rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

—

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Content

=» Foundations & Principles

e Intro, Lambda calculus, natural deduction [1,2]
e Higher Order Logic, Isar (part 1) [2,37]
e Term rewriting (3.4]

=» Proof & Specification Techniques

e Inductively defined sets, rule induction [4,5]
e Datatype induction, primitive recursion [5.7]
e General recursive functions, termination proofs 7%
e Proof automation, Isar (part 2) [8]
e Hoare logic, proofs about programs, invariants [8.9]
e C verification [9.10]
e Practice, questions, exam prep [10]

231 due; Pa2 due; a3 due

2 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Last Time

=*» Equations and Term Rewriting
=» Confluence and Termination of reduction systems
=» Term Rewriting in Isabelle

Aman P

Applying a Rewrite Rule

=> /| — r applicable to term t[s]
if there is substitution o such that o / = s

=» Result: t[o r]
=» Equationally: t[s] = t[o r]

Example:
Rule: 0+n—n
Term: a+ (0+ (b+¢))
Substitution: 0 = {n— b+ c}
Result: a+ (b+ ¢)

4 | COMP4161 | G Klein, M , J Aman Pohjola ison CC-BY-4.0 License

Conditional Term Rewriting

Rewrite rules can be conditional:
[Pi...Pl]l=1I=r

is applicable to term t[s] with o if
=» o /=sand
=>» o Py, ..., 0 P, are provable by rewriting.

, J Aman Poh CC-BY-4.0 License

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma"f x=gxANgx=fx=fx=2"
simp use and simplify assumptions
(simp (no_asm)) ignore assumptions

(simp (no_asm_use)) simplify, but do not use assumptions
(simp (no_asm_simp)) use, but do not simplify assumptions

6 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Preprocessing

Preprocessing (recursive) for maximal simplification power:

-A — A= False
A—B —» A—B
AANB — A B
Vx. Ax — A7?x
A — A= True
Example: (p—gA-r)As
—

p = q = True p = r = False s = True

COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Demo

Case splitting with simp

P (if A then s else t)

(A— Ps)N(-A— P t)
Automatic

P (case eof 0 = a|Sucn = b)

(e:0—>Pa)A(Vr:e:Sucn—>Pb)
Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

9 | COMP4161 | G Klein, M ka, J Aman Pohjola, R Sison CC-BY-4.0 Lic

Congruence Rules

congruence rules are about using context

Example: in P — @ we could use P to simplify terms in Q

For = hardwired (assumptions used in rewriting)
For other operators expressed with conditional rewriting.

Example:
[P=P;P=Q=Q]=(P—Q)=(P — Q)
Read: to simplify P — Q

=-> first simplify P to P’

=» then simplify Q to Q" using P’ as assumption

> the resultis P — Q'

COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P P —= Q=Q]= (PANQ)=(P'AQ)

Context for if-then-else:
ifcong: [b=cic—=x=uc=y=v]=
(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong;:
b = c = (if b then x else y) = (if ¢ then x else y)

=>» declare own congruence rules with [cong] attribute
=>» delete with [cong del]
=>» use locally with e.g. apply (simp cong: <rule>)

11 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Ordered rewriting

Problem: x + y — y + x does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b+a~a+bbutnota+ b~ b+ a.
For types nat, int etc:

e lemmas add_ac sort any sum (+)

e lemmas mult_ac sort any product ()

Example: apply (simp add: add_ac) yields
(b+c)+a~--~a+(b+c)

COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

AC Rules

Example for associative-commutative rules:
Associative: (xOy)oz=x0(y©2z)
Commutative: xOQy =y ®x

These 2 rules alone get stuck too early (not confluent).

Example: (zoOx)O(y©v)
Wewant: (zOXx)0O(yoOv)=ve (xo(yoz))
We get: (zOX)O(yoOVv)=vo(yo(xoz)

Weneed: ACrule xO(y0z)=yo(x02)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

R Sison CC-BY-4.0 License

13 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola

Demo

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.
Definition:
Let 1 — nr and b — r» be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of /; unifies with k.

Example:
Rules: (1) fx—a (2)gy—b ((3)f(gz)—b
Critical pairs:

(1)+(3) {x—gz} as— f(g2) b
(@) fz=yr b f(gy) Brb

15 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

16

Completion

(1)fx—a (2gy—b (3)f(gz)—b
is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:
W+B@) xogzt al fiez) Sy

shows that a = b (because a <— b), so we add a — b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

COMP4161 | G Klein, M Tanaka,

Demo: Waldmeister

Orthogonal Rewriting Systems

Definitions:
A rule | — r is left-linear if no variable occurs twice in /.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.
Orthogonal rewrite systems are confluent

Application: functional programming languages

18 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

We have learned today ...

=» Conditional term rewriting

=» Congruence rules
=> AC rules
=» More on confluence

