

COMP4161 Advanced Topics in Software Verification

HOL

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Robert Sison T3/2023

Content

[1,2]
[2,3 ^a]
[3,4
[4,5]
[5,7]
[7 ^b]
[8]
[8,9]
[9,10
[10°

^aa1 due; ^ba2 due; ^ca3 due

More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Automated methods (fast, blast, clarify etc) are not hardwired. Safe/unsafe intro/elim rules can be declared.

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

[<kind>] for unsafe rules

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

Example:

declare attribute globally remove attribute globally use locally declare conjl [intro!] allE [elim] declare allE [rule del] apply (blast intro: somel)

Demo: Automation

Exercises

- ightharpoonup derive the classical contradiction rule $(\neg P \Longrightarrow False) \Longrightarrow P$ in Isabelle
- → define **nor** and **nand** in Isabelle
- \rightarrow show nor x x = nand x x
- → derive safe intro and elim rules for them
- \rightarrow use these in an automated proof of nor x x = nand x x

Defining Higher Order Logic

What is Higher Order Logic?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

→ First Order Logic:

- quantification over values, but not over functions and predicates,
- terms and formulas syntactically distinct

→ Higher Order Logic:

- quantification over everything, including predicates
- consistency by types
- formula = term of type bool
- definition built on λ^{\rightarrow} with certain default types and constants

Defining Higher Order Logic

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → **bool** sometimes called o
- \rightarrow \Rightarrow sometimes called *fun*

Default Constants:

 \longrightarrow :: $bool \Rightarrow bool \Rightarrow bool$

 $= :: \alpha \Rightarrow \alpha \Rightarrow bool$

 ϵ :: $(\alpha \Rightarrow bool) \Rightarrow \alpha$

Higher Order Abstract Syntax

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

 λ

So: Use λ to encode all other binders.

Higher Order Abstract Syntax

Example:

$$ALL :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS	usual syntax
ALL $(\lambda x. \ x = 2)$ ALL P	$\forall x. \ x = 2$ $\forall x. \ P \ x$

Isabelle can translate usual binder syntax into HOAS.

Side Track: Syntax Declarations

→ mixfix:

```
consts drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool ("\_, \_ \vdash \_") Legal syntax now: \Gamma, \Pi \vdash F
```

→ priorities:

pattern can be annotated with priorities to indicate binding strength **Example:** drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_, _ | _ _ " [30,0,20] 60)

- → infixl/infixr: short form for left/right associative binary operators Example: or :: bool ⇒ bool ⇒ bool (infixr " ∨ " 30)
- **→ binders:** declaration must be of the form $c :: (\tau_1 \Rightarrow \tau_2) \Rightarrow \tau_3$ (binder "B") $B \times P \times T$ translated into $C \times P$ (and vice versa) **Example** ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ (binder " \forall " 10)

More in Isabelle/Isar Reference Manual (8.2)

Back to HOL

Base: bool,
$$\Rightarrow$$
, ind $=$, \longrightarrow , ε

And the rest is definitions:

True
$$\equiv (\lambda x :: bool. \ x) = (\lambda x .. x)$$
All $P \equiv P = (\lambda x. \text{ True})$
Ex $P \equiv \forall Q. \ (\forall x. P \ x \longrightarrow Q) \longrightarrow Q$
False $\equiv \forall P. P$
 $\neg P \equiv P \longrightarrow \text{False}$
 $P \land Q \equiv \forall R. \ (P \longrightarrow Q \longrightarrow R) \longrightarrow R$
 $P \lor Q \equiv \forall R. \ (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$
If $P \times y \equiv \text{SOME } z. \ (P = \text{True} \longrightarrow z = x) \land (P = \text{False} \longrightarrow z = y)$
surj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$
surj $f \equiv \forall y. \ \exists x. \ y = f \ x$

The Axioms of HOL

$$\frac{S = t \quad P \ s}{P \ t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x = g \ x}{(\lambda x. \ f \ x) = (\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \text{ iff}$$

$$\overline{P = \text{True} \lor P = \text{False}} \text{ True_or_False}$$

$$\frac{P ? x}{P \text{ (SOME } x. \ P \ x)} \text{ somel}$$

$$\overline{\exists f :: ind \implies ind. \text{ inj } f \land \neg \text{surj } f} \text{ infty}$$

That's it.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

$$\frac{x=y}{x\equiv y}$$
 eq_reflection $\overline{\text{(THE } x. \ x=a)=a}$ the_eq_trivial

The Definitions in Isabelle

Demo:

Deriving Proof Rules

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

True

consts True :: bool

True $\equiv (\lambda x :: bool. x) = (\lambda x. x)$

Intuition:

right hand side is always true

Proof Rules:

True Truel

Proof:

$$\frac{(\lambda x :: bool. \ x) = (\lambda x. \ x)}{\mathsf{True}} \ \mathsf{unfold} \ \mathsf{True_def}$$

___Demo

Universal Quantifier

consts ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 ALL $P \equiv P = (\lambda x. \text{ True})$

Intuition:

- \rightarrow ALL *P* is Higher Order Abstract Syntax for $\forall x. P x.$
- \rightarrow P is a function that takes an x and yields a truth value.
- → ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function λx . True.

Proof Rules:

$$\frac{\bigwedge x. \ P \ x}{\forall x. \ P \ x} \text{ alll} \qquad \frac{\forall x. \ P \ x}{R} \Rightarrow R \text{ allE}$$

False

consts False :: *bool* False $\equiv \forall P.P$

Intuition:

Everything can be derived from False.

Proof Rules:

$$\frac{\mathsf{False}}{P} \; \mathsf{FalseE} \qquad \overline{\mathsf{True} \neq \mathsf{False}}$$

Negation

consts Not ::
$$bool \Rightarrow bool (\neg _)$$

 $\neg P \equiv P \longrightarrow False$

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow .

Proof Rules:

$$\frac{A \Longrightarrow \textit{False}}{\neg A} \ \mathsf{notI} \qquad \frac{\neg A \quad A}{P} \ \mathsf{notE}$$

Existential Quantifier

consts EX ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 EX $P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$

Intuition:

- \rightarrow EX P is HOAS for $\exists x. P x.$ (like \forall)
- ightharpoonup Right hand side is characterization of \exists with \forall and \longrightarrow
- → Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$
- Remember lemma from last time: $(\forall x. \ P \ x \longrightarrow Q) = ((\exists x. \ P \ x) \longrightarrow Q)$

Proof Rules:

$$\frac{P?x}{\exists x. Px} \text{ exl} \qquad \frac{\exists x. Px \quad \bigwedge x. Px \Longrightarrow R}{R} \text{ exE}$$

Conjunction

consts And ::
$$bool \Rightarrow bool (_ \land _)$$

 $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∧
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A \quad B}{A \land B}$$
 conjl $\frac{A \land B \quad \llbracket A; B \rrbracket \Longrightarrow C}{C}$ conjE

Disjunction

consts Or ::
$$bool \Rightarrow bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∨ (case distinction)
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A}{A \lor B} \frac{B}{A \lor B} \text{ disjl}1/2$$
 $\frac{A \lor B}{C} \stackrel{A \longrightarrow C}{A} \stackrel{B \Longrightarrow C}{\Longrightarrow} C \text{ disjE}$

If-Then-Else

```
consts If :: bool \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \alpha (if then else )
If P \times y \equiv \text{SOME } z. (P = \text{True} \longrightarrow z = x) \land (P = \text{False} \longrightarrow z = y)
```

Intuition:

- \rightarrow for P = True, right hand side collapses to SOME z. z = x
- \rightarrow for P = False, right hand side collapses to SOME z. z = y

Proof Rules:

if True then s else t = s if True if False then s else t = t if False

That was HOL

We have learned today ...

- → More automation
- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules