

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison T3/2023

Content

Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
Term rewriting	[3,4]
▶ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	$[7^{b}]$
 Proof automation, Isar (part 2) 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
 C verification 	[9,10]
 Practice, questions, exam prep 	$[10^{c}]$

^aa1 due; ^ba2 due; ^ca3 due

Last Time

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Applying a Rewrite Rule

- → $l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma l = s$
- → Result: $t[\sigma \ r]$
- **→** Equationally: $t[s] = t[\sigma \ r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

Substitution: $\sigma = \{n \mapsto b + c\}$

Result: a + (b + c)

Conditional Term Rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow I = r$$

is **applicable** to term t[s] with σ if

- $\rightarrow \sigma I = s$ and
- $\rightarrow \sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$f x = g x \land g x = f x \Longrightarrow f x = 2$$
"

```
simp (simp (no_asm)) ignore assumptions (simp (no_asm_use)) simplify, but do not use assumptions (simp (no_asm_simp)) use, but do not simplify assumptions
```

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\begin{array}{cccc} \neg A & \mapsto & A = \textit{False} \\ A \longrightarrow B & \mapsto & A \Longrightarrow B \\ A \land B & \mapsto & A, B \\ \forall x. \ A \ x & \mapsto & A \ ?x \\ A & \mapsto & A = \textit{True} \end{array}$$

Example:
$$(p \longrightarrow q \land \neg r) \land s$$

$$p \Longrightarrow q = True$$
 $p \Longrightarrow r = False$ $s = True$

___Demo

Case splitting with simp

$$P \text{ (case } e \text{ of } 0 \Rightarrow a \mid \mathsf{Suc} \ n \Rightarrow b)$$

$$=$$

$$(e = 0 \longrightarrow P \ a) \land (\forall n. \ e = \mathsf{Suc} \ n \longrightarrow P \ b)$$

$$Manually: apply \text{ (simp split: nat.split)}$$

Similar for any data type t: **t.split**

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For ⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:

$$\llbracket P=P';P'\Longrightarrow Q=Q'\rrbracket\Longrightarrow (P\longrightarrow Q)=(P'\longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify P to P'
- \rightarrow then simplify Q to Q' using P' as assumption
- \rightarrow the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown):

$$\mathbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong:

$$b = c \Longrightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)$$

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]
- → use locally with e.g. apply (simp cong: <rule>)

Ordered rewriting

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas mult_ac sort any product (*)

Example: apply (simp add: add_ac) yields $(b+c)+a \rightsquigarrow \cdots \rightsquigarrow a+(b+c)$

AC Rules

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

___Demo

Back to Confluence

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1)
$$f \times \longrightarrow a$$
 (2) $g \times y \longrightarrow b$ (3) $f (g \times z) \longrightarrow b$ Critical pairs:

$$(1)+(3) \qquad \{x \mapsto g \ z\} \qquad a \stackrel{(1)}{\longleftarrow} f (g \ z) \stackrel{(3)}{\longrightarrow} b$$

$$(3)+(2) \qquad \{z \mapsto y\} \qquad b \stackrel{(3)}{\longleftarrow} f (g \ y) \stackrel{(2)}{\longrightarrow} f \ b$$

Completion

(1)
$$f \times \longrightarrow a$$
 (2) $g \times y \longrightarrow b$ (3) $f (g \times z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

$$(1)+(3) \quad \{x\mapsto g\ z\} \quad a\stackrel{(1)}{\longleftarrow} \quad f\ (g\ z) \stackrel{(3)}{\longrightarrow} b$$
 shows that $a=b$ (because $a\stackrel{*}{\longleftrightarrow} b$), so we add $a\longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Demo: Waldmeister

Orthogonal Rewriting Systems

Definitions:

A **rule** $I \longrightarrow r$ is **left-linear** if no variable occurs twice in I.

A **rewrite system** is **left-linear** if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

- → Conditional term rewriting
- → Congruence rules
- → AC rules
- → More on confluence