

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Robert Sison T3/2023

Binary Search (java.util.Arrays)

```
public static int binarySearch(int[] a, int key) {
1:
2:
           int low = 0:
3:
           int high = a.length - 1;
4:
           while (low <= high) {
5:
               int mid = (low + high) / 2;
6:
7:
               int midVal = a[mid];
8:
9:
               if (midVal < key)
10:
                    low = mid + 1
                else if (midVal > key)
11:
12:
                    high = mid - 1;
13:
                else
14:
                    return mid; // key found
15:
            return -(low + 1); // key not found.
16:
17:
        }
```

Binary Search (java.util.Arrays)

```
1:
     public static int binarySearch(int[] a, int key) {
2:
         int low = 0:
3:
         int high = a.length - 1;
4:
5:
         while (low <= high) {
6.
            int mid = (low + high) / 2:
7:
            int midVal = a[mid]:
8:
9:
            if (midVal < key)
10:
                 low = mid + 1
11:
             else if (midVal > kev)
12:
                high = mid - 1;
13:
             else
14:
                return mid; // key found
15:
          return -(low + 1); // key not found.
16:
17:
      }
                         int mid = (low + high) / 2;
6:
                http://googleresearch.blogspot.com/2006/06/
                 extra-extra-read-all-about-it-nearly.html
```

Organisatorials

http://www.cse.unsw.edu.au/~cs4161/

About us: Proofcraft and Trustworthy Systems

- → TS (Trustworthy Systems) is a research group at UNSW
 - → track record of research and real world impact in verified software
 - → biggest achievement: formal verification of seL4
- → Proofcraft is a new company
 - → from former leaders of TS
 - → providing services in software verification
- → seL4 is an operating microkernel used around the world in critical systems
 - → with a proof of functional correctness and security: Security ↔ Isabelle/HOL model ↔ Haskell model ↔ C code ↔ Binary
 - → 10 000 LOC / more than 1 million lines of proof
 - → Open source, http://sel4.systems

We are always embarking on exciting new projects. Talk to us!

- → taste of research projects
- → honours and PhD theses
- → research assistant and verification engineer positions

What you will learn

- → how to use a theorem prover
- → background, how it works
- → how to prove and specify
- → how to reason about programs

What you will learn

- → how to use a theorem prover
- → background, how it works
- → how to prove and specify
- → how to reason about programs

Health Warning Theorem Proving is addictive

Prerequisites

This is an advanced course. It assumes knowledge in

- → Functional programming
- → First-order formal logic

Prerequisites

This is an advanced course. It assumes knowledge in

- → Functional programming
- → First-order formal logic

The following program should make sense to you:

$$\begin{array}{lll} \mathsf{map} \ f \ [] & = & [] \\ \mathsf{map} \ f \ (x:xs) & = & f \ x : \ \mathsf{map} \ f \ xs \end{array}$$

Prerequisites

This is an advanced course. It assumes knowledge in

- → Functional programming
- → First-order formal logic

The following program should make sense to you:

$$\begin{array}{lll} \mathsf{map} \ \mathsf{f} \ [] & = & [] \\ \mathsf{map} \ \mathsf{f} \ (\mathsf{x} : \mathsf{xs}) & = & \mathsf{f} \ \mathsf{x} : \ \mathsf{map} \ \mathsf{f} \ \mathsf{xs} \end{array}$$

You should be able to read and understand this formula:

$$\exists x. (P(x) \longrightarrow \forall x. P(x))$$

- → Foundations & Principles
 - Intro, Lambda calculus, natural deduction
 - Higher Order Logic, Isar (part 1)
 - Term rewriting

- → Foundations & Principles
 - Intro, Lambda calculus, natural deduction
 - Higher Order Logic, Isar (part 1)
 - Term rewriting
- → Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatype induction, primitive recursion
 - General recursive functions, termination proofs
 - Proof automation, Isar (part 2)
 - Hoare logic, proofs about programs, invariants
 - C verification
 - Practice, questions, exam prep

- Foundations & Dringings	Rough timeline
→ Foundations & Principles • Intro, Lambda calculus, natural deduction	[1,2]
Higher Order Logic, Isar (part 1)	$[2,3^a]$
Term rewriting	[3,4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	$[7^b]$
 Proof automation, Isar (part 2) 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
 C verification 	[9,10]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

To have a chance at succeeding

you should:

- → attend lectures
- → try Isabelle early
- → redo all the demos alone
- → try the exercises/homework we give, when we do give some

→ DO NOT CHEAT

- Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
- For more info, see Plagiarism Policy^a

a https://student.unsw.edu.au/plagiarism

Credits

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don't blame them, errors are ours

What is a formal proof?

A derivation in a formal calculus

What is a formal proof?

A derivation in a formal calculus

Example: $A \wedge B \longrightarrow B \wedge A$ derivable in the following system

Rules:
$$X \in S \atop S \vdash X$$
 (assumption) $S \cup \{X\} \vdash Y \atop S \vdash X \longrightarrow Y$ (impl)
$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y}$$
 (conjl) $\frac{S \cup \{X\} \vdash Y}{S \cup \{X, Y\} \vdash Z}$ (conjE)

What is a formal proof?

A derivation in a formal calculus

Example: $A \wedge B \longrightarrow B \wedge A$ derivable in the following system

Rules:
$$\frac{X \in S}{S \vdash X}$$
 (assumption) $\frac{S \cup \{X\} \vdash Y}{S \vdash X \longrightarrow Y}$ (impl) $\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y}$ (conjl) $\frac{S \cup \{X, Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z}$ (conjE)

Proof:

1.
$$\{A, B\} \vdash B$$
 (by assumption)
2. $\{A, B\} \vdash A$ (by assumption)

3.
$$\{A,B\} \vdash B \land A$$
 (by conjl with 1 and 2)

2.
$$\{A, B\} \vdash A$$
 (by assumption)
3. $\{A, B\} \vdash B \land A$ (by conjl with 1 and 2)
4. $\{A \land B\} \vdash B \land A$ (by conjE with 3)
5. $\{\} \vdash A \land B \longrightarrow B \land A$ (by impl with 4)

5.
$$\{\} \vdash A \land B \longrightarrow B \land A \text{ (by impl with 4)}$$

What is a theorem prover?

Implementation of a formal logic on a computer.

- → fully automated (propositional logic)
- → automated, but not necessarily terminating (first order logic)
- → with automation, but mainly interactive (higher order logic)

What is a theorem prover?

Implementation of a formal logic on a computer.

- → fully automated (propositional logic)
- → automated, but not necessarily terminating (first order logic)
- → with automation, but mainly interactive (higher order logic)

There are other (algorithmic) verification tools:

- → model checking, static analysis, ...
- → See COMP3153: Algorithmic Verification

Why theorem proving?

- → Analyse systems/programs thoroughly
- → Findi design and specification errors early
- → High assurance: mathematical, machine checked proofs
- → It's not always easy
- → It's fun!

Main theorem proving system for this course

Isabelle

→ used at TS for research, teaching and proof engineering

A generic interactive proof assistant

A generic interactive proof assistant

→ generic:

not specialised to one particular logic (two large developments: HOL and ZF, will mainly use HOL)

A generic interactive proof assistant

→ generic:

not specialised to one particular logic (two large developments: HOL and ZF, will mainly use HOL)

→ interactive:

more than just yes/no, you can interactively guide the system

A generic interactive proof assistant

- → generic:
 - not specialised to one particular logic (two large developments: HOL and ZF, will mainly use HOL)
- → interactive:
 more than just yes/no, you can interactively guide the system
- proof assistant: helps to explore, find, and maintain proofs

No. because:

- hardware could be faulty
- ② operating system could be faulty
- ③ implementation runtime system could be faulty
- ④ compiler could be faulty
- ⑤ implementation could be
- 6 logic could be inconsistent
- Theorem could mean something else

No, but:

probability for

- → OS and H/W issues reduced by using different systems
- → runtime/compiler bugs reduced by using different compilers
- → faulty implementation reduced by having the right prover architecture
- → inconsistent logic reduced by implementing and analysing it
- → wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

Soundness architectures careful implementation

PVS ACL2

Soundness architectures

careful implementation PVS

ACL2

LCF approach, small proof kernel HOL4

Isabelle

HOL-light

Soundness architectures

careful implementation PVS

ACL2

LCF approach, small proof kernel HOL4

Isabelle

HOL-light

explicit proofs + proof checker Coq

Lean

Twelf

Isabelle

HOL4

Agda

Meta Logic

Meta language:

The language used to talk about another language.

Meta Logic

Meta language:

The language used to talk about another language.

Examples:

English in a Spanish class, English in an English class

Meta Logic

Meta language:

The language used to talk about another language.

Examples:

English in a Spanish class, English in an English class

Meta logic:

The logic used to formalize another logic

Example:

Mathematics used to formalize derivations in formal logic

Meta Logic – Example

Formulae: $F ::= V \mid F \longrightarrow F \mid F \wedge F \mid False$

Syntax: V := [A - Z]

Judgement: $S \vdash X$ X a formula, S a set of formulae

Meta Logic - Example

Formulae:
$$F ::= V \mid F \longrightarrow F \mid F \wedge F \mid False$$

Syntax:
$$V := [A - Z]$$

Judgement: $S \vdash X$ X a formula, S a set of formulae

$$\frac{X \in S}{S \vdash X} \qquad \qquad \frac{S \cup \{X\} \vdash Y}{S \vdash X \longrightarrow Y}$$

$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y} \qquad \frac{S \cup \{X, Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z}$$

Isabelle's Meta Logic

Syntax: $\bigwedge x$. F (F another meta logic formula) in ASCII: !!x. F

Syntax: $\bigwedge x$. F (F another meta logic formula) in ASCII: !!x. F

- → this is the meta-logic universal quantifier
- → example and more later

Syntax: $A \Longrightarrow B$ (A, B other meta logic formulae)

in ASCII: A ==> B

Syntax:
$$A \Longrightarrow B$$
 (A, B other meta logic formulae) in ASCII: $A \Longrightarrow B$

Binds to the right:

$$A \Longrightarrow B \Longrightarrow C = A \Longrightarrow (B \Longrightarrow C)$$

Abbreviation:

$$\llbracket A;B \rrbracket \Longrightarrow C = A \Longrightarrow B \Longrightarrow C$$

- \rightarrow read: A and B implies C
- → used to write down rules, theorems, and proof states

mathematics: if x < 0 and y < 0, then x + y < 0

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: $\vdash x < 0 \land y < 0 \longrightarrow x + y < 0$

variation: x < 0; $y < 0 \vdash x + y < 0$

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: $\vdash x < 0 \land y < 0 \longrightarrow x + y < 0$

variation: x < 0; $y < 0 \vdash x + y < 0$

Isabelle:lemma " $x < 0 \land y < 0 \longrightarrow x + y < 0$ "variation:lemma " $[x < 0; y < 0] \Longrightarrow x + y < 0$ "

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: $\vdash x < 0 \land y < 0 \longrightarrow x + y < 0$

variation: x < 0; $y < 0 \vdash x + y < 0$

Isabelle: lemma " $x < 0 \land y < 0 \longrightarrow x + y < 0$ " variation: lemma " $\llbracket x < 0; y < 0 \rrbracket \Longrightarrow x + v < 0$ "

variation: lemma

assumes "x < 0" and "y < 0" shows "x + y < 0"

Example: a rule

logic:
$$\frac{X}{X \wedge Y}$$

Example: a rule

logic:
$$\frac{X \quad Y}{X \land Y}$$

variation:
$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y}$$

Example: a rule

logic:
$$\frac{X \quad Y}{X \land Y}$$

variation:
$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y}$$

Isabelle:
$$[\![X;Y]\!] \Longrightarrow X \wedge Y$$

Example: a rule with nested implication

$$\begin{array}{ccc}
X & Y \\
\vdots & \vdots \\
X \lor Y & Z & Z
\end{array}$$

logic:

Example: a rule with nested implication

$$\begin{array}{ccc} X & Y \\ \vdots & \vdots \\ X \lor Y & Z & Z \\ \hline Z \end{array}$$

logic:

$$\frac{S \cup \{X\} \vdash Z \quad S \cup \{Y\} \vdash Z}{S \cup \{X \lor Y\} \vdash Z}$$

variation:

Example: a rule with nested implication

$$\begin{array}{cccc}
X & Y \\
\vdots & \vdots \\
X \lor Y & Z & Z
\end{array}$$
:: Z

logic:

$$\frac{S \cup \{X\} \vdash Z \quad S \cup \{Y\} \vdash Z}{S \cup \{X \lor Y\} \vdash Z}$$

variation:

Isabelle:
$$[X \lor Y; X \Longrightarrow Z; Y \Longrightarrow Z] \Longrightarrow Z$$

 λ

Syntax: $\lambda x. F$ (*F* another meta logic formula)

in ASCII: %x. F

 λ

Syntax: λx . F (F another meta logic formula)

in ASCII: %x. F

- → lambda abstraction
- → used to represent functions
- → used to encode bound variables
- → more about this soon

Enough Theory!

Getting started with Isabelle

 $\textbf{Isabelle} - \mathsf{generic}, \ \mathsf{interactive} \ \mathsf{theorem} \ \mathsf{prover}$

Isabelle – generic, interactive theorem prover **Standard ML** – logic implemented as ADT

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

Prover IDE (jEdit) – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

```
Prover IDE (jEdit) – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!
```

System Requirements

- → Linux, Windows, or MacOS X (10.8 +)
- → Standard ML (PolyML implementation)
- → Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on: http://mirror.cse.unsw.edu.au/pub/isabelle/

Documentation

Available from http://isabelle.in.tum.de

- → Learning Isabelle
 - Concrete Semantics Book
 - Tutorial on Isabelle/HOL (LNCS 2283)
 - Tutorial on Isar
- → Reference Manuals
 - Isabelle/Isar Reference Manual
 - Isabelle Reference Manual
 - Isabelle System Manual
- → Reference Manuals for Object Logics

___ Demo

```
week01A_demo.thy
File Edit Search Markers Folding View Utilities Macros Plugins Help
week01A demo.thy (~/teaching/comp4161/12s2/slides/week01A/)
  text {*
   Note that free variables (eg x), bound variables (eg \lambdan) and
   constants (eg Suc) are displayed differently. *}
  term "x"
  term "Suc x"
  term "Succ x"
  term "Suc x = Succ y"
  term "λχ constant "Nat.Suc"
           :: nat => nat
  text {* To display more types inside terms: *}
  declare [[show types]]
  term "Suc x = Succ y"
  text {* To switch off again: *}
  declare [[show types=false]]
  term "Suc x = Succ y"
  text {* 0 and + are overloaded: *}
  prop "n + n = 0"
                                                                                 ▼ Tracing ✓ Auto update Update
"Suc x"
:: "nat"
```


Exercises

- → Download and install Isabelle from http://mirror.cse.unsw.edu.au/pub/isabelle/
- → Step through the demo files from the lecture web page
- → Write your own theory file, look at some theorems in the library, try 'find_theorems'
- → How many theorems can help you if you need to prove something containing the term "Suc(Suc x)"?
- → What is the name of the theorem for associativity of addition of natural numbers in the library?

λ -Calculus

Content

→	Foundations & Principles	
	 Intro, Lambda calculus, natural deduction 	[1,2]
	 Higher Order Logic, Isar (part 1) 	[2,3 ^a]
	Term rewriting	[3,4]
→	Proof & Specification Techniques	
	 Inductively defined sets, rule induction 	[4,5]
	 Datatype induction, primitive recursion 	[5,7]
	 General recursive functions, termination proofs 	$[7^{b}]$
	 Proof automation, Isar (part 2) 	[8]
	 Hoare logic, proofs about programs, invariants 	[8,9]
	C verification	[9,10]
	 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

λ -calculus

Alonzo Church

- → lived 1903-1995
- → supervised people like Alan Turing, Stephen Kleene
- → famous for Church-Turing thesis, lambda calculus, first undecidability results
- \rightarrow invented λ calculus in 1930's

λ -calculus

Alonzo Church

- → lived 1903-1995
- → supervised people like Alan Turing, Stephen Kleene
- → famous for Church-Turing thesis, lambda calculus, first undecidability results
- \rightarrow invented λ calculus in 1930's

λ -calculus

- → originally meant as foundation of mathematics
- → important applications in theoretical computer science
- → foundation of computability and functional programming

- → turing complete model of computation
- → a simple way of writing down functions

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write $f = \lambda x. x + 5$

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write $f = \lambda x. x + 5$

$$\lambda x$$
. $x + 5$

→ a term

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write $f = \lambda x. x + 5$

$$\lambda x$$
. $x + 5$

- → a term
- → a nameless function

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write $f = \lambda x. x + 5$

$$\lambda x$$
. $x + 5$

- → a term
- → a nameless function
- → that adds 5 to its parameter

For applying arguments to functions

instead of f(a) write f(a)

For applying arguments to functions

instead of
$$f(a)$$
 write $f(a)$

Example: $(\lambda x. x + 5) a$

For applying arguments to functions

instead of
$$f(a)$$
 write $f(a)$

Example:
$$(\lambda x. x + 5) a$$

Evaluating: in
$$(\lambda x. t)$$
 a replace x by a in t (computation!)

For applying arguments to functions

instead of
$$f(a)$$
 write $f(a)$

Example:
$$(\lambda x. x + 5) a$$

Evaluating: in
$$(\lambda x. t)$$
 a replace x by a in t (computation!)

Example:
$$(\lambda x. x + 5) (a + b)$$
 evaluates to

For applying arguments to functions

instead of
$$f(a)$$
 write $f(a)$

Example:
$$(\lambda x. x + 5) a$$

Evaluating: in
$$(\lambda x. t)$$
 a replace x by a in t

(computation!)

Example:
$$(\lambda x. x + 5) (a + b)$$
 evaluates to $(a + b) + 5$

That's it!

Now Formal

Syntax

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$

Syntax

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$
 $v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$

- $\rightarrow V, X$ variables
- → C constants
- \rightarrow $(t \ t)$ application
- \rightarrow $(\lambda x. t)$ abstraction

Conventions

- → leave out parentheses where possible
- ightharpoonup list variables instead of multiple λ

Example: instead of $(\lambda y. (\lambda x. (x y)))$ write $\lambda y. x. x. y$

Conventions

- → leave out parentheses where possible
- ightharpoonup list variables instead of multiple λ

Example: instead of $(\lambda y. (\lambda x. (x y)))$ write $\lambda y x. x y$

Rules:

- \rightarrow list variables: λx . $(\lambda y. t) = \lambda x y. t$
- \rightarrow application binds to the left: $x \ y \ z = (x \ y) \ z \neq x \ (y \ z)$
- \rightarrow abstraction binds to the right: $\lambda x. \ x \ y = \lambda x. \ (x \ y) \neq (\lambda x. \ x) \ y$
- → leave out outermost parentheses

$$\lambda x y z. x z (y z) =$$

$$\lambda x \ y \ z. \ x \ z \ (y \ z) =$$

 $\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$

$$\lambda x y z. x z (y z) =$$

$$\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$$

$$\lambda x \ y \ z. \ ((x \ z) \ (y \ z)) =$$

$$\lambda x \ y \ z. \ x \ z \ (y \ z) =$$
 $\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$
 $\lambda x \ y \ z. \ ((x \ z) \ (y \ z)) =$
 $\lambda x. \ \lambda y. \ \lambda z. \ ((x \ z) \ (y \ z)) =$

$$\lambda x \ y \ z. \ x \ z \ (y \ z) =$$
 $\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$
 $\lambda x \ y \ z. \ ((x \ z) \ (y \ z)) =$
 $\lambda x. \ \lambda y. \ \lambda z. \ ((x \ z) \ (y \ z)) =$
 $(\lambda x. \ (\lambda y. \ (\lambda z. \ ((x \ z) \ (y \ z)))))$

Intuition: replace parameter by argument

this is called β -reduction

Remember: $(\lambda x. t)$ *a* is evaluated (noted \longrightarrow_{β}) to t where x is replaced by a

$$(\lambda x \ y. \ Suc \ x = y) \ 3 \longrightarrow_{\beta}$$

Intuition: replace parameter by argument

this is called β -reduction

Remember: $(\lambda x. \ t)$ *a* is evaluated (noted \longrightarrow_{β}) to t where x is replaced by a

$$(\lambda x \ y. \ Suc \ x = y) \ 3 \longrightarrow_{\beta} (\lambda x. \ (\lambda y. \ Suc \ x = y)) \ 3 \longrightarrow_{\beta}$$

Intuition: replace parameter by argument

this is called β -reduction

Remember: $(\lambda x. \ t)$ *a* is evaluated (noted \longrightarrow_{β}) to t where x is replaced by a

$$(\lambda x \ y. \ Suc \ x = y) \ 3 \longrightarrow_{\beta} (\lambda x. \ (\lambda y. \ Suc \ x = y)) \ 3 \longrightarrow_{\beta} (\lambda y. \ Suc \ 3 = y)$$

Intuition: replace parameter by argument

this is called β -reduction

Remember: $(\lambda x. \ t)$ *a* is evaluated (noted \longrightarrow_{β}) to t where x is replaced by a

$$(\lambda x \ y. \ Suc \ x = y) \ 3 \longrightarrow_{\beta} (\lambda x. \ (\lambda y. \ Suc \ x = y)) \ 3 \longrightarrow_{\beta} (\lambda y. \ Suc \ 3 = y) (\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$

Intuition: replace parameter by argument

this is called β -reduction

Remember: $(\lambda x. \ t)$ a is evaluated (noted \longrightarrow_{β}) to t where x is replaced by a

$$(\lambda x \ y. \ Suc \ x = y) \ 3 \longrightarrow_{\beta}$$

$$(\lambda x. \ (\lambda y. \ Suc \ x = y)) \ 3 \longrightarrow_{\beta}$$

$$(\lambda y. \ Suc \ 3 = y)$$

$$(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$

$$(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}$$

Intuition: replace parameter by argument

this is called β -reduction

Remember: $(\lambda x. \ t)$ *a* is evaluated (noted \longrightarrow_{β}) to t where x is replaced by a

$$(\lambda x \ y. \ Suc \ x = y) \ 3 \longrightarrow_{\beta}$$

$$(\lambda x. \ (\lambda y. \ Suc \ x = y)) \ 3 \longrightarrow_{\beta}$$

$$(\lambda y. \ Suc \ 3 = y)$$

$$(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$

$$(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}$$

$$f \ ((\lambda x. \ x) \ 5) \longrightarrow_{\beta}$$

Intuition: replace parameter by argument

this is called β -reduction

Remember: $(\lambda x. \ t)$ *a* is evaluated (noted \longrightarrow_{β}) to t where x is replaced by a

$$(\lambda x \ y. \ Suc \ x = y) \ 3 \longrightarrow_{\beta}$$

$$(\lambda x. \ (\lambda y. \ Suc \ x = y)) \ 3 \longrightarrow_{\beta}$$

$$(\lambda y. \ Suc \ 3 = y)$$

$$(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$

$$(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}$$

$$f \ ((\lambda x. \ x) \ 5) \longrightarrow_{\beta}$$

Defining Computation

eta reduction:

Defining Computation

eta reduction:

Still to do: define $s[x \leftarrow t]$

Defining Substitution

Easy concept. Small problem: variable capture.

Example: $(\lambda x. \ x \ z)[z \leftarrow x]$

Defining Substitution

Easy concept. Small problem: variable capture.

Example: $(\lambda x. \ x \ z)[z \leftarrow x]$

We do **not** want: $(\lambda x. x x)$ as result.

What do we want?

Defining Substitution

Easy concept. Small problem: variable capture.

Example: $(\lambda x. \ x \ z)[z \leftarrow x]$

We do **not** want: $(\lambda x. x x)$ as result.

What do we want?

In $(\lambda y. \ y \ z) [z \leftarrow x] = (\lambda y. \ y \ x)$ there would be no problem.

So, solution is: rename bound variables.

Free Variables

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables *FV* of a term:

$$FV(x) = \{x\}$$

 $FV(c) = \{\}$
 $FV(s t) = FV(s) \cup FV(t)$
 $FV(\lambda x. t) = FV(t) \setminus \{x\}$

Example: $FV(\lambda x. (\lambda y. (\lambda x. x) y) y x)$

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables *FV* of a term:

$$FV(x) = \{x\}$$

 $FV(c) = \{\}$
 $FV(s t) = FV(s) \cup FV(t)$
 $FV(\lambda x. t) = FV(t) \setminus \{x\}$

Example: $FV(\lambda x. (\lambda y. (\lambda x. x) y) y x) = \{y\}$

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables *FV* of a term:

$$FV(x) = \{x\}$$

 $FV(c) = \{\}$
 $FV(s t) = FV(s) \cup FV(t)$
 $FV(\lambda x. t) = FV(t) \setminus \{x\}$

Example:
$$FV(\lambda x. (\lambda y. (\lambda x. x) y) y x) = \{y\}$$

Term t is called **closed** if $FV(t) = \{\}$

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables *FV* of a term:

$$FV(x) = \{x\}$$

 $FV(c) = \{\}$
 $FV(s t) = FV(s) \cup FV(t)$
 $FV(\lambda x. t) = FV(t) \setminus \{x\}$

Example:
$$FV(\lambda x. (\lambda y. (\lambda x. x) y) y x) = \{y\}$$

Term t is called **closed** if $FV(t) = \{\}$

The substitution example, $(\lambda x. \times z)[z \leftarrow x]$, is problematic because the bound variable x is a free variable of the replacement term "x".

$$x \begin{bmatrix} x \leftarrow t \end{bmatrix} = t$$

$$y \begin{bmatrix} x \leftarrow t \end{bmatrix} = y$$

$$c \begin{bmatrix} x \leftarrow t \end{bmatrix} = c$$

$$(s_1 \ s_2) \begin{bmatrix} x \leftarrow t \end{bmatrix} =$$

$$x \begin{bmatrix} x \leftarrow t \end{bmatrix} = t$$

$$y \begin{bmatrix} x \leftarrow t \end{bmatrix} = y$$

$$c \begin{bmatrix} x \leftarrow t \end{bmatrix} = c$$

$$(s_1 \ s_2) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (s_1 [x \leftarrow t] \ s_2 [x \leftarrow t])$$

$$(\lambda x. \ s) \begin{bmatrix} x \leftarrow t \end{bmatrix} =$$

$$x [x \leftarrow t] = t$$

$$y [x \leftarrow t] = y$$

$$c [x \leftarrow t] = c$$

$$(s_1 s_2) [x \leftarrow t] = (s_1[x \leftarrow t] s_2[x \leftarrow t])$$

$$(\lambda x. s) [x \leftarrow t] = (\lambda x. s)$$

$$(\lambda y. s) [x \leftarrow t] =$$

$$x \begin{bmatrix} x \leftarrow t \end{bmatrix} = t$$

$$y \begin{bmatrix} x \leftarrow t \end{bmatrix} = y$$

$$c \begin{bmatrix} x \leftarrow t \end{bmatrix} = c$$

$$(s_1 \ s_2) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (s_1 [x \leftarrow t] \ s_2 [x \leftarrow t])$$

$$(\lambda x. \ s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda x. \ s)$$

$$(\lambda y. \ s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda y. \ s[x \leftarrow t])$$

$$(\lambda y. \ s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda y. \ s[x \leftarrow t])$$
if $x \neq y$ and $y \notin FV(t)$

$$(\lambda y. \ s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda y. \ s[x \leftarrow t])$$

$$x \begin{bmatrix} x \leftarrow t \end{bmatrix} = t$$

$$y \begin{bmatrix} x \leftarrow t \end{bmatrix} = y$$

$$c \begin{bmatrix} x \leftarrow t \end{bmatrix} = c$$

$$(s_1 s_2) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (s_1 [x \leftarrow t] \ s_2 [x \leftarrow t])$$

$$(\lambda x. \ s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda x. \ s)$$

$$(\lambda y. \ s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda y. \ s[x \leftarrow t])$$

$$(\lambda y. \ s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda z. \ s[y \leftarrow z][x \leftarrow t])$$
if $x \neq y$ and $y \notin FV(t)$

$$(\lambda y. \ s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda z. \ s[y \leftarrow z][x \leftarrow t])$$
if $x \neq y$
and $z \notin FV(t) \cup FV(s)$

Substitution Example

$$(x (\lambda x. x) (\lambda y. z x))[x \leftarrow y]$$

Substitution Example

$$(x (\lambda x. x) (\lambda y. z x))[x \leftarrow y]$$

$$= (x[x \leftarrow y]) ((\lambda x. x)[x \leftarrow y]) ((\lambda y. z x)[x \leftarrow y])$$

Substitution Example

$$(x (\lambda x. x) (\lambda y. z x))[x \leftarrow y]$$

$$= (x[x \leftarrow y]) ((\lambda x. x)[x \leftarrow y]) ((\lambda y. z x)[x \leftarrow y])$$

$$= y (\lambda x. x) (\lambda y'. z y)$$

Bound names are irrelevant:

 λx . x and λy . y denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

Bound names are irrelevant:

 $\lambda x. \ x$ and $\lambda y. \ y$ denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

Formally:

$$(\lambda x. \ t) \longrightarrow_{\alpha} (\lambda y. \ t[x \leftarrow y]) \ \text{if} \ y \notin FV(t)$$

$$s \longrightarrow_{\alpha} s' \implies (s \ t) \longrightarrow_{\alpha} (s' \ t)$$

$$t \longrightarrow_{\alpha} t' \implies (s \ t) \longrightarrow_{\alpha} (s \ t')$$

$$s \longrightarrow_{\alpha} s' \implies (\lambda x. \ s) \longrightarrow_{\alpha} (\lambda x. \ s')$$

Bound names are irrelevant:

 $\lambda x. \ x$ and $\lambda y. \ y$ denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

Formally:

$$(\lambda x. \ t) \longrightarrow_{\alpha} (\lambda y. \ t[x \leftarrow y]) \ \text{if} \ y \notin FV(t)$$

$$s \longrightarrow_{\alpha} s' \implies (s \ t) \longrightarrow_{\alpha} (s' \ t)$$

$$t \longrightarrow_{\alpha} t' \implies (s \ t) \longrightarrow_{\alpha} (s \ t')$$

$$s \longrightarrow_{\alpha} s' \implies (\lambda x. \ s) \longrightarrow_{\alpha} (\lambda x. \ s')$$

$$s =_{\alpha} t \quad \text{iff} \quad s \longrightarrow_{\alpha}^{*} t$$

$$(\longrightarrow_{\alpha}^{*} = \text{transitive, reflexive closure of} \longrightarrow_{\alpha} = \text{multiple steps})$$

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

$$x (\lambda x y. x y)$$

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

$$=_{\alpha} x (\lambda x y. x y)$$

$$=_{\alpha} x (\lambda y x. y x)$$

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

$$\begin{array}{ll}
 & x (\lambda x \ y. \ x \ y) \\
=_{\alpha} & x (\lambda y \ x. \ y \ x) \\
=_{\alpha} & x (\lambda z \ y. \ z \ y) \\
\neq_{\alpha} & z (\lambda z \ y. \ z \ y)
\end{array}$$

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

$$\begin{array}{ccc} & x \ (\lambda x \ y. \ x \ y) \\ =_{\alpha} & x \ (\lambda y \ x. \ y \ x) \\ =_{\alpha} & x \ (\lambda z \ y. \ z \ y) \\ \neq_{\alpha} & z \ (\lambda z \ y. \ z \ y) \\ \neq_{\alpha} & x \ (\lambda x \ x. \ x \ x) \end{array}$$

We have defined β reduction: \longrightarrow_{β} Some notation and concepts:

 \rightarrow β conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^* n \land t \longrightarrow_{\beta}^* n$

- $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^* n \land t \longrightarrow_{\beta}^* n$
- \rightarrow t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$

- $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^* n \land t \longrightarrow_{\beta}^* n$
- ightharpoonup t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- \rightarrow ($\lambda x. s$) t is called a **redex** (reducible expression)

- $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^* n \land t \longrightarrow_{\beta}^* n$
- ightharpoonup t is **reducible** if there is an s such that $t \longrightarrow_{eta} s$
- \rightarrow ($\lambda x. s$) t is called a **redex** (reducible expression)
- → t is reducible iff it contains a redex

- $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^* n \land t \longrightarrow_{\beta}^* n$
- \rightarrow t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- \rightarrow ($\lambda x. s$) t is called a **redex** (reducible expression)
- → t is reducible iff it contains a redex
- \rightarrow if it is not reducible, t is in **normal form**

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \ \longrightarrow_{\beta} \\ (\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \ \longrightarrow_{\beta}$$

No!

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta} \dots$$

No!

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \ \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \ \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \ \longrightarrow_{\beta} \dots$$

(but:
$$(\lambda x \ y. \ y)$$
 $((\lambda x. \ x \ x) \ (\lambda x. \ x \ x)) \longrightarrow_{\beta} \lambda y. \ y)$

No!

Example:

$$\begin{array}{c} (\lambda x.\ x\ x)\ (\lambda x.\ x\ x)\ \longrightarrow_{\beta} \\ (\lambda x.\ x\ x)\ (\lambda x.\ x\ x)\ \longrightarrow_{\beta} \\ (\lambda x.\ x\ x)\ (\lambda x.\ x\ x)\ \longrightarrow_{\beta} \dots \end{array}$$
 (but:
$$(\lambda x\ y.\ y)\ ((\lambda x.\ x\ x)\ (\lambda x.\ x\ x))\ \longrightarrow_{\beta}\ \lambda y.\ y)$$

 λ calculus is not terminating

Confluence: $s \longrightarrow_{\beta}^{*} x \land s \longrightarrow_{\beta}^{*} y \Longrightarrow \exists t. \ x \longrightarrow_{\beta}^{*} t \land y \longrightarrow_{\beta}^{*} t$

Confluence: $s \longrightarrow_{\beta}^* x \land s \longrightarrow_{\beta}^* y \Longrightarrow \exists t. \ x \longrightarrow_{\beta}^* t \land y \longrightarrow_{\beta}^* t$

Order of reduction does not matter for result Normal forms in λ calculus are unique

$$(\lambda x \ y. \ y) ((\lambda x. \ x \ x) \ a)$$

 $(\lambda x \ y. \ y) ((\lambda x. \ x \ x) \ a)$

$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} (\lambda x \ y. \ y) \ (a \ a)$$

 $(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} \lambda y. \ y$

$$(\lambda x \ y. \ y) ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} (\lambda x \ y. \ y) (a \ a) \longrightarrow_{\beta} \lambda y. \ y$$

 $(\lambda x \ y. \ y) ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} \lambda y. \ y$

η Conversion

Another case of trivially equal functions: $t = (\lambda x. \ t \ x)$

$$(\lambda x. \ t \ x) \longrightarrow_{\eta} t \quad \text{if } x \notin FV(t)$$

$$s \longrightarrow_{\eta} s' \implies (s \ t) \longrightarrow_{\eta} (s' \ t)$$

$$t \longrightarrow_{\eta} t' \implies (s \ t) \longrightarrow_{\eta} (s \ t')$$

$$s \longrightarrow_{\eta} s' \implies (\lambda x. \ s) \longrightarrow_{\eta} (\lambda x. \ s')$$

$$s =_{\eta} t \quad \text{iff} \ \exists n. \ s \longrightarrow_{\eta}^{*} n \land t \longrightarrow_{\eta}^{*} n$$

Example:
$$(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta}$$

$$(\lambda x. \ t \ x) \longrightarrow_{\eta} \ t \quad \text{if } x \notin FV(t)$$

$$s \longrightarrow_{\eta} \ s' \implies (s \ t) \longrightarrow_{\eta} (s' \ t)$$

$$t \longrightarrow_{\eta} \ t' \implies (s \ t) \longrightarrow_{\eta} (s \ t')$$

$$s \longrightarrow_{\eta} \ s' \implies (\lambda x. \ s) \longrightarrow_{\eta} (\lambda x. \ s')$$

$$s =_{\eta} \ t \quad \text{iff} \ \exists n. \ s \longrightarrow_{\eta}^{*} \ n \land t \longrightarrow_{\eta}^{*} n$$

Example:
$$(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta} (\lambda x. f x) g \longrightarrow_{\eta}$$

$$(\lambda x. \ t \ x) \longrightarrow_{\eta} t \quad \text{if } x \notin FV(t)$$

$$s \longrightarrow_{\eta} s' \implies (s \ t) \longrightarrow_{\eta} (s' \ t)$$

$$t \longrightarrow_{\eta} t' \implies (s \ t) \longrightarrow_{\eta} (s \ t')$$

$$s \longrightarrow_{\eta} s' \implies (\lambda x. \ s) \longrightarrow_{\eta} (\lambda x. \ s')$$

$$s =_{\eta} t \quad \text{iff} \ \exists n. \ s \longrightarrow_{\eta}^{*} n \land t \longrightarrow_{\eta}^{*} n$$

Example:
$$(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta} (\lambda x. f x) g \longrightarrow_{\eta} f g$$

$$(\lambda x. \ t \ x) \longrightarrow_{\eta} t \quad \text{if } x \notin FV(t)$$

$$s \longrightarrow_{\eta} s' \implies (s \ t) \longrightarrow_{\eta} (s' \ t)$$

$$t \longrightarrow_{\eta} t' \implies (s \ t) \longrightarrow_{\eta} (s \ t')$$

$$s \longrightarrow_{\eta} s' \implies (\lambda x. \ s) \longrightarrow_{\eta} (\lambda x. \ s')$$

$$s =_{\eta} t \quad \text{iff} \ \exists n. \ s \longrightarrow_{\eta}^{*} n \land t \longrightarrow_{\eta}^{*} n$$

Example:
$$(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta} (\lambda x. f x) g \longrightarrow_{\eta} f g$$

- $\rightarrow \eta$ reduction is confluent and terminating.
- \rightarrow $\longrightarrow_{\beta\eta}$ is confluent. $\longrightarrow_{\beta\eta}$ means \longrightarrow_{β} and \longrightarrow_{η} steps are both allowed.
- \rightarrow Equality in Isabelle is also modulo η conversion.

In fact ...

Equality in Isabelle is modulo α , β , and η conversion.

We will see later why that is possible.

Isabelle Demo

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

```
true \equiv \lambda x \ y. \ x

false \equiv \lambda x \ y. \ y

if \equiv \lambda z \ x \ y. \ z \ x \ y
```

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

true
$$\equiv \lambda x \ y. \ x$$
 if true $x \ y \longrightarrow_{\beta}^* x$
false $\equiv \lambda x \ y. \ y$ if false $x \ y \longrightarrow_{\beta}^* y$
if $\equiv \lambda z \ x \ y. \ z \ x \ y$

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

$$\begin{array}{ll} \text{true} & \equiv \lambda x \; y. \; x & \text{if true} \; x \; y \longrightarrow_{\beta}^{*} x \\ \text{false} & \equiv \lambda x \; y. \; y & \text{if false} \; x \; y \longrightarrow_{\beta}^{*} y \\ \text{if} & \equiv \lambda z \; x \; y. \; z \; x \; y & \end{array}$$

Now, not, and, or, etc is easy:

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

$$\begin{array}{ll} \text{true} & \equiv \lambda x \; y. \; x & \text{if true} \; x \; y \longrightarrow_{\beta}^* x \\ \text{false} & \equiv \lambda x \; y. \; y & \text{if false} \; x \; y \longrightarrow_{\beta}^* y \\ \text{if} & \equiv \lambda z \; x \; y. \; z \; x \; y \end{array}$$

```
Now, not, and, or, etc is easy:

not \equiv \lambda x. if x false true

and \equiv \lambda x y. if x y false

or \equiv \lambda x y. if x true y
```

Encoding natural numbers (Church Numerals)

Numeral n takes arguments f and x, applies f n-times to x.

Encoding natural numbers (Church Numerals)

Numeral n takes arguments f and x, applies f n-times to x.

iszero $\equiv \lambda n$. $n (\lambda x$. false) true

Encoding natural numbers (Church Numerals)

Numeral n takes arguments f and x, applies f n-times to x.

```
iszero \equiv \lambda n. \ n \ (\lambda x. \ false) true succ \equiv \lambda n \ f \ x. \ f \ (n \ f \ x)
```

Encoding natural numbers (Church Numerals)

Numeral n takes arguments f and x, applies f n-times to x.

```
iszero \equiv \lambda n. \ n \ (\lambda x. \ false) true
succ \equiv \lambda n \ f \ x. \ f \ (n \ f \ x)
add \equiv \lambda m \ n. \ \lambda f \ x. \ m \ f \ (n \ f \ x)
```

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta}$$

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta} (\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta}$$

```
 (\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta} 
 (\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta} 
 t ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t)
```

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta} (\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta} t ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t)$$

$$\mu = (\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t$$

$$\mu t \longrightarrow_{\beta} t (\mu t) \longrightarrow_{\beta} t (t (\mu t)) \longrightarrow_{\beta} t (t (t (\mu t))) \longrightarrow_{\beta} \dots$$

$$\begin{array}{l} (\lambda x \ f. \ f \ (x \ x \ f)) \ (\lambda x \ f. \ f \ (x \ x \ f)) \ t \longrightarrow_{\beta} \\ (\lambda f. \ f \ ((\lambda x \ f. \ f \ (x \ x \ f)) \ (\lambda x \ f. \ f \ (x \ x \ f)) \ f)) \ t \longrightarrow_{\beta} \\ t \ ((\lambda x \ f. \ f \ (x \ x \ f)) \ (\lambda x \ f. \ f \ (x \ x \ f)) \ t) \\ \mu = (\lambda x \ f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f)) \\ \mu \ t \longrightarrow_{\beta} t \ (\mu \ t) \longrightarrow_{\beta} t \ (t \ (\mu \ t)) \longrightarrow_{\beta} t \ (t \ (t \ (\mu \ t))) \longrightarrow_{\beta} \dots \\ (\lambda x f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f)) \ \text{is Turing's fix point operator}$$

As a mathematical foundation, λ does not work. It resulted in an inconsistent logic.

As a mathematical foundation, λ does not work. It resulted in an inconsistent logic.

- ightharpoonup Frege (Predicate Logic, \sim 1879): allows arbitrary quantification over predicates
- → Russell (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russell (Principia Mathematica, 1910-1913): Fix the problem
- → Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

As a mathematical foundation, λ does not work. It resulted in an inconsistent logic.

- ightharpoonup Frege (Predicate Logic, \sim 1879): allows arbitrary quantification over predicates
- → Russell (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russell (Principia Mathematica, 1910-1913): Fix the problem
- → Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

with
$$\{x \mid P \mid x\} \equiv \lambda x. P \mid x = M \equiv M \mid x$$

As a mathematical foundation, λ does not work. It resulted in an inconsistent logic.

- ightharpoonup Frege (Predicate Logic, \sim 1879): allows arbitrary quantification over predicates
- → Russell (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russell (Principia Mathematica, 1910-1913): Fix the problem
- → Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

with
$$\{x \mid P \mid x\} \equiv \lambda x. \ P \mid x \qquad x \in M \equiv M \mid x$$

you can write $R \equiv \lambda x. \ \text{not} \ (x \mid x)$

As a mathematical foundation, λ does not work. It resulted in an inconsistent logic.

- ightharpoonup Frege (Predicate Logic, \sim 1879): allows arbitrary quantification over predicates
- → Russell (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russell (Principia Mathematica, 1910-1913): Fix the problem
- ightharpoonup Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

with
$$\{x \mid P x\} \equiv \lambda x. \ P x$$
 $x \in M \equiv M x$ you can write $R \equiv \lambda x. \ \text{not} \ (x \ x)$ and get $(R \ R) =_{\beta} \ \text{not} \ (R \ R)$

As a mathematical foundation, λ does not work. It resulted in an inconsistent logic.

- ightharpoonup Frege (Predicate Logic, \sim 1879): allows arbitrary quantification over predicates
- → Russell (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russell (Principia Mathematica, 1910-1913): Fix the problem
- → Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

with
$$\{x \mid P \mid x\} \equiv \lambda x. P \mid x \in M \equiv M \mid x$$

you can write $R \equiv \lambda x. \text{ not } (x \mid x)$
and get $(R \mid R) =_{\beta} \text{ not } (R \mid R)$
because $(R \mid R) = (\lambda x. \text{ not } (x \mid x)) \mid R \longrightarrow_{\beta} \text{ not } (R \mid R)$

We have learned so far...

- ightarrow λ calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction
- \rightarrow α and η conversion
- $\rightarrow \beta$ reduction is confluent
- $\rightarrow \lambda$ calculus is very expressive (turing complete)
- $\boldsymbol{\rightarrow}\ \lambda$ calculus results in an inconsistent logic