s
>

y
—~

SW

DNEY

NG

2

y

U

S

Z

=<

COMP4161
Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Robert Sison

T3/2023

Last time...

A calculus syntax

free variables, substitution

[reduction

« and 7 conversion

[reduction is confluent

A calculus is expressive (Turing complete)

dii il

A calculus is inconsistent (as a logic)

Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
[2.37]
3.4]

[4.5]
[5.7]
(7]
(8]
8.9]
[9,10]
10]

?al due; a2 due; a3 due

A calculus is inconsistent

Can find term R such that R R =g not(R R)

There are more terms that do not make sense:
12, true false, etc.

A calculus is inconsistent

Can find term R such that R R =g not(R R)

There are more terms that do not make sense:
12, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

Introducing types

Idea: assign a type to each “sensible” X\ term.

Examples:

n, M Tanaka, J Am

Introducing types

Idea: assign a type to each “sensible” X\ term.

Examples:

=» for term t has type a write t:«

n, M Tanaka, J Am

Introducing types

Idea: assign a type to each “sensible” X\ term.

Examples:

=» for term t has type a write t:«
= if x has type a then Ax. x is a function from « to «
Write: (Ax. x) t a0 = «

n, M Tanaka, J Am

Introducing types

Idea: assign a type to each “sensible” X\ term.
Examples:

=» for term t has type a write t:«

= if x has type a then Ax. x is a function from « to «
Write: (Ax. x) t a0 = «

=» for st to be sensible:
s must be a function
t must be right type for parameter

If s:a= fand t: athen (st):p

That’s about it

Now formally again

Syntax for \™

Terms: t 1= v ‘ c ’ (t t) ‘ ()\X. t)
v,xeV, ceC, V,C setsof names

Types: 7 == Db] v] T = T
b € {bool, int,...} base types
v e {a,pB,...} type variables

a=f=y = a=z(f=7)

Syntax for \™

Terms: t 1= v ‘ c ’ (t t) ‘ ()\X. t)
v,xeV, ceC, V,C setsof names

Types: 7 == Db] v] T = T
b € {bool, int,...} base types
v e {a,pB,...} type variables

a=f=y = a=z(f=7)

Context [:
I": function from variable and constant names to types.

Syntax for \™

Terms: t 1= v ‘ c ’ (t t) ‘ ()\X. t)
v,xeV, ceC, V,C setsof names

Types: 7 == Db] v] T = T
b € {bool, int,...} base types
v e {a,pB,...} type variables

a=f=y = a=z(f=7)

Context [:
I": function from variable and constant names to types.

Term t has type 7 in context [: Fr=tar

Examples

N (Ax. x) =

Examples

N-(x. x) s a=a«a

[y < int]Fy =

n, M Tanaka, J Am

Examples

N-(x. x) s a=a«a

[y < int] F y :: int

[z < bool] - (A\y. y) z =

Examples

N-(x. x) s a=a«a
[y < int] F y :: int

[z < bool] F (Ay. y) z :: bool

[[FAMx. fx:

Examples

N-(x. x) s a=a«a
[y < int] F y :: int

[z < bool] F (Ay. y) z :: bool

[FMx fx:(a=8)=>a=p

Examples

N-(x. x) s a=a«a
[y < int] F y :: int
[z < bool] F (Ay. y) z :: bool

[FMx fx:(a=8)=>a=p

A term t is well typed or type correct
if there are [and 7 such that Tt 7

Type Checking Rules

Variables: M x o T(x)

Type Checking Rules

Variables: M x o T(x)

Application:

Type Checking Rules

Variables: M x o T(x)

lrEtm=7 Tkt

Application:

Me(t) o7

Type Checking Rules

Variables: M x o T(x)
Application: lrEtm=7 Tkt

pplication: Me(t) o7
Abstraction:

NME(x.t) =7

Type Checking Rules

Variables: M x o T(x)

lrEtm=7 Tkt
Me(t) o7

Application:

Mx«+—n]bFtor

Abstraction:

NME(x.t) =7

Example Type Derivation:

IFAxy. x: Abs

Remember:

Var TEFtiim=7 Thhun Mx <+]kt

Abs

MNex:r(x) Me(tto) o7 PP N-(Mx. t)ime=r

Example Type Derivation:

[x < a]FAy. x = /:l;;s
JFXy x:a= °
Remember:
Var TEFtiim=7 Thhun Mx <+]kt

M x:T(x) M=(ts) o7 PP M= (x. t) ZZTxiTAbS

11 | COMP4

Example Type Derivation:

[x<—a]lFAy.x:8=a /:l;;s
JFXxy. xta= =« °
Remember:
Var TEFtiim=7 Thhun Mx <+]kt

M x:T(x) M=(ts) o7 PP M= (x. t) ZZTxiTAbS

11 | COMP4

Example Type Derivation:

Var
Abs
Abs

[x +—a,y <+ [lFx:a
[x<—a]lFAy.x:8=a
JFXxy. xta= =«

Remember:

I FrFtem=71 b Mx<+n]FtoT
Var 10T 2 1 T2
M x:T(x) Fr=(t)7 PP F-(x. t) =71 Abs

11 | COMP4

More complex Example

[[FAf x. fxx: Abs

Remember:

Var FTFtim=1 rth::TgA Mx<+ bt

Abs

FEx:T(x) M=(t) o7 FEOx. t)rme =71

More complex Example

[EFXMx.fxx:(a=a=0)=>a=p Abs

Remember:

Var FTFtim=1 rth::TgA Mx<+ bt

Abs

FEx:T(x) M=(t) o7 FEOx. t)rme =71

More complex Example

[fa=a=plFx fxx:a=p bz
[EXMx.fxx:(a=a=0)=>a=p
Remember:
Var FTFtiim=1 rth::TgA Mx<+ bt Abs

MEx:T(x) MN=(t o) o7 FE(Ox. t)re=>71

More complex Example

lEfxxap App
[fa=a=plFx fxx:a=p

[]I—)\fx.fxx::(a:>a:ﬁ):>a:>6Abs
N=[f+a=a=p,x+q]
Remember:
Var FTFtiim=1 rth::TgA Mx <+ bt Abs

FhExT) Fe(t)T F=(x. t) =71

12

More complex Example

lEfxta=p6 App 2
lEfxxop PP
[fa=>a=0lFXxfxx:a=0

A
IJFMx fxx:(a=a=p)=>a=p bs
r:[f<—a:>a:>ﬁ’x<_a]
Remember:
——— Vor TFhum=T rthiiTzA Mx<+n]FtoT
MNex:r(x) FrE(ti) r PP rF()\X.t)::TX:TAbS

COMP4161 | G Kle

12

More complex Example

A -
lEfxta=p6 PP ﬂ—x::aXar
lEfxxop PP
Abs

[fa=>a=0lFXxfxx:a=0

A
IJFMx fxx:(a=a=p)=>a=p bs
r:[f<—a:>a:>ﬁ’x<_a]
Remember:
——— Vor TFhum=T rthiiTzA Mx<+n]FtoT
MNex:r(x) FrE(ti) r PP rF()\X.t)::TX:TAbS

COMP4161 | G Kle

12

More complex Example

r-fra=(a=p) var
lNEfxta=p6 App ﬂ—x::avar
lEfxxap App
[fa=>a=0lFXxfxx:a=0 Abs
[]I—)\fx.fxx::(a:>a:ﬁ):>a:>6Abs

N=[f+—a=a=p,x+q]

Remember:

I FrFtiem=717 b Mx<+n]kFtoT
Var 10T 25T,
M x:T(x) M= (t) o7 FEOx. t)sme =71 Abs

12

More complex Example

r-fra=(a=p) var Fhxoa /o y
lNEfxta=p6 PP ﬂ—x::aAar

lEfxxap Abpp

[fa=>a=0lFXxfxx:a=0 AZ

JFMx. fxx:(a=a=p)=>a=0 d

N=[f+—a=a=p,x+q]
Remember:

Var FTFtiim=1 rth::TgA Mx<+]kt

M x:T(x) Fr=(t)7 M= (Ax. t) ::TxﬁTAbs

More general Types

A term can have more than one type.

in, M Tanaks

More general Types

A term can have more than one type.

Example: []F Ax. x :: bool = bool
[FX x:ta=a

More general Types

A term can have more than one type.

Example: []F Ax. x :: bool = bool
[FX x:ta=a

Some types are more general than others:

7 <o if there is a substitution S such that 7= 5(0)

More general Types

A term can have more than one type.

Example: []F Ax. x :: bool = bool
[FX x:ta=a

Some types are more general than others:

7 <o if there is a substitution S such that 7= 5(0)

Examples:

int =bool < a=pj

More general Types

A term can have more than one type.

Example: []F Ax. x :: bool = bool
[FX x:ta=a

Some types are more general than others:

7 <o if there is a substitution S such that 7= 5(0)

Examples:

int=bool < a=f < =«

More general Types

A term can have more than one type.

Example: []F Ax. x :: bool = bool
[FX x:ta=a

Some types are more general than others:

7 <o if there is a substitution S such that 7= 5(0)

Examples:

int=bool < a=0 < fB=a L a=«

Most general Types

Fact: each type correct term has a most general type

Most general Types

Fact: each type correct term has a most general type

Formally:
rctur7 = JoTktuioA(Wo'.THto =o' <o)

Most general Types

Fact: each type correct term has a most general type

Formally:
rctur7 = JoTktuioA(Wo'.THto =o' <o)

It can be found by executing the typing rules backwards.

Most general Types

Fact: each type correct term has a most general type

Formally:
rctur7 = JoTktuioA(Wo'.THto =o' <o)

It can be found by executing the typing rules backwards.

=» type checking: checking if [-t :: 7 for given I and 7

14

COMP4161

Most general Types

Fact: each type correct term has a most general type

Formally:
rctur7 = JoTktuioA(Wo'.THto =o' <o)

It can be found by executing the typing rules backwards.

=» type checking: checking if [-t :: 7 for given I and 7
=» type inference: computing [and 7 such that T+t :: 7

14

COMP4161

Most general Types

Fact: each type correct term has a most general type

Formally:
rctur7 = JoTktuioA(Wo'.THto =o' <o)

It can be found by executing the typing rules backwards.

=» type checking: checking if [-t :: 7 for given I and 7
=» type inference: computing [and 7 such that T+t :: 7

Type checking and type inference on A\~ are decidable.

14

COMP4161) Aman Pohjola, R

What about S reduction?

What about S reduction?

Definition of [reduction stays the same.

What about S reduction?

Definition of [reduction stays the same.

Fact: Well typed terms stay well typed during 8 reduction

Formally: lEsiT As—pgt=TFtur

What about S reduction?

Definition of [reduction stays the same.

Fact: Well typed terms stay well typed during 8 reduction
Formally: lEsiT As—pgt=TFtur

This property is called subject reduction

OMP4161

What about termination?

What about termination?

[reduction in A\™" always terminates.

(Alan Turing, 1942)

What about termination?

[reduction in A\™" always terminates.

(Alan Turing, 1942)

=» =3 is decidable
To decide if s =g t, reduce s and t to normal form (always exists, because
—> 5 terminates), and compare result.

What about termination?

[reduction in A\™" always terminates.

(Alan Turing, 1942)

=» =3 is decidable
To decide if s =g t, reduce s and t to normal form (always exists, because
—> 5 terminates), and compare result.

=* =,y is decidable
This is why Isabelle can automatically reduce each term to 57 normal
form.

What does this mean for Expressiveness?

What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
=»)\ "fixes" the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

OMP4161

What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
=»)\ "fixes" the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

Not all computable functions can be expressed in A7!
(non terminating functions cannot be expressed)

What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
=»)\ "fixes" the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

Not all computable functions can be expressed in A7!
(non terminating functions cannot be expressed)

But wait...

What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
=»)\ "fixes" the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

Not all computable functions can be expressed in A7!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

What does this mean for Expressiveness?

So...

=» typed functional languages are turing complete
=» but A7 is not...
=» How does this work?

What does this mean for Expressiveness?

So...
=» typed functional languages are turing complete
=» but A7 is not...
=» How does this work?
=» By adding one single constant, the Y operator (fix point operator), to A~
=» This introduces the non-termination that the types removed.

Yi(r=1)=>71
Yt—pt(Yt)

What does this mean for Expressiveness?

So...
=» typed functional languages are turing complete
=» but A7 is not...
=» How does this work?
=» By adding one single constant, the Y operator (fix point operator), to A~
=» This introduces the non-termination that the types removed.

Yi(r=1)=>71
Yt—pt(Yt)

Fact: If we add Y to A~ as the only constant, then each computable
function can be encoded as closed, type correct A term.

=» Y is used for recursion
> lose decidability (what does Y (Ax. x) reduce to?)
=» (Isabelle/HOL doesn’t have Y; recursion is more restricted)

Types and Terms in Isabelle

Types: 7 == b | v | vuC | 7=>71]|(r,....T)K
b € {bool, int,...} base types
v e {a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c | ?v | (tt) | (Ax.t)
v,xeV, ceC, V,C setsof names

19 | COMP416

Types and Terms in Isabelle

Types: 7 == b | v | vuC | 7=>71]|(r,....T)K
b € {bool, int,...} base types
v e {a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c | ?v | (tt) | (Ax.t)
v,xeV, ceC, V,C setsof names

=» type constructors: construct a new type out of a parameter type.
Example: int list

Types and Terms in Isabelle

Types: 7 == b | v | vuC | 7=>71]|(r,....T)K
b € {bool, int,...} base types
v e {a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c | ?v | (tt) | (Ax.t)
v,xeV, ceC, V,C setsof names

=» type constructors: construct a new type out of a parameter type.
Example: int list

=» type classes: restrict type variables to a class defined by axioms.
Example: « :: order

Types and Terms in Isabelle

Types: 7 == b | v | vuC | 7=>71]|(r,....T)K
b € {bool, int,...} base types
v e {a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c | ?v | (tt) | (Ax.t)
v,xeV, ceC, V,C setsof names

=» type constructors: construct a new type out of a parameter type.
Example: int list

=» type classes: restrict type variables to a class defined by axioms.
Example: « :: order

=» schematic variables: variables that can be instantiated.

Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x < y;y < z] = x < Z"

Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x < y;y < z] = x < Z"

=» theorems can be proved in the abstract

lemma order_less_trans: " A x :'a:order. [x<y,y <z] = x< 2"

Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x < y;y < z] = x < Z"

=» theorems can be proved in the abstract
lemma order_less_trans: " A x :'a:order. [x<y,y <z] = x< 2"
=» can be used for subtyping

class linorder = order +
assumes linorder_linear: "x <y Vy < x"

20 | COMP4161

Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x < y;y < z] = x < Z"

=» theorems can be proved in the abstract
lemma order_less_trans: " A x :'a:order. [x<y,y <z] = x< 2"
=» can be used for subtyping
class linorder = order +
assumes linorder_linear: "x <y Vy < x"
=» can be instantiated
instance nat :: "{order, linorder}" by ...

20 | COMP4161

Schematic Variables

XY

XANY
=» X and Y must be instantiated to apply the rule

Schematic Variables

XY
XANY

=» X and Y must be instantiated to apply the rule

But: lemma “x+0=0+x"

=> x is free

=» convention: lemma must be true for all x
=» during the proof, x must not be instantiated

Schematic Variables

XY
XANY

=» X and Y must be instantiated to apply the rule

But: lemma “x+0=0+x"

=> x is free
=» convention: lemma must be true for all x
=» during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (7X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =ag, o(t)

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =ag, o(t)

Examples:
IXN?Y =apn XAX
P x =afn XAX

P(fx) =apy, ?Y x

OMP4161

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =ag, o(t)

Examples:
IXATY =agn XAX [?X < x,?7Y «+ x|
P x =aBn XAX [?P + Ax. x A X]

P X) =apy Y x [rxx,7Y < P

Higher Order: schematic variables can be functions.

OMP4161) Aman Pohjola, R

Higher Order Unification

=» Unification modulo a8 (Higher Order Unification) is semi-decidable

Higher Order Unification

=» Unification modulo a8 (Higher Order Unification) is semi-decidable
=*» Unification modulo a/3n is undecidable

Higher Order Unification

=» Unification modulo a8 (Higher Order Unification) is semi-decidable
=*» Unification modulo a/3n is undecidable

=» Higher Order Unification has possibly infinitely many solutions

Higher Order Unification

=» Unification modulo a8 (Higher Order Unification) is semi-decidable
=*» Unification modulo a/3n is undecidable

=» Higher Order Unification has possibly infinitely many solutions

But:

=» Most cases are well-behaved

Higher Order Unification

=» Unification modulo a8 (Higher Order Unification) is semi-decidable
=*» Unification modulo a/3n is undecidable

=» Higher Order Unification has possibly infinitely many solutions

But:

=» Most cases are well-behaved
=» Important fragments (like Higher Order Patterns) are decidable

Higher Order Unification

=» Unification modulo a8 (Higher Order Unification) is semi-decidable

=*» Unification modulo a/3n is undecidable

=» Higher Order Unification has possibly infinitely many solutions
But:

=» Most cases are well-behaved

=» Important fragments (like Higher Order Patterns) are decidable
Higher Order Pattern:

=¥» is a term in 8 normal form where

=» each occurrence of a schematic variable is of the form ?f t; ... t,

=» and the t; ... t, are n-convertible into n distinct bound variables

OMP4161

We have learned so far...

=» Simply typed lambda calculus: A~

We have learned so far...

=» Simply typed lambda calculus: A~
=» Typing rules for A\™", type variables, type contexts

We have learned so far...

=» Simply typed lambda calculus: A~
=» Typing rules for A\™", type variables, type contexts

=» B-reduction in A\ satisfies subject reduction

We have learned so far...

=» Simply typed lambda calculus: A~
=» Typing rules for A\™", type variables, type contexts
=» B-reduction in A\ satisfies subject reduction

=» [-reduction in A7 always terminates

We have learned so far...

=» Simply typed lambda calculus: A~

=» Typing rules for A\™", type variables, type contexts
=» B-reduction in A\ satisfies subject reduction

=» [-reduction in A7 always terminates

=» Types and terms in Isabelle

