

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Robert Sison T3/2023

Content

→	Foundations & Principles	
	 Intro, Lambda calculus, natural deduction 	[1,2]
	 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
	Term rewriting	[3,4]
→	Proof & Specification Techniques	
	 Inductively defined sets, rule induction 	[4,5]
	 Datatype induction, primitive recursion 	[5,7]
	 General recursive functions, termination proofs 	[7 ^b]
	 Proof automation, Isar (part 2) 	[8]
	 Hoare logic, proofs about programs, invariants 	[8,9]
	C verification	[9,10]
	 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

→ Defining HOL

- → Defining HOL
- → Higher Order Abstract Syntax

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation

Term Rewriting

The Problem

Given a set of equations

$$l_1 = r_1$$

$$l_2 = r_2$$

$$\vdots$$

$$l_n = r_n$$

The Problem

Given a set of equations

$$l_1 = r_1$$

$$l_2 = r_2$$

$$\vdots$$

$$l_n = r_n$$

does equation l = r hold?

The Problem

Given a set of equations

$$l_1 = r_1$$

$$l_2 = r_2$$

$$\vdots$$

$$l_n = r_n$$

does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → Theorem Proving (dealing with equations, simplifying statements)

Term Rewriting: The Idea

use equations as reduction rules

$$\begin{array}{c}
l_1 \longrightarrow r_1 \\
l_2 \longrightarrow r_2 \\
\vdots \\
l_n \longrightarrow r_n
\end{array}$$

decide l = r by deciding $l \stackrel{*}{\longleftrightarrow} r$

$$\stackrel{0}{\longrightarrow} = \{(x,y)|x=y\}$$
 identity

$$\begin{array}{cccc} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\} & & \text{identity} \\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow & & \text{n+1 fold composition} \end{array}$$

$$\begin{array}{ccc}
\stackrel{\bullet}{\longrightarrow} & = & \{(x,y)|x=y\} \\
\stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow \\
\stackrel{+}{\longrightarrow} & = & \bigcup_{i>0} \xrightarrow{i} \\
\stackrel{+}{\longrightarrow} & = & \stackrel{+}{\longrightarrow} \cup \xrightarrow{0} \\
\stackrel{=}{\longrightarrow} & = & \longrightarrow \cup \xrightarrow{0}
\end{array}$$

y identity
 n+1 fold composition
 transitive closure
 reflexive transitive closure
 reflexive closure

Same idea as for β :

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ Does this always work?

Same idea as for β **:** look for n such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $I \xleftarrow{*} r$. Ok.

Same idea as for β **:** look for n such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable n?

8 | COMP4161 | G Klein, M Tanaka, J Åman Pohiola, R Sison CC-BY-4.0 License

Same idea as for β **:** look for n such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok. If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n? **No!**

Example:

Rules: $f \times \longrightarrow a$, $g \times \longrightarrow b$, $f (g \times) \longrightarrow b$

Same idea as for β **:** look for n such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok. If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n? **No!**

Example:

Rules:
$$f \times \longrightarrow a$$
, $g \times \longrightarrow b$, $f (g \times) \longrightarrow b$
 $f \times \stackrel{*}{\longleftrightarrow} g \times \text{because} \quad f \times \longrightarrow a \longleftarrow f (g \times) \longrightarrow b \longleftarrow g \times b$

Same idea as for β **:** look for n such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok. If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n? **No!**

Example:

Rules:
$$f \times \longrightarrow a$$
, $g \times \longrightarrow b$, $f (g \times) \longrightarrow b$
 $f \times \stackrel{*}{\longleftrightarrow} g \times \text{ because } f \times \longrightarrow a \longleftarrow f (g \times) \longrightarrow b \longleftarrow g \times$
But: $f \times \longrightarrow a \text{ and } g \times \longrightarrow b \text{ and } a, b \text{ in normal form}$

Same idea as for β **:** look for n such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok. If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n? **No!**

Example:

Rules:
$$f \times \longrightarrow a$$
, $g \times \longrightarrow b$, $f (g \times) \longrightarrow b$
 $f \times \stackrel{*}{\longleftrightarrow} g \times because \quad f \times \longrightarrow a \longleftarrow f (g \times) \longrightarrow b \longleftarrow g \times b$
But: $f \times \longrightarrow a$ and $g \times \longrightarrow b$ and $g \times \longrightarrow b$ in normal form

Works only for systems with **Church-Rosser** property: $I \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. \ I \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$

Same idea as for β **:** look for n such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok. If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n? **No!**

Example:

Rules:
$$f \times \longrightarrow a$$
, $g \times \longrightarrow b$, $f (g \times) \longrightarrow b$
 $f \times \stackrel{*}{\longleftrightarrow} g \times because \quad f \times \longrightarrow a \longleftarrow f (g \times) \longrightarrow b \longleftarrow g \times b$
But: $f \times \longrightarrow a$ and $g \times \longrightarrow b$ and $g \times \longrightarrow b$ in normal form

Works only for systems with **Church-Rosser** property: $I \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n, I \stackrel{*}{\longleftrightarrow} n \land r \stackrel{*}{\longleftrightarrow} n$

Fact: → is Church-Rosser iff it is confluent.

Problem:

is a given set of reduction rules confluent?

Problem:

is a given set of reduction rules confluent?

undecidable

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination ⇒ confluence

Termination

- → is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is convergent if it is terminating and confluent

Example:

Termination

- → is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is convergent if it is terminating and confluent

Example:

 \longrightarrow_{β} in λ is not terminating, but confluent

Termination

- → is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is **convergent** if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Termination

- → is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is **convergent** if it is terminating and confluent

Example:

 \longrightarrow_{β} in λ is not terminating, but confluent \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

Termination

- → is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is convergent if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

Basic idea:

Basic idea: when each rule application makes terms simpler in some way.

Basic idea: when each rule application makes terms simpler in some way.

```
More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever t \longrightarrow s (well founded = no infinite decreasing chains a_1 > a_2 > \ldots)
```

Example:

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded

order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example: $f(gx) \longrightarrow gx$, $g(fx) \longrightarrow fx$

This system always terminates. Reduction order:

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded

order
$$<$$
 on terms for which $s < t$ whenever $t \longrightarrow s$ (well founded $=$ no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$$

This system always terminates. Reduction order:

$$s <_r t$$
 iff $size(s) < size(t)$ with $size(s) =$ number of function symbols in s

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded

order
$$<$$
 on terms for which $s < t$ whenever $t \longrightarrow s$ (well founded $=$ no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(gx) \longrightarrow gx$$
, $g(fx) \longrightarrow fx$

This system always terminates. Reduction order:

$$s <_r t$$
 iff $size(s) < size(t)$ with $size(s) =$ number of function symbols in s

 \odot Both rules always decrease size by 1 when applied to any term t

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded

order
$$<$$
 on terms for which $s < t$ whenever $t \longrightarrow s$ (well founded $=$ no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(gx) \longrightarrow gx$$
, $g(fx) \longrightarrow fx$

This system always terminates. Reduction order:

$$s <_r t$$
 iff $size(s) < size(t)$ with $size(s) =$ number of function symbols in s

- ${ t 0}$ Both rules always decrease size by ${ t 1}$ when applied to any term ${ t t}$
- $@<_r$ is well founded, because < is well founded on $\mathbb N$

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t.

Show

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term *t*.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

$$g \times f (g \times)$$
 and $f \times g (f \times)$

Requires

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t.

Show for each rule $I_i = r_i$, that $r_i < I_i$.

Example:

$$g \times f (g \times)$$
 and $f \times g (f \times)$

Requires

u to become smaller whenever any subterm of u is made smaller.

Formally:

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

$$g \times f (g \times)$$
 and $f \times g (f \times)$

Requires

u to become smaller whenever any subterm of u is made smaller.

Formally:

Requires < to be **monotonic** with respect to the structure of terms:

$$s < t \longrightarrow u[s] < u[t].$$

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

$$g \times f (g \times)$$
 and $f \times g (f \times)$

Requires

u to become smaller whenever any subterm of u is made smaller.

Formally:

Requires < to be **monotonic** with respect to the structure of terms:

$$s < t \longrightarrow u[s] < u[t].$$

True for most orders that don't treat certain parts of terms as special cases.

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp:
$$(A \longrightarrow B) = (\neg A \lor B)$$

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp:
$$(A \longrightarrow B) = (\neg A \lor B)$$

→ Push ¬s down past other operators:

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp:
$$(A \longrightarrow B) = (\neg A \lor B)$$

→ Push ¬s down past other operators:

notnot:
$$(\neg \neg P) = P$$

notand:
$$(\neg(A \land B)) = (\neg A \lor \neg B)$$

notor:
$$(\neg(A \lor B)) = (\neg A \land \neg B)$$

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp:
$$(A \longrightarrow B) = (\neg A \lor B)$$

→ Push ¬s down past other operators:

notnot: $(\neg \neg P) = P$

notand: $(\neg(A \land B)) = (\neg A \lor \neg B)$

notor: $(\neg (A \lor B)) = (\neg A \land \neg B)$

We show that the rewrite system defined by these rules is terminating.

Each time one of our rules is applied, either:

- → an implication is removed, or
- \rightarrow something that is not a \neg is hoisted upwards in the term.

Each time one of our rules is applied, either:

- → an implication is removed, or
- → something that is not a ¬ is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- \rightarrow num_imps $s < \text{num_imps } t$, or
- → num_imps $s = \text{num_imps } t \land \text{osize } s < \text{osize } t$.

Each time one of our rules is applied, either:

- → an implication is removed, or
- → something that is not a ¬ is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- \rightarrow num_imps $s < \text{num_imps } t$, or
- → num_imps $s = \text{num_imps } t \land \text{osize } s < \text{osize } t$.

Let:

- \Rightarrow $s <_i t \equiv \text{num_imps } s < \text{num_imps } t \text{ and}$
- \Rightarrow $s <_n t \equiv \text{osize } s < \text{osize } t$

Then $<_i$ and $<_n$ are both well-founded orders (since both return nats).

Each time one of our rules is applied, either:

- → an implication is removed, or
- → something that is not a ¬ is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- \rightarrow num_imps $s < \text{num_imps } t$, or
- → num_imps $s = \text{num_imps } t \land \text{osize } s < \text{osize } t$.

Let:

- \Rightarrow $s <_i t \equiv \text{num_imps } s < \text{num_imps } t \text{ and}$
- \Rightarrow $s <_n t \equiv \text{osize } s < \text{osize } t$

Then $<_i$ and $<_n$ are both well-founded orders (since both return nats). $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

imp clearly decreases num_imps.

imp clearly decreases num_imps. osize adds up all non-¬ operators and variables/constants, weights each one according to its depth within the term.

imp clearly decreases num_imps.

osize adds up all non- \neg operators and variables/constants, weights each one according to its depth within the term.

```
osize' c x = 2^x

osize' (\neg P) x = \text{osize'} \ P \ (x+1)

osize' (P \land Q) x = 2^x + (\text{osize'} \ P \ (x+1)) + (\text{osize'} \ Q \ (x+1))

osize' (P \lor Q) x = 2^x + (\text{osize'} \ P \ (x+1)) + (\text{osize'} \ Q \ (x+1))

osize' (P \longrightarrow Q) x = 2^x + (\text{osize'} \ P \ (x+1)) + (\text{osize'} \ Q \ (x+1))

osize P = osize' P \ 0
```

imp clearly decreases num_imps.

osize adds up all non- \neg operators and variables/constants, weights each one according to its depth within the term.

osize'
$$c$$
 $x = 2^x$
osize' $(\neg P)$ $x = \text{osize'} \ P \ (x+1)$
osize' $(P \land Q)$ $x = 2^x + (\text{osize'} \ P \ (x+1)) + (\text{osize'} \ Q \ (x+1))$
osize' $(P \lor Q)$ $x = 2^x + (\text{osize'} \ P \ (x+1)) + (\text{osize'} \ Q \ (x+1))$
osize' $(P \longrightarrow Q)$ $x = 2^x + (\text{osize'} \ P \ (x+1)) + (\text{osize'} \ Q \ (x+1))$
osize P = osize' $P \ 0$

The other rules decrease the depth of the things osize counts, so decrease osize.

Term rewriting engine in Isabelle is called **Simplifier**

Term rewriting engine in Isabelle is called Simplifier

apply simp

→ uses simplification rules

Term rewriting engine in Isabelle is called **Simplifier**

apply simp

- → uses simplification rules
- → (almost) blindly from left to right

Term rewriting engine in Isabelle is called **Simplifier**

apply simp

- → uses simplification rules
- → (almost) blindly from left to right
- → until no rule is applicable.

Term rewriting engine in Isabelle is called **Simplifier**

apply simp

- → uses simplification rules
- → (almost) blindly from left to right
- → until no rule is applicable.

termination: not guaranteed (may loop)

Term rewriting engine in Isabelle is called **Simplifier**

apply simp

→ uses simplification rules

→ (almost) blindly from left to right

→ until no rule is applicable.

termination: not guaranteed

(may loop)

confluence: not guaranteed

(result may depend on which rule is used first)

Control

→ Equations turned into simplification rules with [simp] attribute

Control

- → Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally:

 apply (simp add: <rules>) and apply (simp del: <rules>)

Control

- → Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
- → Using only the specified set of equations: apply (simp only: <rules>)

___Demo

→ Equations and Term Rewriting

→ Equations and Term Rewriting

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Exercises

→ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.