7 &
N
a'

{

C
Z
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

HOL

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Robert Sison

T3/2023

Content

=» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

e Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)
Hoare logic, proofs about programs, invariants
C verification
Practice, questions, exam prep

(1.2]
[2.37]
(3.4]

4.5]
[5.7]
[7°]
(8]
(8.9]
[9,10]
[10]

?al due; °a2 due; a3 due

More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

n, M Tanaka, J Am

More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

n, M Tanaka, J Am

More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated
Automated methods (fast, blast, clarify etc) are not hardwired.
Safe/unsafe intro/elim rules can be declared.

More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated
Automated methods (fast, blast, clarify etc) are not hardwired.
Safe/unsafe intro/elim rules can be declared.

Syntax:
[<kind>] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated
Automated methods (fast, blast, clarify etc) are not hardwired.
Safe/unsafe intro/elim rules can be declared.

Syntax:
[<kind>] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated
Automated methods (fast, blast, clarify etc) are not hardwired.
Safe/unsafe intro/elim rules can be declared.

Syntax:
[<kind>] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

Example:
declare attribute globally declare conjl [intro!] allE [elim]
remove attribute globally declare allE [rule del]

use locally apply (blast intro: somel)
delete locally apply (blast del: conjl)

Demo: Automation

Exercises

=» derive the classical contradiction rule (P = False) = P in Isabelle
=» define nor and nand in Isabelle

=» show nor x x = nand x x

=» derive safe intro and elim rules for them

=» use these in an automated proof of nor x x = nand x x

Defining Higher Order Logic

What is Higher Order Logic?

=» Propositional Logic:

e no quantifiers
e all variables have type bool

What is Higher Order Logic?

=» Propositional Logic:

e no quantifiers
e all variables have type bool
=» First Order Logic:
e quantification over values, but not over functions and predicates,
e terms and formulas syntactically distinct

What is Higher Order Logic?

=» Propositional Logic:
e no quantifiers
e all variables have type bool
=» First Order Logic:
e quantification over values, but not over functions and predicates,
e terms and formulas syntactically distinct
=» Higher Order Logic:
e quantification over everything, including predicates
e consistency by types
e formula = term of type bool
e definition built on A™ with certain default types and constants

Defining Higher Order Logic

Default types:

Defining Higher Order Logic

Default types:

bool

Defining Higher Order Logic

Default types:

bool =

Defining Higher Order Logic

Default types:

bool = ind

Defining Higher Order Logic

Default types:

bool = ind

=> bool sometimes called o

=»> = sometimes called fun

Defining Higher Order Logic

Default types:

bool = ind

=> bool sometimes called o
=»> = sometimes called fun

Default Constants:

Defining Higher Order Logic

Default types:

bool = ind

=> bool sometimes called o
=»> = sometimes called fun

Default Constants:

— 1 bool = bool = bool

Defining Higher Order Logic

Default types:

bool = ind

=> bool sometimes called o
=»> = sometimes called fun

Default Constants:

— 1 bool = bool = bool
= Toa= a = bool

Defining Higher Order Logic

Default types:

bool = ind

=> bool sometimes called o
=»> = sometimes called fun

Default Constants:
— 1 bool = bool = bool
= Toa= a = bool
€ it (o= bool) = «

Higher Order Abstract Syntax

Problem: Define syntax for binders like V, 3, €

4161 | G Klein, M Tanaka, J Amar

Higher Order Abstract Syntax

Problem: Define syntax for binders like V, 3, €

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

Higher Order Abstract Syntax

Problem: Define syntax for binders like V, 3, €

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

But: Already have binder, substitution, o conversion in meta logic

A

Higher Order Abstract Syntax

Problem: Define syntax for binders like V, 3, €

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

But: Already have binder, substitution, o conversion in meta logic

A

So: Use) to encode all other binders.

Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax

Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax

ALL (Ax. x =2)

Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax

ALL (Ax. x =2) Vx. x =2

Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax

ALL (Ax. x =2) Vx. x =2
ALL P

Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax

ALL (Ax. x =2) Vx. x =2
ALL P Vx. P x

Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax

ALL (Ax. x =2) Vx. x =2
ALL P Vx. P x

Isabelle can translate usual binder syntax into HOAS.

Side Track: Syntax Declarations

=> mixfix:
consts drvbl ;1 ¢t = ¢t = fm = bool ("_,- F ")
Legal syntax now: I, [T+ F

Side Track: Syntax Declarations

=> mixfix:
consts drvbl ;1 ¢t = ¢t = fm = bool ("_,- F ")
Legal syntax now: I, [T+ F
=¥ priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl :: ¢t = ¢t = fm = bool ("_,- F " [30,0,20] 60)

11 | COMP4161

Side Track: Syntax Declarations

=> mixfix:
consts drvbl ;1 ¢t = ¢t = fm = bool ("_,- F ")
Legal syntax now: I, [T+ F
=¥ priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl :: ¢t = ¢t = fm = bool ("_,- F " [30,0,20] 60)

=» infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr” V" 30)

11 | COMP4161

Side Track: Syntax Declarations

=> mixfix:
consts drvbl ;1 ¢t = ¢t = fm = bool ("_,- F ")
Legal syntax now: I, [T+ F
=¥ priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl :: ¢t = ¢t = fm = bool ("_,- F " [30,0,20] 60)

=» infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr” V" 30)

=» binders: declaration must be of the form
c:(m = m)=m73 (binder "B" < p>)
B x. P x translated into ¢ P (and vice versa)
Example ALL :: (a = bool) = bool (binder "V" 10)

11 | COMP4161) Aman Pohjola, R

Side Track: Syntax Declarations

=> mixfix:
consts drvbl ;1 ¢t = ¢t = fm = bool ("_,- F ")
Legal syntax now: I, [T+ F
=¥ priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl :: ¢t = ¢t = fm = bool ("_,- F " [30,0,20] 60)

=» infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr” V" 30)
=» binders: declaration must be of the form
c: (= m)=m7 (binder"B" <p>)
B x. P x translated into ¢ P (and vice versa)
Example ALL :: (a = bool) = bool (binder "V" 10)

More in Isabelle/Isar Reference Manual (8.2)

11 | COMP4161 J Aman Pohjola, R

Back to HOL

Base: bool, =, ind =, —, €

And the rest is

Back to HOL

Base: bool, =, ind =, —, €

And the rest is definitions:
True

All P
Ex P
False
-P
PAQ@
PVv @
If Pxy
inj f
surj f

Back to HOL

Base: bool, =, ind =, —, €

And the rest is definitions:

True (Ax 12 bool. x) = (Ax. x)
All P
Ex P
False
-P
PAQ
PVvQ
If Pxy
inj f
surj f

Back to HOL

Base: bool, =, ind =, —, €

And the rest is definitions:
(Ax 12 bool. x) = (Ax. x)
P = (Ax. True)

True

All P
Ex P
False
-P
PAQ@
PVv @
If Pxy
inj f
surj f

Back to HOL

Base: bool, =, ind =, —, €

And the rest is definitions:

True = (Ax: bool. x) = (Ax. x)

All P = P =(\x. True)

Ex P = V. (Vx. Px — Q) — @

False = VP.P

-P = P — False

PAQ = VR(P—Q—R)—R

PVQ = VRR(P—R)—(Q@—R) —R

If Pxy = SOMEz (P=True— z=x)A(P=False — z=y)
inj f = Vxy. fx=fy—x=y

surj f Vy.Ix.y=1f x

12 | COMP4161 | G Kle

The Axioms of HOL

The Axioms of HOL

Ps Ax. fx=gx

s=t
= __ - @ = t
f=¢ ref Pt subst (Ax. f x) = (Ax. g x) &
ﬁi :>g impt L —Q P —>QQP mp

The Axioms of HOL

s—t Ps Ax. fx=gx
—_— t
f=¢ ref Pt subst (Ax. f x) = (Ax. g x) &
P=0iy P00 Py

iff

(P—Q)—(Q@—P)— (P=Q)

13

The Axioms of HOL

Ps Ax. fx=gx

s=t
2—-°- 72 t
f=¢ ref Pt subst (Ax. f x) = (Ax. g x) &
iff

(P—Q)—(Q@—P)— (P=Q)

P = True V P = False True_or_False

COMP4161 | G Kle

The Axioms of HOL

s—t Ps Ax. fx=gx
f=¢ ref Pt subst (Ax. f x) = (Ax. g x) ext

P =0 —(@Q@—=pP SpP=q "

P = True V P = False True_or_False

P 7x

somel
)

P (SOME x. P x

The Axioms of HOL

f=¢ ref Pt subst (Ax. f x) = (Ax. g x) ext
%jg impl P—=Q P —>QQ P mp

P—Q —(@Q =P =Pp=qm

P = True V P = False True_or_False

P 7x
P (SOME x. P x

somel
)

fty

df :iind = ind. inj f A —surj f n

13 | COMP4161 | G Kle

That’s it.

=» 3 basic constants
=» 3 basic types

=>» 9 axioms

That’s it.

=» 3 basic constants
=» 3 basic types
=>» 9 axioms

With this you can define and derive all the rest.

That’s it.

=» 3 basic constants
=» 3 basic types
=>» 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

xX=y flecti
x = y ©d-reflection (THEx. x=a)=a

the_eq_trivial

14 | COMP4161

Demo:
The Definitions in Isabelle

Deriving Proof Rules

In the following, we will

Deriving Proof Rules

In the following, we will

=>» look at the definitions in more detail

Deriving Proof Rules

In the following, we will

=>» look at the definitions in more detail

=» derive the traditional proof rules from the axioms in Isabelle

Deriving Proof Rules

In the following, we will
=» look at the definitions in more detail
=» derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

lemma [name]
assumes [name; :] "< prop >1
assumes [name; 3] “< prop >’

shows "< prop >" < proof >

Deriving Proof Rules

In the following, we will

=» look at the definitions in more detail
=» derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

lemma [name]
assumes [name; :] “< prop >1"
assumes [name; :] “< prop >3"

shows "< prop >" < proof >

proves: [< prop >1; < prop >2; ...] = < prop >

OMP4161

True

consts True :: bool
True = (Ax :: bool. x) = (Ax. x)

Intuition:
right hand side is always true

True

consts True :: bool
True = (Ax :: bool. x) = (Ax. x)

Intuition:
right hand side is always true

Proof Rules:

—— Truel
True

Proof:

) refl

(Ax iz bool. x) = (Ax. x
unfold True_def

True

Demo

Universal Quantifier

consts ALL :: (a = bool) = bool
ALL P = P = (Ax. True)

Intuition:
=» ALL P is Higher Order Abstract Syntax for Vx. P x.
=» P is a function that takes an x and yields a truth value.
=» ALL P should be true iff P yields true for all x, i.e.
if it is equivalent to the function Ax. True.
Proof Rules:
Ax. Px Vx. P x P?x=—R

Vx. P x alll R allE

Proof: Isabelle Demo

9 | COMP4161) Aman Pohjola, R

False

consts False :: bool
False = VP.P

Intuition:
Everything can be derived from False.

Proof Rules:

False
P FalseE True # False

Proof: Isabelle Demo

Negation

consts Not :: bool = bool (—)
-P =P — False

Intuition:
Try P = True and P = False and the traditional truth table for —.

Proof Rules:
A = False
——— notl

“A ﬁAP A notE

Proof: Isabelle Demo

COMP4161

Existential Quantifier

consts EX :: (a = bool) = bool
EXP = VQ. (x.Px— Q) — Q

Intuition:
= EX P is HOAS for 3x. P x. (like V)
=» Right hand side is characterization of 3 with ¥V and —
=» Note that inner V binds wide: (Vx. P x — Q)
=» Remember lemma from last time: (Vx. P x — Q) = ((3x. P x) — Q)

Proof Rules:
P 7x Ix.Px Ax.Px=R

Ix. Px & R &
Proof: Isabelle Demo

Conjunction

consts And :: bool = bool = bool (- A)
PANQ=VR.(P—Q—R)—R

Intuition:

=» Mirrors proof rules for A
=» Try truth table for P, Q, and R

Proof Rules:

AAB [AB] = C
C

A B
ANB

conjl conjE

Proof: Isabelle Demo

Disjunction
consts Or :: bool = bool = bool (- V)

PVQ=VR.(P—R)—(Q—R)— R

Intuition:

=» Mirrors proof rules for VV (case distinction)
=» Try truth table for P, Q, and R

Proof Rules:

A AvB A= C B=C ,.
AV E AdeISJ|1/2 c disjE

Proof: Isabelle Demo

24 | COMP4161 | G Kle

If-Then-Else

consts If :: bool = o = o = « (if_ then _else _)
If Pxy = SOME z. (P =True — z =x) A (P = False — z =y)

Intuition:

=» for P = True, right hand side collapses to SOME z. z = x
=» for P = False, right hand side collapses to SOME z. z =y

Proof Rules:

if Truethenselset=-s ifTrue if False then selse t =t ifFalse

Proof: Isabelle Demo

OMP4161) Aman Pohjola, R

That was HOL

We have learned today ...

=> More automation

in, M Tanaks

We have learned today ...

=> More automation
=» Defining HOL

We have learned today ...

=» More automation
=» Defining HOL
=» Higher Order Abstract Syntax

We have learned today ...

=» More automation

=» Defining HOL

=» Higher Order Abstract Syntax
=» Deriving proof rules

