Gy

@

C
Z
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Robert Sison

T3/2023

Binary Search (java.util.Arrays)

public static int binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (low <= high) {
int mid = (low + high) / 2;
int midVal = a[mid];

if (midVal < key)
low = mid + 1
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}

return -(low + 1); // key not found.

G Klein, M Tanaka, J Aman Poh

Binary Search (java.util.Arrays)

NS W R

11:
12:
13:
14:
15:
16:
17:

public static int binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (low <= high) {
int mid = (low + high) / 2;
int midVal = a[mid];

if (midVal < key)
low = mid + 1
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}

return -(low + 1); // key not found.

int mid = (low + high) / 2;

http://googleresearch.blogspot.com/2006/06/
extra-extra-read-all-about-it-nearly.html

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

Organisatorials

When Wed 16:00 — 18:00
Fri 15:00 — 17:00

http://www.cse.unsw.edu.au/~cs4161/

G Klein, M Tanak

http://www.cse.unsw.edu.au/~cs4161/

About us: Proofcraft and Trustworthy Systems

= TS (Trustworthy Systems) is a research group at UNSW
=» track record of research and real world impact in verified software
=» biggest achievement: formal verification of seL4
=» Proofcraft is a new company
=» from former leaders of TS
=» providing services in software verification
=» sel4 is an operating microkernel used around the world in critical systems

=» with a proof of functional correctness and security:
Security< Isabelle/HOL model <+ Haskell model ++C code «+Binary

=» 10000 LOC / more than 1 million lines of proof
=>» Open source, http://seld.systems

We are always embarking on exciting new projects. Talk to us!

=¥ taste of research projects
=» honours and PhD theses
=¥ research assistant and verification engineer positions

4 | COMP41!

http://sel4.systems

What you will learn

=» how to use a theorem prover
=» background, how it works

=» how to prove and specify

=» how to reason about programs

in, M Tanak

What you will learn

=» how to use a theorem prover
=» background, how it works

=» how to prove and specify

=» how to reason about programs

Health Warning

Theorem Proving is addictive

Prerequisites

This is an advanced course. It assumes knowledge in

=» Functional programming

=» First-order formal logic

Prerequisites

This is an advanced course. It assumes knowledge in

=» Functional programming
=» First-order formal logic

The following program should make sense to you:

[

map f]

map f (x:xs) = fx: mapfxs

Prerequisites

This is an advanced course. It assumes knowledge in

=» Functional programming
=» First-order formal logic

The following program should make sense to you:

map f [] [
map f (x:xs) = fx: mapfxs

You should be able to read and understand this formula:

Ix. (P(x) — Vx. P(x))

4161 | G Klein, M Tanaka, J Amar

Content — Using Theorem Provers

Content — Using Theorem Provers

=» Foundations & Principles

e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

Content — Using Theorem Provers

=» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

e Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)
Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

Content — Using Theorem Provers

=» Foundations & Principles

Intro, Lambda calculus, natural deduction
Higher Order Logic, Isar (part 1)

e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

Rough timeline

[1.2]
[2.37]
(3.4]

4.5]
[5.7]
(7]
(8]
[8.9]
[9.10]
[10]

a1 due; a2 due; a3 due

To have a chance at succeeding

you should:
attend lectures
try Isabelle early

->

->

=¥» redo all the demos alone

=» try the exercises/homework we give, when we do give some
->

DO NOT CHEAT

e Assignments and exams are take-home. This does NOT mean you
can work in groups. Each submission is personal.
e For more info, see Plagiarism Policy?

7 https://student.unsw.edu.au/plagiarism

https://student.unsw.edu.au/plagiarism

Credits

some material (in using-theorem-provers part) shamelessly stolen from

David Basin, Burkhardt Wolff

Don’t blame them, errors are ours

What is a formal proof?

A derivation in a formal calculus

in, M Tanakz

What is a formal proof?

A derivation in a formal calculus
Example: AA B — B A A derivable in the following system

XeS " SU{X}FY | |
Rules: SF x (assumption) oo (impl)
SEX SkY SuiX.yirz

i i
stxay (o) Sux Ay ez (©onE)

10 | COMP4161 | G Kle

What is a formal proof?

A derivation in a formal calculus
Example: AA B — B A A derivable in the following system

XE€S (assumption) SugEY (impl)
Rules: Sk X SEFX—Y
SEX Sty v SUXYirZ .
stxny @) Soc vz (B
Proof:
1. {A,B}+B (by assumption)
2. {A,B}F A (by assumption)
3, {A,BYFBAA (by conjl with 1 and 2)
a. {AAB}FBAA (by conjE with 3)
5. (0 FAAB—BAA (byimpl with 4)

10 | COMP4161 | G Kle

What is a theorem prover?

Implementation of a formal logic on a computer.
=» fully automated (propositional logic)
=» automated, but not necessarily terminating (first order logic)
=» with automation, but mainly interactive (higher order logic)

M Tanaka, J Amar

What is a theorem prover?

Implementation of a formal logic on a computer.

=» fully automated (propositional logic)
=» automated, but not necessarily terminating (first order logic)
=» with automation, but mainly interactive (higher order logic)

There are other (algorithmic) verification tools:

=» model checking, static analysis, ...
=» See COMP3153: Algorithmic Verification

11 | COMP4161

Why theorem proving?

=» Analyse systems/programs thoroughly

=» Findi design and specification errors early

=» High assurance: mathematical, machine checked proofs
= It's not always easy

= It's fun!

Main theorem proving system for this course

Isabelle
=» used at TS for research, teaching and proof engineering

What is Isabelle?

A generic interactive proof assistant

What is Isabelle?

A generic interactive proof assistant

= generic:
not specialised to one particular logic
(two large developments: HOL and ZF, will mainly use HOL)

What is Isabelle?

A generic interactive proof assistant

= generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)
=¥ interactive:

more than just yes/no, you can interactively guide the system

14 | COMPA41¢ , M Tanaka, J Am

What is Isabelle?

A generic interactive proof assistant

= generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)
=¥ interactive:

more than just yes/no, you can interactively guide the system
=» proof assistant:

helps to explore, find, and maintain proofs

14 | COMPA41¢ , M Tanaka, J Am

If | prove it on the computer, it is correct, right?

If | prove it on the computer, it is correct, right?

No, because:

hardware could be faulty

operating system could be faulty
implementation runtime system could be faulty
compiler could be faulty

implementation could be

logic could be inconsistent

theorem could mean something else

Q®e®e o

OMP4161

If | prove it on the computer, it is correct, right?

No, but:

probability for

OS and H/W issues reduced by using different systems
runtime/compiler bugs reduced by using different compilers

faulty implementation reduced by having the right prover architecture
inconsistent logic reduced by implementing and analysing it

dii il

wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

If | prove it on the computer, it is correct, right?

Soundness architectures
careful implementation PVS

ACL2

If | prove it on the computer, it is correct, right?

Soundness architectures

careful implementation PVS
ACL2

LCF approach, small proof kernel HOL4
Isabelle

HOL-light

If | prove it on the computer, it is correct, right?

Soundness architectures
careful implementation PVS

ACL2

LCF approach, small proof kernel HOL4
Isabelle
HOL-light

explicit proofs + proof checker Coq
Lean
Twelf

Isabelle
HOL4
Agda

Meta Logic

Meta language:
The language used to talk about another language.

Meta Logic

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta Logic

Meta language:

The language used to talk about another language.
Examples:

English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

Meta Logic — Example

Formulae: F:=V | F—F | FAF | False
Syntax: Vi= [A-Z]

Judgement: SF X X aformula, S a set of formulae

Meta Logic — Example

Formulae: F:=V |

Syntax: Vi= [A-Z]

F—F | FAF | False
Judgement:

SEFX X aformula, S a set of formulae

logic / meta logic

XesS SU{X}+Y

SEX SEX—Y
SFX SrY Su{X,yjrz
SEXAY

SU{XAYIFZ

Isabelle’s Meta Logic

A

Syntax: Ax. F (F another meta logic formula)
in ASCIl: !'!'x. F

A

Syntax: Ax. F (F another meta logic formula)
in ASCIl: !'!'x. F

=¥ this is the meta-logic universal quantifier

=» example and more later

—

Syntax: A=— B (A, B other meta logic formulae)
in ASCIl: A ==>B

in, M Tanakz

e
Syntax: A=— B (A, B other meta logic formulae)
in ASCIl: A ==>B
Binds to the right:

A—B=(C = A= (B= ()

Abbreviation:

[ABl]=—=C = A=B=C

=» read: A and B implies C
=» used to write down rules, theorems, and proof states

OMP4161

Example: a theorem

mathematics: if x <0 and y <0, then x+y <0

Example: a theorem

mathematics: if x <0 and y <0, then x+y <0

formal logic: Fx<0Ay<0—x4+y<0
variation: x<0y<O0OF x4+y<0

Example: a theorem

mathematics:

formal logic:
variation:

Isabelle:
variation:

if x<0andy <0, then x+y <0

Fx<0Ay<0—x+y<0
x<0y<O0OF x4+y<0

lemma x<0Ay<0—x+y<0"
lemma “[x <0,y <0 = x+y <0

Example: a theorem

mathematics: if x <0 and y <0, then x+y <0

formal logic: Fx<0Ay<0—x4+y<0

variation: x<0y<O0OF x4+y<0

Isabelle: lemma x < 0Ay<0—x+y<0"
variation: lemma “[x <0y <0 = x+y<0"
variation: lemma

assumes “x < 0" and “y < 0" shows “x+y < 0"

COMP4161

Example: a rule

logic: XNANY

in, M Tanakz

Example: a rule

logic: XNANY

SFX SkHY
variation: SEXAY

Example: a rule

logic:

variation:

Isabelle:

XNANY

SEX SkFY
SEXAY

[X; Y= XY

Example: a rule with nested implication

Xy

XVY Z Z
logic: Z

Example: a rule with nested implication

XY

XVY Z Z
logic: Z

SU{X}FZ SU{Y}+Z

variation: Su{XvyY}irz

Example: a rule with nested implication

XY

XVY Z Z
logic: Z

SU{X}FZ Su{Y}lrZz
variation: Su{XvyY}irz

Isabelle: XVY X=ZY=Z]=Z

Syntax: Ax. F (F another meta logic formula)
in ASCIIl: ¥x. F

Syntax: Ax. F (F another meta logic formula)
in ASCIl: %x. F

=>» lambda abstraction

=» used to represent functions

=>» used to encode bound variables

=»> more about this soon

Enough Theory!

Getting started with Isabelle

System Architecture

Isabelle — generic, interactive theorem prover

in, M Tanaks

System Architecture

Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

System Architecture

HOL, ZF - object-logics
Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

System Architecture

Prover IDE (jEdit) — user interface
HOL, ZF - object-logics
Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

OMP4161

System Architecture

Prover IDE (jEdit) — user interface
HOL, ZF - object-logics
Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

User can access all layers!

System Requirements

=» Linux, Windows, or MacOS X (10.8 +)
=» Standard ML (PolyML implementation)
=» Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on:
http://mirror.cse.unsw.edu.au/pub/isabelle/

COMP4161

http://mirror.cse.unsw.edu.au/pub/isabelle/

Documentation

Available from http://isabelle.in.tum.de
=» Learning lsabelle

e Concrete Semantics Book
e Tutorial on Isabelle/HOL (LNCS 2283)
e Tutorial on Isar
=» Reference Manuals
e Isabelle/Isar Reference Manual
e Isabelle Reference Manual
e lsabelle System Manual

=» Reference Manuals for Object Logics

http://isabelle.in.tum.de

Demo

jEdit/PIDE

8006 weekOLA demo.thy
File Edit Search Markers Folding View Utilities Macros Plugins Help
) weekOLA_demo.thy (~/teaching/compa161/1252/slides/ weekO1A/) =

. o
Bl text {* v
Note that free variables (eg x), bound variables (eg An) and §
constants (eg Suc) are displayed differently. *} g

term "x" 1
term "Sflc x*
term "Succ x"
term "Suc x = Succ y”
T [term "M constant “Nat suc”
it nat = nat
text {* TorgrsprayTmore types inside terms: *}
+ |declare [[show types]]
Elterm "Suc x = Succ y*

text {* To switch off again: *}

> |declare [[show_types=false]]
~ |term "Suc x = Succ y*

¥ |text {* @ and + are overloaded: *}

nron "n 4+ n = A"

1006 +] () Tracing o Autoupdate [Update |

"Suc x
"nat"

COMP4161

jEdit/PIDE

e00 weekO1A. demo.thy
File Edit Search Markers Folding View Utilities Macros Plugins Help
) weekOLA_demo.thy (~/teaching/compa161/1252/slides/ weekO1A/) =

. o
Bl text {* v
Note that free variables (eg x), bound variables (eg An) and §
constants (eg Suc) are displayed differently. *} g

term "x" H
term "Sflc x*
term "Succ x"
term "Suc x = Succ y"
T [term "M constant “Nat suc”
1 nat = nat
text {* Torarspray-more types inside terms: *}
+ |declare [[show types]]
Elterm "Suc x = Succ y*

text {* To switch off again: *}
declare [[show_types=false]]
~ |term "Suc x = Succ y*

<

¥ |text {* @ and + are overloaded: *}

nron "n 4+ n = A"

1006 +] () Tracing o Autoupdate [Update |

"Suc x
"nat"

Isabelle Output

34 | COMP4161

jEdit/PIDE

e00 weekO1A demo.thy
File Edit Search Markers Folding View Utiliies Macros Plugins _Help
0 week0LA_demo.thy (~/teaching/compd161/1252/slides/ week01A/) -

o

> |text {*

Note that free variables (eg x), bound variables (eg An) a"d<(LaTeX Comment

constants (eg Suc) are displayed differently. *}

term "x" -
term "fc x*
term "Succ x"
term "Suc x = Succ y"

Bllccrn i logic terms go in

constant "Nat.Suc”

it nat = nat « ”
text {* Torarspray™more types insi quotes: X + 2

v |declare [[show_types]]
~ [term “Suc x = Succ y*

text {* To switch off again: *}
¥ |declare [[show_types=false]]
~ |term "Suc x = Succ y*

¥ |text {* @ and + are overloaded: *}

nron "n 4+ n = A"

1006 +] () Tracing o Autoupdate [Update |

"Sue x"
2iltnats

COMP4161 (lein, M Tanaka, J Aman Pohjola

jEdit/PIDE

e00 weekO1A demo.thy
File Edit Search Markers Folding View Utiliies Macros Plugins _Help
0 week0LA_demo.thy (~/teaching/compd161/1252/slides/ week01A/)

> |text {*
Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently. *}

PORPIS 4 B

term "x"
tern *sfc x*

term "Succ x" (

term "SUC XSt =

) s e Command click
pes inside terms: *} iUmPS to deﬁnition

text {* TorgTSpray"mon
declare [[show_types]]
~ [term “Suc x = Succ y*

<

text {* To switch off again: *}
declare [[show_types=false]]
~ |term "Suc x = Succ y*

<

Command + hover
for popup info

Pl

text {* @ and + are overloaded: *}

nron "n 4+ n = A"

1006 +] () Tracing o Autoupdate [Update |

"Sue x"
i "nats

jEdit/PIDE

e00 weekO1A demo.thy
File Edit Search Markers Folding View Utiliies Macros Plugins _Help
0 week0LA_demo.thy (~/teaching/compd161/1252/slides/ week01A/) -

. o
> |text {* -
Note that free variables (eg x), bound varial g
constants (eg Suc) are displayed differentl I’;

processed
term "x"

term "sffc x*

term "Succ x"

term "Suc x = Succ y"

T [term "AX Gastant “wat.suct
text {* Torarspray"more types inside terms: *}
~ |declare [[show_types]]

~ |term "Suc x = Succ y*

text {* To switch off again: *}
declare [[show_types=false]]

Wllc s x = suce v unprocessed

<

¥ |text {* @ and + are overloaded: *}

nran "n 4+ n = A"
1006 +] () Tracing o Autoupdate [Update |

"Suc x
"nat"

COMP4161

Exercises

+

Download and install Isabelle from
http://mirror.cse.unsw.edu.au/pub/isabelle/

Step through the demo files from the lecture web page

Write your own theory file, look at some theorems in the library, try
"find_theorems’

How many theorems can help you if you need to prove something
containing the term “Suc(Suc x)"?

What is the name of the theorem for associativity of addition of natural
numbers in the library?

M Tanaka, J Amar

http://mirror.cse.unsw.edu.au/pub/isabelle/

)\-Calculus

Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
[2.37]
3.4]

[4.5]
[5.7]
(7]
(8]
8.9]
[9,10]
10]

?al due; a2 due; a3 due

A-calculus

Alonzo Church

=» lived 1903-1995

=» supervised people like Alan Turing, Stephen Kleene

=» famous for Church-Turing thesis, lambda calculus,
first undecidability results

=» invented A calculus in 1930's

1 &

A-calculus

Alonzo Church

=» lived 1903-1995
=» supervised people like Alan Turing, Stephen Kleene
=» famous for Church-Turing thesis, lambda calculus,

first undecidability results
=>» invented)\ calculus in 1930's “

A-calculus

=¥ originally meant as foundation of mathematics
=» important applications in theoretical computer science
=» foundation of computability and functional programming

41 | COMP4161

untyped \-calculus

=» turing complete model of computation
=» a simple way of writing down functions

untyped \-calculus

=» turing complete model of computation
=» a simple way of writing down functions

Basic intuition:

instead of f(x)=x+5
write f=M x+5

untyped \-calculus

=» turing complete model of computation
=» a simple way of writing down functions

Basic intuition:

instead of f(x)=x+5
write f=M x+5

Ax. X +5

=» aterm

untyped \-calculus

=» turing complete model of computation
=» a simple way of writing down functions

Basic intuition:

instead of f(x)=x+5
write f=M x+5

Ax. X +5

=» aterm

=» a nameless function

untyped \-calculus

=» turing complete model of computation
=» a simple way of writing down functions

Basic intuition:

instead of f(x)=x+5
write f=M x+5

Ax. X +5

=» aterm

=» a nameless function
=» that adds 5 to its parameter

Function Application

For applying arguments to functions

instead of f(a)
write fa

Function Application

For applying arguments to functions

instead of f(a)
write fa

Example: (Ax. x+5) a

Function Application

For applying arguments to functions

instead of f(a)
write fa

Example: (Ax. x+5) a

Evaluating: in (Ax. t) a replace x by ain t
(computation!)

Function Application

For applying arguments to functions

instead of f(a)
write fa

Example: (Ax. x+5) a

Evaluating: in (Ax. t) a replace x by ain t
(computation!)

Example: (Ax. x+5) (a+ b) evaluates to

Function Application

For applying arguments to functions

instead of f(a)
write fa

Example: (Ax. x+5) a

Evaluating: in (Ax. t) a replace x by ain t
(computation!)

Example: (Ax. x+5) (a+b) evaluatesto (a+b)+5

That’s it!

Now Formal

Syntax

Terms: t = v | C | (t t) ‘ ()\X t)
v,ix eV, ceC, V,C setsof names

Syntax

Terms: t = v | C | (t t) ‘ ()\X t)
v,ix eV, ceC, V,C setsof names

= V, X variables

=» C constants

-> (t t) application
- ()\X. t) abstraction

Conventions

=» leave out parentheses where possible
=¥ list variables instead of multiple A

Example: instead of (Ay. (Ax. (x y))) write Ay x.xy

Conventions
=» leave out parentheses where possible
=¥ list variables instead of multiple A

Example: instead of (Ay. (Ax. (x y))) write Ay x.xy

Rules:

=» list variables: Ax. (Ay. t) = Axy. t

=» application binds to the left: x y z = (x y) z # x (y 2)

=» abstraction binds to the right: Ax. x y = Ax. (x y) # (Ax. x) y
=» leave out outermost parentheses

Getting used to the Syntax

Example:
Mxyz.xz(yz)=

Getting used to the Syntax

Example:
Mxyz.xz(yz)=

Mxyz (xz)(yz)=

Getting used to the Syntax

Example:
Mxyz.xz(yz)=

Mxyz (xz)(yz)=
My z((x2)(y2) =

Getting used to the Syntax

Example:
Mxyz.xz(yz)=

Mxyz (xz)(yz)=
Myz((xz)(yz)=
Ax. Ay. Az. ((x 2) (v 2)) =

Getting used to the Syntax

Example:
Mxyz.xz(yz)=
Mxyz (xz)(yz)=
Ay z ((x2)(y2)=
Ax. Ay. Az. ((x z) (v 2)) =

(. (Ay- (Az- ((x 2) (v 2)))))

48 | COMP416!

Computation
Intuition: replace parameter by argument
this is called S-reduction

Remember: (Ax. t) ais evaluated (noted —:5) to
t where X is replaced by a

Example

(A y. Suc x = y)3—p

Computation
Intuition: replace parameter by argument
this is called S-reduction

Remember: (Ax. t) ais evaluated (noted —:5) to
t where X is replaced by a

Example

(A y. Suc x = y)3—p
(Ax. (Ay. Suc x = y)) 3 —p

Computation
Intuition: replace parameter by argument
this is called S-reduction

Remember: (Ax. t) ais evaluated (noted —:5) to
t where X is replaced by a

Example

(A y. Suc x = y)3—p
(Ax. (Ay. Suc x = y)) 3 —p
(Ay. Suc 3 = y)

Computation

Intuition: replace parameter by argument
this is called S-reduction

Remember: (Ax. t) ais evaluated (noted —:5) to

t where X is replaced by a

Example
(A y. Suc x = y)3—p
(Ax. (Ay. Suc x = y)) 3 —p
(Ay. Suc 3 = y)
(Axy. f(yx) 5 (Ax. x) —p

Computation

Intuition: replace parameter by argument
this is called S-reduction

Remember: (Ax. t) ais evaluated (noted —:5) to

t where X is replaced by a
Example

(A y. Suc x = y)3—p

(Ax. (Ay. Suc x = y)) 3 —p
(Ay. Suc 3 = y)
(A
(A

xy. f(yx)) 5 (Ax. x) —3
y. f(y5)) (Ax.x) —p

Computation

Intuition: replace parameter by argument
this is called S-reduction

Remember: (Ax. t) ais evaluated (noted —:5) to

t where X is replaced by a

Example

(A y. Suc x = y)3—p

(Ax. (Ay. Suc x = y)) 3 —p
(Ay. Suc 3 = y)
(
(

y. f(yx)) 5 (Ax. x) —p
5

Computation

Intuition: replace parameter by argument
this is called S-reduction

Remember: (Ax. t) ais evaluated (noted —:5) to
t where X is replaced by a

Example

. (Ay. Suc x = y))3—p

Axy.Sucx = y)3—pg
Ay. Suc 3 = y)

Ay. f(y 5); (Ax. x) —

(
(Ax
(
E)\ y. f(yx)) 5 (Ax. x) —p
f ((Ax. x) 5) —3

f

(
5

Defining Computation

ﬁ reduction:

s —p § =)
t —p t = (s t)
s —pg § =)

B
—8
—8
—8

s[x « t]
(s" 1)
(s t)
(Ax. s')

Defining Computation

ﬁ reduction:
(M.s)t —p s[x<«1t]
s —p § = (st) —ps (s'1)
t —p t = (st) —p (st)
s —pg § = (Mx.s) —5 (Mx.s')

Still to do: define s[x « t]

Defining Substitution

Easy concept. Small problem: variable capture.
Example: (Ax. x z)[z < x]

Defining Substitution

Easy concept. Small problem: variable capture.
Example: (Ax. x z)[z < x]

We do not want: (Ax. x x) as result.

What do we want?

Defining Substitution

Easy concept. Small problem: variable capture.
Example: (Ax. x z)[z < x]

We do not want: (Ax. x x) as result.

What do we want?

In (A\y. y z) [z < x] = (Ay. y x) there would be no problem.

So, solution is: rename bound variables.

COMP4161

Free Variables

Bound variables: in (Ax. t), x is a bound variable.

Free Variables

Bound variables: in (Ax. t), x is a bound variable.

Free variables FV of a term:
FV (x) = {x}
FV(c) ={}
FV (s t) FV(s) U FV(t)
FV (Ax. t) = FV(t) \ {x}

Example: FV(Mo (Av. (M. x) v) y x)

Free Variables

Bound variables: in (Ax. t), x is a bound variable.

Free variables FV of a term:
FV (x) = {x}
FV(c) ={}
FV (s t) FV(s) U FV(t)
FV (Ax. t) = FV(t) \ {x}

Example: FV(Ao (A\v. (Ox. x) V) y) ={y}

Free Variables

Bound variables: in (Ax. t), x is a bound variable.

Free variables FV of a term:
FV (x) = {x}
FV(c) ={}
FV (s t) FV(s) U FV(t)
FV (Ax. t) = FV(t) \ {x}

Example: FV(Ao (A\v. (Ox. x) V) y) ={y}

Term t is called closed if FV(t) = {}

Free Variables

Bound variables: in (Ax. t), x is a bound variable.

Free variables FV of a term:

V() =)
V() =0

FV (st) = FV(s)UFV(t)
FV (Ax. t) = FV(t) \ {x}

Example: FV(Ao (Ay. (A x) v) y x) ={y}
Term t is called closed if FV(t) = {}

The substitution example, (Ax. x z)[z < x], is problematic because the

bound variable x is a free variable of the replacement term “x".

Substitution

x [x « t] =t
y [x <+ t] =y if x %y
c[x+t] =c

(51 52) [X — t] =

Substitution

x [x « t]
y [x+t]
¢ [x+t]

(51 52) [X — t]

(Ax. s) [x « t]

(s1[x < t] sp[x + t])

if x#y

Substitution

x [x « t]
y [x+t]
¢ [x+t]

(51 52) [X — t]

(Ax. s) [x « t]

(Ay.s) [x«t] =

G Klein, M Ta

=1t
y if x #y
=c

(s1[x < t] sp[x + t])

(Ax. s)

Substitution

x [x « t] =t
y [x <+ t] =y if x %y
¢ [x+t] =c

s19) [x+ t] = (si[x «+ t] s2[x « t])

(
(Ax. s) [x + t] = (Mx. s)
E)\y s) [x + t] = (Ay. s[x « t]) if x#£yandy¢ FV(t)

Substitution

x [x « t] =t

y [x =y

¢ [x+t] =c

(s1) [x « t] = (s1][x + t] s2[x « t])
(Ax. s) [x + t] = (Mx. s)

(Ay. s) [x « t] = (\y. s[x « t])

(Ay. s) [x « t] = (Az. s[y + z][x + t])

if x#y

if x#£yandy¢ FV(t)
if x#y
and z ¢ FV(t) U FV(s)

Substitution Example

(x (Ax. x) (A\y. z x))[x < y]

54 | COMPA416 (

Substitution Example

(x (Ax. x) (A\y. z x))[x < y]
= (xIx =y]) ((x x)x < y]) (. 2z X)[x < y])

Substitution Example

(x (Ax. x) (A\y. z x))[x < y]
= (XIx = y]) (x x)x < y]) (. 2z x)[x < y])
= y (A x) (W zy)

« Conversion

Bound names are irrelevant:
Ax. x and Ay. y denote the same function.

Qv conversion:
S =, t means s =t up to renaming of bound variables.

« Conversion

Bound names are irrelevant:
Ax. x and Ay. y denote the same function.

Qv conversion:
=, t means s = t up to renaming of bound variables.

Formally:
(M. t) —a (Ay. tlx+y]) ify ¢ FV(t)
s —y § = (st) —a (1)
t —, = (st) —a (st)
s —q s = (Mxs) —a (MAx.9)

« Conversion

Bound names are irrelevant:
Ax. x and Ay. y denote the same function.

Qv conversion:
=, t means s = t up to renaming of bound variables.

Formally:
(M. t) —a (Ay. tlx+y]) ify ¢ FV(t)
s —y § = (st) —a (1)
t —o ! = (st) —a (st)
s —q s = (Mxs) —a (MAx.9)

S=qt iff s—%t
= transitive, reflexive closure of —, = multiple steps)

« Conversion

Equality in Isabelle is equality modulo o conversion:

if s =, t then s and t are syntactically equal.

Examples:
x (Axy. xy)

« Conversion

Equality in Isabelle is equality modulo o conversion:

if s =, t then s and t are syntactically equal.

Examples:
x (Axy. xy)
=a x Ay x. yx)

« Conversion

Equality in Isabelle is equality modulo o conversion:

if s =, t then s and t are syntactically equal.

Examples:
x (Axy. xy)
=a x Ay x. yx)
— x(\zy.zy)

« Conversion

Equality in Isabelle is equality modulo o conversion:

if s =, t then s and t are syntactically equal.

Examples:
x (Axy. xy)
=a x Ay x. yx)
— x(\zy.zy)
Fo z2(\zy.7y)

OMP4161

« Conversion

Equality in Isabelle is equality modulo o conversion:

if s =, t then s and t are syntactically equal.

Examples:
x (Axy. xy)
=a x Ay x. yx)
— x(\zy.zy)
fo 2002y 2y)
#o X (Ax x. x x)

OMP4161

Back to [

We have defined 3 reduction: — 3
Some notation and concepts:

= [conversion: s =5t iff 3n. s — 5 nAt—p5n

Back to [

We have defined 3 reduction: — 3
Some notation and concepts:

= [conversion: s =5t iff 3n. s — 5 nAt—p5n
=» tis reducible if there is an s such that t — 3 s

Back to [

We have defined 3 reduction: — 3

Some notation and concepts:
= [conversion: s =5t iff 3n. s — 5 nAt—p5n
=» tis reducible if there is an s such that t — 3 s
=» (Ax. s) tis called a redex (reducible expression)

in, M Tanakz

Back to [

We have defined 3 reduction: — 3

Some notation and concepts:
= [conversion: s =5t iff 3n. s — 5 nAt—p5n
=» tis reducible if there is an s such that t — 3 s
=» (Ax. s) tis called a redex (reducible expression)

=>» tis reducible iff it contains a redex

Back to [

We have defined 3 reduction: — 3
Some notation and concepts:
= [conversion: s =5t iff 3n. s — 5 nAt—p5n
=» tis reducible if there is an s such that t — 3 s
=» (Ax. s) tis called a redex (reducible expression)
=» tis reducible iff it contains a redex
=» if it is not reducible, t is in normal form

, M Tanaka, J Am

Does every \ term have a normal form?

Example:

(Ax. x x) (Ax. x x) —p

Does every \ term have a normal form?

Example:

(Ax. x x) (Ax. x x) —p
(Ax. x x) (Ax. x x) —p

Does every \ term have a normal form?

No!

Example:

(Ax. x x) (Ax. x x) —p

)
(Ax. x x) (Ax. x x) —p
) —B .-

(Ax. x x) (Ax. x x

Does every \ term have a normal form?

No!

Example:

(Ax. x x) (Ax. x x) —p
(Ax. x x) (Ax. x x) —p
(Ax. x x) (Ax. x x) —p ...

(but: (Ax y. y) ((Ax. x x) (Ax. x X)) —5 Ay.y)

Does every \ term have a normal form?

No!

Example:

(Ax. x x) (Ax. x x) —p
(Ax. x x) (Ax. x x) —p
(Ax. x x) (Ax. x x) —p ...

(but: (Ax y. y) ((Ax. x x) (Ax. x X)) —5 Ay.y)

A calculus is not terminating

[reduction is confluent

Confluence: s —jxANs—jy=—=3dt.x —jtAy —5t

[reduction is confluent

Confluence: s —jxAs—jy=dt.x —5tAy —)t

s
X y

Order of reduction does not matter for result
Normal forms in A calculus are unique

OMP4161

[reduction is confluent

Example:

(Ax y. y) (Ax. x x) a)
(Ax y. y) (Ax. x x) a)

[reduction is confluent

Example:

(M y.y) (Ax. x x) a) — 3 (Ax y. y) (a a)
(M y.y) (Ax. x x) a) —5 Ay. y

[reduction is confluent

Example:

My . y) (M xx)a) —g (A y.y)(aa) —s Ay. y
(M y.y) (Ax. x x) a) —5 Ay. y

7 Conversion

Another case of trivially equal functions: t = (Ax. t x)

7 Conversion

Another case of trivially equal functions: t = (Ax. t x)

Definition:
(M. tx) —, if x ¢ FV(t)
s —y, s = (st) —y (51)
—y, t = (st) —, (st)
s —y s = (Ax.s) — (Ax.s)

_ H * *
s=pt iff In.s—7 nAt—)n

Example: (\x. f x) (\y. g y) —

7 Conversion

Another case of trivially equal functions: t = (Ax. t x)

Definition:
(M. tx) —, if x ¢ FV(t)
s —y, s = (st) —y (51)
—y, t = (st) —, (st)
s —y s = (Ax.s) — (Ax.s)

_ H * *
s=pt iff In.s—7 nAt—)n

Example: (A\x. f x) (Ay. g y) —, (Ax. f x) g —,

7 Conversion

Another case of trivially equal functions: t = (Ax. t x)

Definition:
(M. tx) —, if x ¢ FV(t)
s —y, s = (st) —, (1)
— t = (5 t) — (5)
s —y s = (Ax.s) — (Ax.s)

— H * *
s=pt iff In.s—7 nAt—)n

Example: (\x. f x) (A\y. gy) —, (Mx. fx) g —, f g

7 Conversion

Another case of trivially equal functions: t = (Ax. t x)

Definition:
(M. tx) —, if x ¢ FV(t)
s —y, s = (st) —y (51)
—y, t = (st) —, (st)
s —y s = (Ax.s) — (Ax.s)

_ H * *
s=pt iff In.s—7 nAt—)n

Example: (\x. f x) (A\y. gy) —, (Mx. fx) g —, f g

=» 7 reduction is confluent and terminating.
=> — 3, is confluent.

—> 3y means —g and —,, steps are both allowed.
=» Equality in Isabelle is also modulo 7 conversion.

In fact ...

Equality in Isabelle is modulo «, 3, and 7 conversion.

We will see later why that is possible.

Isabelle Demo

So, what can you do with)\ calculus?

A calculus is very expressive, you can encode:
=» logic, set theory
=» turing machines, functional programs, etc.

Examples:

So, what can you do with)\ calculus?

A calculus is very expressive, you can encode:
=» logic, set theory
=» turing machines, functional programs, etc.

Examples:
true = Ax y. x
false = Axy. y
if =AzXxy.zxy

So, what can you do with)\ calculus?

A calculus is very expressive, you can encode:
=» logic, set theory
=» turing machines, functional programs, etc.

Examples:
true = Ax y. x if true x y —j x
false = Axy. y if falsex y —jy

if =AzXxy.zxy

So, what can you do with)\ calculus?

A calculus is very expressive, you can encode:
=» logic, set theory
=» turing machines, functional programs, etc.

Examples:
true = Ax y. x if true x y —j x
false = Axy. y if falsex y —jy
if =AzXxy.zxy

Now, not, and, or, etc is easy:

So, what can you do with)\ calculus?

A calculus is very expressive, you can encode:
=» logic, set theory
=» turing machines, functional programs, etc.

Examples:
true = Ax y. x if true x y —j x
false = Axy. y if falsex y —jy
if =AzXxy.zxy

Now, not, and, or, etc is easy:
not = Ax. if x false true

and = Ax y. if x y false
or = Axy.if x truey

More Examples

Encoding natural numbers (Church Numerals)

0 A ox. x

1 M x. f x

2 =M x. f(f x)

3 =X x. f(f(f x))

Numeral n takes arguments f and x, applies f n-times to x.

5 | COMP4161 | G Kle

More Examples

Encoding natural numbers (Church Numerals)

0 =M x. x

1 =Mx.fx

2 =M x. f(f x)

3 =X x. f(f(f x))

Numeral n takes arguments f and x, applies f n-times to x.

iszero = An. n (Ax. false) true

More Examples

Encoding natural numbers (Church Numerals)

0 A ox. x

1 M x. f x

2 =M x. f(f x)

3 =X x. f(f(f x))

Numeral n takes arguments f and x, applies f n-times to x.

iszero = An. n (Ax. false) true
succ =Anfx.f(nfx)

5 | COMP4161 | G Kle

More Examples

Encoding natural numbers (Church Numerals)

0 =M x. x

1 =Mx.fx

2 =M x. f(f x)

3 =X x. f(f(f x))

Numeral n takes arguments f and x, applies f n-times to x.

iszero = An. n (Ax. false) true
succ =Anfx.f(nfx)
add =Amn A x.mf (nf x)

Fix Points

(M f.f(xxf)) (AFf.f(xxf)) t—p

66 | COMP.

Fix Points

(M f.f(xxf)) (AFf.f(xxf)) t—p
(M. F((Mxfof(xxf)) Axf.f(xxf))F)) t—g

Fix Points

(Xf f(xxf)) (Af.f(xxf)) t—p
(M. F((Mxfof(xxf)) Axf.f(xxf))F)) t—g
t (()\xf fxxf)(Axf.f(xxf))t)

Fix Points

(Xf f(xxf)) (Af.f(xxf)) t—p
(M. F((Mxfof(xxf)) Axf.f(xxf))F)) t—g
t (()\xf fxxf)(Axf.f(xxf))t)

=(Mxf.f(xxf))(Mf.f(xxf))
pt—pgt(pt)—pt(t(pt)) —pt(t(tt)) —

66 | COMP4161 | G Klein, M Tanaka

Fix Points

(Xf f(xxf)) (Af.f(xxf)) t—p
(M. F((Mxfof(xxf)) Axf.f(xxf))F)) t—g
t (()\xf fxxf)(Axf.f(xxf))t)

=(Mxf.f(xxf))(Mf.f(xxf))
pt—pgt(pt)—pt(t(pt)) —pt(t(tt)) —

(Axf. f (x x f)) (Axf. f (x x f)) is Turing's fix point operator

Nice, but ...

As a mathematical foundation, A\ does not work. It resulted in an
inconsistent logic.

Nice, but ...

As a mathematical foundation, A does not work. It resulted in an
inconsistent logic.
=» Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates
Russell (1901): Paradox R = {X|X ¢ X}
Whitehead & Russell (Principia Mathematica, 1910-1913):
Fix the problem
=» Church (1930): X calculus as logic, true, false, A, ... as A terms

-5
-

Problem:

Nice, but ...

As a mathematical foundation, A does not work. It resulted in an
inconsistent logic.
=» Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates
Russell (1901): Paradox R = {X|X ¢ X}
Whitehead & Russell (Principia Mathematica, 1910-1913):
Fix the problem
=» Church (1930): X calculus as logic, true, false, A, ... as A terms

-5
-

Problem:
with {x| P x} =Xx. P x xeM=Mx

OMP4161) Aman Pohjola, R

Nice, but ...

As a mathematical foundation, A does not work. It resulted in an
inconsistent logic.
=» Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates
Russell (1901): Paradox R = {X|X ¢ X}
Whitehead & Russell (Principia Mathematica, 1910-1913):
Fix the problem
=» Church (1930): X calculus as logic, true, false, A, ... as A terms

-5
-

Problem:
with {x| P x} =Xx. P x xeM=Mx
you can write R = Ax. not (x x)

OMP4161) Aman Pohjola, R

Nice, but ...

As a mathematical foundation, A does not work. It resulted in an
inconsistent logic.
=» Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates
Russell (1901): Paradox R = {X|X ¢ X}
Whitehead & Russell (Principia Mathematica, 1910-1913):
Fix the problem
=» Church (1930): X calculus as logic, true, false, A, ... as A terms

-5
-

Problem:
with {x| P x} =Xx. P x xeM=Mx
you can write R = Ax. not (x x)
and get (R R)=gnot (RR)

OMP4161) Aman Pohjola, R

Nice, but ...

As a mathematical foundation, A\ does not work. It resulted in an
inconsistent logic.
=» Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates
Russell (1901): Paradox R = {X|X ¢ X}

->
=» Whitehead & Russell (Principia Mathematica, 1910-1913):
Fix the problem

=» Church (1930): X calculus as logic, true, false, A, ... as A terms

Problem:
with {x| P x} =Xx. P x xeM=Mx
you can write R = Ax. not (x x)
and get (R R)=gnot (RR)

because (R R) = (Ax. not (x x)) R — s not (R R)

OMP4161) Aman Pohjola, R

We have learned so far...

A calculus syntax

free variables, substitution

[reduction

« and 7 conversion

[reduction is confluent

A calculus is very expressive (turing complete)

dii il

A calculus results in an inconsistent logic

