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Last time...

A calculus syntax

free variables, substitution

[ reduction

« and 7 conversion

[ reduction is confluent

A calculus is expressive (Turing complete)

dii il

A calculus is inconsistent (as a logic)




Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep
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[2.37]
3.4]

[4.5]
[5.7]
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(8]
8.9]
[9,10]
10]

?al due; a2 due; a3 due




A calculus is inconsistent

Can find term R such that R R =g not(R R)

There are more terms that do not make sense:
12, true false, etc.




A calculus is inconsistent

Can find term R such that R R =g not(R R)

There are more terms that do not make sense:
12, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)




Introducing types

Idea: assign a type to each “sensible” X\ term.

Examples:
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Introducing types

Idea: assign a type to each “sensible” X\ term.
Examples:

=» for term t has type a write t:«

= if x has type a then Ax. x is a function from « to «
Write:  (Ax. x) t a0 = «

=» for st to be sensible:
s must be a function
t must be right type for parameter

If s:a= fand t: athen (st):p




That’s about it



Now formally again
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Terms: t 1= v ‘ c ’ (t t) ‘ ()\X. t)
v,xeV, ceC, V,C setsof names

Types: 7 == Db ] v ] T = T
b € {bool, int,...} base types
v e {a,pB,...} type variables

a=f=y = a=z(f=7)
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Syntax for \™

Terms: t 1= v ‘ c ’ (t t) ‘ ()\X. t)
v,xeV, ceC, V,C setsof names

Types: 7 == Db ] v ] T = T
b € {bool, int,...} base types
v e {a,pB,...} type variables

a=f=y = a=z(f=7)

Context [:
I": function from variable and constant names to types.

Term t has type 7 in context [: Fr=tar
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Examples

N-(x. x) s a=a«a

[y < int]Fy =
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Examples
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[y < int] F y :: int
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Examples

N-(x. x) s a=a«a
[y < int] F y :: int

[z < bool] F (Ay. y) z :: bool

[[FAMx. fx:
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Examples

N-(x. x) s a=a«a
[y < int] F y :: int
[z < bool] F (Ay. y) z :: bool

[FMx fx:(a=8)=>a=p

A term t is well typed or type correct
if there are [ and 7 such that Tt 7
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Type Checking Rules

Variables: M x o T(x)

lrEtm=7 Tkt
Me(t ) o7

Application:

Mx«+—n]bFtor

Abstraction:

NME(x.t) =7




Example Type Derivation:

IFAxy. x: Abs

Remember:

Var TEFtiim=7 Thhun Mx <+ ]kt

Abs

MNex:r(x) Me(tto) o7 PP N-(Mx. t)ime=r




Example Type Derivation:

[x < a]FAy. x = /:l;;s
JFXy x:a= °
Remember:
Var TEFtiim=7 Thhun Mx <+ ]kt

M x:T(x) M=(ts ) o7 PP M= (x. t) ZZTxiTAbS
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Example Type Derivation:

[x<—a]lFAy.x:8=a /:l;;s
JFXxy. xta= =« °
Remember:
Var TEFtiim=7 Thhun Mx <+ ]kt

M x:T(x) M=(ts ) o7 PP M= (x. t) ZZTxiTAbS
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Example Type Derivation:

Var
Abs
Abs

[x +—a,y <+ [lFx:a
[x<—a]lFAy.x:8=a
JFXxy. xta= =«

Remember:

I FrFtem=71 b Mx<+n]FtoT
Var 10T 2 1 T2
M x:T(x) Fr=(t )7 PP F-(x. t) =71 Abs
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More complex Example

[[FAf x. fxx: Abs

Remember:

Var FTFtim=1 rth::TgA Mx<+ bt

Abs

FEx:T(x) M=(t ) o7 FEOx. t)rme =71




More complex Example

[EFXMx.fxx:(a=a=0)=>a=p Abs

Remember:

Var FTFtim=1 rth::TgA Mx<+ bt

Abs

FEx:T(x) M=(t ) o7 FEOx. t)rme =71




More complex Example

[fa=a=plFx fxx:a=p bz
[EXMx.fxx:(a=a=0)=>a=p
Remember:
Var FTFtiim=1 rth::TgA Mx<+ bt Abs

MEx:T(x) MN=(t o) o7 FE(Ox. t)re=>71




More complex Example

lEfxxap App
[fa=a=plFx fxx:a=p

[]I—)\fx.fxx::(a:>a:ﬁ):>a:>6Abs
N=[f+a=a=p,x+q]
Remember:
Var FTFtiim=1 rth::TgA Mx <+ bt Abs

FhExT) Fe(t )T F=(x. t) =71




12

More complex Example

lEfxta=p6 App 2
lEfxxop PP
[fa=>a=0lFXxfxx:a=0

A
IJFMx fxx:(a=a=p)=>a=p bs
r:[f<—a:>a:>ﬁ’x<_a]
Remember:
——— Vor TFhum=T rthiiTzA Mx<+n]FtoT
MNex:r(x) FrE(ti ) r PP rF()\X.t)::TX:TAbS
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More complex Example

A -
lEfxta=p6 PP ﬂ—x::aXar
lEfxxop PP
Abs

[fa=>a=0lFXxfxx:a=0

A
IJFMx fxx:(a=a=p)=>a=p bs
r:[f<—a:>a:>ﬁ’x<_a]
Remember:
——— Vor TFhum=T rthiiTzA Mx<+n]FtoT
MNex:r(x) FrE(ti ) r PP rF()\X.t)::TX:TAbS
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More complex Example

r-fra=(a=p) var
lNEfxta=p6 App ﬂ—x::avar
lEfxxap App
[fa=>a=0lFXxfxx:a=0 Abs
[]I—)\fx.fxx::(a:>a:ﬁ):>a:>6Abs

N=[f+—a=a=p,x+q]

Remember:

I FrFtiem=717 b Mx<+n]kFtoT
Var 10T 25T,
M x:T(x) M= (t ) o7 FEOx. t)sme =71 Abs
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More complex Example

r-fra=(a=p) var Fhxoa /o y
lNEfxta=p6 PP ﬂ—x::aAar

lEfxxap Abpp

[fa=>a=0lFXxfxx:a=0 AZ

JFMx. fxx:(a=a=p)=>a=0 d

N=[f+—a=a=p,x+q]
Remember:

Var FTFtiim=1 rth::TgA Mx<+ ]kt

M x:T(x) Fr=(t )7 M= (Ax. t) ::TxﬁTAbs




More general Types

A term can have more than one type.
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Some types are more general than others:

7 <o if there is a substitution S such that 7= 5(0)

Examples:

int=bool < a=f < =«




More general Types

A term can have more than one type.

Example: []F Ax. x :: bool = bool
[FX x:ta=a

Some types are more general than others:

7 <o if there is a substitution S such that 7= 5(0)

Examples:

int=bool < a=0 < fB=a L a=«
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=» type checking: checking if [ -t :: 7 for given I and 7
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Most general Types

Fact: each type correct term has a most general type

Formally:
rctur7 = JoTktuioA(Wo'.THto =o' <o)

It can be found by executing the typing rules backwards.

=» type checking: checking if [ -t :: 7 for given I and 7
=» type inference: computing [ and 7 such that T+t :: 7
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Most general Types

Fact: each type correct term has a most general type

Formally:
rctur7 = JoTktuioA(Wo'.THto =o' <o)

It can be found by executing the typing rules backwards.

=» type checking: checking if [ -t :: 7 for given I and 7
=» type inference: computing [ and 7 such that T+t :: 7

Type checking and type inference on A\~ are decidable.

14
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What about S reduction?

Definition of [ reduction stays the same.

Fact: Well typed terms stay well typed during 8 reduction
Formally: lEsiT As—pgt=TFtur

This property is called subject reduction

OMP4161
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What about termination?

[ reduction in A\™" always terminates.

(Alan Turing, 1942)

=» =3 is decidable
To decide if s =g t, reduce s and t to normal form (always exists, because
—> 5 terminates), and compare result.

=* =,y is decidable
This is why Isabelle can automatically reduce each term to 57 normal
form.
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What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
=» )\ "fixes" the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

Not all computable functions can be expressed in A7!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!
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What does this mean for Expressiveness?

So...
=» typed functional languages are turing complete
=» but A7 is not...
=» How does this work?
=» By adding one single constant, the Y operator (fix point operator), to A~
=» This introduces the non-termination that the types removed.

Yi(r=1)=>71
Yt—pt(Yt)

Fact: If we add Y to A~ as the only constant, then each computable
function can be encoded as closed, type correct A term.

=» Y is used for recursion
> lose decidability (what does Y (Ax. x) reduce to?)
=» (Isabelle/HOL doesn’t have Y; recursion is more restricted)




Types and Terms in Isabelle

Types: 7 == b | v | vuC | 7=>71]|(r,....T)K
b € {bool, int,...} base types
v e {a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c | ?v | (tt) | (Ax.t)
v,xeV, ceC, V,C setsof names
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Types and Terms in Isabelle

Types: 7 == b | v | vuC | 7=>71]|(r,....T)K
b € {bool, int,...} base types
v e {a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c | ?v | (tt) | (Ax.t)
v,xeV, ceC, V,C setsof names

=» type constructors: construct a new type out of a parameter type.
Example: int list

=» type classes: restrict type variables to a class defined by axioms.
Example: « :: order

=» schematic variables: variables that can be instantiated.
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Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x < y;y < z] = x < Z"

=» theorems can be proved in the abstract
lemma order_less_trans: " A x :'a:order. [x<y,y <z] = x< 2"
=» can be used for subtyping

class linorder = order +
assumes linorder_linear: "x <y Vy < x"
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Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x < y;y < z] = x < Z"

=» theorems can be proved in the abstract
lemma order_less_trans: " A x :'a:order. [x<y,y <z] = x< 2"
=» can be used for subtyping
class linorder = order +
assumes linorder_linear: "x <y Vy < x"
=» can be instantiated
instance nat :: "{order, linorder}" by ...

20 | COMP4161
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Schematic Variables

XY
XANY

=» X and Y must be instantiated to apply the rule

But: lemma “x+0=0+x"

=> x is free
=» convention: lemma must be true for all x
=» during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (7X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.
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Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =ag, o(t)

Examples:
IXN?Y =apn XAX
P x =afn XAX

P(fx) =apy, ?Y x
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Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =ag, o(t)

Examples:
IXATY  =agn XAX [?X < x,?7Y «+ x|
P x =aBn XAX [?P + Ax. x A X]

P X) =apy Y x [ rxx,7Y < P

Higher Order: schematic variables can be functions.

OMP4161 ) Aman Pohjola, R
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Higher Order Unification

=» Unification modulo a8 (Higher Order Unification) is semi-decidable

=*» Unification modulo a/3n is undecidable

=» Higher Order Unification has possibly infinitely many solutions
But:

=» Most cases are well-behaved

=» Important fragments (like Higher Order Patterns) are decidable
Higher Order Pattern:

=¥» is a term in 8 normal form where

=» each occurrence of a schematic variable is of the form ?f t; ... t,

=» and the t; ... t, are n-convertible into n distinct bound variables

OMP4161
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We have learned so far...

=» Simply typed lambda calculus: A~

=» Typing rules for A\™", type variables, type contexts
=» B-reduction in A\ satisfies subject reduction

=» [-reduction in A7 always terminates

=» Types and terms in Isabelle




