

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Robert Sison T3/2023

Last time...

- **→** Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle

Content

[1,2]
$[2,3^a]$
[3,4]
[4,5]
[5,7]
$[7^{b}]$
[8]
[8,9]
[9,10]
[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Preview: Proofs in Isabelle

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

→ Sequential application of methods until all **subgoals** are solved.

The Proof State

```
1. \bigwedge x_1 \dots x_p . \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B
2. \bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D
```

 $x_1 \dots x_p$ Parameters $A_1 \dots A_n$ Local assumptions B Actual (sub)goal

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- → *MyTh*: name of theory. Must live in file *MyTh*.thy
- → *ImpTh*_i: name of *imported* theories. Import transitive.

Unless you need something special:

```
theory MyTh imports Main begin ... end
```

Natural Deduction Rules

$$\frac{A \quad B}{A \land B} \text{ conjI} \qquad \frac{A \land B \quad \llbracket A; B \rrbracket \implies C}{C} \text{ conjE}$$

$$\frac{A}{A \lor B} \quad \frac{B}{A \lor B} \text{ disjI1/2} \qquad \frac{A \lor B \quad A \implies C \quad B \implies C}{C} \text{ disjE}$$

$$\frac{A \implies B}{A \implies B} \text{ impl} \qquad \frac{A \longrightarrow B \quad A \quad B \implies C}{C} \text{ impE}$$

For each connective $(\land, \lor, \text{ etc})$: introduction and elimination rules

Proof by assumption

apply assumption

proves

1.
$$\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

Intro rules: example

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle: $impl : (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

Here:

- \rightarrow unify... $?P \longrightarrow ?Q$ with $A \longrightarrow A$
- → replace subgoal... $A \longrightarrow A$ (i.e. $[\![\]\!] \Longrightarrow A \longrightarrow A$) with $[\![\ A\]\!] \Longrightarrow A$ (which can be proved with: **apply** assumption)

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

 \rightarrow If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

Elim rules: example

(in Isabelle:
$$conjE$$
 : $\llbracket ?P \land ?Q; \llbracket ?P; ?Q \rrbracket \Longrightarrow ?R \rrbracket \Longrightarrow ?R$)

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

Like rule but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

Here:

- \rightarrow unify... ?R with A
- \rightarrow and also unify... $?P \land ?Q$ with assumption $B \land A$
- → replace subgoal... $\llbracket B \land A \rrbracket \Longrightarrow A$ with $\llbracket B; A \rrbracket \Longrightarrow A$ (which can be proved with: **apply** assumption)

___ Demo

More Proof Rules

Iff, Negation, True and False

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans $\frac{s=t}{P} \frac{P}{t}$ subst

Rarely needed explicitly — used implicitly by term rewriting

Classical

$$\overline{P = \mathit{True} \lor P = \mathit{False}} \quad \text{True-or-False}$$

$$\overline{P \lor \neg P} \quad \text{excluded-middle}$$

$$\frac{\neg A \Longrightarrow \mathit{False}}{A} \quad \text{ccontr} \qquad \frac{\neg A \Longrightarrow A}{A} \quad \text{classical}$$

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-or-False, they are derivable

They make the logic "classical", "non-constructive"

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

Safe and not so safe

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE $\frac{A \quad B}{A \wedge B} \text{ conjl}$

Unsafe rules can turn a provable goal into an unprovable one disjl1, disjl2, impE, iffD1, iffD2, notE $\frac{A}{A \vee B} \text{ disjl1}$

Apply safe rules before unsafe ones

___Demo

What we have learned so far...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules
- → indent your proofs! (one space per subgoal)
- → prefer implicit backtracking (chaining) or *rule_tac*, instead of *back*
- → prefer and defer
- → oops and sorry