

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Robert Sison T3/2023

Content

→	Foundations	&	Principles
---	-------------	---	------------

 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[2,3ª]
Term rewriting	[3,4]
➔ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
• Datatype induction, primitive recursion	[5,7]
General recursive functions, termination proofs	[7 ^b]
 Proof automation, Isar (part 2) 	[8]
• Hoare logic, proofs about programs, invariants	[8,9]
C verification	[9,10]
• Practice, questions, exam prep	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Last Time on HOL

- ➔ Defining HOL
- ➔ Higher Order Abstract Syntax
- ➔ Deriving proof rules
- \rightarrow More automation

Term Rewriting

The Problem

Given a set of equations

 $l_1 = r_1$ $l_2 = r_2$ \vdots $l_n = r_n$ does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → Theorem Proving (dealing with equations, simplifying statements)

Term Rewriting: The Idea

use equations as reduction rules

 $l_1 \longrightarrow r_1$ $l_2 \longrightarrow r_2$ \vdots $l_n \longrightarrow r_n$ decide l = r by deciding $l \xleftarrow{*} r$

Arrow Cheat Sheet

$$\begin{array}{rcl} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\} & \text{identity} \\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow & n+1 \text{ fold composition} \\ \stackrel{+}{\longrightarrow} & = & \bigcup_{i>0} \stackrel{i}{\longrightarrow} & \text{transitive closure} \\ \stackrel{*}{\longrightarrow} & = & \stackrel{+}{\longrightarrow} \cup \stackrel{0}{\longrightarrow} & \text{reflexive transitive closure} \\ \stackrel{=}{\longrightarrow} & = & \longrightarrow \cup \stackrel{0}{\longrightarrow} & \text{reflexive closure} \\ \stackrel{-1}{\longrightarrow} & = & \{(y,x)|x \longrightarrow y\} & \text{inverse} \\ \stackrel{-1}{\longrightarrow} & = & \{(y,x)|x \longrightarrow y\} & \text{inverse} \\ \stackrel{\leftarrow}{\longleftrightarrow} & = & \stackrel{-1}{\longrightarrow} & \text{inverse} \\ \stackrel{\leftarrow}{\longleftrightarrow} & = & \longleftarrow \cup \longrightarrow & \text{symmetric closure} \\ \stackrel{+}{\leftrightarrow} & = & \bigcup_{i>0} \stackrel{i}{\longleftrightarrow} & \text{transitive symmetric closure} \\ \stackrel{*}{\leftrightarrow} & = & \stackrel{+}{\longleftrightarrow} \cup \stackrel{0}{\leftrightarrow} & \text{reflexive transitive symmetric closure} \end{array}$$

closure

How to Decide $/ \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for *n* such that $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work? If $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $I \xleftarrow{*} r$. Ok. If $I \xleftarrow{*} r$, will there always be a suitable *n*? **No!**

Example:

Rules: $f x \longrightarrow a$, $g x \longrightarrow b$, $f (g x) \longrightarrow b$ $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a \longleftarrow f (g x) \longrightarrow b \longleftarrow g x$ **But:** $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property: $I \xleftarrow{*} r \Longrightarrow \exists n. I \xrightarrow{*} n \land r \xrightarrow{*} n$

Fact: \longrightarrow is Church-Rosser iff it is confluent.

Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination \Longrightarrow confluence

Termination

 \rightarrow is **terminating** if there are no infinite reduction chains \rightarrow is **normalizing** if each element has a normal form \rightarrow is **convergent** if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

When is \longrightarrow Terminating?

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$$

This system always terminates. Reduction order:

$$s <_r t$$
 iff $size(s) < size(t)$ with
 $size(s) =$ number of function symbols in s

1 Both rules always decrease size by 1 when applied to any term t

 $@\ <_r$ is well founded, because < is well founded on ${\rm I\!N}$

Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves,

rather than their application to an arbitrary term t.

Show for each rule $I_i = r_i$, that $r_i < I_i$.

Example:

```
g x < f (g x) and f x < g (f x)
```

Requires

u to become smaller whenever any subterm of u is made smaller. Formally:

Requires < to be **monotonic** with respect to the structure of terms:

 $s < t \longrightarrow u[s] < u[t].$

True for most orders that don't treat certain parts of terms as special cases.

Example Termination Proof

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp: $(A \longrightarrow B) = (\neg A \lor B)$

→ Push ¬s down past other operators:

notnot: $(\neg \neg P) = P$ notand: $(\neg (A \land B)) = (\neg A \lor \neg B)$ notor: $(\neg (A \lor B)) = (\neg A \land \neg B)$

We show that the rewrite system defined by these rules is terminating.

Order on Terms

Each time one of our rules is applied, either:

- \rightarrow an implication is removed, or
- \rightarrow something that is not a \neg is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

```
→ num_imps s < \text{num_imps } t, or
```

→ num_imps s = num_imps $t \land$ osize s < osize t.

Let:

→ $s <_n t \equiv$ osize s < osize t

Then $<_i$ and $<_n$ are both well-founded orders (since both return nats).

 $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

Order Decreasing

imp clearly decreases num_imps.

osize adds up all non- \neg operators and variables/constants, weights each one according to its depth within the term.

osize' c
$$x = 2^{x}$$

osize' $(\neg P)$ $x = osize' P (x + 1)$
osize' $(P \land Q)$ $x = 2^{x} + (osize' P (x + 1)) + (osize' Q (x + 1))$
osize' $(P \lor Q)$ $x = 2^{x} + (osize' P (x + 1)) + (osize' Q (x + 1))$
osize' $(P \longrightarrow Q) x = 2^{x} + (osize' P (x + 1)) + (osize' Q (x + 1))$
osize P $= osize' P 0$

The other rules decrease the depth of the things osize counts, so decrease osize.

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

- → uses simplification rules
- → (almost) blindly from left to right
- \rightarrow until no rule is applicable.
 - termination: not guaranteed (may loop)
- **confluence:** not guaranteed (result may depend on which rule is used first)

Control

- → Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
- → Using only the specified set of equations:

apply (simp only: <rules>)

We have seen today...

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Exercises

→ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.