolerance where expected service is maintained in the presence of faults,
fault removal where the number or impact of faults is reduced,
fault forecasting where the number of present and future faults, and their consequences,

is estimated.

As dependable embedded systems are scaled up in terms of overall complexity, the
above methods become increasingly difficult to apply. It is essential that it be possible to
construct and validate subsystems independently to make the problem more tractable,
while at the same time ensure that the validated properties of subsystems remain when
they are composed as a whole. This approach is especially applicable to independent
subsystems and leads to the idea of partitioning or a partitioning kernel [23].

A partition is an execution environment in which an application is isolated from all
other activities on the system. One can consider a partition a virtual machine that pro-
vides exactly the same level of service to its application independent of other activities
on the system. Partitions provide impenetrable barriers between subsystems in order to
guarantee fault containment within a partition. If faults can propagate between inde-
pendent subsystems, the problem of assuring dependability becomes significantly more
difficult. One study reported that the length of fault chains (the sequence of faults lead-
ing to a failure) was two or more 80% of the time, and three or more 20% of the time [6].
When fault chains can cross subsystem boundaries it creates extremely complex failure
modes that should be avoided if possible.

Partitioning can be divided into spatial and temporal partitioning. Rushby [23] de-
fines them as follows.



Spatial partitioning must ensure that software in one partition cannot change the soft-
ware or private data of another partition (either in memory or in transit) nor com-
mand the private devices or actuators of other partitions.

Temporal Partitioning must ensure that the service received from shared resources
by the software in one partition cannot be affected by the software in another parti-
tion. This includes the performance of the resource concerned, as well as the rate,
latency, jitter, and duration of scheduled access to it.

One method for achieving spatial partitioning is to use hardware-based memory
protection available on a processor complete with memory management unit (MMU).
The MMU can be used to control access to physical memory to ensure partitions bound-
aries are enforced. Note that this assumes that the hardware itself is dependable which
in some applications (or hardware arrangements) may not be warranted. A partitioning
kernel needs to ensure its own memory is inaccessible, and also enforce a partitioning
access control policy between partitioned subsystems. This is analogous to secure sys-
tems enforcing a mandatory access control policy which is a mature, well understood
field of research.

Temporal partitioning is a much more challenging property to enforce. While re-
source sharing can be minimized by design, some resource sharing is unavoidable, such
as processor time, cache memory, the translation look-aside buffer (TLB), etc. Tempo-
ral partitioning is related both to scheduling and security. The scheduling discipline has
a direct role in processor time sharing, and indirectly to cache and TLB sharing, and
potentially on other shared resources (disk, network bandwidth, etc.). From the field of
security, the existence of covert timing channels implies the existence of temporal parti-
tion violations. Hence, various techniques for identifying covert timing channels (such
as shared resource matrix methodology [14]) are applicable for detecting potential vio-
lations of temporal partitioning. However, unlike covert timing channels whose utility
can be reduced or practically removed via adding noise to the channel [11], temporal
partitioning is violated by any external partition-induced variance in temporal obser-
vation of a service. It is clear for the security literature that non-trivial covert-timing-
channel-free systems have proved elusive, which implies complete temporal partition-
ing, while extremely desirable, will prove at least equally elusive.

L4 has been examined previously in the context of dependable systems [3]. It was
observed that it has shortcomings in the areas of real-time predictability and in com-
munication control. Solutions that address these issues are proposed that improve the
situation, but do not completely solve the partitioning problem in the context of L4.
The most notable omission from the work is any proposals for kernel resource manage-
ment. Rather than introduce and analyze L4’s partitioning issues here, we postpone the
discussion to Section 4.

3.2 Secure Systems

A secure system is a system that can ensure some specific security policy is adhered
to, usually expressed in terms of confidentiality, integrity, and availability. Security in
embedded systems differs from tradition secure systems in several ways as described
by Ravi et. al. [22]. Secure embedded systems are constrained in the processing power



available, and hence there is a trade-off between the strength of cryptographic algo-
rithms employed by a device and the bandwidth of communications. Battery life is
limited and thus security-related processing also limits a devices availability. Embed-
ded systems are potentially deployed in hostile environments, which requires tamper
resistance to defend against potentially sophisticated and invasive attacks. An embed-
ded operating system is deployed in a wide variety of application domains, resulting in
the need to support a wide variety of hardware and software configurations, which in
turn make assurance of security properties more difficult.

Security in embedded systems has received renewed interest with the proliferation
of personal computing devices such as PDAs, mobile phones, and the like. Embed-
ded systems vendors have to balance the “apparent” power, features and flexibility the
software platform provides to device users against the likelihood of devices being com-
promised by the users themselves or third-parties. The recent Symbian “cabir” worm
demonstrates that embedded environments are not immune to the current mayhem that
exists in the desktop personal computer market [1]. A substantial change is required
from the large, monolithic, feature-rich, OS and application development cycle. An ap-
proach that considers security systematically and holistically is required to avoid history
repeating itself.

One approach to address some of the issues described above is the small kernel,
small components and small interfaces approach. This is another way of stating the
principle of least privilege and the principle of economy of mechanism [24]. The oper-
ating system kernel typically has full privilege on the system it supervises. Applying the
above principles strongly argues for a small kernel, with a small, well-understood inter-
face, with careful management of the resources it arbitrates over. Such a kernel is also
more conducive to high levels of assurance compared to larger, more complex kernels.
A small kernel with appropriate mechanisms enabling security-policy enforcement can
provide a system basis that warrants a high degree of confidence in operation.

A small kernel does not necessarily provide a secure system. The same princi-
ples that motivated the adoption of a small kernel must be applied holistically to the
entire system. Such a system would consist of small components implementing well-
understood functionality with the minimum privilege required to do so. The components
would provide their services through well understood small interfaces. Small compo-
nents may also provide the flexibility required of embedded system to be deployed in
widely varying application domains via component composition, substitution, and sub-
traction.

3.3 Digital Rights Management

The Internet is enabling new methods of content distribution for the entertainment in-
dustry beyond traditional methods such as physical media (DVD, CD), or broadcast or
cable TV. However, the Internet is also dramatically reducing the barrier to wide-scale
copyright infringement. For content providers to embrace the Internet as a distribution
medium, they require confidence that the users of their content adhere to the conditions
of use of the content. Conditions of use can be represented by a set of rights the end user
receives with respect to the content delivered to him. Ideally, content providers would
like guarantees that the set of rights granted for content are enforced, and restricted to



only those authorized. The concept of specifying, enforcing, and limiting rights associ-
ated with digital content is encompassed by the term digital rights management (DRM).
Note that we have used the entertainment industry as the motivator for DRM, however
businesses requiring access-right enforcement for their own internal documents also
stand to benefit from digital rights management.

To elaborate on the future role L4 might play in the DRM space, an introduction to a
typical generic DRM architecture is warranted. Note that many methods can be used to
directly or indirectly perform digital rights management (e.g. watermarking), however
we will focus on the architecture depicted in Figure 2.

Fig. 2. General DRM architecture

Figure 2 depicts a content provider complete with content and a policy with respect
to that content which he wishes respected. The user possesses a device upon which he
wishes to view the content. The are many facets to this picture which require solutions
prior to the user viewing the content.

– The content provider must be able to specify the policy he wishes respected. XrML
[2] is one emerging standard for expression of digital rights, however for the pur-
poses of this paper we assume a policy exists, is expressible, and interpretable by
software on the end-user device.

– The user (or user’s device) must be authenticated to the content provider. Again, we
do not focus on the issue of authentication and simply assume it can be achieved.

– The content (and policy) must be securely transfered to the device. To prevent the
content from being stolen by a third party (or even the user itself), the content is
usually encrypted to ensure it remains confidential outside the player. Again, we
assume this can be achieved.

– The player decrypts the content when viewing is required by the user. The player is
expected to honor the content-use policy, not leak the unencrypted content, nor the
key to decrypt the content.

We can see that successful enforcement of the content use policy is contingent on the
player (where the content is in plain text form) respecting the policy. Content providers
have in the past placed their trust in hardware solutions such as satellite TV set-top
boxes where their single purpose nature, trusted manufacture, and tamper resistance of
the device has mostly proved sufficient to justify the content provider’s faith in their
ability to honor the content provider’s use policy.

One can see that in a general-purpose computing environment, where the user has
complete control of the device, the content-use policy can be violated by the end user in



many ways, ranging from reverse engineering the player, modifying the player, or run-
ning the player on a modified operating system such that is renders the plain text content
to a file, hence the reluctance of content providers to widely embrace the Internet as a
distribution medium.

One approach to tackling this problem (as exemplified by Microsoft’s recently re-
named NGSCB [4]), is to provide the content provider assurance that a trusted player on
a trusted operating system is the only software that has access to the plain text content.
The fundamental idea is to have tamper-resistant hardware provide direct or indirect
attestation of the software stack required to view the content. The hardware attests that
the software running is what it claims to be (alternatives include hardware only expos-
ing decryption keys to trusted software). If the content provider has faith in the identity
of the software stack, it is in a position to determine if is trusts the particular software
stack to honor the provider’s content-use policy.

Fig. 3. An example digital-rights-management operating system.

Figure 3 depicts an exemplary OS architecture for DRM that support both a legacy
OS with its applications and legacy kernel extensions like device drivers, and a new
trusted mode of operation expected to enforce DRM policy. Very briefly, the system
functions by introducing a new trusted processor mode that is more privileged than
kernel mode. Hardware enforces a boundary between the trusted mode and all other
modes (including precluding DMA from untrusted mode devices and their drivers). As
expected, only the trusted mode kernel can influence what is in trusted mode or not.
The secure storage chip provides attestation for the trusted kernel, which can in turn
attest to the trusted nature of the applications it support, forming a chain of trust back
to the tamper resistant hardware. Therefore, content providers can obtain assurance that
the player of their content has a chain of trust rooted in hardware, and hence can expect
their content policy to be honored.

A major issue with this approach is that trust is really a label applied to software run-
ning in trusted mode, it is not a guarantee that it will always behave in a trusted manner.
One would expect that as more and more software acquires trusted status, eventually the
trusted partition will approach the size and complexity of the existing legacy system,



unless an alternative construction paradigm is employed. The original motivation for
kernel mode was to enable the execution of untrusted applications in a controlled way,
trusted mode is little different.

A promising approach to building a secure trusted DRM OS is similar to the ap-
proach for building a secure system in general — small kernel, small components, and
small interfaces, as outlined in Section 3.2. While only those components authorized
would be permitted to execute in trusted mode, trusted mode itself should be a secure
system in its own right, capable of defending itself against compromised trusted ap-
plications. In addition to security, the trusted-mode kernel needs to participate in the
attestation process. Given an attested secure kernel, content providers can have a high
level of confidence in their content-use policies being honored.

3.4 Summary

We have examined three important application domains for embedded systems possess-
ing hardware memory management functionality: dependable systems, secure systems,
and digital rights management capable systems. All three application domains require
very similar properties from an operating system kernel for that application domain.
A secure kernel capable of enforcing confidentiality, integrity, and availability policy
for the kernel services itself might be a capable basis for all three application domains.
A small secure and assured kernel when combined with a set of application domain
specific operating system components running as applications on the secure kernel is
a promising direction to explore in developing a new embedded operating system for
future embedded applications.

4 Impediments to L4’s Adoption in Secure Embedded Systems

While L4 has been successfully employed as a research vehicle, and as the basis of sys-
tems in a variety of application domains, it has not been targeted specifically for secure
systems with strong confidentially and availability requirements. Broadly speaking, the
current L4 version has serious issues in the areas of communication control and kernel
resource management, for which mature solutions are yet to emerge.

4.1 Communications Control

Interprocess communication forms the basis of all explicit interaction between pro-
cesses running on L4. Note that shared memory regions are established via IPC, hence
includes such interaction. To provide a basis for secure communication requires at least:

– control of the set of potential destinations that a process can send to, which implies
control of the set of senders a process can receive from. Ideally, knowledge of
the existence of other processes is limited to those processes to or from which
communication is explicitly authorized.

– An unforgeable identifier must be delivered with the message to enable authoriza-
tion to be performed in the recipient.



There have been at least five models investigated resulting in implementations in at
least 3 cases. The models are clans and chiefs [18], redirection [13], redirectors [28],
virtual threads [27], and pclans [3]. We will briefly examine each in turn and raise
issues with them.

Clans & Chiefs The basic system (ignoring clans & chiefs for ease of introduction)
consists of threads with in processes. Each thread within the system has a unique
system-wide identifier which is used to specify the destination thread for IPC, can be
used for authorization of requests in the recipient by receiving the sender’s identify.
Such a system provides integrity via the unforgeable thread identifiers, however confi-
dentiality policy is unenforceable as any threads can communicate if they can guess the
destination thread identity, a small, easily scannable name space.

To control communication flow, clans & chiefs introduces the idea of a chief of a
clan. Every process has a chief statically assigned to it on process creation. The set of
processes assigned to a chief is referred to as its clan.

Clan Boundaries

Chiefs

Fig. 4. Clans & Chiefs

Communication within a clan is unrestricted as before. Communication across a
clan boundary is redirected to the chief for inspection. The chief can act as a reference
monitor and enforce a communications policy between clans. In order to monitor trans-
parently, chiefs are permitted to forge the sender identifier received by the recipient in a
controlled way. A chief can forward a message that is redirected to it by impersonating
the sender if and only if the apparent source and intended destination lie on different
sides of a clan boundary.

In the most general case, each process has its own chief which mediates all com-
munication sent and received by the process. Chiefs in such a scenario can enforce
confidentiality policies1, integrity is based on the integrity of the chiefs a message tra-
verses which is determinable by the eventual message recipient (though normally the
monitoring chiefs are within the trusted computing base).

The major issue with clans & chiefs is that of performance. In the general case, at
least three IPCs are required between a source and destination: source → source’s chief

1 We acknowledge and ignore for now that thread identifiers are allocated within global name
space which could form a covert channel.



→ destination’s chief → destination. IPC can be avoided by placing processes with the
exact same security classification within the same clan, however, as soon as the classi-
fication differs, the processes must be in distinct clans and suffer the penalty of extra
IPCs via the chief. A smaller issue with clans & chiefs is that they are assigned stati-
cally at process creation, and hence cannot be changed if the security policy modified
(and thus modifying the security classification of processes).

Having a chief on the IPC path between source and destination also changes the se-
mantics of IPC, as IPC completion at the sender no longer implies delivery with a chief
interposed on the path between source and destination [12]. Proposals to address this
issue include postponing sender completion until delivery at the eventual destination
which results in an unduely complex IPC model that seems prone to denial-of-service
attacks. An alternative is to assume intermediaries are in place for all IPC, which im-
plies delivery acknowledgment IPC in cases where the sender requires notification of
successful message delivery. Neither solution is entirely satisfactory.

Redirection The redirection model was proposed and implemented to address the
shortcomings of the clans & chiefs model. The model provided a mechanism that en-
abled for each potential source-destination pair of threads in the system, that IPC be-
tween the two could be disallowed, allowed, or redirected to an intermediary which
could perform monitoring in a similar fashion to chiefs. One strong advantage of redi-
rection is that it can enforce basic communications control without requiring an inter-
mediary to be in place to forward or discard messages, thus the issues raised previously
regarding preserving IPC semantics with intermediaries can be avoided. Another ad-
vantage was that redirection is dynamically configurable.

The major issue with redirection is that thread identifiers are still allocated in a
global name space which will be prone to covert channels. Another issue is that if inter-
mediaries are required for monitoring, a method for transparently forwarding messages
is required. The restriction on impersonation required for forwarding is that an inter-
mediary can impersonate a source to a destination if the intermediary is on the path of
intermediaries between source and destination. This check is no longer as simple as the
trivial clan & chiefs check, as it requires a search (hopefully short) for membership of a
node within a path of a graph. However, in the worst case the length of the path is only
bounded by the number of threads in the system. The issue of preserving IPC semantics
in the presence of intermediaries, as described with clans and chiefs, also remains.

Redirectors The redirector model has been implemented in L4Ka::Pistachio. The ba-
sic model is that each process (termed address space in Pistachio) has a redirector which
can be nil or an intermediary. If the redirector is nil, IPC is uncontrolled. If an interme-
diary is specified, all cross-address-space IPC is redirected to the intermediary indepen-
dent of the destination. The intermediary can perform monitoring, auditing, debugging,
etc.

Redirectors is a simplified model of redirection that avoids the bookkeeping and
lookup required to redirect on a source-destination basis. However, doing so requires
the single intermediary to handle all monitoring functionality required on any path from
a source, as opposed to having potentially separate monitors that enforce security policy,



audit, debug, etc. Typically, the intermediary was a single central OS personality, and
requiring a single intermediary was not problematic. Control of communication without
an intermediary in place is not possible, unlike with redirection.

Redirectors suffer from most of the issues described for clan & chiefs and redirec-
tion. If any communication control is required on a source, an intermediary must be used
for all communication from the source. Hence in the general case (assuming a single
central intermediary), at least two IPCs are required per message for delivery. Having
intermediaries in place changes the semantics of IPC. The check of permitting imper-
sonation to enable forwarding has similar problems to the check for impersonation in
redirection, it can result in searching a chain. The name space of thread identifiers is a
likely covert channel.

Pclans Pclans is a hybrid between clans& chiefs and redirection. Each pclan has at
least one process within it, and each process is a member of exactly one pclan. Within a
pclan, communication is uncontrolled. Communication across a clan boundary is dealt
with by a model similar to redirection, where an IPC can be blocked or forwarded
to an intermediary. The motivation for pclans is based on the assumption that there
will be significantly fewer pclans than processes, and hence the redirection table will
be significantly smaller. Even if this assumption is true in general, some of the issues
associated with redirection remain: covert channels over thread identifiers, semantics of
IPC with intermediaries, and the requirement of an intermediary even if communication
is permitted to processes external to the clan.

Virtual Threads Virtual threads is a model in which threads are named by virtual iden-
tifiers in a processes’ local thread space, not by global system-wide thread identifiers.
Note that processes are not identified explicitly, all communication is between threads
whether it is intra- or inter-address-space. Each process’s thread space is managed using
mechanisms similar to the mechanisms provided to manage a process’s virtual memory
address space. Access to a thread is given by mapping or granting a reference to the
real thread. The reference to the real thread is placed in and referred to by a location in
thread space, its virtual thread identifier. The references to real threads in thread space
can be considered IPC capabilities to threads that are indistinguishable in the recipient.
Access to the thread can be removed via unmapping it.

To distinguish between senders, the IPC call delivers the index of the sender’s vir-
tual identifier in the recipient’s thread space, if it exists, otherwise the IPC is denied.
To speed up the search for the appropriate index and to distinguish between potential
aliases of the sender in the recipient, the sender is expected to specify the thread index
of itself in the recipients thread space.

Given that virtual threads implements a many-to-one mapping between virtual thread
identifiers in thread space and actual instances of threads, one can use it to permit, block,
or redirect IPC by controlling the mapping from thread space to threads. By having a
local name space, a potential covert channel via global allocation of thread identifiers
is avoided.

The main issue with the virtual thread model is requirement for the sender to pro-
vide its virtual identifier in the recipient. The coordination of name spaces required is



cumbersome, precludes name space re-arrangement in the recipient, makes transparent
insertion of intermediaries problematic, and creates a shared name space between all po-
tential senders to a destination (a potential covert channel). In general, sender provided
identifiers violate the principle of encapsulation of implementation of the recipient.

Summary It is clear that existing and proposed communications control mechanisms
are unsatisfactory for secure communications control. The proposal closest to being
satisfactory is virtual threads, however, requiring sender-provided identifiers required
to be valid in the recipient’s thread space violates encapsulation of implementation of
the recipient.

If the virtual thread model was modified such that the virtual identifiers themselves
were distinguishable (not the sender itself), then the distinguished virtual identifiers
could be used for authorization. In such a system, we are not actually dealing with
virtual identifiers, but distinguished capabilities conveying the right to IPC to a partic-
ular thread. Such a capability-based IPC authorization model appears to be the most
promising direction to explore in providing L4 with a secure communication model.

4.2 Resource Management

Precisely controlled resource allocation for kernel operations is a requirement for secure
system construction. Poor resource management within the kernel can lead to denial of
service when resources are exhausted, or covert channels when resource availability is
widely visible.

The default resource allocation for L4 is a central allocator that allocates from a
fixed memory pool allocated at boot time. The default kernel makes no claims to being
suitable for an environment with strong confidentiality or availability requirements. In
fact, it is trivial to mount a denial-of-service attack on the kernel-memory allocator.

Given the well-known limitations of the existing allocator, alternative strategies
have been proposed. The initial proposal [19] was motivated with the goal of prevent-
ing denial of service attacks when executing downloaded web content. Its approach
is to introduce a mechanism to provide physical memory (frames) to the kernel for a
specific process in the event of resource exhaustion, which I will term the lend to ker-
nel model. Examining map as an illustrative example, let’s assume we have pagers P 1

and P2, a client C, and σ0 as illustrated in Figure 5. If C requires a virtual memory
mapping established, but has insufficient resources to allocate a page table. P 2’s map
operation will fail and it then can choose to either deny service to C due to C’s insuf-
ficient resources, or P2 can choose to allocate and account one of its own pages (and
corresponding frame) to C to supply service to C based on some resource management
policy P2 applies to C. P2 calls to P1 with a “lend the chosen page to C” message.
Given that the chosen page in P2 was original supplied by P1, P1 can apply a resource
management policy to P2, and if the page donation to the kernel is permitted, P1 sends
a similar request to σ0 which lends the underlying frame to the kernel. When C is even-
tually deleted, the frames lent to the kernel on its behalf are freed and are available to
the resource pools in σ0, P1, and P2 on demand.
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Fig. 5. Example pager hierarchy

The above lend-to-kernel resource management design has several problems. The
first one is that revocation of frames allocated to a process is only possible upon dele-
tion of that process, even though the frame contents might be discarded and later re-
constructed via redundant data elsewhere. A page table node is the obvious example of
such a frame that could be revoked and re-established depending on memory demands.
As a result, a long running process will consume its peak kernel memory requirements,
not its current requirements.

Another issue is that it is not clear how one could modify the design to limit the
actual kernel memory consumption of a process such that its available kernel memory
acts a cache of a larger memory space that is paged to disk, i.e. using part of physical
memory as a fixed size cache of a process’s kernel objects.

Great care is also required in a system based on the above as (i) the resources of a
client consumed by a server performing a service on its behalf is only indirectly con-
trolled by the client; (ii) there are no kernel enforced restrictions on who one can donate
kernel memory to, it’s only limited by resource management policy; and (iii) one does
not necessarily have the right to revoke memory given to a client as it requires delete
rights to the client.

An example of where issue (i) manifests itself is when a client receives a mapping
from a server, the address of the mapping indirectly determines the page table require-
ments. Issue (ii) manifests itself with simplistic resource management policies such as
“the OS personality can have as much as it needs, all normal processes are limited to X
frames”, upon which a denial-of-service attack can be mounted by donating all avail-
able memory to the OS personality. Issue (iii) occurs when a server supplies memory to
a client (a peer) and does not posses the right to delete the client. This can be avoided
by requesting a resource provider with delete rights to provide the memory, but this
requires careful resource management co-ordination and accounting which may in turn
result in more issues.



The lend-to-kernel model might be workable in theory, and the previous three issues
are pragmatic ease-of-use issues, not necessarily flaws, however it remains to be seen
how to build a practical system with precise kernel resource management based on the
loan-to-kernel model.

A more recent proposal is user-level management of kernel memory [7]. In this pro-
posal, kernel memory is managed on a per-process basis. Each process starts with zero
memory and consequently must obtain all memory in a controlled way via the mech-
anisms provided. The mechanism associates a kpager with each thread. The kpager
receives faults generated on behalf of a thread by the kernel. Faults (like page faults)
are used to signal resource exhaustion of the thread’s process and suspend the thread
until the fault is resolved. The kpager can chose to supply a frame to the kernel based
on a user-level resource policy or deny the request. If the frame is mapped to the kernel,
it becomes opaque to the kpager, but still revocable via unmap.

Unlike the lend-to-kernel model, the kpager can revoke memory from the kernel.
This is achieved via the kernel either zeroing the content if it is redundant, or export-
ing it back to user-level in a form that can be validated upon return. As an illustrative
example of the utility of revocation, a kpager can implement a cache policy for ker-
nel memory by preempting kernel memory (and potentially storing it to disk) and re-
assigning to another process. Each thread is assigned a kpager, which may be distinct if
kernel memory should be managed differently for different concurrent processes, e.g.
real-time versus best effort.

The issues with the user-level management of kernel memory proposal include the
lack of precision of what the kernel uses the memory for, and the potential for all opera-
tions requiring an object to be allocated to block on a kpager fault. Devising a scheme to
accurately reflect in the fault the subsequent use of the memory provided to the kernel
was left as future work. Without accurately being able to determine the use of the mem-
ory, revocation has unknown consequences. Even without considering revocation, the
kernel may use the memory for providing a kernel object for which the kpager might
have delayed the fault handling (or denied it completely) had it known the eventual
purpose of the memory required.

Having a thread block on faults when resources are unavailable creates a denial of
service issue similar to that created when memory is copied from one task to another,
where a page missing in the source or destination blocks both the source and destina-
tion. An example of the problem is when a server maps a page to a client who does
not have memory for the needed for the page table node required. A kpager fault is
generated blocking the server on a kpager related to the client. The kpager has a in-
determinable trust relationship with the server, which leads to the server’s reliance on
timeouts to prevent the potential denial of service, but timeouts other than zero or never
are problematic [25] and should be avoided as a concept fundamental to the design.

Summary Precise, controlled kernel-resource management is something that has eluded
L4 to this point in time. Without a coherent, practical, precise mechanism for kernel
memory allocation, L4 will remain unsuitable as a basis for systems requiring strong
availability and confidentiality guarantees.



5 Conclusion

One potential direction for L4’s future evolution is into the domain of trustworthy
embedded systems, as exemplified by dependable systems, secure systems, and some
classes of digital-rights-management-capable systems. We have examined L4 (both the
current design, and previous designs) for its suitability for supporting trustworthy em-
bedded systems. We have identified two general areas where L4 is lacking: communica-
tions control and kernel-resource management. We have examined all existing schemes
proposed or implemented (to the best knowledge of the author) for communication
control and kernel-resource management for L4 in particular, and no scheme is entirely
satisfactory.

Given we have clearly identified what we believe are the major obstacles to L4’s
adoption in the domain of trustworthy embedded systems, and that we are confident we
can resolve these issues, we expect L4 to become an ideal basis for the development of
future trustworthy embedded systems.
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