

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Robert Sison
T3/2023

Last time...

- ightarrow λ calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction
- $\rightarrow \alpha$ and η conversion
- $\rightarrow \beta$ reduction is confluent
- $\rightarrow \lambda$ calculus is expressive (Turing complete)
- \rightarrow λ calculus is inconsistent (as a logic)

Content

→	Foundations & Principles	
	 Intro, Lambda calculus, natural deduction 	[1,2]
	 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
	Term rewriting	[3,4]
→	Proof & Specification Techniques	
	 Inductively defined sets, rule induction 	[4,5]
	 Datatype induction, primitive recursion 	[5,7]
	 General recursive functions, termination proofs 	[7 ^b]
	 Proof automation, Isar (part 2) 	[8]
	 Hoare logic, proofs about programs, invariants 	[8,9]
	C verification	[9,10]
	 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

λ calculus is inconsistent

Can find term R such that R $R =_{\beta} not(R R)$

There are more terms that do not make sense: 12, true false, etc.

λ calculus is inconsistent

Can find term R such that R $R =_{\beta} not(R R)$

There are more terms that do not make sense: 12, true false, etc.

Solution: rule out ill-formed terms by using types. (Church 1940)

Idea: assign a type to each "sensible" λ term.

Idea: assign a type to each "sensible" λ term.

Examples:

 \rightarrow for term t has type α write $t :: \alpha$

Idea: assign a type to each "sensible" λ term.

- \rightarrow for term t has type α write $t :: \alpha$
- ightharpoonup if x has type α then $\lambda x. x$ is a function from α to α Write: $(\lambda x. x):: \alpha \Rightarrow \alpha$

Idea: assign a type to each "sensible" λ term.

- \rightarrow for term t has type α write $t :: \alpha$
- ightharpoonup if x has type α then $\lambda x. x$ is a function from α to α Write: $(\lambda x. x):: \alpha \Rightarrow \alpha$
- → for s t to be sensible:

 s must be a function

 t must be right type for parameter

```
If s :: \alpha \Rightarrow \beta and t :: \alpha then (s t) :: \beta
```

That's about it

Now formally again

Syntax for λ^{\rightarrow}

Terms: $t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$ $v, x \in V, c \in C, V, C \text{ sets of names}$

Types: τ ::= b | ν | $\tau \Rightarrow \tau$ b \in {bool, int, ...} base types $\nu \in \{\alpha, \beta, ...\}$ type variables $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Syntax for λ^{\rightarrow}

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, c \in C, V, C \text{ sets of names}$

Types:
$$\tau$$
 ::= b | ν | $\tau \Rightarrow \tau$ b \in {bool, int,...} base types $\nu \in \{\alpha, \beta, ...\}$ type variables $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Context Γ:

 Γ : function from variable and constant names to types.

Syntax for λ^{\rightarrow}

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, c \in C, V, C$ sets of names

Types:
$$\tau ::= b \mid \nu \mid \tau \Rightarrow \tau$$

 $b \in \{bool, int, ...\}$ base types
 $\nu \in \{\alpha, \beta, ...\}$ type variables
 $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Context Γ:

 Γ : function from variable and constant names to types.

Term t has type τ in context Γ : $\Gamma \vdash t :: \tau$

$$\Gamma \vdash (\lambda x. \ x) ::$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \mathtt{int}] \vdash y ::$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \text{int}] \vdash y :: \text{int}$$

$$[z \leftarrow \text{bool}] \vdash (\lambda y. \ y) \ z ::$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \text{int}] \vdash y :: \text{int}$$

$$[z \leftarrow \text{bool}] \vdash (\lambda y. \ y) \ z :: \text{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x ::$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \text{int}] \vdash y :: \text{int}$$

$$[z \leftarrow \text{bool}] \vdash (\lambda y. \ y) \ z :: \text{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \text{int}] \vdash y :: \text{int}$$

$$[z \leftarrow \text{bool}] \vdash (\lambda y. \ y) \ z :: \text{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

A term t is **well typed** or **type correct** if there are Γ and τ such that $\Gamma \vdash t :: \tau$

Variables: $\overline{\Gamma \vdash x :: \Gamma(x)}$

Variables:	$\Gamma \vdash x :: \Gamma(x)$

Application: $\frac{}{\Gamma \vdash (t_1 \ t_2) :: \tau}$

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau}$$

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau}$$

Abstraction:
$$\overline{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau}$$

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau}$$

Abstraction:
$$\frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau}$$

$$\frac{}{[] \vdash \lambda x \ y. \ x ::} \qquad Abs$$

$$\frac{\Gamma \vdash x :: \Gamma(x)}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

$$\frac{[x \leftarrow \alpha] \vdash \lambda y. \ x ::}{[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow} Abs$$

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

$$\frac{[x \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha}{[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha} \ Abs$$

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

$$\frac{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha}{[x \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha} \begin{array}{l} \textit{Var} \\ \textit{Abs} \\ \hline [] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha \end{array}$$

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

$$\boxed{[] \vdash \lambda f \times . \ f \times \times ::} \qquad \qquad Abs$$

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

$$\boxed{[] \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta} \ Abs$$

$$\frac{\Gamma \vdash x :: \Gamma(x)}{\Gamma \vdash x :: \Gamma(x)} Var \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} App \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x, \ t) :: \tau_x \Rightarrow \tau} Abs$$

$$\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \ x \ x :: \alpha \Rightarrow \beta}{[] \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta} Abs$$

$$\frac{\Gamma \vdash x :: \Gamma(x)}{\Gamma \vdash x :: \Gamma(x)} Var \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} App \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} Abs$$

$$\frac{\Gamma \vdash f \times \mathbf{x} :: \beta}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda \mathbf{x}. \ f \times \mathbf{x} :: \alpha \Rightarrow \beta} \xrightarrow{Abs} \frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda \mathbf{x}. \ f \times \mathbf{x} :: \alpha \Rightarrow \beta}{[] \vdash \lambda f \times x. \ f \times \mathbf{x} :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta} \xrightarrow{Abs}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

$$\frac{\Gamma \vdash f \times :: \alpha \Rightarrow \beta}{\Gamma \vdash f \times x :: \beta} App$$

$$\frac{\Gamma \vdash f \times \alpha \Rightarrow \alpha \Rightarrow \beta}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \times x :: \alpha \Rightarrow \beta} Abs$$

$$\frac{Abs}{[] \vdash \lambda f \times x. \ f \times x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta} Abs$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\frac{\Gamma \vdash x :: \Gamma(x)}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

$$\frac{\Gamma \vdash f \times :: \alpha \Rightarrow \beta}{\Gamma \vdash f \times x :: \beta} \xrightarrow{\Gamma \vdash f \times x :: \beta} \xrightarrow{App} \frac{Var}{App}$$

$$\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \times x :: \alpha \Rightarrow \beta}{[] \vdash \lambda f \times x. \ f \times x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta} \xrightarrow{Abs}$$

 $\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

$$\frac{\Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta)}{\Gamma \vdash f :: \alpha \Rightarrow \beta} Var$$

$$\frac{\Gamma \vdash f :: \alpha \Rightarrow \beta}{\Gamma \vdash f :: \alpha \Rightarrow \beta} Var$$

$$\frac{\Gamma \vdash f :: \alpha \Rightarrow \beta}{\Gamma \vdash f :: \alpha \Rightarrow \beta} App$$

$$\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f : x :: \alpha \Rightarrow \beta}{[] \vdash \lambda f :: \alpha \Rightarrow \beta} Abs$$

$$\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f : x :: \alpha \Rightarrow \beta}{[] \vdash \lambda f :: \alpha \Rightarrow \beta} Abs$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

More complex Example

$$\frac{\Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta)}{\Gamma \vdash x :: \alpha \Rightarrow \beta} \frac{Var}{App} \frac{Var}{\Gamma \vdash x :: \alpha} \frac{Var}{App} \frac{Var}{\Gamma \vdash x :: \alpha} \frac{Var}{App} \frac{Var}{App} \frac{Var}{\Gamma \vdash x :: \alpha} \frac{Var}{App} \frac{Var}{App} \frac{Var}{App} \frac{Var}{\Gamma \vdash x :: \alpha \Rightarrow \beta} \frac{Var}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \times x :: \alpha \Rightarrow \beta} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \times x :: \alpha \Rightarrow \beta} \frac{Abs}{Abs} \frac{Var}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs} \frac{Var}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs}} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs}} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs}} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs}} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs}} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs}} \frac{Abs}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta} \frac{Abs}{Abs}}$$

 $\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$

Remember:

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

A term can have more than one type.

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool \\ [] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool$$
 $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution S such that $au = S(\sigma)$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool \\ [] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution S such that $au = S(\sigma)$

Examples:

$$int \Rightarrow bool \lesssim \alpha \Rightarrow \beta$$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool \\ [] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution S such that $au = S(\sigma)$

Examples:

$$\mathtt{int} \Rightarrow \mathtt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha$$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool \\ [] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution S such that $au = S(\sigma)$

Examples:

$$\mathtt{int} \Rightarrow \mathtt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha \quad \not\lesssim \quad \alpha \Rightarrow \alpha$$

Fact: each type correct term has a most general type

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

 \rightarrow type checking: checking if $\Gamma \vdash t :: \tau$ for given Γ and τ

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- **→ type checking:** checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- **→ type inference:** computing Γ and τ such that $\Gamma \vdash t :: \tau$

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- **→ type checking:** checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- ightharpoonup type inference: computing Γ and au such that $\Gamma \vdash t :: au$

Type checking and type inference on λ^{\rightarrow} are decidable.

Definition of β reduction stays the same.

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$

This property is called **subject reduction**

 β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

 β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

 \Rightarrow = $_{\beta}$ is decidable

To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.

 β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

- \Rightarrow = $_{\beta}$ is decidable
 - To decide if $s = \beta t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.
- \Rightarrow = $_{\alpha\beta\eta}$ is decidable This is why Isabelle can automatically reduce each term to $\beta\eta$ normal form.

Checkpoint:

- untyped lambda calculus is turing complete (all computable functions can be expressed)
- → but it is inconsistent
- \rightarrow λ^{\rightarrow} "fixes" the inconsistency problem by adding types
- → Problem: it is not turing complete anymore!

Checkpoint:

- untyped lambda calculus is turing complete (all computable functions can be expressed)
- → but it is inconsistent
- \rightarrow λ^{\rightarrow} "fixes" the inconsistency problem by adding types
- → Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ^{\rightarrow} ! (non terminating functions cannot be expressed)

Checkpoint:

- untyped lambda calculus is turing complete (all computable functions can be expressed)
- → but it is inconsistent
- \rightarrow λ^{\rightarrow} "fixes" the inconsistency problem by adding types
- → Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ^{\rightarrow} ! (non terminating functions cannot be expressed)

But wait...

Checkpoint:

- untyped lambda calculus is turing complete (all computable functions can be expressed)
- → but it is inconsistent
- \rightarrow λ^{\rightarrow} "fixes" the inconsistency problem by adding types
- → Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ^{\rightarrow} ! (non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

So...

- → typed functional languages are turing complete
- \rightarrow but λ^{\rightarrow} is not...
- → How does this work?

So...

- → typed functional languages are turing complete
- \rightarrow but λ^{\rightarrow} is not...
- → How does this work?
- \rightarrow By adding one single constant, the Y operator (fix point operator), to λ^{\rightarrow}
- → This introduces the non-termination that the types removed.

$$Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$$
$$Y \ t \longrightarrow_{\beta} t \ (Y \ t)$$

So...

- → typed functional languages are turing complete
- \rightarrow but λ^{\rightarrow} is not...
- → How does this work?
- \rightarrow By adding one single constant, the Y operator (fix point operator), to λ^{\rightarrow}
- → This introduces the non-termination that the types removed.

$$Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$$

 $Y t \longrightarrow_{\beta} t (Y t)$

Fact: If we add Y to λ^{\rightarrow} as the only constant, then each computable function can be encoded as closed, type correct λ^{\rightarrow} term.

- → Y is used for recursion
- \rightarrow lose decidability (what does $Y(\lambda x. x)$ reduce to?)
- → (Isabelle/HOL doesn't have Y; recursion is more restricted)

```
Types: \tau ::= b | '\nu | '\nu :: C | \tau \Rightarrow \tau | (\tau,...,\tau) K b \in {bool, int,...} base types \nu \in \{\alpha, \beta, ...\} type variables K \in \{\text{set, list,...}\} type constructors C \in \{\text{order, linord,...}\} type classes

Terms: t ::= \nu | c | ?\nu | (t t) | (\lambda x. t) \nu, x \in V, c \in C, V, C sets of names
```

```
Types: \tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, ..., \tau) \ K
b \in \{ \text{bool}, \text{int}, ... \} base types
\nu \in \{ \alpha, \beta, ... \} type variables
K \in \{ \text{set}, \text{list}, ... \} type constructors
C \in \{ \text{order}, \text{linord}, ... \} type classes

Terms: t ::= \nu \mid c \mid ?\nu \mid (t \ t) \mid (\lambda x. \ t)
\nu, x \in V, \quad c \in C, \quad V, C \text{ sets of names}
```

→ type constructors: construct a new type out of a parameter type. Example: int list

```
Types: 	au := b \mid '
u \mid '
u :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) \mid K
b \in \{bool, int, \dots\} base types
\nu \in \{\alpha, \beta, \dots\} type variables
K \in \{set, list, \dots\} type constructors
C \in \{order, linord, \dots\} type classes

Terms: t ::= \nu \mid c \mid ?\nu \mid (t \mid t) \mid (\lambda x. \mid t)
```

→ type constructors: construct a new type out of a parameter type. Example: int list

 $v.x \in V$, $c \in C$, V, C sets of names

 \Rightarrow type classes: restrict type variables to a class defined by axioms. Example: α :: order

```
Types: 	au := b \mid '
u \mid '
u :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) \mid K
b \in \{bool, int, \dots\} base types
\nu \in \{\alpha, \beta, \dots\} type variables
K \in \{set, list, \dots\} type constructors
C \in \{order, linord, \dots\} type classes

Terms: t ::= \nu \mid c \mid ?\nu \mid (t \mid t) \mid (\lambda x. \mid t)
```

→ type constructors: construct a new type out of a parameter type. Example: int list

 $v.x \in V.$ $c \in C$, V,C sets of names

- → type classes: restrict type variables to a class defined by axioms. Example: α :: order
- → schematic variables: variables that can be instantiated.

Type Classes

. . .

→ similar to Haskell's type classes, but with semantic properties class order = assumes order_refl: "x ≤ x" assumes order_trans: "[x ≤ y; y ≤ z]] ⇒ x ≤ z"

Type Classes

→ similar to Haskell's type classes, but with semantic properties

→ theorems can be proved in the abstract

lemma order_less_trans: " $\bigwedge x :: 'a :: order$. $[\![x < y; y < z]\!] \Longrightarrow x < z"$

Type Classes

→ similar to Haskell's type classes, but with semantic properties

```
class order = assumes order_refl: "x \le x" assumes order_trans: "[x \le y; y \le z] \implies x \le z" ...
```

→ theorems can be proved in the abstract

```
lemma order_less_trans: " \bigwedge x :: 'a :: order. \llbracket x < y; y < z \rrbracket \Longrightarrow x < z"
```

→ can be used for subtyping

```
class linorder = order + assumes linorder_linear: "x \le y \lor y \le x"
```

Type Classes

→ similar to Haskell's type classes, but with semantic properties

```
class order = assumes order_refl: "x \le x" assumes order_trans: "[x \le y; y \le z] \implies x \le z" ...
```

→ theorems can be proved in the abstract

lemma order_less_trans:
$$\ '' \land x :: 'a :: order. \ [x < y; y < z]] \Longrightarrow x < z''$$

→ can be used for subtyping

```
class linorder = order + assumes linorder_linear: "x \le y \lor y \le x"
```

→ can be instantiated

```
instance nat :: "{order, linorder}" by ...
```

Schematic Variables

$$\frac{X}{X \wedge Y}$$

 \rightarrow X and Y must be **instantiated** to apply the rule

Schematic Variables

$$\frac{X}{X \wedge Y}$$

 \rightarrow X and Y must be **instantiated** to apply the rule

But: lemma "
$$x + 0 = 0 + x$$
"

- \rightarrow x is free
- → convention: lemma must be true for all x
- → during the proof, x must not be instantiated

Schematic Variables

$$\frac{X \quad Y}{X \wedge Y}$$

→ X and Y must be **instantiated** to apply the rule

But: lemma "
$$x + 0 = 0 + x$$
"

- \rightarrow x is free
- → convention: lemma must be true for all x
- → during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Unification:

Find substitution σ on variables for terms s,t such that $\sigma(s)=\sigma(t)$

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Unification:

Find substitution σ on variables for terms s,t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$?X \wedge ?Y =_{\alpha\beta\eta} x \wedge x ?P x =_{\alpha\beta\eta} x \wedge x P (?f x) =_{\alpha\beta\eta} ?Y x$$

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$\begin{array}{lll} ?X \wedge ?Y &=_{\alpha\beta\eta} & x \wedge x & [?X \leftarrow x, ?Y \leftarrow x] \\ ?P & &=_{\alpha\beta\eta} & x \wedge x & [?P \leftarrow \lambda x. \ x \wedge x] \\ P & (?f \ x) &=_{\alpha\beta\eta} & ?Y \ x & [?f \leftarrow \lambda x. \ x, ?Y \leftarrow P] \end{array}$$

Higher Order: schematic variables can be functions.

ightharpoonup Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable

- ightharpoonup Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- ightharpoonup Unification modulo $\alpha\beta\eta$ is undecidable

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

- ightharpoonup Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- → Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

→ Most cases are well-behaved

- ightharpoonup Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- → Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- **→** Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- \rightarrow is a term in β normal form where
- \rightarrow each occurrence of a schematic variable is of the form ? f t_1 ... t_n
- \rightarrow and the $t_1 \ldots t_n$ are η -convertible into n distinct bound variables

ightharpoonup Simply typed lambda calculus: $\lambda^{
ightharpoonup}$

- ightharpoonup Simply typed lambda calculus: $\lambda^{
 ightharpoonup}$
- ightharpoonup Typing rules for $\lambda^{
 ightharpoonup}$, type variables, type contexts

- **→** Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- ightharpoonup β -reduction in λ^{\rightarrow} satisfies subject reduction

- **→** Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates

- ightharpoonup Simply typed lambda calculus: $\lambda^{
 ightharpoonup}$
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- ightharpoonup β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle