COMP4161
Advanced Topics in Software Verification

HOL

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Robert Sison
T3/2023

Last time...

\rightarrow natural deduction rules for $\wedge, \vee, \longrightarrow$, \neg, iff...
\rightarrow proof by assumption, by intro rule, elim rule
\rightarrow safe and unsafe rules
\rightarrow indent your proofs! (one space per subgoal)
\rightarrow prefer implicit backtracking (chaining) or rule_tac, instead of back
\rightarrow prefer and defer
\rightarrow oops and sorry

Content

\rightarrow Foundations \& Principles

- Intro, Lambda calculus, natural deduction
- Higher Order Logic, Isar (part 1)
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatype induction, primitive recursion
- General recursive functions, termination proofs
- Proof automation, Isar (part 2)
- Hoare logic, proofs about programs, invariants
- C verification
- Practice, questions, exam prep

[^0]
Quantifiers

Scope

- Scope of parameters: whole subgoal
- Scope of \forall, \exists, \ldots : ends with ; or \Longrightarrow

Example:

$$
\Lambda x y \cdot \llbracket \forall y \cdot P y \longrightarrow Q z y ; \quad Q x y \rrbracket \Longrightarrow \exists x \cdot Q x y
$$

$\Lambda x y . \llbracket\left(\forall y_{1} . P y_{1} \longrightarrow Q z y_{1}\right) ; Q \times y \rrbracket \Longrightarrow\left(\exists x_{1} \cdot Q x_{1} y\right)$

Natural deduction for quantifiers

$$
\begin{array}{ll}
\frac{\Lambda x \cdot P x}{\forall x \cdot P x} \text { alll } & \frac{\forall x \cdot P \times P ? x \Longrightarrow R}{R} \text { alle } \\
\frac{P ? x}{\exists x \cdot P x} \text { exl } & \frac{\exists x \cdot P \times \wedge x \cdot P x \Longrightarrow R}{R} \mathrm{exE}
\end{array}
$$

- alll and exE introduce new parameters ($\bigwedge x$).
- allE and exl introduce new unknowns (?x).

Instantiating Rules

$$
\text { apply (rule_tac } x=" \text { term" in rule) }
$$

Like rule, but ? x in rule is instantiated by term before application.
Similar: erule_tac
! x is in rule, not in goal !

Two Successful Proofs

$$
\begin{aligned}
& \text { 1. } \forall x . \exists y \cdot x=y \\
& \text { apply (rule allI) } \\
& \text { 1. } \wedge x . \exists y \cdot x=y
\end{aligned}
$$

best practice
apply (rule_tac $x=" x "$ in exl)

1. $\Lambda x \cdot x=x$
apply (rule refl)
simpler \& clearer
exploration
apply (rule exl)
2. $\wedge x . x=? y x$
apply (rule refl)
? $y \mapsto \lambda u . u$
shorter \& trickier

Two Unsuccessful Proofs

$$
\begin{aligned}
\text { 1. } \exists y . \forall x . x & =y \\
\text { apply (rule_tac } x=? ? ? \text { in exl) } & \text { apply (rule exl) } \\
& 1 . \forall x \cdot x=? y \\
& \text { apply (rule allI) } \\
& 1 . \bigwedge x \cdot x=? y \\
& \text { apply (rule refl) } \\
& ? y \mapsto x \text { yields } \bigwedge x^{\prime} \cdot x^{\prime}=x
\end{aligned}
$$

Principle:

?f $x_{1} \ldots x_{n}$ can only be replaced by term t
if params $(t) \subseteq x_{1}, \ldots, x_{n}$

Safe and Unsafe Rules

Safe alll, exE
Unsafe allE, exl

Create parameters first, unknowns later

Demo: Quantifier Proofs

Parameter names

Parameter names are chosen by Isabelle

$$
\begin{aligned}
& \text { 1. } \forall x \cdot \exists y \cdot x=y \\
& \text { apply (rule alll) } \\
& \text { 1. }\lfloor x \cdot \exists y \cdot x=y \\
& \text { apply (rule_tac } x=" x " \text { in exl })
\end{aligned}
$$

Brittle!

Renaming parameters

$$
\begin{aligned}
& \text { 1. } \forall x . \exists y . x=y \\
& \text { apply }(\text { rule allI }) \\
& \text { 1. } \bigwedge x . \exists y . x=y \\
& \text { apply }(\text { rename_tac } \mathrm{N}) \\
& \text { 1. } \bigwedge N . \exists y . N=y \\
& \text { apply (rule_tac } x=" N " \text { in exl })
\end{aligned}
$$

In general:
(rename_tac $x_{1} \ldots x_{n}$) renames the rightmost (inner) n parameters to $x_{1} \ldots x_{n}$

Forward Proof: frule and drule

apply (frule < rule >)

Rule:

$$
\llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A
$$

Subgoal:

1. $\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow C$

Substitution: $\quad \sigma\left(B_{i}\right) \equiv \sigma\left(A_{1}\right)$
New subgoals: 1. $\sigma\left(\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow A_{2}\right)$

$$
\begin{aligned}
& \text { m-1. } \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow A_{m}\right) \\
& \text { m. } \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} ; A \rrbracket \Longrightarrow C\right)
\end{aligned}
$$

Like frule but also deletes B_{i} : apply (drule $<$ rule $>$)

Examples for Forward Rules

$$
\begin{gathered}
\frac{P \wedge Q}{P} \text { conjunct1 } \quad \frac{P \wedge Q}{Q} \text { conjunct2 } \\
\frac{P \longrightarrow Q \quad P}{Q} \mathrm{mp} \\
\frac{\forall x . P x}{P ? x} \text { spec }
\end{gathered}
$$

Forward Proof：OF

$$
r\left[\mathbf{O F} r_{1} \ldots r_{n}\right]
$$

Prove assumption 1 of theorem r with theorem r_{1} ，and assumption 2 with theorem r_{2} ，and \ldots

Rule $r \quad \llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A$
Rule $r_{1} \quad \llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow B$
Substitution $\quad \sigma(B) \equiv \sigma\left(A_{1}\right)$
$r\left[\right.$ OF $\left.r_{1}\right] \quad \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} ; A_{2} ; \ldots ; A_{m} \rrbracket \Longrightarrow A\right)$
Example：
dvd＿add：【 ？a dvd ？b；？a dvd ？c 】 \Longrightarrow ？a dvd ？b＋？c
dvd＿refl：？a dvd ？a
dvd＿add［OF dvd＿refl］：【 ？a dvd ？c 】 \Longrightarrow ？a dvd ？a + ？c

Forward proofs: THEN

r_{1} [THEN r_{2}] means r_{2} [OF r_{1}]

Demo: Forward Proofs

Hilbert's Epsilon Operator

(David Hilbert, 1862-1943)
$\varepsilon x . P x$ is a value that satisfies P (if such a value exists)
ε also known as description operator.
In Isabelle the ε-operator is written SOME $x . P x$

$$
\frac{P ? x}{P(\text { SOME } x . P x)} \text { somel }
$$

More Epsilon

ε implies Axiom of Choice:

$$
\forall x . \exists y . Q \times y \Longrightarrow \exists f . \forall x . Q \times(f x)
$$

Existential and universal quantification can be defined with ε.

Isabelle also knows the definite description operator THE (aka ι):
$\overline{(\text { THE } x \cdot x=a)=a}$ the_eq_trivial

Some Automation

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules apply (elim <elim-rules>) repeatedly applies elim rules apply clarify
apply safe apply blast
apply fast
that do not split the goal
applies all safe rules
an automatic tableaux prover (works well on predicate logic)
another automatic search tactic

Epsilon and Automation Demo

We have learned so far...

\rightarrow Proof rules for predicate calculus
\rightarrow Safe and unsafe rules
\rightarrow Forward Proof
\rightarrow The Epsilon Operator
\rightarrow Some automation

Isar (Part 1)

A Language for Structured Proofs

Motivation

Is this true: $(A \longrightarrow B)=(B \vee \neg A)$?

Motivation

Is this true: $(A \longrightarrow B)=(B \vee \neg A)$?
YES!
apply (rule iffI)
apply (cases A)
apply (rule disjI1) apply (erule impE) apply assumption apply assumption
apply (rule disjI2) or by blast
apply assumption
apply (rule impI)
apply (erule disjE)
apply assumption
apply (erule notE)
apply assumption
done
OK it's true. But WHY?

Motivation

WHY is this true: $(A \longrightarrow B)=(B \vee \neg A)$?

Demo
apply scripts
\rightarrow unreadable
\rightarrow hard to maintain
\rightarrow do not scale

What about..

\rightarrow Elegance?
\rightarrow Explaining deeper insights?
$\rightarrow \quad$ Large developments?

No structure.
Isar!

A typical Isar proof

$$
\begin{aligned}
& \text { proof } \\
& \text { assume formula } a_{0} \\
& \text { have formula }{ }_{1} \text { by simp } \\
& \vdots \\
& \text { have formula } a_{n} \text { by blast } \\
& \text { show formula } a_{n+1} \text { by } \ldots \\
& \text { qed } \\
& \text { proves formula } a_{0} \Longrightarrow \text { formula }_{n+1}
\end{aligned}
$$

(analogous to assumes/shows in lemma statements)

Isar core syntax

```
proof = proof [method] statement* qed
        by method
method =(simp ...)|(blast ...) | (rule ...) | ...
statement = fix variables
        assume proposition
        (\Longrightarrow)
        [from name }\mp@subsup{}{}{+}\mathrm{ ] (have | show) proposition proof
        next
        (separates subgoals)
proposition \(=\) [name:] formula
```


proof and qed

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$ proof (rule conjl)
assume A : " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed
\rightarrow proof (<method $>$) applies method to the stated goal
\rightarrow proof applies a single rule that fits does nothing to the goal

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
\rightarrow proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$
\rightarrow so we need 2 shows: show " A " and show " B "
\rightarrow We are allowed to assume A, because A is in the assumptions of the proof state.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove] proof (rule conjl) [state]
assume A: " A " [state]
from A [chain] show " A " [prove] by assumption [state] next [state] ...

Have

Can be used to make intermediate steps.

Example:

lemma "(x :: nat $)+1=1+x$ " proof -
have A : " $x+1=$ Suc x " by simp
have B : " $1+x=$ Suc x " by simp
show " $x+1=1+x$ " by (simp only: A B)
qed

Demo

Backward and Forward

Backward reasoning: . . have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$
Forward reasoning: . .
assume $A B$: " $A \wedge B$ "
from $A B$ have "..." proof
\rightarrow now proof picks an elim rule automatically
\rightarrow triggered by from
\rightarrow first assumption of rule must unify with AB
General case: from $A_{1} \ldots A_{n}$ have R proof
\rightarrow first n assumptions of rule must unify with $A_{1} \ldots A_{n}$
\rightarrow conclusion of rule must unify with R

Fix and Obtain

$$
\text { fix } v_{1} \ldots v_{n}
$$

Introduces new arbitrary but fixed variables (\sim parameters, Λ)
obtain $v_{1} \ldots v_{n}$ where <prop> <proof>
Introduces new variables together with property

Fancy Abbreviations

this $=$ the previous fact proved or assumed
then $=$ from this
thus $=$ then show
hence $=$ then have
with $A_{1} \ldots A_{n}=$ from $A_{1} \ldots A_{n}$ this
?thesis $=$ the last enclosing goal statement

Demo

Moreover and Ultimately

have $X_{1}: P_{1} \ldots$
have $X_{2}: P_{2} \ldots$
:
have $X_{n}: P_{n} \ldots$
from $X_{1} \ldots X_{n}$ show \ldots
wastes lots of brain power on names $X_{1} \ldots X_{n}$
have $P_{1} \ldots$
moreover have $P_{2} \ldots$
:
moreover have $P_{n} \ldots$
ultimately show ...

General Case Distinctions

show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}$ <proof> moreover $\left\{\right.$ assume $P_{1} \ldots$ have ?thesis <proof> \} moreover $\left\{\right.$ assume $P_{2} \ldots$ have ?thesis <proof $>$ \} moreover $\left\{\right.$ assume $P_{3} \ldots$ have ?thesis <proof> \} ultimately show ?thesis by blast
qed
$\{\ldots\}$ is a proof block similar to proof ... qed
$\left\{\right.$ assume $P_{1} \ldots$ have $P<$ proof $>$ \}
stands for $P_{1} \Longrightarrow P$

Mixing proof styles

```
from ...
have...
    apply - make incoming facts assumptions
    apply (...)
    apply (...)
    done
```


We have learned so far...

\rightarrow Isar style proofs
\rightarrow proof, qed
\rightarrow assumes, shows
\rightarrow fix, obtain
\rightarrow moreover, ultimately
\rightarrow forward, backward
\rightarrow mixing proof styles

[^0]: ${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due

