

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Robert Sison T3/2023

Last time...

- **→** Simply typed lambda calculus: λ^{\rightarrow}
- ightharpoonup Typing rules for λ^{\rightarrow} , type variables, type contexts
- ightharpoonup β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle

Content

→	Foundations & Principles	
	 Intro, Lambda calculus, natural deduction 	[1,2]
	 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
	Term rewriting	[3,4]
→	Proof & Specification Techniques	
	 Inductively defined sets, rule induction 	[4,5]
	 Datatype induction, primitive recursion 	[5,7]
	 General recursive functions, termination proofs 	[7 ^b]
	 Proof automation, Isar (part 2) 	[8]
	 Hoare logic, proofs about programs, invariants 	[8,9]
	C verification	[9,10]
	 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Preview: Proofs in Isabelle

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

→ Sequential application of methods until all subgoals are solved.

The Proof State

- 1. $\bigwedge x_1 \ldots x_p . \llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow B$
- **2.** $\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$

The Proof State

- 1. $\bigwedge x_1 \dots x_p . \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$ 2. $\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$
- $x_1 \dots x_p$ Parameters $A_1 \dots A_n$ Local assumptions B Actual (sub)goal

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- → *MyTh*: name of theory. Must live in file *MyTh*.thy
- → *ImpTh*_i: name of *imported* theories. Import transitive.

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- → *MyTh*: name of theory. Must live in file *MyTh*.thy
- \rightarrow ImpTh_i: name of imported theories. Import transitive.

Unless you need something special: theory *MyTh* imports Main begin ... end

$$\frac{A \wedge B}{A \wedge B} \text{ conjl} \qquad \frac{A \wedge B}{C} \qquad \text{conjE}$$

$$\frac{A \vee B}{A \vee B} \frac{A \vee B}{A \vee B} \text{ disjl} 1/2 \qquad \frac{A \vee B}{C} \qquad \text{disjE}$$

$$\frac{A \longrightarrow B}{A \longrightarrow B} \text{ impl} \qquad \frac{A \longrightarrow B}{C} \qquad \text{impE}$$

$$\frac{A \cdot B}{A \wedge B} \text{ conjl} \qquad \frac{A \wedge B}{C} \qquad \text{conjE}$$

$$\frac{A \vee B}{A \vee B} \frac{A \vee B}{A \vee B} \text{ disjl1/2} \qquad \frac{A \vee B}{C} \qquad \text{disjE}$$

$$\frac{A \longrightarrow B}{A \longrightarrow B} \text{ impl} \qquad \frac{A \longrightarrow B}{C} \qquad \text{impE}$$

$$\frac{A \cap B}{A \cap B} \text{ conjl} \qquad \frac{A \cap B}{C} \text{ impl} \qquad \frac{A \cap B}{C} \text{ conjE}$$

$$\frac{A \cap B}{A \cap B} \frac{B}{A \cap B} \text{ disjl} 1/2 \qquad \frac{A \cap B}{C} \frac{A \cap B}{C} \text{ disjE}$$

$$\frac{A \cap B}{A \cap B} \text{ impl} \qquad \frac{A \cap B}{C} \text{ impE}$$

$$\frac{A \cdot B}{A \cdot B} \text{ conjl} \qquad \frac{A \cdot B}{C} \text{ conjE}$$

$$\frac{A}{A \cdot B} \frac{B}{A \cdot B} \text{ disjl1/2} \qquad \frac{A \cdot B}{C} \frac{A \Rightarrow C}{C} \frac{B \Rightarrow C}{C} \text{ disjE}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impl} \qquad \frac{A \rightarrow B}{C} \text{ impE}$$

$$\frac{A \quad B}{A \land B} \text{ conjl} \qquad \frac{A \land B \quad \llbracket A; B \rrbracket \implies C}{C} \text{ conjE}$$

$$\frac{A}{A \lor B} \quad \frac{B}{A \lor B} \text{ disjl1/2} \qquad \frac{A \lor B \quad A \implies C \quad B \implies C}{C} \text{ disjE}$$

$$\frac{A \implies B}{A \implies B} \text{ impl} \qquad \frac{A \longrightarrow B \quad A \quad B \implies C}{C} \text{ impE}$$

Proof by assumption

apply assumption

proves

1.
$$[\![B_1;\ldots;B_m]\!] \Longrightarrow C$$

by unifying C with one of the B_i

Proof by assumption

apply assumption

proves

1.
$$\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules decompose formulae to the right of \Longrightarrow .

apply (rule <intro-rule>)

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \dots A_n$

Intro rules decompose formulae to the right of \Longrightarrow .

$$\textbf{apply} \; (\mathsf{rule} < \mathsf{intro-rule} >)$$

Intro rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 ... A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- → unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle: $impl : (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle: $impl : (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle: $impl : (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

- → unify...
- → replace subgoal...

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle: $impl : (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

- \rightarrow unify... $?P \longrightarrow ?Q$ with $A \longrightarrow A$
- → replace subgoal...

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle:
$$impl : (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- → replace C with n new subgoals $A_1 \dots A_n$

- \rightarrow unify... $?P \longrightarrow ?Q$ with $A \longrightarrow A$
- → replace subgoal... $A \longrightarrow A$ (i.e. $[\![\]\!] \Longrightarrow A \longrightarrow A$) with $[\![\ A\]\!] \Longrightarrow A$ (which can be proved with: **apply** assumption)

 $\textbf{Elim} \text{ rules decompose formulae on the left of} \Longrightarrow.$

apply (erule <elim-rule>)

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[A_1; ...; A_n] \Longrightarrow A$ means

 \rightarrow If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

 \rightarrow If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

To prove
$$\llbracket B \wedge A \rrbracket \Longrightarrow A$$
 we can use: $\frac{P \wedge Q}{R} \stackrel{\llbracket P; Q \rrbracket \Longrightarrow R}{\longrightarrow} \operatorname{conjE}$ (in Isabelle: $\operatorname{conjE} : \llbracket ?P \wedge ?Q ; \llbracket ?P ; ?Q \rrbracket \Longrightarrow ?R \rrbracket \Longrightarrow ?R$)

To prove
$$\llbracket B \land A \rrbracket \Longrightarrow A$$
 we can use: $\frac{P \land Q}{R} \stackrel{\llbracket P; Q \rrbracket \Longrightarrow R}{\longrightarrow} \operatorname{conjE}$ (in Isabelle: $\operatorname{conjE} : \llbracket ?P \land ?Q; \llbracket ?P; ?Q \rrbracket \Longrightarrow ?R \rrbracket \Longrightarrow ?R$)

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

To prove
$$\llbracket B \land A \rrbracket \Longrightarrow A$$
 we can use: $\frac{P \land Q}{R} = \frac{\llbracket P; Q \rrbracket \Longrightarrow R}{R}$ conjE

(in Isabelle:
$$conjE$$
 : $[P \land Q; P ? Q] \implies R \implies R$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

- → unify...
- → and also unify...
- → replace subgoal...

To prove
$$\llbracket B \land A \rrbracket \Longrightarrow A$$
 we can use: $\frac{P \land Q}{R} = \frac{\llbracket P; Q \rrbracket \Longrightarrow R}{R}$ conjE

(in Isabelle:
$$conjE$$
 : $[P \land Q; P ? Q] \implies R \implies R$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

- \rightarrow unify... ?R with A
- → and also unify...
- → replace subgoal...

Elim rules: example

To prove
$$\llbracket B \land A \rrbracket \Longrightarrow A$$
 we can use: $\frac{P \land Q}{R} = \frac{\llbracket P; Q \rrbracket \Longrightarrow R}{R}$ conjE

(in Isabelle:
$$conjE$$
 : $[P \land Q; P ? Q] \implies R \implies R$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

Here:

- \rightarrow unify... ?R with A
- \Rightarrow and also unify... $?P \land ?Q$ with assumption $B \land A$
- → replace subgoal...

Elim rules: example

To prove
$$\llbracket B \land A \rrbracket \Longrightarrow A$$
 we can use: $\frac{P \land Q}{R} = \frac{\llbracket P; Q \rrbracket \Longrightarrow R}{R}$ conjE

(in Isabelle:
$$conjE$$
 : $[P \land Q; P ? Q] \implies R \implies R$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

Here:

- \rightarrow unify... ?R with A
- → and also unify... $?P \land ?Q$ with assumption $B \land A$
- → replace subgoal... $\llbracket B \land A \rrbracket \Longrightarrow A$ with $\llbracket B; A \rrbracket \Longrightarrow A$ (which can be proved with: **apply** assumption)

___Demo

More Proof Rules

$$\frac{A = B}{A = B} \text{ iffI} \qquad \frac{A = B}{C} \text{ iffE}$$

$$\frac{A = B}{A = B} \text{ iffD1} \qquad \frac{A = B}{D} \text{ iffD2}$$

$$\frac{A = B}{D} \text{ notE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffI} \qquad \frac{A = B}{C} \quad \text{iffE}$$

$$\frac{A = B}{A} \quad \text{iffD1} \qquad \frac{A = B}{B} \quad \text{iffD2}$$

$$\frac{A = B}{A} \quad \text{notI} \qquad \frac{\neg A}{B} \quad \text{notE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffl} \qquad \frac{A = B \quad [\![A \longrightarrow B; B \longrightarrow A]\!] \Longrightarrow C}{C} \quad \text{iffE}$$

$$\frac{A = B}{A = B} \quad \text{iffD1} \qquad \frac{A = B}{A = B} \quad \text{iffD2}$$

$$\frac{A = B}{A = B} \quad \text{iffD2}$$

$$\frac{A \Longrightarrow B \Longrightarrow A}{A = B} \text{ iffI} \qquad \frac{A = B \quad [\![A \longrightarrow B; B \longrightarrow A]\!] \Longrightarrow C}{C} \text{ iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \text{ iffD1} \qquad \frac{A = B}{B \Longrightarrow A} \text{ iffD2}$$

$$\frac{A = B}{A \Longrightarrow B} \text{ notE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffl} \qquad \frac{A = B \quad \llbracket A \longrightarrow B; B \longrightarrow A \rrbracket \Longrightarrow C}{C} \quad \text{iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \quad \text{iffD1} \qquad \qquad \frac{A = B}{B \Longrightarrow A} \quad \text{iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \quad \text{notI} \qquad \qquad \frac{\neg A}{P} \quad \text{notE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffl} \qquad \frac{A = B \quad \llbracket A \longrightarrow B; B \longrightarrow A \rrbracket \Longrightarrow C}{C} \quad \text{iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \quad \text{iffD1} \qquad \qquad \frac{A = B}{B \Longrightarrow A} \quad \text{iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \quad \text{notI} \qquad \qquad \frac{\neg A \quad A}{P} \quad \text{notE}$$

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans

Equality

$$\frac{s=t}{t=t} \text{ refl} \qquad \frac{s=t}{t=s} \text{ sym} \qquad \frac{r=s}{r=t} \frac{s=t}{t} \text{ trans}$$

$$\frac{s=t}{P} \frac{P}{t} \text{ subst}$$

Equality

$$\frac{s=t}{t=t} \text{ refl} \qquad \frac{s=t}{t=s} \text{ sym} \qquad \frac{r=s}{r=t} \frac{s=t}{t} \text{ trans}$$

$$\frac{s=t}{P} \frac{P}{t} \text{ subst}$$

Rarely needed explicitly — used implicitly by term rewriting

$$\overline{P = \mathit{True} \lor P = \mathit{False}}$$
 True-or-False

$$\overline{P = \mathit{True} \lor P = \mathit{False}} \quad \text{True-or-False}$$

$$\overline{P \lor \neg P} \quad \text{excluded-middle}$$

$$\frac{\neg A \Longrightarrow \mathit{False}}{A} \quad \text{ccontr} \quad \frac{\neg A \Longrightarrow A}{A} \quad \text{classical}$$

$$\overline{P = \mathit{True} \lor P = \mathit{False}} \quad \text{True-or-False}$$

$$\overline{P \lor \neg P} \quad \text{excluded-middle}$$

$$\overline{A} \Longrightarrow \overline{A} \quad \text{classical}$$

$$\overline{A} \Longrightarrow \overline{A} \quad \text{classical}$$

→ excluded-middle, ccontr and classical not derivable from the other rules.

$$\overline{P = \mathit{True} \lor P = \mathit{False}} \quad \mathsf{True\text{-}or\text{-}False}$$

$$\overline{P \lor \neg P} \quad \mathsf{excluded\text{-}middle}$$

$$\frac{\neg A \Longrightarrow \mathit{False}}{A} \quad \mathsf{ccontr} \quad \frac{\neg A \Longrightarrow A}{A} \quad \mathsf{classical}$$

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-or-False, they are derivable

They make the logic "classical", "non-constructive"

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

Safe rules preserve provability

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE
$$\frac{A}{A \wedge B} \text{ conjl}$$

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE $\frac{A\quad B}{A\wedge B} \text{ conjl}$

Unsafe rules can turn a provable goal into an unprovable one

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE
$$\frac{A \quad B}{A \land B} \text{ conjl}$$

Unsafe rules can turn a provable goal into an unprovable one disjl1, disjl2, impE, iffD1, iffD2, notE $\frac{A}{A \vee B} \text{ disjl1}$

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE
$$\frac{A}{A \wedge B} \text{ conjl}$$
 Unsafe rules can turn a provable goal into an unprovable one disjl1, disjl2, impE, iffD1, iffD2, notE

$$\frac{A}{A \vee B} \text{ disjl} 1$$

Apply safe rules before unsafe ones

___Demo

What we have learned so far...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules
- → indent your proofs! (one space per subgoal)
- → prefer implicit backtracking (chaining) or rule_tac, instead of back
- → prefer and defer
- → oops and sorry