rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Robert Sison

T3/2023

Last time...

A calculus syntax

free variables, substitution

[reduction

« and 7 conversion

3 reduction is confluent

A calculus is expressive (Turing complete)
A calculus is inconsistent (as a logic)

d4ii il

Aman P

Content

=» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

e Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
(23]
3.4]

[4.5]
[5.7]
[7°]
(8]
(8.9]
[9.10]
[10°]

231 due; Pa2 due; a3 due

3 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

A calculus is inconsistent

Can find term R such that R R =3 not(R R)

There are more terms that do not make sense:
12, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

4 | COMP4161 | G Klein ka, J Aman Pohjola, ison CC-BY-4.0 License

Introducing types

Idea: assign a type to each “sensible” A term.

Examples:

=» for termt has type o write t:«

=» if x has type a then Ax. x is a function from « to «
Write: (Ax. x) ta =«

=» for st to besensible:
s must be a function
t must be right type for parameter

If s::a= B and t: «then(st):p

That’s about it

Now formally again

Syntax for \™

Terms: t == v | ¢ | (tt) | (Ax. t)
v,xeV, ceC, V,C setsof names

Types: 7 = b | v |7 =7
b € {bool, int,...} base types
ve{a,pB,...} type variables

a=p=>v = a=(B=1)

Context [':
I": function from variable and constant names to types.

Term t has type 7 in context [: MN=tor

8 | COMP4161 | G Klein ka, J Aman Pohjola, ison CC-BY-4.0 License

Examples

M= (Ax. x) o=«
[y < int] F y :: int
[z < bool] F (Ay. y) z :: bool

[FXMxfx:(a=8)=a=0

A term t is well typed or type correct
if there are " and 7 such that Tt 7

Type Checking Rules

Variables: M x:(x)

lEFt =7 TEbhom
NE(t1) =7

Application:

Mx <« 7| FtoT

Abstraction:
straction NEMAx. t) =71

10 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0

Example Type Derivation:

Var
Abs
Abs

[x < a,y < flFx:a
[x <~ a]lFAy. x: 8=«
[FXxy. xta=p=a«a

Remember:

Var THFtiim=1 rH2::72A Mx)b toT

M=x:r(x) M- (t &) o7 FE(Ax.t)urme=71

12

More complex Example

M fia=(a=p) " Trxaa & y
lrMN-fx:a=4 PP rl—x::aAar
l-fxxup PP

Abs

[fa=a=plFXx.fxx:a=p
Abs

[FMx fxx:(la=a=0)=a=0

N=[f+a=a=6,x+q]

Remember:

COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sisc

11g

More general Types

A term can have more than one type.

Example: [|F Ax. x :: bool = bool
[FXx. xta=a

Some types are more general than others:

7 S o if there is a substitution S such that 7= S(o)

Examples:

int =bool < a=pf < f=>a £ a=a«a

~ ~

COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
r-txr = Jo.TktioANMo'. Tt = 0" <o)

It can be found by executing the typing rules backwards.

=» type checking: checking if [+t :: 7 for given [and 7
=» type inference: computing I' and 7 such that '+t :: 7

Type checking and type inference on A\~ are decidable.

14 | COMP4161 | G Klein, M ka, J Aman Pohjola, R Sison CC-BY-4.0 License

What about S reduction?

Definition of [reduction stays the same.

Fact: Well typed terms stay well typed during 3 reduction
Formally: lEsa:T ANs—pgt=TkFturT

This property is called subject reduction

15 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

What about termination?

[reduction in A7 always terminates.

(Alan Turing, 1942)

=» =3 is decidable
To decide if s =g t, reduce s and t to normal form (always exists,
because — g terminates), and compare result.

= =.3, is decidable
This is why Isabelle can automatically reduce each term to 8n
normal form.

61 | G Klein, M Tanaka, J Aman Pohjola, R Sison

17

What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
=»)\ "fixes" the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

Not all computable functions can be expressed in \™’!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

So...
=» typed functional languages are turing complete
=» but A7 is not...
=» How does this work?
=» By adding one single constant, the Y operator (fix point operator),
to A7
=» This introduces the non-termination that the types removed.
Yi(r=71)=>71
Yt—pgt(Yt)
Fact: If we add Y to A7 as the only constant, then each
computable function can be encoded as closed, type correct A\~
term.
=» Y is used for recursion
=» lose decidability (what does Y (/\x x) reduce to?)

18 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Types and Terms in Isabelle

Types:

Terms:

T o=b | v |v:C|T=71](1,...

b € {bool, int,...} base types
ve{a,pB,...} type variables

K € {set,list,...} type constructors
C € {order,linord,...} type classes

t = v | c| ?v]|(tt) | (Ax. t)
v,x eV, ce(C, V,C setsof names

=» type constructors: construct a new type out of a parameter type.
Example: int list

=» type classes: restrict type variables to a class defined by axioms.
Example: « :: order

=» schematic variables: variables that can be instantiated.

19 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x <y;y <z] = x < "

=» theorems can be proved in the abstract
lemma order_less_trans:
"Axiazorder. [x<y,y<z]=x<Zz"
=» can be used for subtyping
class linorder = order +
assumes linorder_linear: "x <y Vy < x"
=» can be instantiated

instance nat :: " {order, linorder}" by ...

COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison 4.0 License

Schematic Variables

X Y
XANY

=» X and Y must be instantiated to apply the rule

But: lemma “x+0=0+ x"

=>» x is free
=» convention: lemma must be true for all x
=» during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (7X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

21 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that

o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that

o(s) =apn o(t)

Examples:
IXATY =4y XAX [?X < x,?7Y + X]
7P x =afy XAX [?7P <+ Ax. x A x]

P (?f x) =, 7Y x M +— dx. x,?7Y « P
Bn

Higher Order: schematic variables can be functions.

22 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Higher Order Unification

=» Unification modulo o8 (Higher Order Unification) is semi-decidable
=» Unification modulo a7 is undecidable
=» Higher Order Unification has possibly infinitely many solutions

But:

=*» Most cases are well-behaved

=>» Important fragments (like Higher Order Patterns) are decidable
Higher Order Pattern:

=» is a term in 8 normal form where

=» each occurrence of a schematic variable is of the form ?f t; ... t,

=» and the t; ... t, are n-convertible into n distinct bound variables

23 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

We have learned so far...

=» Simply typed lambda calculus: A~

=» Typing rules for A7, type variables, type contexts
=» (-reduction in A7 satisfies subject reduction

=» [-reduction in A7 always terminates

=» Types and terms in Isabelle

61 | G Klein, M Tanaka, J Aman Pohjola, R Sison

