



### COMP4161 Advanced Topics in Software Verification



Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Robert Sison

T3/2023

#### Last time...

- $\rightarrow \lambda$  calculus syntax
- → free variables, substitution
- $\rightarrow \beta$  reduction
- $\rightarrow$   $\alpha$  and  $\eta$  conversion
- $\rightarrow \beta$  reduction is confluent
- $\rightarrow \lambda$  calculus is expressive (Turing complete)
- $\rightarrow \lambda$  calculus is inconsistent (as a logic)

#### Content

| [1,2]              |
|--------------------|
| $[2,3^a]$          |
| [3,4]              |
|                    |
| [4,5]              |
| [5,7]              |
| $[7^{b}]$          |
| [8]                |
| [8,9]              |
| [9,10]             |
| [10 <sup>c</sup> ] |
|                    |

<sup>a</sup>a1 due; <sup>b</sup>a2 due; <sup>c</sup>a3 due

#### $\lambda$ calculus is inconsistent

Can find term R such that R  $R =_{\beta} not(R R)$ 

There are more terms that do not make sense:

12, true false, etc.

**Solution**: rule out ill-formed terms by using types. (Church 1940)

#### Introducing types

**Idea:** assign a type to each "sensible"  $\lambda$  term.

#### **Examples:**

- $\rightarrow$  for term t has type  $\alpha$  write  $t :: \alpha$
- ightharpoonup if x has type  $\alpha$  then  $\lambda x. \ x$  is a function from  $\alpha$  to  $\alpha$  Write:  $(\lambda x. \ x) :: \alpha \Rightarrow \alpha$
- → for s t to be sensible: s must be a function t must be right type for parameter

```
If s :: \alpha \Rightarrow \beta and t :: \alpha then (s \ t) :: \beta
```

# That's about it

## Now formally again

#### Syntax for $\lambda^{\rightarrow}$

**Terms:** 
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$
  
 $v, x \in V, c \in C, V, C \text{ sets of names}$ 

**Types:** 
$$\tau ::= b \mid \nu \mid \tau \Rightarrow \tau$$
  
  $b \in \{bool, int, ...\}$  base types  
  $\nu \in \{\alpha, \beta, ...\}$  type variables  
  $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$ 

#### **Context** Γ:

 $\Gamma$ : function from variable and constant names to types.

**Term** t has type  $\tau$  in context  $\Gamma$ :  $\Gamma \vdash t :: \tau$ 

#### **Examples**

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \text{int}] \vdash y :: \text{int}$$

$$[z \leftarrow \text{bool}] \vdash (\lambda y. \ y) \ z :: \text{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

A term t is **well typed** or **type correct** if there are  $\Gamma$  and  $\tau$  such that  $\Gamma \vdash t :: \tau$ 

#### **Type Checking Rules**

Variables: 
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application: 
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau}$$

Abstraction: 
$$\frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau}$$

#### **Example Type Derivation:**

$$\frac{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha}{[x \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha} Abs$$
$$\boxed{[ \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha} Abs$$

#### Remember:

$$\frac{\Gamma \vdash x :: \Gamma(x)}{\Gamma \vdash x :: \Gamma(x)} Var \quad \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t}{\Gamma[x \leftarrow \tau_x] \vdash t} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t}{\Gamma[x \leftarrow \tau_x] \vdash t} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t}{\Gamma[x \leftarrow \tau_x] \vdash t} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t}{\Gamma[x \leftarrow \tau_x] \vdash t} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t}{\Gamma[x \leftarrow \tau_x] \vdash t} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t}{\Gamma[x \leftarrow \tau_x] \vdash t} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t}{\Gamma[x \leftarrow \tau_x] \vdash t} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t}{\Gamma[x \leftarrow \tau_x] \vdash t} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t}{\Gamma[x \leftarrow \tau_x] \vdash t} App \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash$$

#### More complex Example

$$\frac{ \begin{array}{c|c} \hline \Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta) \end{array} \begin{array}{c} Var & \hline \Gamma \vdash x :: \alpha \end{array} \begin{array}{c} Var \\ \hline App & \hline \Gamma \vdash f \times :: \alpha \Rightarrow \beta \end{array} \begin{array}{c} Var \\ \hline \hline \Gamma \vdash f \times x :: \beta \end{array} \begin{array}{c} App \\ \hline \hline \left[ f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta \right] \vdash \lambda x. \ f \times x :: \alpha \Rightarrow \beta \end{array} \begin{array}{c} Abs \\ \hline \left[ \left[ \vdash \lambda f \times x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta \end{array} \right] Abs \end{array}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

#### Remember:



#### More general Types

A term can have more than one type.

**Example:** 
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool \\ [] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution  $S$  such that  $au = S(\sigma)$ 

#### Examples:

$$\mathtt{int} \Rightarrow \mathtt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha \quad \not\lesssim \quad \alpha \Rightarrow \alpha$$

#### Most general Types

Fact: each type correct term has a most general type

#### Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- **→ type checking:** checking if  $\Gamma \vdash t :: \tau$  for given  $\Gamma$  and  $\tau$
- **→ type inference:** computing  $\Gamma$  and  $\tau$  such that  $\Gamma \vdash t :: \tau$

Type checking and type inference on  $\lambda^{\rightarrow}$  are decidable.

What about  $\beta$  reduction?

Definition of  $\beta$  reduction stays the same.

**Fact:** Well typed terms stay well typed during  $\beta$  reduction

**Formally:**  $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$ 

This property is called **subject reduction** 

#### What about termination?

 $\beta$  reduction in  $\lambda^{\rightarrow}$  always terminates.



(Alan Turing, 1942)

- $\Rightarrow$  =  $_{\beta}$  is decidable

  To decide if s =  $_{\beta}$  t, reduce s and t to normal form (always exists, because  $\longrightarrow_{\beta}$  terminates), and compare result.
- $\Rightarrow$  = $_{\alpha\beta\eta}$  is decidable

  This is why Isabelle can automatically reduce each term to  $\beta\eta$  normal form.

#### What does this mean for Expressiveness?

#### **Checkpoint:**

- untyped lambda calculus is turing complete (all computable functions can be expressed)
- → but it is inconsistent
- ightarrow  $\lambda^{
  ightarrow}$  "fixes" the inconsistency problem by adding types
- → Problem: it is not turing complete anymore!

Not all computable functions can be expressed in  $\lambda^{\rightarrow}$ ! (non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

#### What does this mean for Expressiveness?

#### So...

- → typed functional languages are turing complete
- $\rightarrow$  but  $\lambda^{\rightarrow}$  is not...
- → How does this work?
- ightharpoonup By adding one single constant, the Y operator (fix point operator), to  $\lambda^{
  ightharpoonup}$
- → This introduces the non-termination that the types removed.

$$Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$$
  
 $Y t \longrightarrow_{\beta} t (Y t)$ 

**Fact:** If we add Y to  $\lambda^{\rightarrow}$  as the only constant, then each computable function can be encoded as closed, type correct  $\lambda^{\rightarrow}$  term.

- → Y is used for recursion
- $\rightarrow$  lose decidability (what does  $Y(\lambda x. x)$  reduce to?)
- → (Isabelle/HOL doesn't have Y: recursion is more restricted)

#### Types and Terms in Isabelle

```
Types: \tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, ..., \tau) K

b \in \{bool, int, ...\} base types

\nu \in \{\alpha, \beta, ...\} type variables

K \in \{set, list, ...\} type constructors

C \in \{order, linord, ...\} type classes
```

- **Terms:**  $t ::= v \mid c \mid ?v \mid (t \ t) \mid (\lambda x. \ t)$   $v, x \in V, c \in C, V, C$  sets of names
- → type constructors: construct a new type out of a parameter type. Example: int list
- $\rightarrow$  **type classes**: restrict type variables to a class defined by axioms. Example:  $\alpha$  :: *order*
- → schematic variables: variables that can be instantiated.

#### Type Classes

→ similar to Haskell's type classes, but with semantic properties class order = assumes order\_refl: "x ≤ x" assumes order\_trans: "[x ≤ y; y ≤ z]] ⇒ x ≤ z"

→ theorems can be proved in the abstract

lemma order\_less\_trans:

" 
$$\bigwedge x ::'a :: order. [[x < y; y < z]] \Longrightarrow x < z$$
"

→ can be used for subtyping

class linorder = order + assumes linorder\_linear: "
$$x < y \lor y < x$$
"

→ can be instantiated

```
instance nat :: "{order, linorder}" by ...
```

#### **Schematic Variables**

$$\frac{X}{X \wedge Y}$$

→ X and Y must be **instantiated** to apply the rule

**But:** lemma "
$$x + 0 = 0 + x$$
"

- $\rightarrow$  x is free
- → convention: lemma must be true for all x
- → during the proof, x must not be instantiated

#### **Solution:**

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

#### **Higher Order Unification**

#### **Unification:**

Find substitution  $\sigma$  on variables for terms s,t such that  $\sigma(s) = \sigma(t)$ 

#### In Isabelle:

Find substitution  $\sigma$  on schematic variables such that  $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$ 

#### **Examples:**

$$\begin{array}{lll} ?X \wedge ?Y &=_{\alpha\beta\eta} & x \wedge x & [?X \leftarrow x, ?Y \leftarrow x] \\ ?P & &=_{\alpha\beta\eta} & x \wedge x & [?P \leftarrow \lambda x. \ x \wedge x] \\ P \ (?f \ x) &=_{\alpha\beta\eta} & ?Y \ x & [?f \leftarrow \lambda x. \ x, ?Y \leftarrow P] \end{array}$$

**Higher Order:** schematic variables can be functions.

#### **Higher Order Unification**

- $\rightarrow$  Unification modulo  $\alpha\beta$  (Higher Order Unification) is semi-decidable
- $\rightarrow$  Unification modulo  $\alpha\beta\eta$  is undecidable
- → Higher Order Unification has possibly infinitely many solutions

#### But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

#### **Higher Order Pattern:**

- $\rightarrow$  is a term in  $\beta$  normal form where
- $\rightarrow$  each occurrence of a schematic variable is of the form ? f  $t_1$  ...  $t_n$
- $\rightarrow$  and the  $t_1 \ldots t_n$  are  $\eta$ -convertible into n distinct bound variables

#### We have learned so far...

- **→** Simply typed lambda calculus:  $\lambda^{\rightarrow}$
- $\rightarrow$  Typing rules for  $\lambda^{\rightarrow}$ , type variables, type contexts
- $\rightarrow$   $\beta$ -reduction in  $\lambda^{\rightarrow}$  satisfies subject reduction
- $\rightarrow$   $\beta$ -reduction in  $\lambda^{\rightarrow}$  always terminates
- → Types and terms in Isabelle